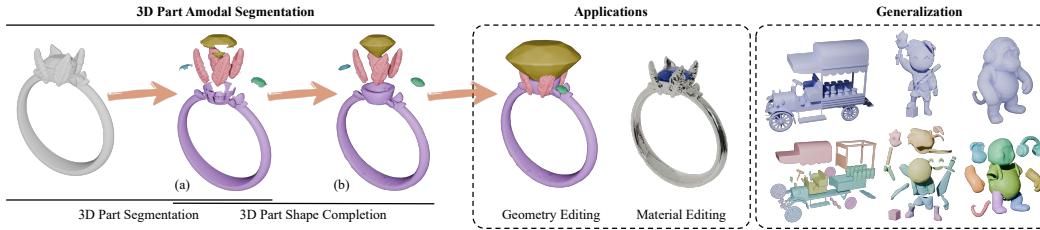


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 HOLOPART: GENERATIVE 3D PART AMODAL SEG- MENTATION

005 **Anonymous authors**

006 Paper under double-blind review



016 Figure 1: Demonstration of the difference between (a) 3D part segmentation and (b) 3D part amodal
017 segmentation. 3D part amodal segmentation decomposes the 3D shape into **complete** semantic parts
018 rather than broken surface patches, facilitating various downstream applications. In this paper, we
019 propose a solution by performing 3D part shape completion on incomplete part segments.

020 021 ABSTRACT

023 3D part amodal segmentation—decomposing a 3D shape into complete, seman-
024 tically meaningful parts, even when occluded—is a challenging but crucial task
025 for 3D content creation and understanding. Existing 3D part segmentation meth-
026 ods only identify visible surface patches, limiting their utility. Inspired by 2D
027 amodal segmentation, we introduce this novel task to the 3D domain and propose
028 a practical, two-stage approach, addressing the key challenges of inferring oc-
029 cluded 3D geometry, maintaining global shape consistency, and handling diverse
030 shapes with limited training data. First, we leverage existing 3D part segmenta-
031 tion to obtain initial, incomplete part segments. Second, we introduce HoloPart,
032 a novel diffusion-based model, to complete these segments into full 3D parts.
033 HoloPart utilizes a specialized architecture with local attention to capture fine-
034 grained part geometry and global shape context attention to ensure overall shape
035 consistency. We introduce new benchmarks based on the ABO and PartObjaverse-
036 Tiny datasets and demonstrate that HoloPart significantly outperforms state-of-
037 the-art shape completion methods. By incorporating HoloPart with existing seg-
038 mentation techniques, we achieve promising results on 3D part amodal segmen-
039 tation, opening new avenues for applications in geometry editing, animation, and
040 material assignment.

041 1 INTRODUCTION

044 3D part segmentation is an active research area. Given a 3D shape represented as a polygonal mesh
045 or point cloud, 3D part segmentation groups its elements (vertices or points) into semantic parts.
046 This is particularly valuable for shapes produced by photogrammetry or 3D generative models Zhang
047 et al. (2024); Liu et al. (2023b); Hong et al. (2023); Long et al. (2024); Zhang et al. (2023); Poole
048 et al. (2022), which are often one-piece and difficult to deal with for downstream applications.
049 However, part segmentation has limitations. It produces surface patches rather than “complete parts”
050 of the 3D shape like is shown in figure 1 (a), where the segmented parts are broken. This may suffice
051 for perception tasks but falls short for content creation scenarios where *complete part geometry* is
052 required for geometry editing, animation, and material assignment. A similar challenge has been
053 learned in 2D for many years, through the research area of 2D amodal segmentation. Numerous
previous works Ehsani et al. (2018); Kar et al. (2015); Ke et al. (2021); Ozguroglu et al. (2024) have
explored the 2D amodal segmentation task, yet there remains a lack of research for 3D shapes.

To address this, we introduce the task of **3D part amodal segmentation**. This task aims to separate a 3D shape into its *complete* semantic parts, emulating how human artists model complex 3D assets. figure 1 (b) shows the expected output of 3D part amodal segmentation, where segmented parts are complete. However, extending the concept of amodal segmentation to 3D shapes introduces significant, non-trivial complexities that cannot be directly addressed by existing 2D or 3D techniques. 3D part amodal segmentation requires: (1) **Inferring Occluded Geometry**: Accurately reconstructing the 3D geometry of parts that are partially or completely hidden. (2) **Maintaining Global Shape Consistency**: Ensuring the completed parts are geometrically and semantically consistent with the entire 3D shape. (3) **Handling Diverse Shapes and Parts**: Generalizing to a wide variety of object categories and part types, while *leveraging a limited amount of part-specific training data*.

Recognizing the inherent difficulty of end-to-end learning for this task, we propose a practical and effective two-stage approach. The first stage, *part segmentation*, has been widely studied, and we leverage an existing state-of-the-art method Yang et al. (2024) to obtain initial, incomplete part segmentations (surface patches). The second stage, and the core of our contribution, is *3D part shape completion given segmentation masks*. This is the most challenging aspect, requiring us to address the complexities outlined above. Previous 3D shape completion methods Rao et al. (2022); Chu et al. (2024); Cheng et al. (2023) focus on completing entire objects, often struggling with large missing regions or complex part structures. They also do not address the problem of completing individual parts within a larger shape while ensuring consistency with the overall structure.

We introduce **HoloPart**, a novel diffusion-based model specifically designed for 3D part shape completion. Given an incomplete part segment, HoloPart doesn't just "fill in the hole". It leverages a learned understanding of 3D shape priors to *generate a complete and plausible* 3D geometry, even for complex parts with significant occlusions. To achieve this, we first utilize the strong 3D generative prior learned from a large-scale dataset of general 3D shapes. We then adapt this prior to the part completion task using a curated, albeit limited, dataset of part-whole pairs, enabling effective learning despite data scarcity. Motivated by the need to balance local details and global context, HoloPart incorporates two key components: (1) a *local attention* design that focuses on capturing the fine-grained geometric details of the input part, and (2) a *shape context-aware attention* mechanism that effectively injects both local and global information to the diffusion model.

To facilitate future research, we propose evaluation benchmarks on the ABO Collins et al. (2022) and PartObjaverse-Tiny Yang et al. (2024) datasets. Extensive experiments demonstrate that HoloPart significantly outperforms existing shape completion approaches. Furthermore, by chaining HoloPart with off-the-shelf 3D part segmentation, we achieve superior results on the full 3D part amodal segmentation task.

In summary, we make the following contributions:

- We formally introduce the task of 3D part amodal segmentation, which separates a 3D shape into multiple semantic parts with complete geometry. This is a critical yet unexplored problem in 3D shape understanding, and provide two new benchmarks (based on ABO and PartObjaverse-Tiny) to facilitate research in this area.
- We propose HoloPart, a novel diffusion-based model for 3D part shape completion. HoloPart features a dual attention mechanism (local attention for fine-grained details and context-aware attention for overall consistency) and leverages a learned 3D generative prior to overcome limitations imposed by scarce training data.
- We demonstrate that HoloPart significantly outperforms existing shape completion methods on the challenging part completion subtask and achieves superior results when integrated with existing segmentation techniques for the full 3D part amodal segmentation task, showcasing its practical applicability and potential for various downstream applications.

