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Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model
using Pixel-aligned Reconstruction Priors
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Figure 1: Generations from Get3DHuman. We export generated shapes and visualize them in Blender. Besides generating
3D textured human models from random codes, our method also supports re-texturing a given shape (bottom left), shape and
texture interpolation (bottom middle), and inversion from a given reference image (bottom right). See Supp. for more results.

Abstract

Fast generation of high-quality 3D digital humans is
important to a vast number of applications ranging from
entertainment to professional concerns. Recent advances
in differentiable rendering have enabled the training of
3D generative models without requiring 3D ground truths.
However, the quality of the generated 3D humans still has
much room to improve in terms of both fidelity and diver-
sity. In this paper, we present Get3DHuman, a novel 3D
human framework that can significantly boost the realism
and diversity of the generated outcomes by only using a

*Corresponding author: hanxiaoguang @cuhk.edu.cn

limited budget of 3D ground-truth data. Our key obser-
vation is that the 3D generator can profit from human-
related priors learned through 2D human generators and
3D reconstructors. Specifically, we bridge the latent space
of Get3DHuman with that of StyleGAN-Human [13] via
a specially-designed prior network, where the input latent
code is mapped to the shape and texture feature volumes
spanned by the pixel-aligned 3D reconstructor [50]. The
outcomes of the prior network are then leveraged as the su-
pervisory signals for the main generator network. To ensure
effective training, we further propose three tailored losses
applied to the generated feature volumes and the intermedi-
ate feature maps. Extensive experiments demonstrate that
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Get3DHuman greatly outperforms the other state-of-the-
art approaches and can support a wide range of applica-
tions including shape interpolation, shape re-texturing, and
single-view reconstruction through latent inversion.

1. Introduction

Generating diverse and high-quality virtual humans
plays an important role in numerous applications, including
VR/AR, visual effects, game production, etc. The advances
in generative models have brought impressive advances to
the state-of-the-art of generating 2D virtual avatars, such
as images or videos. However, synthesizing 3D humans
with high fidelity and large variations remains much under-
explored due to the scarcity of 3D human data.

The conventional solution [9, 8, 55, 11] for acquiring a
3D avatar from a real person is typically a time-consuming
and cumbersome process, requiring a specialized capture
system, substantial manual efforts, and extensive computa-
tion. To circumvent the requirement of collecting a large
corpus of 3D ground-truth data, recent works utilize the
differentiable rendering technique to train a 3D generative
model in a 3D-unsupervised manner [6, 14]. Specifically,
instead of using direct 3D supervision, adversarial losses
are applied to the images rendered from the synthesized
3D content. However, due to the lack of dense multi-view
images for each model, these methods can only encourage
geometry-to-image consistency in the selected views while
failing to produce plausible reconstruction in the unseen re-
gions. In addition, the differentiable rendering process is
computationally heavy, making the network training highly
inefficient.

To resolve the above issues, in this work, we present
Get3DHuman, a novel 3D generator that can faithfully syn-
thesize high-fidelity clothed 3D humans with a diversity of
shapes and textures. Our key observation is that 3D human
generators can benefit from the inductive bias from a 2D
human synthesizer and the prior knowledge learned through
relevant 3D modeling tasks. In particular, to bypass the lim-
ited availability of 3D ground truths, we propose to leverage
the generative power of 2D human synthesizers which have
shown more promising and stable quality than their counter-
part 3D generators. We further lift the rich prior from the 2D
generator, i.e. StyleGAN-Human [13], to 3D by using the
pixel-aligned reconstruction priors, i.e. the pre-trained PIFu
network [49], through single-view human reconstruction.
Thanks to the strong generalization ability of pixel-aligned
implicit reconstructor, by feeding it with a myriad of photo-
realistic human images generated by StyleGAN-Human, we
are able to obtain a vast number of 3D human models with
highly diversified body shapes, apparel, poses, and textures.
To further ensure the high quality of the generated shapes,
we filter out inferior results via manual inspections.

