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Figure 1: Demonstration of the difference between (a) 3D part segmentation and (b) 3D part amodal
segmentation. 3D part amodal segmentation decomposes the 3D shape into complete semantic parts
rather than broken surface patches, facilitating various downstream applications. In this paper, we
propose a solution by performing 3D part shape completion on incomplete part segments.

ABSTRACT

3D part amodal segmentation—decomposing a 3D shape into complete, seman-
tically meaningful parts, even when occluded—is a challenging but crucial task
for 3D content creation and understanding. Existing 3D part segmentation meth-
ods only identify visible surface patches, limiting their utility. Inspired by 2D
amodal segmentation, we introduce this novel task to the 3D domain and propose
a practical, two-stage approach, addressing the key challenges of inferring oc-
cluded 3D geometry, maintaining global shape consistency, and handling diverse
shapes with limited training data. First, we leverage existing 3D part segmenta-
tion to obtain initial, incomplete part segments. Second, we introduce HoloPart,
a novel diffusion-based model, to complete these segments into full 3D parts.
HoloPart utilizes a specialized architecture with local attention to capture fine-
grained part geometry and global shape context attention to ensure overall shape
consistency. We introduce new benchmarks based on the ABO and PartObjaverse-
Tiny datasets and demonstrate that HoloPart significantly outperforms state-of-
the-art shape completion methods. By incorporating HoloPart with existing seg-
mentation techniques, we achieve promising results on 3D part amodal segmen-
tation, opening new avenues for applications in geometry editing, animation, and
material assignment.

1 INTRODUCTION

3D part segmentation is an active research area. Given a 3D shape represented as a polygonal mesh
or point cloud, 3D part segmentation groups its elements (vertices or points) into semantic parts.
This is particularly valuable for shapes produced by photogrammetry or 3D generative models/Zhang
et al.| (2024); Liu et al|(2023b)); Hong et al.| (2023); [Long et al.| (2024); |Zhang et al.| (2023); [Poole
et al.| (2022), which are often one-piece and difficult to deal with for downstream applications.
However, part segmentation has limitations. It produces surface patches rather than “complete parts”
of the 3D shape like is shown in figure[I] (a), where the segmented parts are broken. This may suffice
for perception tasks but falls short for content creation scenarios where complete part geometry is
required for geometry editing, animation, and material assignment. A similar challenge has been
learned in 2D for many years, through the research area of 2D amodal segmentation. Numerous
previous works Ehsani et al.|(2018)); [Kar et al.|(2015)); Ke et al.[(2021));/Ozguroglu et al.| (2024} have
explored the 2D amodal segmentation task, yet there remains a lack of research for 3D shapes.
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To address this, we introduce the task of 3D part amodal segmentation. This task aims to separate
a 3D shape into its complete semantic parts, emulating how human artists model complex 3D assets.
figure[T] (b) shows the expected output of 3D part amodal segmentation, where segmented parts are
complete. However, extending the concept of amodal segmentation to 3D shapes introduces signifi-
cant, non-trivial complexities that cannot be directly addressed by existing 2D or 3D techniques. 3D
part amodal segmentation requires: (1) Inferring Occluded Geometry: Accurately reconstructing
the 3D geometry of parts that are partially or completely hidden. (2) Maintaining Global Shape
Consistency: Ensuring the completed parts are geometrically and semantically consistent with the
entire 3D shape. (3) Handling Diverse Shapes and Parts: Generalizing to a wide variety of object
categories and part types, while leveraging a limited amount of part-specific training data.

Recognizing the inherent difficulty of end-to-end learning for this task, we propose a practical and
effective two-stage approach. The first stage, part segmentation, has been widely studied, and we
leverage an existing state-of-the-art method [Yang et al.| (2024) to obtain initial, incomplete part
segmentations (surface patches). The second stage, and the core of our contribution, is 3D part
shape completion given segmentation masks. This is the most challenging aspect, requiring us to
address the complexities outlined above. Previous 3D shape completion methods Rao et al.| (2022);
Chu et al.[(2024); Cheng et al.|(2023) focus on completing entire objects, often struggling with large
missing regions or complex part structures. They also do not address the problem of completing
individual parts within a larger shape while ensuring consistency with the overall structure.

We introduce HoloPart, a novel diffusion-based model specifically designed for 3D part shape
completion. Given an incomplete part segment, HoloPart doesn’t just “fill in the hole”. It leverages
a learned understanding of 3D shape priors to generate a complete and plausible 3D geometry,
even for complex parts with significant occlusions. To achieve this, we first utilize the strong 3D
generative prior learned from a large-scale dataset of general 3D shapes. We then adapt this prior
to the part completion task using a curated, albeit limited, dataset of part-whole pairs, enabling
effective learning despite data scarcity. Motivated by the need to balance local details and global
context, HoloPart incorporates two key components: (1) a local attention design that focuses on
capturing the fine-grained geometric details of the input part, and (2) a shape context-aware attention
mechanism that effectively injects both local and global information to the diffusion model.

To facilitate future research, we propose evaluation benchmarks on the ABO|Collins et al.|(2022)) and
PartObjaverse-Tiny Yang et al|(2024) datasets. Extensive experiments demonstrate that HoloPart
significantly outperforms existing shape completion approaches. Furthermore, by chaining HoloPart
with off-the-shelf 3D part segmentation, we achieve superior results on the full 3D part amodal
segmentation task.