2 RELATED WORK

3D Part Segmentation. 3D Part Segmentation seeks to decompose 3D objects into meaningful, semantic parts, a long-standing challenge in 3D computer vision. Earlier studies Qi et al. (2017a;b); Li et al. (2018); Zhao et al. (2021); Qian et al. (2022) largely focused on developing network architectures optimized to learn rich 3D representations. These methods generally rely on fully supervised

108 training, which requires extensive, labor-intensive 3D part annotations. Constrained by the lim-
 109 ited scale and diversity of available 3D part datasets Mo et al. (2019); Chang et al. (2015), these
 110 approaches often face challenges in open-world scenarios. To enable open-world 3D part segmen-
 111 tation, recent methods Liu et al. (2023a); Umam et al. (2023); Kim & Sung (2024); Zhong et al.
 112 (2024); Abdelreheem et al. (2023); Tang et al. (2024); Thai et al. (2024); Xue et al. (2023); Yang
 113 et al. (2024); Liu et al. (2024) leverage 2D foundation models such as SAM Kirillov et al. (2023),
 114 GLIP Li et al. (2022a) and CLIP Radford et al. (2021). These approaches first segment 2D render-
 115 ings of 3D objects and then develop methods to project these 2D masks onto 3D surfaces. However,
 116 due to occlusions, these methods can only segment the visible surface areas of 3D objects, result-
 117 ing in incomplete segmentations that are challenging to directly apply in downstream tasks. In this
 118 work, we advance 3D part segmentation by introducing 3D part amodal segmentation, enabling the
 119 completion of segmented parts beyond visible surfaces.

120 **3D Shape Completion.** 3D shape completion is a post-processing step that restores missing re-
 121 gions, primarily focusing on whole shape reconstruction. Traditional methods like Laplacian hole
 122 filling Nealen et al. (2006) and Poisson surface reconstruction Kazhdan et al. (2006) address small
 123 gaps and geometric primitives. With the growth of 3D data, retrieval-based methods Sung et al.
 124 (2015) have been developed to find and retrieve shapes that best match incomplete inputs from a
 125 predefined dataset. The rise of generative models such as GANs Goodfellow et al. (2020), Autoen-
 126 coders Kingma (2013), and Diffusion models Ho et al. (2020) has led to methods like DiffCom-
 127 plete Chu et al. (2024) and SC-Diff Galvis et al. (2024), which generate diverse and plausible 3D
 128 shapes from partial inputs. These models offer flexibility and creative freedom in shape completion.

129 **3D Shape Diffusion.** Various strategies have been proposed to address the challenges associated
 130 with directly training a 3D diffusion model for shape generation, primarily due to the lack of a
 131 straightforward 3D representation suitable for diffusion. Several studies Dai et al. (2017); Zhang
 132 et al. (2023); Zhao et al. (2024); Zhang et al. (2024) leverage Variational Autoencoders (VAEs) to
 133 encode 3D shapes into a latent space, enabling a diffusion model to operate on this latent repre-
 134 sentation for 3D shape generation. For instance, Shap-E Dai et al. (2017) encodes a point cloud
 135 and an image of a 3D shape into an implicit latent space using a transformer-based VAE, enabling
 136 subsequent reconstruction as a Neural Radiance Field (NeRF). 3DShape2VecSet Zhang et al. (2023)
 137 employs cross-attention mechanisms to encode 3D shapes into latent representations that can be de-
 138 coded through neural networks. Michelangelo Zhao et al. (2024) further aligns the 3D shape latent
 139 space with the CLIP Radford et al. (2021) feature space, enhancing the correspondence between
 140 shapes, text, and images. CLAY Zhang et al. (2024) trains a large-scale 3D diffusion model on an
 141 extensive dataset, implementing a hierarchical training approach that achieves remarkable results.

3 3D PART AMODAL SEGMENTATION

142 We formally introduce the task of *3D part amodal segmentation*. Given a 3D shape m , the goal is
 143 to decompose m into a set of complete semantic parts, denoted as $\{p_1, p_2, \dots, p_n\}$, where each p_i
 144 represents a geometrically and semantically meaningful region of the shape, *including any occluded*
 145 *portions*. This is in contrast to standard 3D part segmentation, which only identifies visible surface
 146 patches. The completed parts should adhere to the following constraints:

1. **Completeness:** Each p_i should represent the entire geometry of the part, even if portions
 151 are occluded in the input shape m .
2. **Geometric Consistency:** The geometry of each p_i should be plausible and consistent with
 153 the visible portions of the part and the overall shape m .
3. **Semantic Consistency:** Each p_i should correspond to a semantically meaningful part (e.g.,
 155 a wheel, a handle).

157 As discussed in the Introduction, this task presents significant challenges, including inferring oc-
 158 cluded geometry, maintaining global shape consistency, and generalizing across diverse shapes and
 159 parts, all with limited training data. To address these challenges, we propose a two-stage approach:

1. **Part Segmentation:** We first obtain an initial part segmentation of the input shape m . This
 161 provides us with a set of surface patches, each corresponding to a (potentially occluded)

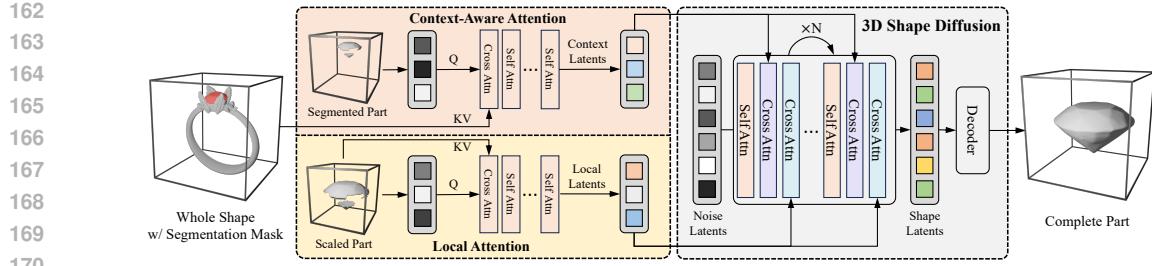


Figure 2: An overview of the **HoloPart** model design. Given a whole 3D shape and a corresponding surface segmentation mask, HoloPart encodes these inputs into latent tokens, using context-aware attention to capture global shape context and local attention to capture local part detailed features and position mapping. These tokens are used as conditions and injected into the part diffusion model via cross-attention respectively. During training, noise is added to complete 3D parts, and the model learns to denoise them and recover the original complete part.

semantic segments $\{s_1, s_2, \dots, s_n\}$. For this stage, we leverage SAMPart3D Yang et al. (2024), although our framework is compatible with other 3D part segmentation techniques.

2. **Part Completion:** This is the core technical contribution of our work. Given an incomplete part segment s_i , our goal is to generate the corresponding complete part p_i . This requires inferring the missing geometry of the occluded regions while maintaining geometric and semantic consistency. We address this challenge with our **HoloPart** model, described in the following sections.

The remainder of this section details our approach, beginning with the object-level pretraining used to establish a strong 3D generative prior (section 3.1), followed by the key designs of the HoloPart model (section 3.2), and finally the data curation process (section 3.3). The overall pipeline of **HoloPart** is shown in figure 2.