We further materialize the above idea via a novel prior
induction mechanism. Specifically, we first train a prior
network to encode the 2D generator prior and the 3D re-
construction prior into three supervisory signals. That is,
given a random latent code, the prior network would gen-
erate normal maps, depth maps, and shape and texture fea-
ture volumes of the 3D human corresponding to the input
code (see Fig. 2). The input code is sampled from the latent
space of StyleGAN-Human while the shape and texture fea-
ture volumes are consistent with the PIFu latent, and, hence,
can be converted to the predicted human shape via the pre-
trained PIFu decoder. We then supervise the training of the
proposed 3D generators via three specially-tailored losses.
First, a latent prior loss is introduced to provide direct su-
pervision of the generated feature volumes for the shape and
texture generation branches. Second, an adversarial loss
is applied to the 3D feature volumes instead of the output
signed distance field (SDF). This helps reduce the train-
ing complexity while ensuring the realism of the generated
3D humans. Lastly, normal maps and depth maps are used
for supervising the generation of intermediate feature maps.
Specifically, instead of directly transforming the input code
into a 3D feature volume, we first map the code to 2D fea-
ture maps and then lift them into 3D feature volume. This
additional intermediate supervision helps cast finer-grained
geometry details as shown in our experiments (see Fig. 7).
We further utilize a refinement module to improve the qual-
ity of our textured mesh as the texture prior is not always
satisfactory.

Our method can support a wide range of applications, in-
cluding shape generation, interpolation, shape re-texturing,
and latent inversion from a single image. We evaluate
Get3DHuman via extensive experiments and demonstrate
that it strongly outperforms the state-of-the-art methods,
both qualitatively and quantitatively.

To summarize, our main contributions include:

* We propose a novel 3D human generation framework
that explicitly incorporates priors from top-tier 2D
human generators and 3D reconstruction schemes to
achieve high-quality and diverse 3D clothed human
generation.

* We present specially-tailored prior induction losses for
effective and efficient prior-based supervision.

* We set the new state of the art in the task of shape gen-
eration while supporting many applications including
shape interpolation, re-texturing, and latent inversion.

2. Related Work

Constructing generative models for images, videos or 3D
models is a fundamental problem in the field of computer
graphics and computer vision. Here, we only review and
summarize the work related to 2D or 3D human generation
that is relevant to our work.
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Figure 2: Overview of our framework. Our Get3DHuman consists of a shape generator (blue box) and a texture generator
(orange box) with a refinement module (yellow box) that enables nonexistent 3D human creation. Shape generator responds
for generating a high-quality full-body geometry from a shape code and sends shape features to the texture generator. Texture
generator predicts RGB colors of all points in the 3D space from a texture code and intermediate shape features. Trainable
modules are underlined, including gs, gsvs Dsvs Gts 9vs Div, and g,. These seven modules are all trained from scratch. The
prior network (black box) only produces supervisory signals for the training of form.

2D Human Generation. In recent years, generative ad-
versarial networks (GANs) [15] has been successfully ap-
plied to the task of image synthesis. Many methods
have built photorealism generative models of 2D human
faces [25, 26, 24]. Based on the success of these efforts,
faces can also be efficiently edited [48, 53, 19]. On an-
other line, some researchers attempt to generate 2D images
of dressed humans from sketch, pose, or text conditions
[32, 27, 2, 51, 20]. The recent works of [13, 12] have built
large-scale datasets and resorted to StyleGAN to achieve
impressive 2D human generation results. The success in 2D
image generation and editing has inspired research in 3D
generation.

3D Human Modeling. As a common representation, para-
metric human model, like [4, 31, 46, 5, 23, 22, 42, 44],
controls a template through a series of low-dimensional pa-
rameters to obtain a 3D naked human body, with which
the modeling can be performed by regression approaches.
These works are further extended to model dressed human
[3, 34], by introducing vertices’ movements on the tem-
plate meshes. Some other representations are also proposed
for dealing with more complex clothed bodies, like point
clouds [33, 35, 58], radiance fields [29, 41, 45, 54] and im-
plicit fields [7, 37, 43, 57]. In particular, the implicit field
representation has become a powerful tool for modeling 3D
(clothed) human shapes, as it can capture arbitrary resolu-

tions and fine-grained details.