In summary, we make the following contributions:

* We formally introduce the task of 3D part amodal segmentation, which separates a 3D
shape into multiple semantic parts with complete geometry. This is a critical yet unexplored
problem in 3D shape understanding, and provide two new benchmarks (based on ABO and
PartObjaverse-Tiny) to facilitate research in this area.

* We propose HoloPart, a novel diffusion-based model for 3D part shape completion.
HoloPart features a dual attention mechanism (local attention for fine-grained details and
context-aware attention for overall consistency) and leverages a learned 3D generative prior
to overcome limitations imposed by scarce training data.

* We demonstrate that HoloPart significantly outperforms existing shape completion meth-
ods on the challenging part completion subtask and achieves superior results when inte-
grated with existing segmentation techniques for the full 3D part amodal segmentation task,
showcasing its practical applicability and potential for various downstream applications.

2 RELATED WORK

3D Part Segmentation. 3D Part Segmentation seeks to decompose 3D objects into meaningful, se-
mantic parts, a long-standing challenge in 3D computer vision. Earlier studies|Qi et al.|(2017ab); [Li
et al.|(2018); Zhao et al.|(2021); |Qian et al.|(2022) largely focused on developing network architec-
tures optimized to learn rich 3D representations. These methods generally rely on fully supervised
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training, which requires extensive, labor-intensive 3D part annotations. Constrained by the lim-
ited scale and diversity of available 3D part datasets Mo et al.| (2019); |Chang et al.| (2015), these
approaches often face challenges in open-world scenarios. To enable open-world 3D part segmen-
tation, recent methods [Liu et al.|(2023a); [Umam et al.| (2023); [Kim & Sung| (2024)); Zhong et al.
(2024); |Abdelreheem et al.[ (2023); Tang et al.| (2024); Thai et al.| (2024); |Xue et al.| (2023); |Yang
et al.| (2024); [Liu et al.| (2024) leverage 2D foundation models such as SAM Kirillov et al.| (2023)),
GLIP Li et al.| (2022a) and CLIP Radford et al.|(2021). These approaches first segment 2D render-
ings of 3D objects and then develop methods to project these 2D masks onto 3D surfaces. However,
due to occlusions, these methods can only segment the visible surface areas of 3D objects, result-
ing in incomplete segmentations that are challenging to directly apply in downstream tasks. In this
work, we advance 3D part segmentation by introducing 3D part amodal segmentation, enabling the
completion of segmented parts beyond visible surfaces.

3D Shape Completion. 3D shape completion is a post-processing step that restores missing re-
gions, primarily focusing on whole shape reconstruction. Traditional methods like Laplacian hole
filling Nealen et al.| (2006)) and Poisson surface reconstruction [Kazhdan et al.| (2006) address small
gaps and geometric primitives. With the growth of 3D data, retrieval-based methods [Sung et al.
(2015) have been developed to find and retrieve shapes that best match incomplete inputs from a
predefined dataset. The rise of generative models such as GANs|Goodfellow et al.| (2020), Autoen-
coders [Kingmal (2013), and Diffusion models Ho et al.| (2020) has led to methods like DiffCom-
plete |Chu et al.|(2024) and SC-Diff |Galvis et al.| (2024), which generate diverse and plausible 3D
shapes from partial inputs. These models offer flexibility and creative freedom in shape completion.

3D Shape Diffusion. Various strategies have been proposed to address the challenges associated
with directly training a 3D diffusion model for shape generation, primarily due to the lack of a
straightforward 3D representation suitable for diffusion. Several studies |Dai et al.| (2017); Zhang
et al.[(2023)); [Zhao et al.|(2024); Zhang et al.| (2024} leverage Variational Autoencoders (VAEs) to
encode 3D shapes into a latent space, enabling a diffusion model to operate on this latent repre-
sentation for 3D shape generation. For instance, Shap-E |[Dai et al.| (2017) encodes a point cloud
and an image of a 3D shape into an implicit latent space using a transformer-based VAE, enabling
subsequent reconstruction as a Neural Radiance Field (NeRF). 3DShape2VecSet|Zhang et al.|(2023)
employs cross-attention mechanisms to encode 3D shapes into latent representations that can be de-
coded through neural networks. Michelangelo|[Zhao et al.|(2024) further aligns the 3D shape latent
space with the CLIP [Radford et al.| (2021) feature space, enhancing the correspondence between
shapes, text, and images. CLAY |[Zhang et al.|(2024) trains a large-scale 3D diffusion model on an
extensive dataset, implementing a hierarchical training approach that achieves remarkable results.

3 3D PART AMODAL SEGMENTATION

We formally introduce the task of 3D part amodal segmentation. Given a 3D shape m, the goal is
to decompose m into a set of complete semantic parts, denoted as {p1, pa, . .., pn }, where each p;
represents a geometrically and semantically meaningful region of the shape, including any occluded
portions. This is in contrast to standard 3D part segmentation, which only identifies visible surface
patches. The completed parts should adhere to the following constraints:

1. Completeness: Each p; should represent the entire geometry of the part, even if portions
are occluded in the input shape m.

2. Geometric Consistency: The geometry of each p; should be plausible and consistent with
the visible portions of the part and the overall shape m.