3.1 OBJECT-LEVEL PRETRAINING

Due to the scarcity of 3D data with complete part annotations, we first pretrain a 3D generative model on a large-scale dataset of whole 3D shapes. This pretraining allows us to learn a generalizable representation of the 3D shape and capture semantic correspondences between different parts, which is crucial for the subsequent part completion stage.

Variational Autoencoder (VAE). We adopt the VAE module design as described in 3DShape2VecSet Zhang et al. (2023) and CLAY Zhang et al. (2024). This design embeds the input point cloud $\mathbf{X} \in \mathbb{R}^{N \times 3}$ sampled from a complete mesh, into a set of latent vectors using a learnable embedding function combined with a cross-attention encoding module:

$$z = \mathcal{E}(\mathbf{X}) = \text{CrossAttn}(\text{PosEmb}(\mathbf{X}_0), \text{PosEmb}(\mathbf{X})), \quad (1)$$

where \mathbf{X}_0 represents subsampled point cloud from \mathbf{X} via furthest point sampling, i.e. $\mathbf{X}_0 = \text{FPS}(\mathbf{X}) \in \mathbb{R}^{M \times 3}$. The VAE’s decoder, composed of several self-attention layers and a cross-attention layer, processes these latent codes along with a list of query points q in 3D space, to produce the occupancy logits of these positions:

$$\mathcal{D}(z, q) = \text{CrossAttn}(\text{PosEmb}(q), \text{SelfAttn}(z)). \quad (2)$$

3D Shape Diffusion. Our diffusion denoising network v_θ is built upon a series of diffusion transformer (DiT) blocks Peebles & Xie (2023); Zhao et al. (2024); Wu et al. (2024); Zhang et al. (2024); Li et al. (2024). In line with the approach of Rectified Flows (RFs) Liu et al. (2022); Lipman et al. (2022); Albergo & Vanden-Eijnden (2022), our diffusion model is trained in a compressed latent space to map samples from the gaussian distribution $\epsilon \sim \mathcal{N}(0, I)$ to the distribution of 3D shapes. The forward process is defined using a linear interpolation between the original shape and noise, represented as:

$$z_t = (1 - t)z_0 + t\epsilon, \quad (3)$$

where $0 \leq t < 1000$ is the diffusion timestep, z_0 represents the original 3D shape, and z_t is progressively noised version of the 3D shape at time t . Our goal is to solve the following flow

216 matching objective:

$$\mathbb{E}_{z \in \mathcal{E}(X), t, \epsilon \sim \mathcal{N}(0, I)} \left[\|v_\theta(z_t, t, g) - (\epsilon - z_0)\|_2^2 \right], \quad (4)$$

219 where g is the image conditioning feature Wu et al. (2024) derived from the rendering of 3D shape
220 during the pretraining stage.

222 3.2 CONTEXT-AWARE PART COMPLETION

224 Given a pair consisting of a whole mesh x and a part segment mask s_i on the surface from 3D
225 segmentation models as a prompt, we aim to leverage the learned understanding of 3D shape priors
226 to generate a complete and plausible 3D geometry p_i . To preserve local details and capture global
227 context, we incorporate two key mechanisms into our pretrained model: *local attention* and *shape*
228 *context-aware attention*. The incomplete part first performs cross-attention with the global shape to
229 learn the contextual shape for completion. Next, the incomplete part is normalized to $[-1, 1]$ and
230 undergoes cross-attention with subsampled points, enabling the model to learn both local details and
231 the new position. Specifically, the context-aware attention and local attention can be expressed as:

$$\begin{aligned} c_o &= \mathcal{C}(\mathbf{S}_0, \mathbf{X}) \\ &= \text{CrossAttn}(\text{PosEmb}(\mathbf{S}_0), \text{PosEmb}(\mathbf{X}\#\mathbf{M})), \end{aligned} \quad (5)$$

$$c_l = \mathcal{C}(\mathbf{S}_0, \mathbf{S}) = \text{CrossAttn}(\text{PosEmb}(\mathbf{S}_0), \text{PosEmb}(\mathbf{S})), \quad (6)$$

236 where \mathbf{S} represents the sampled point cloud on the surface of the incomplete part mesh, and \mathbf{S}_0
237 denotes the subsampled point cloud from \mathbf{S} via furthest point sampling. \mathbf{X} represents the sampled
238 point cloud on the overall shape. Here, \mathbf{M} is a binary mask used to highlight the segmented area on
239 the entire mesh, and $\#\#$ represents concatenation.

240 We further finetune the shape diffusion model into a part diffusion model by incorporating our
241 designed local and context-aware attention. The part diffusion model is trained in a compressed
242 latent space to transform noise $\epsilon \sim \mathcal{N}(0, I)$ into the distribution of 3D part shapes. The objective
243 function for part latent diffusion is defined as follows:

$$\mathbb{E}_{z \in \mathcal{E}(K), t, \epsilon \sim \mathcal{N}(0, I)} \left[\|v_\theta(z_t, t, c_o, c_l) - (\epsilon - z_0)\|_2^2 \right], \quad (7)$$

247 where K represents the sampled point cloud from the complete part meshes. Following Zhao et al.
248 (2024), we apply classifier-free guidance (CFG) by randomly setting the conditional information to
249 a zero vector randomly. Once the denoising network v_θ is trained, the function f can generate \hat{m}_p
250 by iterative denoising. The resulting latent embedding is then decoded into 3D space occupancy and
251 the mesh is extracted from the part region using the marching cubes Lorensen & Cline (1998).

252 3.3 DATA CURATION

254 We process data from two 3D datasets: ABO Collins et al. (2022) and Objaverse Deitke et al.
255 (2023). For the ABO dataset, which contains part ground truths, we directly use this information to
256 generate whole-part pair data. In contrast, filtering valid part data from Objaverse is challenging due
257 to the absence of part annotations, and the abundance of scanned objects and low-quality models.
258 To address this, we first filter out all scanned objects and select 180k high-quality 3D shapes from
259 the original 800,000 available models. We then develop a set of filtering rules to extract 3D objects
260 with a reasonable part-wise semantic distribution from 3D asset datasets, including Mesh Count
261 Restriction, Connected Component Analysis and Volume Distribution Optimization. Further details
262 are provided in the supplementary.

263 To train the conditional part diffusion model f , we develop a data creation pipeline to generate
264 whole-part pair datasets. First, all component parts are merged to form the complete 3D mesh.
265 Next, several rays are sampled from different angles to determine the visibility of each face, and any
266 invisible faces are removed. To handle non-watertight meshes, we compute the Unsigned Distance
267 Field (UDF) of the 3D mesh and then obtain the processed whole 3D mesh using the marching cubes
268 algorithm. We apply a similar process to each individual 3D part to generate the corresponding
269 complete 3D part mesh. Finally, we assign part labels to each face of the whole mesh by finding the
nearest part face, which provides surface segment masks $\{s_i\}$.