PIFu [49] first proposes a pixel-aligned implicit func-
tion to extract local features from images to complete hu-
man body digitization. They are further expanded to PI-
FuHD [50], which uses predicted normal maps and a multi-
level architecture to generate higher resolution and richer
details consistent with the input image.
3D Human Generation. Early approaches aimed to ex-
tend GANSs to voxel [56, 40], point cloud [1, 61, 38], im-
plicit [37, 7]. However, these works focus mainly on gener-
ating geometry, not appearance.

EG3D [6] proposes to generate multi-view images of a
3D face via introducing an efficient tri-plane representation
and a neural rendering design with the help of a pretrained
StyleGAN.

Following EG3D, there are also some methods aiming to
full-body human generation [59, 16]. Since their adversar-
ial losses are only applied to the rendered images and there
is no explicit supervision on the geometry, making the pro-
duced shape is far from satisfactory.

Similar to our work, GET3D [14] also targets to generate
textured 3D meshes. Specifically, it generates an SDF field
and a texture field by two latent codes and performs simul-
taneous optimization of the two fields by adversarial loss on
2D rendered images. In our work, we focus on 3D textured
human model and aims to generate 3D textured meshes with
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diverse human poses and appearances.

Recently, a concurrent work HumanGen [18] is posted
on the Internet. Although it also involves the prior of
StyleGAN-Human and PIFu for generative model construc-
tion, we have a key difference: HumanGen only builds a
generative model to produce a texture field from a code
where the geometry is directly borrowing from the prior,
while ours aims to use two codes to generate both shape
field and texture field. In this fashion, different from Hu-
manGen, we truly built a latent space for 3D textured hu-
mans.

3. Method

Fig. 2 shows the overall network of the proposed 3D gen-
erator network. Get3DHuman contains parallel shape and
texture branches, which is facilitated by a prior network
branch during training. Take the shape branch as an ex-
ample, given a shape latent code, Get3DHuman generates
a shape feature Fj, a shape feature volume Fj,, and pro-
duces a high-quality human shape represented as an SDF
(Sec. 3.1). Sec. 3.2 details our prior-facilitated learning
of this 3D generator. Sec. 3.3 describes the texture net-
work and its training. Finally, training details including data
preparation, and training strategy are described in Sec. 3.5.

3.1. The Proposed 3D Generator

As shown in Fig. 2 top, it contains three parts, including
a StyleGAN-like Mapping & Synthesis stage (gs), a fea-
ture encoder stage (g, ), and a PIFu-style geometry decoder
(fs)- Given a shape latent code z; drawn from a Gaussian
distribution, we first use a StyleGAN2 network [26] g to
generate a shape feature F, which is fed into a hourglass-
style [39] fully convolutional feature encoder g, to extract
a shape feature volume Fj,. i.e.:

Fs 295(25)7 (l)
Ew = gsv(Es‘)a (2)

where z, is the random shape latent code, F; and Fj,, are the
intermediate pixel-aligned high-dimensional shape feature
image and shape feature volume, respectively.

With the shape feature volume, a PIFu [49] shape de-
coder f, is used to evaluate the signed distance s € R given
a query point p € R3 and its corresponding feature. i.e.:

fs(Fsp(2),d(p)) = s: s € R, 3)

where p € R? is the 3D query point, Fy, () is the image
feature at p’s projected location x = 7(p) on the image
plane, d(p) is the depth value of p in the camera frame, and
fs is the PIFu shape decoder (MLPs) that is pretrained like
[50] and fixed.

3.2. Prior-Facilitated Learning

Besides adversarial loss, we propose to fully utilize the
prior information from well-trained networks to facilitate
the training of the 3D GAN due to limited training data
and the complexity of this task. Specifically, we first uti-
lize image-latent pairs from StyleGAN-Human to learn the
latent space better since it already has a reasonable struc-
ture after training. Then, we extract intermediate features
using the PriorNet branch supervision to guide the training,
which can also be seen as a kind of deep supervision. In
the following, we first describe how to extract helpful prior
information and then describe the training losses.