3. Semantic Consistency: Each p; should correspond to a semantically meaningful part (e.g.,
a wheel, a handle).

As discussed in the Introduction, this task presents significant challenges, including inferring oc-
cluded geometry, maintaining global shape consistency, and generalizing across diverse shapes and
parts, all with limited training data. To address these challenges, we propose a two-stage approach:

1. Part Segmentation: We first obtain an initial part segmentation of the input shape m. This
provides us with a set of surface patches, each corresponding to a (potentially occluded)
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Figure 2: An overview of the HoloPart model design. Given a whole 3D shape and a corresponding
surface segmentation mask, HoloPart encodes these inputs into latent tokens, using context-aware
attention to capture global shape context and local attention to capture local part detailed features
and position mapping. These tokens are used as conditions and injected into the part diffusion model
via cross-attention respectively. During training, noise is added to complete 3D parts, and the model
learns to denoise them and recover the original complete part.

semantic segments {s1, s, ..., S, }. For this stage, we leverage SAMPart3D |Yang et al.
(2024)), although our framework is compatible with other 3D part segmentation techniques.

2. Part Completion: This is the core technical contribution of our work. Given an incomplete
part segment s;, our goal is to generate the corresponding complete part p;. This requires
inferring the missing geometry of the occluded regions while maintaining geometric and
semantic consistency. We address this challenge with our HoloPart model, described in
the following sections.

The remainder of this section details our approach, beginning with the object-level pretraining used
to establish a strong 3D generative prior (section [3.1)), followed by the key designs of the HoloPart
model (section [3.2)), and finally the data curation process (section [3.3). The overall pipeline of
HoloPart is shown in figure 2}

3.1 OBIJECT-LEVEL PRETRAINING

Due to the scarcity of 3D data with complete part annotations, we first pretrain a 3D generative model
on a large-scale dataset of whole 3D shapes. This pretraining allows us to learn a generalizable
representation of the 3D shape and capture semantic correspondences between different parts, which
is crucial for the subsequent part completion stage.

Variational Autoencoder (VAE). We adopt the VAE module design as described in
3DShape2VecSet Zhang et al.|(2023)) and CLAY |Zhang et al.|(2024). This design embeds the input
point cloud X € R >3 sampled from a complete mesh, into a set of latent vectors using a learnable
embedding function combined with a cross-attention encoding module:

z = £(X) = CrossAttn(PosEmb(X), PosEmb(X)), ()

where X represents subsampled point cloud from X via furthest point sampling, i.e. Xg =
FPS(X) € RM*3. The VAE’s decoder, composed of several self-attention layers and a cross-
attention layer, processes these latent codes along with a list of query points ¢ in 3D space, to
produce the occupancy logits of these positions:

D(z, q) = CrossAttn(PosEmb(q), SelfAttn(z)). (2)

3D Shape Diffusion. Our diffusion denoising network vy is built upon a series of diffusion trans-
former (DiT) blocks Peebles & Xie|(2023));/Zhao et al.| (2024));|Wu et al.| (2024)); |[Zhang et al.|(2024);
Li et al.| (2024). In line with the approach of Rectified Flows (RFs) |Liu et al.[(2022); Lipman et al.
(2022); |Albergo & Vanden-Eijnden| (2022), our diffusion model is trained in a compressed latent
space to map samples from the gaussian distribution € ~ A/(0, I) to the distribution of 3D shapes.
The forward process is defined using a linear interpolation between the original shape and noise,
represented as:

zt = (1 —t)zg + te, 3)
where 0 < ¢t < 1000 is the diffusion timestep, zg represents the original 3D shape, and z; is
progressively noised version of the 3D shape at time ¢. Our goal is to solve the following flow
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matching objective:
E.ce(X),t,e~N(0,1) [HUe(Zt,t,g) — (e~ Zo)Hg} ; 4)

where g is the image conditioning feature [Wu et al.|(2024) derived from the rendering of 3D shape
during the pretraining stage.

3.2 CONTEXT-AWARE PART COMPLETION

Given a pair consisting of a whole mesh x and a part segment mask s; on the surface from 3D
segmentation models as a prompt, we aim to leverage the learned understanding of 3D shape priors
to generate a complete and plausible 3D geometry p;. To preserve local details and capture global
context, we incorporate two key mechanisms into our pretrained model: local attention and shape
context-aware attention. The incomplete part first performs cross-attention with the global shape to
learn the contextual shape for completion. Next, the incomplete part is normalized to [—1, 1] and
undergoes cross-attention with subsampled points, enabling the model to learn both local details and
the new position. Specifically, the context-aware attention and local attention can be expressed as:

¢o = C(So, X) 5)
= CrossAttn(PosEmb(Sg ), PosEmb (X ##M)),

¢; = C(So, S) = CrossAttn(PosEmb(Sg), PosEmb(S)), (6)

where S represents the sampled point cloud on the surface of the incomplete part mesh, and Sy
denotes the subsampled point cloud from S via furthest point sampling. X represents the sampled
point cloud on the overall shape. Here, M is a binary mask used to highlight the segmented area on
the entire mesh, and ## represents concatenation.