		P/C	D/C	F/V	w/o C-a	Ours
					w C-a	
Chamfer ↓	bed	0.093	0.061	0.023	0.032	0.020
	table	0.081	0.068	0.030	0.042	0.018
	lamp	0.170	0.084	0.044	0.036	0.031
	chair	0.121	0.107	0.045	0.035	0.030
	mean (instance)	0.122	0.087	0.037	0.036	0.026
	mean (category)	0.116	0.080	0.035	0.036	0.025
IoU ↑	bed	0.148	0.266	0.695	0.792	0.833
	table	0.180	0.248	0.652	0.791	0.838
	lamp	0.155	0.238	0.479	0.677	0.697
	chair	0.156	0.214	0.490	0.695	0.718
	mean (instance)	0.159	0.235	0.565	0.733	0.764
	mean (category)	0.160	0.241	0.580	0.739	0.771
F1-Score ↑	bed	0.244	0.412	0.802	0.864	0.896
	table	0.291	0.390	0.758	0.844	0.890
	lamp	0.244	0.374	0.610	0.769	0.789
	chair	0.262	0.342	0.631	0.800	0.817
	mean (instance)	0.259	0.371	0.689	0.816	0.843
	mean (category)	0.260	0.380	0.700	0.819	0.848
Success ↑	mean (instance)	0.822	0.824	0.976	0.987	0.994

Table 1: 3D part amodal segmentation results of PatchComplete, DiffComplete, Finetune-VAE, Ours (w/o Context-attention), Ours (with Context-attention), on ABO, reported in Chamfer Distance, IoU, F-Score and Success Rate.

		P/C	D/C	S/F	Ours
Chamfer ↓	car	0.289	0.153	0.264	0.090
	airplane	0.267	0.141	0.241	0.087
	faucet	0.258	0.125	0.232	0.076
	bed	0.295	0.162	0.282	0.097
	mean (instance)	0.278	0.146	0.255	0.088
	mean (category)	0.277	0.145	0.255	0.087
IoU ↑	car	0.247	0.382	0.323	0.545
	airplane	0.231	0.405	0.230	0.572
	faucet	0.291	0.442	0.185	0.601
	bed	0.215	0.368	0.254	0.531
	mean (instance)	0.245	0.401	0.246	0.558
	mean (category)	0.246	0.399	0.248	0.562
F1-Score ↑	car	0.314	0.485	0.406	0.635
	airplane	0.291	0.508	0.299	0.652
	faucet	0.365	0.529	0.277	0.673
	bed	0.282	0.416	0.313	0.614
	mean (instance)	0.312	0.485	0.321	0.641
	mean (category)	0.313	0.484	0.323	0.644
Success ↑	mean (instance)	0.835	0.935	0.884	0.995

Table 2: 3D part amodal segmentation results of PatchComplete, DiffComplete, SDFusion and Ours on 3DCoMPaT++ with 2.5D mask input, reported in Chamfer Distance, IoU, F-Score and Success Rate.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We propose two benchmarks based on two 3D shape datasets: ABO Collins et al. (2022) and PartObjaverse-Tiny Yang et al. (2024), to evaluate the 3D amodal segmentation task. The ABO dataset contains high-quality 3D models of real-world household objects, covering four categories: bed, table, lamp, and chair, all with detailed part annotations. For training, we use 20,000 parts, and for evaluation, we use 1,000 parts (60 shapes). Objaverse Deitke et al. (2023) is a large-scale 3D dataset comprising over 800,000 3D shapes. PartObjaverse-Tiny is a curated subset of Objaverse, consisting of 3,000 parts (200 shapes) with fine-grained part annotations. Using our data-processing pipeline, we construct two evaluation datasets. Specifically, we project the ground-truth masks onto the surfaces of the processed monolithic meshes to serve as inputs, and use the complete part annotations as the outputs (targets) for evaluation. We further evaluate the 3D amodal segmentation task by replacing the ground-truth masks with masks produced by SAMPart3D. We further investigate the generalization capabilities of our model. Specifically, we demonstrate that our method can be integrated with arbitrary 3D part surface segmentation models to process “holistic shells” (generated or scanned), yielding complete and consistent parts. Moreover, we extend our exploration to the task of 2.5D part completion on the 3DCoMPaT++ Slim et al. (2025); Li et al. (2022b) dataset.

Baselines. We compare our methods against state-of-the-art shape completion models, PatchComplete Rao et al. (2022), DiffComplete Chu et al. (2024) and SDFusion Cheng et al. (2023) using our proposed benchmarks. We train all baselines on our processed ABO and Objaverse datasets using the official implementations. To adapt to the data requirements of these models, we generated voxel grids with SDF values from our processed meshes. Additionally, our VAE model also uses 3D encoder-decoder architectures for 3D shape compression and reconstruction. Thus, we directly fine-tune the VAE on our parts dataset for part completion, serving as a baseline method.

Metrics. To evaluate the quality of predicted part shape geometry, we use three metrics: \mathcal{L}_1 Chamfer Distance (CD) Intersection over Union (IoU), and F-Score, comparing the predicted and ground truth part shapes. We sample 500k points on both the predicted and the group truth part meshes to capture detailed geometry information, used for the CD calculation. To compute IoU and F-Score, we generate voxel grids of size 64^3 with occupancy values based on the sampled points. Since the baseline methods are sometimes unable to reconstruct effective meshes, we calculate CD, IoU, and F-Score only for the successfully reconstructed meshes. Additionally, we report the reconstruction success ratio to quantify the reliability of each method.

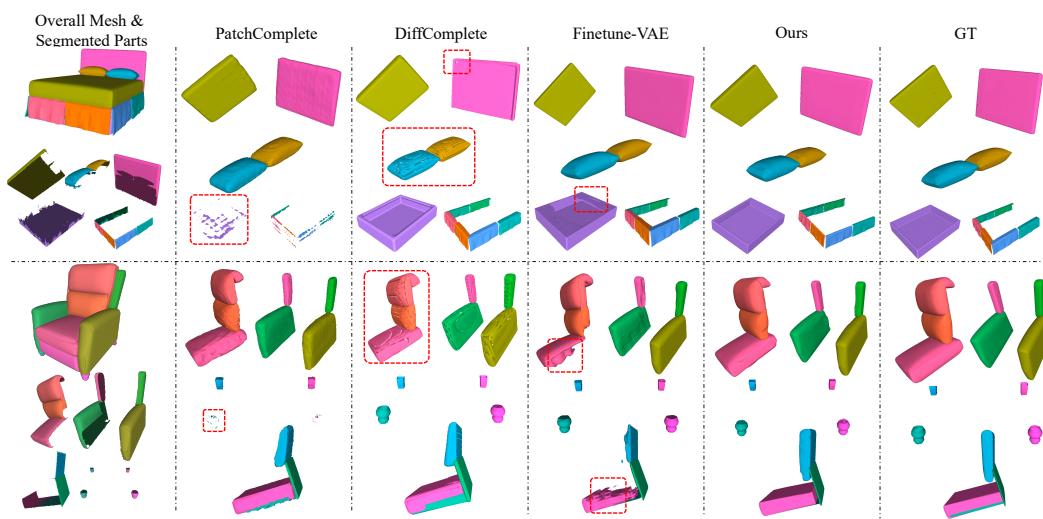


Figure 3: Qualitative comparison with PatchComplete, DiffComplete and Finetune-VAE on the ABO dataset.