Prior extraction. The prior network is the concatena-
tion of a StyleGAN-Human [26] generator and a PIFuHD-
like [49, 50] 3D reconstructor (see Fig. 2). So, given a latent
code, a full body human image is first synthesized by the
StyleGAN-Human generator. Then the following 3D recon-
structor takes as input the synthesized image and extracts a
normal map N, a depth map D, a shape feature volume
F,, and a texture feature volume Fj},, which are used as
supervisory signals since they contain helpful human prior
information.

Shape losses. Given a latent code, the shape generator pro-
duces intermediate shape feature F; and shape feature vol-
ume Fy,, and the final SDF s (see Fig. 2). Our training
losses include a latent adversarial loss £ 44,sv applied on
the shape feature volume F,, a SDF loss Lspr, a latent
prior loss L, applied on the shape feature volume, a depth
loss £ p and a normal loss £ applied on the first four chan-
nels of the intermediate shape feature F. The loss terms are
detailed in the following.

SDF loss Lspr. We sample M points per iteration,
including near surface points (obtained from depth map)
and random points, and apply L1 loss on them. The SDF
value is predicted by a pretrained and fixed PIFu MLP de-
coder [49] s = fs(Fsy(x),d(p;)), where z = m(p) is the
2D projection of query point p and d(p) is the depth value
of p in the camera coordinate space.

M
1 .
ﬁSDFifM g [15 — s||1 “4)

Latent prior loss L,. To take full use of the prior knowl-
edge, we also apply constraints on the intermediate features
as follows. Another potential benefit is the sampled 3D
points in the previous SDF loss are too sparse while this
feature field loss can provide supervision on the whole fea-
ture maps.

LSU:”FSU—FSg'lfnl (5)

Geometry loss. We force several channels of the interme-
diate feature maps to predict helpful 2.5D information (i.e.
normal) since these feature maps are pixel-aligned (i.e. the
spatial information is retained). This operation is similar to

9290



deep supervision [28] and helps the learning processing.

LN&D :)\NHFS((::LQ,?)) - N||1+

R (6)

)\D||Es(c:4) - D||1
where }3‘8(04273) and Fs(c:4) are the first three and fourth
channels of the predicted shape feature F, D and N is the
pseudo groundtruth normal map and depth map.

Latent adversarial loss L Agysv. Dgy 1s a discriminator
taking the shape volume as input. We use the non-saturating
GAN loss proposed in StyleGAN2 [26] and R1 regulariza-
tion [15, 36].

EAde’” = LGANS’” + ARegEReg“’ (7)
In summary, the total shape loss Lgpqpe 18

CShape :ASDFESDF + )\sv»csv + )\NﬁN"_

®)
ADLp + Aadvsv L advsv

where A(.ys are the corresponding loss weights. After train-

ing, the shape generator is fixed during the later texture

branch learning.

3.3. Texture Generator & Training Losses

The texture branch is almost a mirror of the shape branch
except several small differences.
Texture generator. The texture branch consists of a
StyleGAN-style generator g, a feature encoder gy,,, a PIFu-
style texture decoder f;, and a texture volume discriminator
Dy,. The texture branch is similar to the shape branch ex-
cept it is additionally conditioned on intermediate features
from the shape branch (see Fig. 2 and Egs. 1-3). i.e.:

Fy = gt(zt)u )
Fyy = g1 (F; & Fy), (10)
fi((F(z) & Fo(x)),d(p)) = c € [0,1]%, (1n

where z; is texture latent code, & represents channel-wise
concatenation to introduce intermediate features (i.e. Fj,
Fs,(x)) from the shape branch. Similarly, f; is the PIFu
texture decoder (MLPs) that is pretrained like [49] and
fixed. The texture discriminator is also similar to the shape
discriminator but with 512 input channels.