We further finetune the shape diffusion model into a part diffusion model by incorporating our
designed local and context-aware attention. The part diffusion model is trained in a compressed
latent space to transform noise € ~ N(0, ) into the distribution of 3D part shapes. The objective
function for part latent diffusion is defined as follows:

Eeco(i) temn.t) |00zt corcr) = (= 20)113] ™

where K represents the sampled point cloud from the complete part meshes. Following [Zhao et al.
(2024), we apply classifier-free guidance (CFG) by randomly setting the conditional information to
a zero vector randomly. Once the denoising network vy is trained, the function f can generate 1,
by iterative denoising. The resulting latent embedding is then decoded into 3D space occupancy and
the mesh is extracted from the part region using the marching cubes Lorensen & Cline|(1998)).

3.3 DATA CURATION

We process data from two 3D datasets: ABO |Collins et al.| (2022) and Objaverse Deitke et al.
(2023)). For the ABO dataset, which contains part ground truths, we directly use this information to
generate whole-part pair data. In contrast, filtering valid part data from Objaverse is challenging due
to the absence of part annotations, and the abundance of scanned objects and low-quality models.
To address this, we first filter out all scanned objects and select 180k high-quality 3D shapes from
the original 800,000 available models. We then develop a set of filtering rules to extract 3D objects
with a reasonable part-wise semantic distribution from 3D asset datasets, including Mesh Count
Restriction, Connected Component Analysis and Volume Distribution Optimization. Further details
are provided in the supplementary.

To train the conditional part diffusion model f, we develop a data creation pipeline to generate
whole-part pair datasets. First, all component parts are merged to form the complete 3D mesh.
Next, several rays are sampled from different angles to determine the visibility of each face, and any
invisible faces are removed. To handle non-watertight meshes, we compute the Unsigned Distance
Field (UDF) of the 3D mesh and then obtain the processed whole 3D mesh using the marching cubes
algorithm. We apply a similar process to each individual 3D part to generate the corresponding
complete 3D part mesh. Finally, we assign part labels to each face of the whole mesh by finding the
nearest part face, which provides surface segment masks {s; }.
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PC DIC RV O PC  DIC SF Ours

bed 0.093 0.061 0.023 0.032 0.020 car 0289 0.153 0264 0.090

table 0.081 0.068 0.030 0.042 0.018 airplane 0267 0.141 0241 0.087

lamp 0.170 0.084 0.044 0.036 0.031 faucet 0.258 0.125 0.232  0.076

Chanie chair 0.121 0.107 0.045 0035  0.030 Chamfer | bed 0295 0.162 0282 0.097
mean (instance) 0.122  0.087 0.037  0.036 0.026 mean (instance)  0.278 0.146 0.255 0.088

mean (category) 0.116 0.080 0.035 0.036  0.025 mean (category) 0.277 0.145 0.255 0.087

bed 0.148 0.266 0.695 0.792 0.833 car 0.247 0.382 0.323 0.545

table 0.180 0248 0.652 0.791 0.838 airplane 0.231 0405 0.230 0.572

ToU 1 lamp 0.155 0238 0479 0.677 0.697 ToU } faucet 0.291 0442 0.185 0.601
chair 0.156 0214 0.490 0.695 0.718 bed 0.215 0.368 0.254 0.531

mean (instance)  0.159 0.235 0.565 0.733 0.764 mean (instance)  0.245 0.401 0.246 0.558

mean (category) 0.160 0.241 0.580  0.739 0.771 mean (category) 0.246  0.399 0.248  0.562

bed 0.244 0412 0.802 0.864 0.896 car 0.314 0485 0.406 0.635

table 0291 0390 0758  0.844  0.890 airplane 0291 0.508 0.299  0.652

lam, 0.244 0374 0.610 0.769 0.789 faucet 0.365 0.529 0.277 0.673

LPISiee chair 0262 0342 0.631 0800 0817 Fl-Score 1 bed 0282 0416 0313 0.614
mean (instance) 0.259 0.371 0.689 0.816  0.843 mean (instance)  0.312  0.485 0.321 0.641

mean (category) 0.260 0.380 0.700  0.819  0.848 mean (category) 0.313 0484 0.323 0.644

Success T mean (instance) 0.822 0.824 0.976 0.987  0.994 Success T mean (instance)  0.835 0.935 0.884  0.995

Table 1: 3D part amodal segmentation results  Table 2: 3D part amodal segmentation re-
of PatchComplete, DiffComplete, Finetune-VAE,  sults of PatchComplete, DiffComplete, SD-
Ours (w/o Context-attention), Ours (with Context-  Fusion and Ours on 3DCoMPaT++ with

attention), on ABO, reported in Chamfer Distance, 2 5D mask input, reported in Chamfer Dis-