	Method	Overall	Human	Animals	Daily	Buildings	Transports	Plants	Food	Electronics
Chamfer ↓	PatchComplete	0.144	0.150	0.165	0.141	0.173	0.147	0.110	0.118	0.147
	DiffComplete	0.133	0.130	0.144	0.127	0.145	0.136	0.129	0.128	0.125
	SDFusion	0.137	0.135	0.162	0.146	0.162	0.144	0.104	0.105	0.134
	Finetune-VAE	0.064	0.064	0.067	0.075	0.064	0.076	0.049	0.041	0.073
	Ours w/o Local	0.057	0.061	0.083	0.051	0.047	0.075	0.045	0.037	0.057
	Ours w/o Context	0.055	0.059	0.076	0.044	0.047	0.053	0.042	0.039	0.056
IoU ↑	Ours	0.034	0.034	0.042	0.032	0.032	0.037	0.029	0.029	0.041
	PatchComplete	0.137	0.129	0.147	0.132	0.116	0.129	0.152	0.156	0.138
	DiffComplete	0.142	0.149	0.139	0.142	0.124	0.139	0.153	0.134	0.157
	SDFusion	0.235	0.214	0.237	0.229	0.202	0.198	0.265	0.294	0.242
	Finetune-VAE	0.502	0.460	0.464	0.503	0.513	0.468	0.536	0.583	0.490
	Ours w/o Local	0.618	0.582	0.574	0.618	0.634	0.591	0.673	0.677	0.594
F1-Score ↑	Ours w/o Context	0.553	0.535	0.518	0.579	0.593	0.553	0.590	0.609	0.538
	Ours	0.688	0.675	0.667	0.699	0.714	0.687	0.709	0.710	0.648
	PatchComplete	0.232	0.221	0.246	0.224	0.197	0.220	0.254	0.261	0.233
	DiffComplete	0.239	0.250	0.235	0.238	0.212	0.234	0.254	0.225	0.262
	SDFusion	0.365	0.340	0.368	0.357	0.318	0.316	0.403	0.442	0.374
	Finetune-VAE	0.638	0.600	0.613	0.638	0.646	0.596	0.672	0.718	0.623
Success ↑	Ours w/o Local	0.741	0.715	0.706	0.743	0.750	0.713	0.786	0.796	0.719
	Ours w/o Context	0.691	0.679	0.663	0.716	0.722	0.688	0.727	0.743	0.676
	Ours	0.801	0.794	0.788	0.809	0.818	0.798	0.817	0.820	0.767
	PatchComplete	0.938	0.989	0.976	0.954	0.843	0.932	0.959	0.935	0.947
	DiffComplete	0.942	0.992	0.980	0.958	0.851	0.936	0.959	0.935	0.950
	Finetune-VAE	0.997	1.000	0.996	0.996	0.997	0.996	1.000	1.000	0.994
	Ours w/o Context	0.998	0.997	0.996	1.000	0.997	0.994	1.000	1.000	0.997

Table 3: 3D part amodal segmentation results on PartObjaverse-Tiny, reported in Chamfer Distance, IoU, F-Score and Success Rate.

4.2 MAIN RESULTS

ABO. We compare our method with PatchComplete Rao et al. (2022), DiffComplete Chu et al. (2024) and our fintuned VAE on the ABO dataset. Quantitative results are presented in table 1, with qualitative comparisons illustrated in figure 3. When dealing with parts containing large missing areas, PartComplete struggles to generate a plausible shape. PatchComplete and DiffComplete often fail to reconstruct small or thin structures, such as the bed sheets or the connections of the lamp in figure 3. Although the finetuned VAE can reconstruct parts that have substantial visible areas, it performs poorly when completing regions with little visibility, such as the bedstead or the interior of the chair, as shown in figure 3. In contrast, our method consistently generates high-quality, coherent parts and significantly outperforms the other approaches in both quantitative and qualitative evaluations.

PartObjaverse-Tiny. We also compare our method with PatchComplete, DiffComplete, and our fintuned VAE on the PartObjaverse-Tiny dataset. The shapes in the PartObjaverse-Tiny dataset are more complex and diverse, making part completion more challenging. We calculate the Cham-

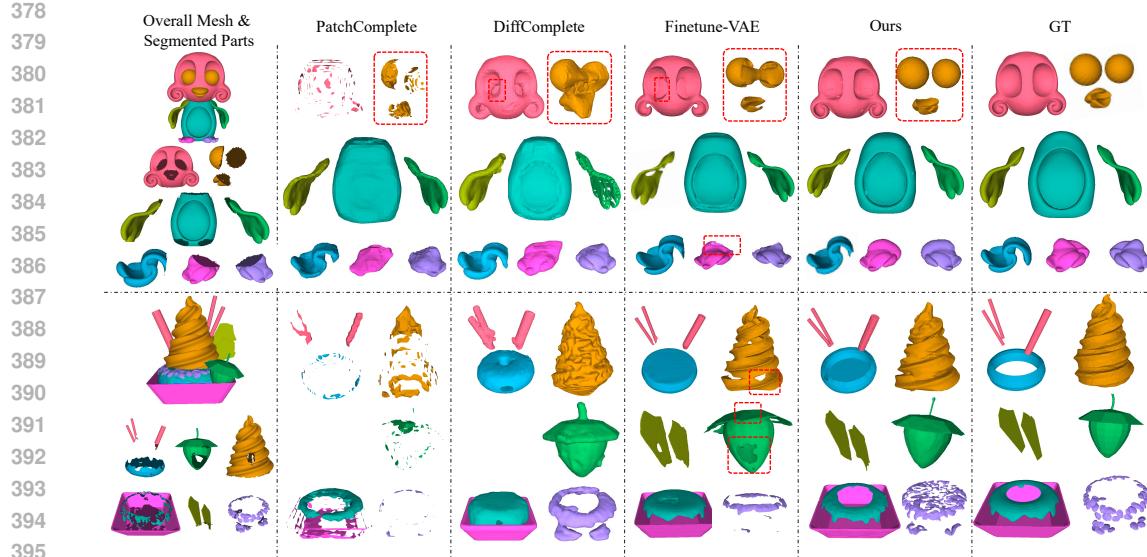
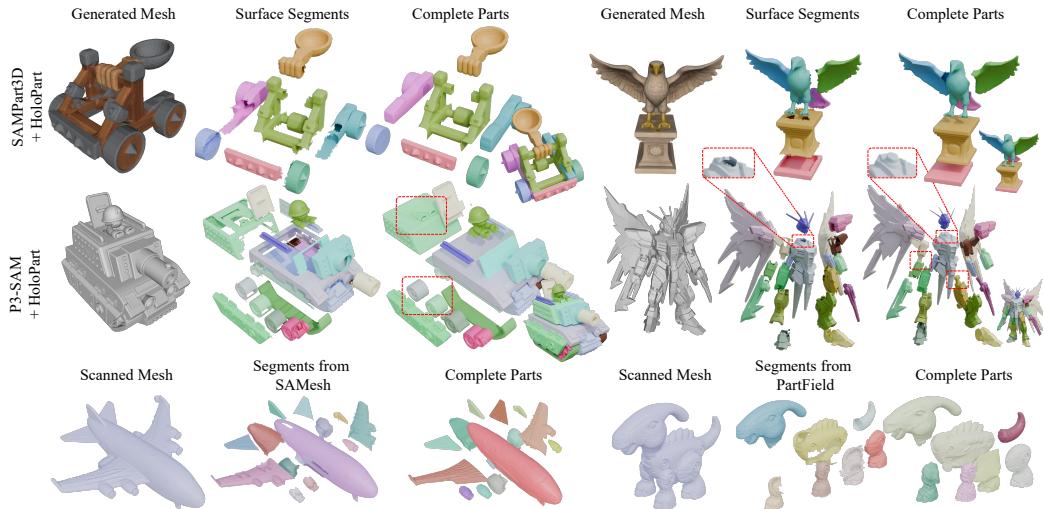


Figure 4: Qualitative comparison on the PartObjaverse-Tiny dataset.