Texture losses. Similar to the shape branch, given a texture
latent code, the texture branch first generates a texture fea-
ture (F}) and a texture feature volume (F3, ). Different from
the shape branch, it also takes as input intermediate shape
features (e.g. Fs, F§,) that are generated using the same
latent code z (i.e. zs = z;). At the same time, the texture
branch use the same latent code to predict a texture feature
(F}). Similarly, the individual texture losses are as follows:

M

1 .
LRGB:M;Hc—cHl, (12)
Lty = ||Fw — F2 |1, (13)

L agvry = Laanty + AregLRegtv s (14)

The overall texture 108S Lreziure 1S:

£Temture = )\RGBERG'B + )\tvﬁtv + )\AdvtvﬁAd’Uh’
15)
where A(.)s are the corresponding loss weights. Note that
we fix the shape branch and train the texture branch.

3.4. Refinement Module

A textured mesh can be obtained from the two implicit
fields similar to PIFu [49]. However, due to limited training
data, the reconstruction prior learned in the texture field is
not always satisfactory. For example, the rendered images
could be blurry or sometimes erroneous, which means the
corresponding textured meshes extracted from the implicit
fields could also be problematic.

To obtain high-quality mesh colors, we propose an extra
refinement module, which consists of an image refinement
step and a (mesh) texture update step.

Image refinement. The image refinement is realized as
an image-to-image (I2I) translation task using a UNet-
style [17] network g,-.

I, = g,(I) (16)
where g, is the network, I. is the rendered image from
shape and texture volumes, and I, is the refined image for
later texture extraction. We impose L1 loss and perceptual
loss [21] between the refined result and the ground truth im-
age 19t during training. The loss £, is defined as:

L, :/\T”L" - Igt‘|1+
Ap Y@ — @7, an
!

where ®! denotes the multi-level feature extraction opera-
tion using a pretrained VGG network, A(.)s are the corre-
sponding loss weights.

After image refinement, we can get an person image in

the same pose but with sharper and more correct face/cloth
details (see Fig. 6).
Vertex-color refinement. With the improved multi-view
images, we can paint the extracted mesh M with new colors
accordingly. Specifically, we utilize surface tracking [30]
to render multi-view depth maps paired with those images.
With paired depth maps and their corresponding refined im-
ages, we can obtain a high-quality colored point cloud P via
2D-to-3D projection. Finally, for every mesh vertex v, we
paint it with the color of its nearest neighbor point in the
colored point cloud P.
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3.5. Data Preparation & Training

Collecting & filtering data. Three different types of data
are used in this work, including 396 high-quality 3D hu-
man models, real-world Internet images, and StyleGAN-
Human [13] synthesized images. More concretely, the
3D human models are purchased from RenderPeople [47],
which include both 3D mesh models and high-resolution
texture maps that could be rendered into photorealistic im-
ages. The real images are crawled from the Internet and
14,097 are left after a manual selection to exclude extreme
poses and oddly shaped costumes that can not be handled
by reconstruction prior. The synthesized images are gener-
ated using StyleGAN-Human [13] and 69,099 are left after
a manual selection to exclude images with obvious artifacts
(e.g. distorted body parts).

Extracting pseudo-GT. We extract pseudo-GT for a given
image using two prior networks, a human image synthesis
network [60] and a single-view reconstruction network [49],
which are trained using our RenderPeople data. For a real
image, the corresponding pseudo-GT includes a real im-
age, a depth map, a normal map, the shape volume F,,
and the texture volume JF,. For a synthesized image, we
also stored its corresponding latent code (z;). A pretrained
PIFu decoder can easily extract 3D or texture information
from specific feature volumes. After the aforementioned
pre-processing, we randomly choose 500 (real) and 1500
(synthesis) pseudo-GT for evaluation and use the remaining
81,196 samples during training.

Network training. We train the shape branch, the texture
branch, and the refinement network in three separate stages.