IoU, F-Score and Success Rate. tance, ToU, F-Score and Success Rate.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We propose two benchmarks based on two 3D shape datasets:
ABO |Collins et al|(2022)) and PartObjaverse-Tiny [Yang et al.| (2024), to evaluate the 3D amodal
segmentation task. The ABO dataset contains high-quality 3D models of real-world household ob-
jects, covering four categories: bed, table, lamp, and chair, all with detailed part annotations. For
training, we use 20,000 parts, and for evaluation, we use 1,000 parts (60 shapes). Objaverse Deitke
et al.| (2023) is a large-scale 3D dataset comprising over 800,000 3D shapes. PartObjaverse-Tiny
is a curated subset of Objaverse, consisting of 3,000 parts (200 shapes) with fine-grained part an-
notations. Using our data-processing pipeline, we construct two evaluation datasets. Specifically,
we project the ground-truth masks onto the surfaces of the processed monolithic meshes to serve as
inputs, and use the complete part annotations as the outputs (targets) for evaluation. We further eval-
uate the 3D amodal segmentation task by replacing the ground-truth masks with masks produced
by SAMPart3D. We further investigate the generalization capabilities of our model. Specifically, we
demonstrate that our method can be integrated with arbitrary 3D part surface segmentation models
to process “holistic shells” (generated or scanned), yielding complete and consistent parts. More-
over, we extend our exploration to the task of 2.5D part completion on the 3DCoMPaT++ Slim et al.
(2025)); L1 et al.| (2022b]) dataset.

Baselines. We compare our methods against state-of-the-art shape completion models, PatchCom-
plete Rao et al.| (2022)), DiffComplete |Chu et al.| (2024) and SDFusion [Cheng et al.| (2023) using
our proposed benchmarks. We train all baselines on our processed ABO and Objaverse datasets
using the official implementations. To adapt to the data requirements of these models, we generated
voxel grids with SDF values from our processed meshes. Additionally, our VAE model also uses
3D encoder-decoder architectures for 3D shape compression and reconstruction. Thus, we directly
fine-tune the VAE on our parts dataset for part completion, serving as a baseline method.

Metrics. To evaluate the quality of predicted part shape geometry, we use three metrics: £; Chamfer
Distance (CD) Intersection over Union (IoU), and F-Score, comparing the predicted and ground
truth part shapes. We sample 500k points on both the predicted and the group truth part meshes to
capture detailed geometry information, used for the CD calculation. To compute IoU and F-Score,
we generate voxel grids of size 643 with occupancy values based on the sampled points. Since the
baseline methods are sometimes unable to reconstruct effective meshes, we calculate CD, IoU, and
F-Score only for the successfully reconstructed meshes. Additionally, we report the reconstruction
success ratio to quantify the reliability of each method.
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Figure 3: Qualitative comparison with PatchComplete, DiffComplete and Finetune-VAE on the
ABO dataset.

Method Overall Human Animals Daily Buildings Transports Plants Food Electronics
PatchComplete 0.144  0.150 0.165  0.141 0.173 0.147 0.I10 0.118 0.147
DiffComplete 0.133  0.130 0.144  0.127 0.145 0.136 0.129 0.128 0.125
SDFusion 0.137  0.135 0.162  0.146 0.162 0.144 0.104  0.105 0.134
Chamfer | Finetune-VAE 0.064  0.064 0.067  0.075 0.064 0.076 0.049  0.041 0.073
Ours w/o Local 0.057  0.061 0.083  0.051 0.047 0.075 0.045 0.037 0.057
Ours w/o Context ~ 0.055  0.059 0.076  0.044 0.047 0.053 0.042  0.039 0.056
Ours 0.034  0.034 0.042  0.032 0.032 0.037 0.029  0.029 0.041
PatchComplete 0.137  0.129 0.147  0.132 0.116 0.129 0.152  0.156 0.138
DiffComplete 0.142  0.149 0.139  0.142 0.124 0.139 0.153  0.134 0.157
SDFusion 0235 0214 0237  0.229 0.202 0.198 0.265 0.294 0.242
ToU 1 Finetune-VAE 0.502  0.460 0.464  0.503 0.513 0.468 0.536  0.583 0.490
Ours w/o Local 0.618  0.582 0.574  0.618 0.634 0.591 0.673  0.677 0.594
Ours w/o Context ~ 0.553  0.535 0.518  0.579 0.593 0.553 0.590  0.609 0.538
Ours 0.688  0.675 0.667  0.699 0.714 0.687 0.709 0.710 0.648
PatchComplete 0232 0.221 0.246  0.224 0.197 0.220 0.254  0.261 0.233
DiffComplete 0.239  0.250 0.235  0.238 0.212 0.234 0.254 0.225 0.262
SDFusion 0365  0.340 0368  0.357 0.318 0.316 0403 0.442 0.374
Fl1-Score Finetune-VAE 0.638  0.600 0.613  0.638 0.646 0.596 0.672  0.718 0.623
Ours w/o Local 0.741 0.715 0.706  0.743 0.750 0.713 0.786  0.796 0.719
Ours w/o Context ~ 0.691  0.679 0.663  0.716 0.722 0.688 0.727 0.743 0.676
Ours 0.801  0.794 0.788  0.809 0.818 0.798 0.817 0.820 0.767
PatchComplete 0.938  0.989 0976  0.954 0.843 0.932 0.959 0.935 0.947
ST DiffComplete 0942 0.992 0.980  0.958 0.851 0.936 0.959  0.935 0.950
Finetune-VAE 0.997 1.000 0.996  0.996 0.997 0.996 1.000 1.000 0.994
Ours w/o Context ~ 0.998  0.997 0.996  1.000 0.997 0.994 1.000  1.000 0.997

Table 3: 3D part amodal segmentation results on PartObjaverse-Tiny, reported in Chamfer Distance,
IoU, F-Score and Success Rate.