414 Figure 5: 3D part amodal segmentation on **generated objects and scanned objects from OmniObject3D**. Our method seamlessly integrates with arbitrary zero-shot 3D part segmentation models. We
 415 can generate even precise **joint structures**, such as the mortise-and-tenon joints at the robot's
 416 connections shown in the figure.
 417

Figure 6: 3D part amodal segmentation on 3DCoMPaT++ Slim et al. (2025) with 2.5D mask input.

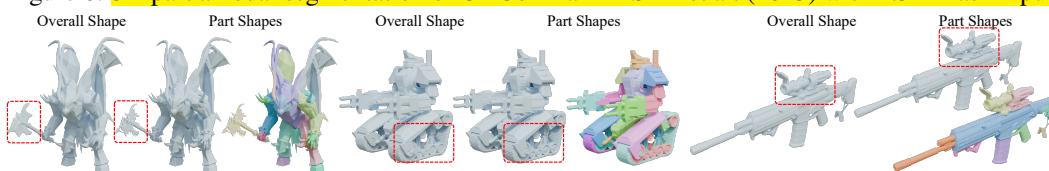


Figure 7: Geometry Super-resolution. By representing a part with the same number of tokens as the overall object, we can achieve geometry super-resolution.

	Method	Overall	Human	Animals	Daily	Buildings	Transports	Plants	Food	Electronics
Chamfer ↓	SDFusion	0.264	0.241	0.232	0.282	0.365	0.323	0.230	0.185	0.254
	PatchComplete	0.289	0.267	0.258	0.295	0.382	0.314	0.247	0.231	0.291
	DiffComplete	0.231	0.197	0.193	0.252	0.307	0.264	0.206	0.198	0.235
	Finetune-VAE	0.178	0.138	0.114	0.202	0.279	0.213	0.140	0.141	0.198
	Ours	0.134	0.094	0.086	0.155	0.210	0.144	0.109	0.110	0.162
IoU ↑	SDFusion	0.169	0.159	0.191	0.161	0.124	0.117	0.201	0.234	0.168
	PatchComplete	0.086	0.079	0.097	0.079	0.076	0.076	0.105	0.091	0.084
	DiffComplete	0.102	0.115	0.121	0.093	0.073	0.087	0.122	0.109	0.098
	Finetune-VAE	0.347	0.370	0.406	0.313	0.299	0.277	0.412	0.381	0.320
	Ours	0.455	0.508	0.513	0.415	0.360	0.379	0.522	0.529	0.416
F1-Score ↑	SDFusion	0.273	0.263	0.306	0.260	0.208	0.198	0.316	0.364	0.271
	PatchComplete	0.149	0.139	0.168	0.138	0.133	0.134	0.179	0.157	0.147
	DiffComplete	0.177	0.198	0.206	0.162	0.129	0.153	0.206	0.189	0.170
	Finetune-VAE	0.473	0.507	0.543	0.433	0.417	0.395	0.540	0.513	0.439
	Ours	0.570	0.626	0.628	0.529	0.477	0.497	0.627	0.645	0.533
Success ↑	PatchComplete	0.978	0.992	0.998	0.992	0.957	0.975	0.988	1.000	0.966
	DiffComplete	0.942	0.992	0.980	0.958	0.851	0.936	0.959	0.935	0.950
	Finetune-VAE	0.997	1.000	0.992	0.992	0.995	1.000	0.994	1.000	0.997
	Ours	1.000								

Table 4: 3D part amodal segmentation results on PartObjaverse-Tiny, using SAMPart3D’s segment masks as input, reported in Chamfer Distance, IoU, F-Score and Success Rate.

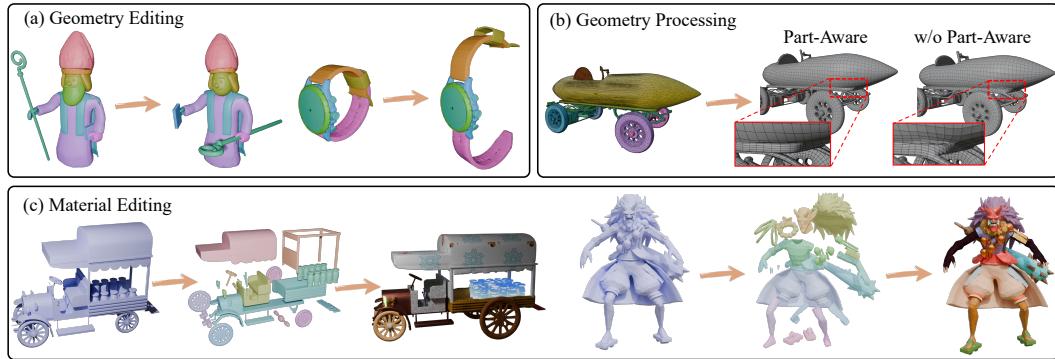


Figure 8: 3D part amodal segmentation is capable of numerous downstream applications, such as Geometry Editing, Geometry Processing, Material Editing and Animation.

fer Distance, IoU, F-Score, and Reconstruction Success rate for each method, with the quantitative comparison shown in table 3. Our method consistently outperforms the others, even on this challenging dataset. As shown in figure 4, our approach effectively completes intricate details, such as the eyeball, strawberry, which the other methods fail to achieve.

3DCoMPaT++. By back-projecting a 2D rendered image and its corresponding 2D mask onto the 3D mesh surface, we can acquire the corresponding 2.5D mask information. Based on this, we can complete the geometry of the parts visible in the image. Leveraging the fine-grained annotations and 2D renderings from the 3DCoMPaT++ dataset Slim et al. (2025); Li et al. (2022b), we select four suitable categories—car, airplane, faucet, and bed—for evaluation. In figure 6, we visualize the performance of our method on visible parts, while table 2 presents a quantitative comparison with baseline methods.

Zero-shot Generalization. By leveraging pretraining on the large-scale Objaverse dataset and fine-tuning on processed parts data, our model is capable of zero-shot amodal segmentation. To demonstrate the generalization capabilities of our model in a challenging zero-shot setting, we present 3D part amodal sementation results on generated meshes and the scanned dataset OmniObject3D Wu et al. (2023). Current generated and scanned objects typically exist as “holistic shells”, lacking complete part geometry. Our method addresses this by seamlessly integrating with arbitrary surface segmentation models to recover a full set of parts, achieving a structural quality that closely resembles artificial models. For instance, figure 5 demonstrates our method applied to generated objects using SAMPart3D Yang et al. (2024) and P3-SAM Ma et al. (2025) as segmentation meth-

ods. Notably, our model is capable of generating the internal connecting structures between parts. Furthermore, figure 5 also presents the results on scanned objects, leveraging SAMesh Tang et al. (2024) and PartField Liu et al. (2025) as segmentation methods.