In the 1st stage, we only train the shape branch (with
the PIFu shape decoder f; fixed). Specifically, we train
the shape branch using the shape reconstruction losses in
Eq. 8. The A(.ys are set to {20, 40, 20, 20, 1}, empirically.
We found the weight of the adversarial loss has an obvious
influence on the synthesized 3D models. For example, using
too large adversarial loss usually produces unrealistic high-
frequency noise, and using too small adversarial loss usu-
ally results in overly-smoothed 3D models, showing similar
trends to Fig. 4.

In the 2nd stage, we train the texture branch with the
shape branch and the PIFu texture decoder f; fixed. The
prior losses Lrap, L4, and the adversarial loss L, g,tv in
Eq. 15 are applied simultaneously. The A()s are set to
{20, 40, 1}, empirically. Note that examples generated with
both paired shape-texture latent codes (i.e. z; = 2z;) and
unpaired latent codes (i.e. zs # z;) will be used for adver-
sarial training so that we can obtain different and reasonable
textures for the same shape latent code, which enables the
re-texturing application.

In the 3rd stage, we only train the 121 refinement network
g with all the other parts fixed. The L1 loss £, and the
perceptual loss Lp in Eq. 17 are applied simultaneously.

Table 1: Quantitative comparisons with SOTA methods.
| COVT (%) MMD| FPD| FID| FIDsp |

EG3D 15.33 254 221 76.55 221.73
SDF-StyleGAN 23.35 1.12 1.02 - -
GET3D 35.93 0.77  0.87 61.69 88.15

Ours‘ 39.22 058 0.85 5439 69.70

B

LLT

Figure 3: Visual comparisons with state-of-the-art 3D hu-
man generators. SDF-StyleGAN can only generate geome-
try. For the other methods, we visualize the geometry and
appearance rendered with Blender, and the images (right-
most of each set of results) generated directly by the net-
work. EG3D uses volume rendering to generate images,
while our method and GET3D query the RGB values on
the surfaces. Compared to the others, our results contain
sharper and more plausible details in both geometry and tex-
ture, achieving the best scores on all the metrics in Tab. 1.

The A(.ys are set to {1, 1}. Note that 360° images rendered
from RenderPeople data are additionally used for training
in this stage.

4. Experiments

In Sec. 4, we first introduce the quantitative evaluation
used in our experiments. In Sec. 4.1, we compare the pro-
posed method with other state-of-the-art methods, show-
ing that our method generates more diverse and higher-
quality textured meshes. We conduct ablation studies of our
method to verify the effectiveness of the adversarial loss, the
reconstruction prior, and the refinement module in Sec. 4.2.
Finally, we demonstrate three downstream applications of

9292



our method in Sec. 4.3, including re-texture the generated
meshes, interpolation between two latent codes, and inver-
sion from the real-world image.

Geometry evaluation. Similar to any 3D GAN, we adopt
Fréchet point cloud distance (FPD) [10] to evaluate the di-
versity and quality of the generated shapes. We use Cham-
fer Distance based (dcp) Coverage (COV) and Minimum
Matching (MMD) following [1, 14] to evaluate the similar-
ity between a set of generated meshes and the reference set
of pseudo-GT meshes. See our Supp. for detailed settings.
Texture evaluation. To evaluate the quality of the gener-
ated textures, we used the common Fréchet Inception Dis-
tance (FID) metric on 2D images directly generated from
the model and FID3p on 2D images rendered using the tex-
tured 3D mesh model. we randomly choose 10k real images
and 40k synthetic images as references to calculate the FID.

4.1. Comparisons with State-of-the-art Methods

Baselines. We compare our Get3DHuman with three
state-of-the-art methods, including EG3D [6], SDF-
StyleGAN [60], and GET3D [14].

EG3D is a 3D-aware image generation method focusing
more on the rendered image rather than the geometry.

SDF-StyleGAN, which only generates geometry, is a
StyleGAN2-based network plus local and global shape dis-
criminators that take as input SDF values and gradients.