4.2 MAIN RESULTS

ABO. We compare our method with PatchComplete (2022), DiffComplete |Chu et al.
and our fintuned VAE on the ABO dataset. Quantitative results are presented in table (I} with
qualitative comparisons illustrated in figure 3] When dealing with parts containing large missing
areas, PartComplete struggles to generate a plausible shape. PatchComplete and DiffComplete often
fail to reconstruct small or thin structures, such as the bed sheets or the connections of the lamp in
figure 3] Although the finetuned VAE can reconstruct parts that have substantial visible areas, it
performs poorly when completing regions with little visibility, such as the bedstead or the interior
of the chair, as shown in figure B] In contrast, our method consistently generates high-quality,
coherent parts and significantly outperforms the other approaches in both quantitative and qualitative
evaluations.

PartObjaverse-Tiny. We also compare our method with PatchComplete, DiffComplete, and our
finetuned VAE on the PartObjaverse-Tiny dataset. The shapes in the PartObjaverse-Tiny dataset
are more complex and diverse, making part completion more challenging. We calculate the Cham-
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Figure 4: Qualitative comparison on the PartObjaverse-Tiny dataset.
Generated Mesh Surface Segments Complete Parts Generated Mesh Surface Segments Complete Parts
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P3-SAM
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Scanned Mesh SAMesh PartField

Complete Parts

Figure 5: 3D part amodal segmentation on generated objects and scanned objects from OmniOb-
ject3D. Our method seamlessly integrates with arbitrary zero-shot 3D part segmentation models. We
can generate even precise joint structures, such as the mortise-and-tenon joints at the robot’s con-

nections shown in the figure.
Img & Mask ~ 2.5D Mask Complete Part  Img & Mask 2.5D Mask Complete Part Img & Mask  2.5D Mask Complete Part

FR5T e o o NN

Figure 6: 3D part amodal segmentation on 3DCoMPaT++ (2025)) with 2.5D mask input.

Overall Shape Part Shapes Overall Shape Part Shapes Overall Shape

~ -
1

Figure 7: Geometry Super-resolution. By representing a part with the same number of tokens as the
overall object, we can achieve geometry super-resolution.
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Method Overall Human Animals Daily Buildings Transports Plants Food Electronics
SDFusion 0264  0.241 0232 0282 0.365 0.323 0.230 0.185 0.254
PatchComplete  0.289  0.267 0.258  0.295 0.382 0.314 0.247 0.231 0.291
Chamfer |  DiffComplete 0231  0.197 0.193  0.252 0.307 0.264 0.206  0.198 0.235
Finetune-VAE ~ 0.178 0.138 0.114  0.202 0.279 0.213 0.140  0.141 0.198
Ours 0.134  0.094 0.086  0.155 0.210 0.144 0.109  0.110 0.162
SDFusion 0.169  0.159 0.191  0.161 0.124 0.117 0.201 0.234 0.168
PatchComplete  0.086  0.079 0.097  0.079 0.076 0.076 0.105  0.091 0.084
ToU 1 DiffComplete 0.102  0.115 0.121  0.093 0.073 0.087 0.122 0.109 0.098
Finetune-VAE ~ 0.347 0.370 0.406 0313 0.299 0.277 0412 0.381 0.320
Ours 0455  0.508 0.513 0415 0.360 0.379 0.522  0.529 0.416
SDFuison 0273  0.263 0.306  0.260 0.208 0.198 0316 0.364 0.271
PatchComplete  0.149 0.139 0.168  0.138 0.133 0.134 0.179  0.157 0.147
F1-Score +  DiffComplete 0.177  0.198 0.206  0.162 0.129 0.153 0.206  0.189 0.170
Finetune-VAE ~ 0.473 0.507 0.543 0433 0.417 0.395 0.540 0.513 0.439
Ours 0.570  0.626 0.628  0.529 0.477 0.497 0.627  0.645 0.533
PatchComplete  0.978 0.992 0.998  0.992 0.957 0.975 0.988  1.000 0.966
Success DiffComplete 0942 0.992 0.980  0.958 0.851 0.936 0.959 0.935 0.950
Finetune-VAE ~ 0.997 1.000 0.992  0.992 0.995 1.000 0.994  1.000 0.997
Ours 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000

Table 4: 3D part amodal segmentation results on PartObjaverse-Tiny, using SAMPart3D’s segment
masks as input, reported in Chamfer Distance, IoU, F-Score and Success Rate.

(a) Geometry Editing

(b) Geometry Processing

Part-Aware w/o Part-Aware

Figure 8: 3D part amodal segmentation is capable of numerous downstream applications, such as
Geometry Editing, Geometry Processing, Material Editing and Animation.

fer Distance, IoU, F-Score, and Reconstruction Success rate for each method, with the quantitative
comparison shown in table 3] Our method consistently outperforms the others, even on this chal-
lenging dataset. As shown in figure ] our approach effectively completes intricate details, such as
the eyeball, strawberry, which the other methods fail to achieve.

3DCoMPaT++. By back-projecting a 2D rendered image and its corresponding 2D mask onto the
3D mesh surface, we can acquire the corresponding 2.5D mask information. Based on this, we can
complete the geometry of the parts visible in the image. Leveraging the fine-grained annotations
and 2D renderings from the 3DCoMPaT++ dataset Slim et al. (2025); Li et al. (2022b), we select
four suitable categories—car, airplane, faucet, and bed—for evaluation. In figure (6| we visualize the
performance of our method on visible parts, while table [2| presents a quantitative comparison with
baseline methods.