Method	Chamfer ↓	F1-0.1 ↑	F1-0.05 ↑
TripoSG	0.120	0.828	0.626
Ours	0.114	0.834	0.667

Table 5: Comparison with TripoSG. By generating complete and coherent parts, our method achieves better performance.

Guidance Scale	Chamfer ↓	IoU ↑	F1-Score ↑	Success ↑
$S = 1.5$	0.059	0.590	0.718	0.995
$S = 3.5$	0.057	0.618	0.741	0.997
$S = 5$	0.058	0.614	0.738	0.996
$S = 7.5$	0.089	0.514	0.641	0.997

Table 6: Ablation study of different guidance scales.

4.3 ABLATION ANALYSIS

Necessity of Context-Aware Attention. The context-aware attention is crucial for completing invisible areas of parts and ensuring the consistency of generated components. To demonstrate this, we replace the context-aware attention block with a local-condition block and train the model. The quantitative comparison shown in table 1 and table 3 demonstrates the significance of context-aware attention. The qualitative analysis is provided in the supplementary material.

Necessity of Local Attention. Local attention is crucial for maintaining details and mapping positions. We perform an ablation study on the local attention module and present the quantitative comparison in table 3, highlighting the necessity of our local attention design.

Effect of Guidance Scale. We find that the guidance scale significantly impacts the quality of our generated shapes. We evaluate four different guidance scales (1.5, 3.5, 5, and 7) on the PartObjaverse-Tiny dataset, with the results presented in table 6. A small guidance scale leads to insufficient control, while an excessively large guidance scale results in the failure of shape reconstruction from latent fields. We find a scale of 3.5 provides the optimal balance.

4.4 APPLICATION

Our model is capable of completing high-quality parts across a variety of 3D shapes, thereby enabling numerous downstream applications such as **geometry editing**, **material assignment** and **animation**. We demonstrate the application of geometry editing in Figures 1 and 8 (a), and material assignment in Figures 1 and 8 (c). For example, in the case of the car model, we perform 3D part amodal segmentation, then modify the sizes of the front and rear wheels, increase the number of jars, and expand the car’s width in Blender. Afterward, we assign unique textures to each part and enable the wheels and steering wheel to move. The video demo is included in the supplementary material. These operations would be difficult to achieve with traditional 3D part segmentation techniques. Additionally, we showcase an example of a geometry processing application in Figure 8 (b).

Our model also has the potential for **Geometric Super-resolution**. By representing a part with the same number of tokens as the overall object, we can fully preserve and generate the details of the part. A comparison with the overall shape, reconstructed using the same number of tokens by VAE, is shown in figure 7.

5 CONCLUSION

This paper introduces 3D part amodal segmentation, a novel task that addresses a key limitation in 3D content generation. We decompose the problem into subtasks, focusing on 3D part shape completion, and propose a diffusion-based approach with local and context-aware attention mechanisms to ensure coherent part completion. We establish evaluation benchmarks on the ABO and PartObjaverse-Tiny datasets, demonstrating that our method significantly outperforms prior shape completion approaches. Our comprehensive evaluations and application demonstrations validate the effectiveness of our approach and establish a foundation for future research in this emerging field.

540 REFERENCES
541

542 Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, and Peter Wonka. Satr: Zero-shot
543 semantic segmentation of 3d shapes. In *ICCV*, 2023.

544 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
545 polants. *arXiv preprint arXiv:2209.15571*, 2022.

546

547 Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
548 Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
549 model repository. *arXiv:1512.03012*, 2015.

550

551 Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. Sd-
552 fusion: Multimodal 3d shape completion, reconstruction, and generation. In *CVPR*, 2023.

553

554 Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Nießner, Chi-Wing Fu, and Jiaya Jia.
555 Diffcomplete: Diffusion-based generative 3d shape completion. *NeurIPS*, 2024.

556

557 Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
558 Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and
559 benchmarks for real-world 3d object understanding. In *CVPR*, 2022.

560

561 Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-
562 predictor cnns and shape synthesis. In *CVPR*, 2017.

563

564 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
565 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
566 tated 3d objects. In *CVPR*, 2023.

567

568 Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan: Segmenting and generating the invisible.
569 In *CVPR*, 2018.

570

571 Juan D Galvis, Xingxing Zuo, Simon Schaefer, and Stefan Leutengger. Sc-diff: 3d shape completion
572 with latent diffusion models. *arXiv preprint arXiv:2403.12470*, 2024.

573

574 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
575 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
576 ACM*, 2020.

577

578 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*,
579 2020.

580

581 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
582 Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. *arXiv preprint
583 arXiv:2311.04400*, 2023.

584

585 Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Amodal completion and size
586 constancy in natural scenes. In *ICCV*, 2015.

587

588 Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In *Pro-
589 ceedings of the fourth Eurographics symposium on Geometry processing*, 2006.

590

591 Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Deep occlusion-aware instance segmentation with
592 overlapping bilayers. In *CVPR*, 2021.

593

594 Hyunjin Kim and Minhyuk Sung. Partstad: 2d-to-3d part segmentation task adaptation.
595 *arXiv:2401.05906*, 2024.

596

597 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

598

599 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
600 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*,
601 2023.

594 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 595 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
 596 training. In *CVPR*, 2022a.

597

598 Weiyu Li, Jiarui Liu, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao Long. Crafts-
 599 man: High-fidelity mesh generation with 3d native generation and interactive geometry refiner.
 600 *arXiv preprint arXiv:2405.14979*, 2024.

601 Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhua Di, and Baoquan Chen. Pointcnn: Convolu-
 602 tion on x-transformed points. In *NeurIPS*, 2018.

603

604 Yuchen Li, Ujjwal Upadhyay, Habib Slim, Ahmed Abdelreheem, Arpit Prajapati, Suhail Pothigara,
 605 Peter Wonka, and Mohamed Elhoseiny. 3d compat: Composition of materials on parts of 3d
 606 things. In *ECCV*, 2022b.

607 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 608 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

609

610 Anran Liu, Cheng Lin, Yuan Liu, Xiaoxiao Long, Zhiyang Dou, Hao-Xiang Guo, Ping Luo, and
 611 Wenping Wang. Part123: part-aware 3d reconstruction from a single-view image. In *ACM SIG-
 612 GRAPH 2024 Conference Papers*, 2024.

613 Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su. Partslip:
 614 Low-shot part segmentation for 3d point clouds via pretrained image-language models. In *CVPR*,
 615 2023a.

616

617 Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and Jun
 618 Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. In *ICCV*, 2025.

619

620 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 621 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

621

622 Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
 623 Syncdreamer: Generating multiview-consistent images from a single-view image. *arXiv preprint
 624 arXiv:2309.03453*, 2023b.

625

626 Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
 627 Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
 628 using cross-domain diffusion. In *CVPR*, 2024.

629

630 William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
 631 algorithm. In *Seminal graphics: pioneering efforts that shaped the field*. 1998.