GET3D, similar to ours, also uses shape and texture
branches. Its shape branch utilizes a differentiable surface
extraction method (i.e. DMTet [52]) and its texture branch
is based on EG3D. Different to ours, its supervisions are
purely applied on 2D renderings (i.e. images, silhouettes).
The original GET3D [14] paper is trained in a T-posed Ren-
derPeople dataset. We have attempted to train GET3D with
our purchased non-T-posed RenderPeople data. However,
the results are poor in terms of geometry and textures (see
Supp. for the results), possibly due to the large pose space
and limited training data. Its results could possibly be im-
proved with more training data, but high-quality 3D data are
expensive and difficult to obtain.

For a fair comparison, all these three approaches are
trained with our pseudo-GT data. We utilize shape and tex-
ture fields to render images to train EG3D and GET3D and
get the SDF fields to train SDF-StyleGAN.

Results. Tab. 1 shows quantitative comparisons and Fig. 3
visualizes the results. Our results beat the others by a sub-
stantial margin, especially on COV, MMD, and FID. We can
easily observe the differences from the visual comparisons.

SDF-StyleGAN, which is only able to generate shapes,
generates a little better-looking shapes than EG3D. But it
often generates disconnected regions so that artifacts are
frequently observed in the elbows and ankles.

EG3D focuses more on rendering high-quality images
and cannot produce a reasonable geometry sometimes. The

Ours w/ refine
(Adv. & Prior)

Ours w/o refine
(Ads & Prior)

] NOH
¢ i
| |

i T
{( | ?‘rl

Adv. Prior
1 9

‘i 3!< M‘w
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Figure 4: Ablation study on adversarial losses and prior

losses. We compare the human models generated from
“Adv. only”, “Prior only”, and “Ours Adv. + Prior”. Ours
(Adv. & Prior) produces the best results with plausible de-
tails on both the shape and the appearance. The refinement
module further improves the appearance.

Table 2: Quantitative evaluation on adversarial and prior.

| COV?T (%) |MMDJ, | FPD|, | FID| | FID3p |

Adv. only | 35.62 0.72 | 0.63 [89.39| 105.63
Prioronly | 31.51 0.80 | 0.88 [69.81| 89.32

Ours (w/o refine)

(Adv. & Prior) 39.22 0.58 | 0.85 [59.95| 74.38

Ours (w/ refine)
(Adv. & Prior) 39.22 0.58 | 0.85 |54.39| 69.70

MRt

Figure 5: Visualize the results of two rendering methods.
Blender renders textured meshes with lighting(right). Py-
Torch renderings look sharper and brighter(left).

textured mesh does not look good because the geometries
are problematic.

GET3D results and our results look better since the
shapes are clear and contain more details while having
fewer artifacts. Compared to ours, GET3D generates over-
smoothed shapes with more artifacts and its textures are not
are sharp as ours. This is also reflected by the FID (54.39 vs
61.69) and FID3p scores (69.70 vs 88.15) in Tab 1. Since
the geometry generated by EG3D is not accurate enough,
the FID3p is much higher (221.73) than other methods.

Visualization. We follow Get3D and render textured
meshes in Blender with lighting (Fig. 5 right). Renderings
via PyTorch without lighting, which are shown in Fig. 5 left,
are the original results.
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Figure 6: Ablation on the refine module. Using the refine-
ment module brings realistic texture details (right). I,. and
I, are images directly generated from the network.Avatars
are rendered from texture models by using Blender.

4.2. Ablation Studies

Ablation study on the adversarial and prior. The pro-
posed method consists of two kinds of losses, i.e. adversar-
ial losses and prior losses. Each type of loss is able to ob-
tain a certain result. Ablative experiments, including “Adv.
only”, “Prior only” and “Adv. & Prior” with or without re-
finement, are conducted to demonstrate their effectiveness
in Tab. 2. Fig. 4 shows some examples synthesized us-
ing random latent code. Only using adversarial losses in
training (Adv. only) easily produces results that contain
high-frequency noise, i.e. unrealistic details. Only using
prior losses (Prior only) usually produces overly-smoothed
results, which has been observed in 2D image synthesis too.
Ours (Adv. & Prior) produces the best results with plausi-
ble details on both the geometry and the texture. When re-
finement module is included, the final textured mesh further
gets a huge improvement in Fig. 6.