Zero-shot Generalization. By leveraging pretraining on the large-scale Objaverse dataset and fine-
tuning on processed parts data, our model is capable of zero-shot amodal segmentation. To demon-
strate the generalization capabilities of our model in a challenging zero-shot setting, we present 3D
part amodal sementation results on generated meshes and the scanned dataset OmniObject3D
. Current generated and scanned objects typically exist as “holistic shells”, lacking
complete part geometry. Our method addresses this by seamlessly integrating with arbitrary sur-
face segmentation models to recover a full set of parts, achieving a structural quality that closely
resembles artificial models. For instance, figure [5| demonstrates our method applied to generated

objects using SAMPart3D (2024) and P3-SAM (2025) as segmentation meth-
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ods. Notably, our model is capable of generating the internal connecting structures between parts.
Furthermore, ﬁgure|_§| also presents the results on scanned objects, leveraging SAMesh Tang et al.
(2024) and PartField Liu et al. (2025) as segmentation methods.

Guidance Scale Chamfer | IoU?1 Fl1-Scoret Success T
Method  Chamfer | F1-0.117 F1-0.051

S=15 0059 059 0718 0.995
TripoSG 0.120 0.828 0.626 §=35 0.057  0.618  0.741 0.997
Ours 0.114 0.834 0.667 5=5 0058 0614  0.738 0.996

S=175 0089 0514  0.641 0.997

Table 5: Comparison with TripoSG. By gen-
erating complete and coherent parts, our
method achieves better performance.

Table 6: Ablation study of different guidance scales.

4.3 ABLATION ANALYSIS

Necessity of Context-Aware Attention. The context-aware attention is crucial for completing in-
visible areas of parts and ensuring the consistency of generated components. To demonstrate this,
we replace the context-aware attention block with a local-condition block and train the model. The
quantitative comparison shown in table[I] and table [3|demonstrates the significance of context-aware
attention. The qualitative analysis is provided in the supplementary material.

Necessity of Local Attention. Local attention is crucial for maintaining details and mapping po-
sitions. We perform an ablation study on the local attention module and present the quantitative
comparison in table[3] highlighting the necessity of our local attention design.

Effect of Guidance Scale. We find that the guidance scale significantly impacts the quality of
our generated shapes. We evaluate four different guidance scales (1.5, 3.5, 5, and 7) on the
PartObjaverse-Tiny dataset, with the results presented in table 6] A small guidance scale leads
to insufficient control, while an excessively large guidance scale results in the failure of shape re-
construction from latent fields. We find a scale of 3.5 provides the optimal balance.

4.4 APPLICATION

Our model is capable of completing high-quality parts across a variety of 3D shapes, thereby en-
abling numerous downstream applications such as geometry editing, material assignment and
animation. We demonstrate the application of geometry editing in Figures[T]and[§](a), and material
assignment in Figures [T] and [§] (c). For example, in the case of the car model, we perform 3D part
amodal segmentation, then modify the sizes of the front and rear wheels, increase the number of jars,
and expand the car’s width in Blender. Afterward, we assign unique textures to each part and enable
the wheels and steering wheel to move. The video demo is included in the supplementary material.
These operations would be difficult to achieve with traditional 3D part segmentation techniques.
Additionally, we showcase an example of a geometry processing application in Figure [§] (b).

Our model also has the potential for Geometric Super-resolution. By representing a part with the
same number of tokens as the overall object, we can fully preserve and generate the details of the
part. A comparison with the overall shape, reconstructed using the same number of tokens by VAE,
is shown in figure[7]

5 CONCLUSION

This paper introduces 3D part amodal segmentation, a novel task that addresses a key limitation
in 3D content generation. We decompose the problem into subtasks, focusing on 3D part shape
completion, and propose a diffusion-based approach with local and context-aware attention mech-
anisms to ensure coherent part completion. We establish evaluation benchmarks on the ABO and
PartObjaverse-Tiny datasets, demonstrating that our method significantly outperforms prior shape
completion approaches. Our comprehensive evaluations and application demonstrations validate the
effectiveness of our approach and establish a foundation for future research in this emerging field.

10
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use Large Language Models (LLMs) strictly for minor language editing—grammar and readabil-
ity, not for method design or experiments. All technical contributions, including the methodology,
equations, and results, are solely the work of the authors.

A.2 IMPLEMENTATION DETAILS

The VAE consists of 24 transformer blocks, with 8 blocks functioning as the encoder and the re-
maining 16 as the decoder. The part diffusion model consists of 10 DiT layers with a hidden size
of 2048, and the context-aware attention block consists of 8 self-attention blocks. To balance effec-
tiveness with training efficiency, we set the token number for our part diffusion to 512. The latent
tokens, encoded by the context-aware attention block, have a dimension of (512, 512), which are
integrated into the part diffusion model via cross-attention. We fine-tune the part diffusion model
using the ABO |Collins et al.| (2022) dataset with 4 RTX 4090 GPUs for approximately two days,
using the Objaverse |Deitke et al.|(2023)) dataset with 8 A100 GPUs for around four days.

We set the learning rate to le-4 for both the pretraining and finetuning stages, using the AdamW
optimizer. During training, as illustrated in figure 2] we sample 20,480 points from the overall
shape, which serve as the keys and values, while 512 points are sampled from each segmented part
to serve as the query. This results in the context latent dimensions being (512, 512). For each point,
we use the position embedding concatenated with a normal value as the input feature. After passing
through the denoising UNet, we obtain shape latents of dimensions (512, 2048), representing the
complete part’s shape. Subsequently, we use the 3D spatial points to query these shape latents and
employ a local marching cubes algorithm to reconstruct the complete part mesh. The local bounding
box is set to be 1.3 times the size of the segmented part’s bounding box to ensure complete mesh
extraction.

A.3 DATA CURATION DETAILS

We develop a set of filtering rules to extract 3D objects with a reasonable part-wise semantic dis-
tribution from 3D asset datasets. We ultimately retain 16,000 parts (50000 objects) in Objaverse as
training data. The specific rules are as follows:

* Mesh Count Restriction: We select only 3D objects with a mesh count within a specific
range (2 to 15) to avoid objects that are either too simple or too complex (such as scenes or
architectural models). The example data filtered out by this rule is shown in figure [T 1] (a).

* Connected Component Analysis: For each object, we render both frontal and side views
of all parts and calculate the number of connected components in the 2D images. We then
compute the average number of connected components per object, as well as the top three
average values. An empirical threshold (85% of the connected component distribution) is
used to filter out objects with severe fragmentation or excessive floating parts (floaters).
The example data filtered out by this rule is shown in figure|l 1| (b).

¢ Volume Distribution Optimization: We analyze the volume distribution among different
parts and ensure a balanced composition by removing or merging small floating parts and
filtering out objects where a single part dominates excessively (e.g., cases where the alpha
channel of the rendered image overlaps with the model rendering by up to 90%). The
example data filtered out by this rule is shown in figure |l I{(c).

A.4 MORE ABLATION ANALYSIS

Semantic and Instance Part Completion. Traditionally, segmentation definitions fall into two
categories: semantic segmentation and instance segmentation. Similarly, we process our 3D parts
from the ABO dataset according to these two settings. For example, in the semantic part completion
setting, we consider all four chair legs as a single part, whereas in the instance part completion
setting, they are treated as four separate parts. Our model is capable of handling both settings

14
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Figure 10: Ablation study on segmentation mask input with different levels of granularity.

effectively. We train on the mixed dataset and present the completion results for a single bed using
the same model weight, as shown in figure[9]

Necessity of Context-Aware Attention. To emphasize the importance of our proposed context-
aware attention block, we provide both quantitative analysis (refer to section [4.3) and qualitative
comparisons. As shown in figure the absence of context-aware attention results in a lack of
guidance for completing individual parts, leading to inconsistent and lower-quality completion out-
comes.

Qualitative Comparison of Different Guidance Scales. In section[4.3] we provide a quantitative
analysis of various guidance scales. Additionally, We illustrate the qualitative comparison of dif-
ferent guidance scales in figure [T3] Our findings indicate that excessively large or small guidance
scales can adversely impact the final completion results. Through experimentation, we identify 3.5
as an optimal value for achieving balanced outcomes.

Learning Rate Setting. During the fine-tuning stage, we experiment with a weighted learning rate
approach, where the parameters of the denoising U-Net are set to 0.1 times that of the context-aware
attention block. However, we observe that this approach results in unstable training and negatively
impacts the final outcomes. We present the comparison of generated parts with different learning
rate training setting in figure T3]

Ambiguity of Segmentation Mask. Our model is robust to different levels of segmentation gran-
ularity. As shown in ﬁgure whether the chair’s leg and seat are separated or merged during the
segmentation stage does not affect the final quality.

A.5 MORE RESULTS OF 3D PART AMODAL SEGMENTATION

In figure[T5] we showcase additional examples of 3D part amodal segmentation applied to generated
meshes from 3D generation models. Initially, we employ SAMPart3D [Yang et al.| (2024) to segment
the generated meshes, resulting in several surface masks. Subsequently, our model completes each
segmented part, enabling the reconstruction of a consistent overall mesh by merging the completed
parts. For instance, as demonstrated in figure [I3] our model effectively completes intricate com-
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ponents such as glasses, hats, and headsets from the generated meshes. This capability supports a
variety of downstream tasks, including geometry editing, geometry processing, and material editing.

A.6 MORE RESULTS ON PARTOBJAVERSE-TINY

We present more qualitative results on the PartObjaverse-Tiny dataset in Figures [I7] and [I6] Our
method can effectively complete the details of parts and maintain overall consistency, which other
methods cannot achieve.

A.7 LIMITATIONS AND FUTURE WORKS

The outcome of HoloPart is influenced by the quality of input surface masks. Unreasonable or low-
quality masks may lead to incomplete results. Therefore, a better approach moving forward would
be to use our method to generate a large number of 3D part-aware shapes, which can then be used
to train part-aware generation models.
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Figure 11: Examples of data filtered out by rules.
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Figure 13: Visualization of generated parts across different guidance scales.
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Figure 15: More Results of 3D Part Amodal Segmentation.
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Figure 16: More qualitative results on the PartObjaverse-Tiny dataset.
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