Ablation on normal guidance. The explicit use of normal
map in 3D reconstruction networks has been demonstrated
very helpful [50]. Thus, we introduce a normal map as guid-
ance for the intermediate feature maps to guide the later ge-
ometry generation and conduct ablative experiments using
only prior losses. Results are shown in Fig. 7. With the
help of this normal supervision, more plausible details, es-
pecially the separation between upper-/lower-body clothes,
emerge on the generated shapes, demonstrating the effec-
tiveness of using the normal map as guidance.

Ablation on refinement module. Because the reconstruc-
tion prior might be inaccurate and sometimes leads to the
unrealistic appearance, especially in the face area. To this
end, we designed a refinement module. Tab. 2 and Fig. 6
illustrate the effectiveness of the refinement module in im-
proving the appearance.

w/o normal w/ normal

kil

Figure 7: Ablation study on the intermediate normal super-
vision. Using normal supervision in training brings substan-
tial geometry details (left). Note the abrupt depth changes
between cloth and skin and the facial geometry.

L

Figure 8: Visualization of re-texturing the fixed geometry
by different texture latent codes. More results are in Supp.
We can see different textures are diverse, plausible, and suit-
able for the given shape since our texture branch is condi-
tioned on shape branch features.

4.3. Applications

Re-texturing the generated meshes. The shape/texture
latent codes could be different in our two-branch 3D gen-
erator. In fact, we intentionally include some unpaired
shape-texture latent codes (i.e. different values for the
shape/texture latent codes) during training and apply adver-
sarial loss on their generations during training. Since the
texture branch does not affect the shape branch, the gener-
ated shape is completely fixed when the shape latent code
is given. Thus, we can randomly sample texture latent code
with the shape latent code fixed, resulting in a useful re-
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Figure 9: Interpolation examples. We randomly sample two
sets of shape/texture latent codes to generate the right-/left-
most examples, then interpolate both the shape and texture
latent codes to generate the in-between examples. See Supp.
for more results.

¥

texturing application. Two examples are shown in Fig. 8.
Our Get3DHuman successfully paint the 3D models with
different and reasonable texture and takes the conditioned
geometry into consideration.

Interpolation on shape and appearance. With our prior-
facilitate learning, our method learns a better structured la-
tent space z. Thus, we can produce reasonable interpola-
tions given two reference latent codes. Specifically, we lin-
early interpolate two random codes and generate textured
3D models accordingly. Smooth and valid transition mod-
els with plausible details are produced as shown in Fig. 9.

Inversion results. In 2D GAN, inversion refers to find the
corresponding latent code that generates a given target (im-
age). Similarly, we are also searching suitable latent z,
z; for given feature volumes Fj,, Fy,. Get3DHuman is
also able to perform image inversion similar to StyleGAN
shown in Fig. 10. Given a human image, we first extract its
shape/texture field features using the prior network, which
are used as the optimization targets to search its correspond-
ing shape/texture latent codes in the latent space. Note that
we use shape/texture field features instead of the reference
image when conducting this inversion. When the optimiza-
tion is done, a textured human model resembling its refer-
ence image is produced. Compared to previous 3D recon-
struction methods (e.g. PIFu), we can easily manipulate

A
{14 AR

Figure 10: Three inversion examples from given reference
images. The reference images are shown on the left, in-
versely optimized human models are shown in different
views in the middle, several re-textured models are shown
on the right.

Q

{

these results through latent space editing (e.g. re-texturing,
interpolation).

5. Conclusion

In the paper, We introduced Get3DHuman, a novel 3D
human generator that is able to synthesize diverse and high-
quality clothed 3D humans. It utilizes the priors of the well-
trained 2D human generator and 3D reconstructor. Numer-
ous experiments have shown that our method greatly outper-
forms other methods and can support a wide range of ap-
plications, including shape interpolation, re-texturing, and
single-view reconstruction via latent inversion.
Limitations. Our method is only able to synthesize sim-
ple standing-pose models, which are restricted by the im-
age synthesis generator and reconstruction prior in our prior
networks.
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