631

632 Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yan-
 633 wen Guo, Zhuo Chen, and Chuncho Guo. P3-sam: Native 3d part segmentation. *arXiv preprint
 634 arXiv:2509.06784*, 2025.

635

636 Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao
 637 Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object under-
 638 standing. In *CVPR*, 2019.

639

640 Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh optimization. In
 641 *Proceedings of the 4th international conference on Computer graphics and interactive techniques
 642 in Australasia and Southeast Asia*, 2006.

642

643 Ege Ozguroglu, Ruoshi Liu, Dídac Surís, Dian Chen, Achal Dave, Pavel Tokmakov, and Carl Von-
 644 drick. pix2gestalt: Amodal segmentation by synthesizing wholes. In *CVPR*. IEEE Computer
 645 Society, 2024.

646

647 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

648 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 649 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

648 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
 649 for 3d classification and segmentation. In *CVPR*, 2017a.

650

651 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
 652 feature learning on point sets in a metric space. In *NeurIPS*, 2017b.

653

654 Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
 655 Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
 656 In *NeurIPS*, 2022.

657

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 659 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 660 models from natural language supervision. In *ICML*, 2021.

661

662 Yuchen Rao, Yinyu Nie, and Angela Dai. Patchcomplete: Learning multi-resolution patch priors for
 663 3d shape completion on unseen categories. *NeurIPS*, 2022.

664

665 Habib Slim, Xiang Li, Yuchen Li, Mahmoud Ahmed, Mohamed Ayman, Ujjwal Upadhyay, Ahmed
 666 Abdelreheem, Arpit Prajapati, Suhail Pothigara, Peter Wonka, et al. 3dcompat++: An improved
 667 large-scale 3d vision dataset for compositional recognition. *TPAMI*, 2025.

668

669 Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas Guibas. Data-driven structural priors
 670 for shape completion. *ACM Transactions on Graphics (TOG)*, 2015.

671

672 George Tang, William Zhao, Logan Ford, David Benhaim, and Paul Zhang. Segment any mesh:
 673 Zero-shot mesh part segmentation via lifting segment anything 2 to 3d. *arXiv:2408.13679*, 2024.

674

675 Anh Thai, Weiyao Wang, Hao Tang, Stefan Stojanov, Matt Feiszli, and James M Rehg. 3x2: 3d
 676 object part segmentation by 2d semantic correspondences. *arXiv preprint arXiv:2407.09648*,
 677 2024.

678

679 Ardian Umam, Cheng-Kun Yang, Min-Hung Chen, Jen-Hui Chuang, and Yen-Yu Lin. Partdistill:
 680 3d shape part segmentation by vision-language model distillation. *arXiv:2312.04016*, 2023.

681

682 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
 683 Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. *arXiv preprint
 684 arXiv:2405.14832*, 2024.

685

686 Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi
 687 Wang, Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object dataset for realistic percep-
 688 tion, reconstruction and generation. In *CVPR*, 2023.

689

690 Yuheng Xue, Nenglun Chen, Jun Liu, and Wenyun Sun. Zerops: High-quality cross-modal knowl-
 691 edge transfer for zero-shot 3d part segmentation. *arXiv:2311.14262*, 2023.

692

693 Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
 694 Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. *arXiv preprint
 695 arXiv:2411.07184*, 2024.

696

697 Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
 698 representation for neural fields and generative diffusion models. *ACM Transactions on Graphics
 699 (TOG)*, 2023.

700

701 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
 702 Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
 703 assets. *ACM Transactions on Graphics (TOG)*, 2024.

704

705 Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
 706 *ICCV*, 2021.

707

708 Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu,
 709 and Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text
 710 aligned latent representation. *Advances in Neural Information Processing Systems*, 2024.

711

712 Ziming Zhong, Yanyu Xu, Jing Li, Jiale Xu, Zhengxin Li, Chaohui Yu, and Shenghua Gao. Mesh-
 713 segmenter: Zero-shot mesh semantic segmentation via texture synthesis. In *ECCV*. Springer,
 714 2024.

702
703 A APPENDIX704
705 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)706
707 We use Large Language Models (LLMs) strictly for minor language editing—grammar and readability, not for method design or experiments. All technical contributions, including the methodology, 708
equations, and results, are solely the work of the authors.710
711 A.2 IMPLEMENTATION DETAILS712
713 The VAE consists of 24 transformer blocks, with 8 blocks functioning as the encoder and the re- 714
715 remaining 16 as the decoder. The part diffusion model consists of 10 DiT layers with a hidden size 716
717 of 2048, and the context-aware attention block consists of 8 self-attention blocks. To balance effec- 718
719 tiveness with training efficiency, we set the token number for our part diffusion to 512. The latent 720
721 tokens, encoded by the context-aware attention block, have a dimension of (512, 512), which are 722
723 integrated into the part diffusion model via cross-attention. We fine-tune the part diffusion model 724
725 using the ABO Collins et al. (2022) dataset with 4 RTX 4090 GPUs for approximately two days, 726
727 using the Objaverse Deitke et al. (2023) dataset with 8 A100 GPUs for around four days.728
729 We set the learning rate to 1e-4 for both the pretraining and finetuning stages, using the AdamW 730
731 optimizer. During training, as illustrated in figure 2, we sample 20,480 points from the overall 732
733 shape, which serve as the keys and values, while 512 points are sampled from each segmented part 734
735 to serve as the query. This results in the context latent dimensions being (512, 512). For each point, 736
737 we use the position embedding concatenated with a normal value as the input feature. After passing 738
739 through the denoising UNet, we obtain shape latents of dimensions (512, 2048), representing the 740
741 complete part’s shape. Subsequently, we use the 3D spatial points to query these shape latents and 742
743 employ a local marching cubes algorithm to reconstruct the complete part mesh. The local bounding 744
745 box is set to be 1.3 times the size of the segmented part’s bounding box to ensure complete mesh 746
747 extraction.730
731 A.3 DATA CURATION DETAILS732
733 We develop a set of filtering rules to extract 3D objects with a reasonable part-wise semantic dis- 734
735 tribution from 3D asset datasets. We ultimately retain 16,000 parts (50000 objects) in Objaverse as 736
737 training data. The specific rules are as follows:738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

- **Mesh Count Restriction:** We select only 3D objects with a mesh count within a specific range (2 to 15) to avoid objects that are either too simple or too complex (such as scenes or architectural models). The example data filtered out by this rule is shown in figure 11 (a).
- **Connected Component Analysis:** For each object, we render both frontal and side views of all parts and calculate the number of connected components in the 2D images. We then compute the average number of connected components per object, as well as the top three average values. An empirical threshold (85% of the connected component distribution) is used to filter out objects with severe fragmentation or excessive floating parts (floaters). The example data filtered out by this rule is shown in figure 11 (b).
- **Volume Distribution Optimization:** We analyze the volume distribution among different parts and ensure a balanced composition by removing or merging small floating parts and filtering out objects where a single part dominates excessively (e.g., cases where the alpha channel of the rendered image overlaps with the model rendering by up to 90%). The example data filtered out by this rule is shown in figure 11 (c).

A.4 MORE ABLATION ANALYSIS

Semantic and Instance Part Completion. Traditionally, segmentation definitions fall into two categories: semantic segmentation and instance segmentation. Similarly, we process our 3D parts from the ABO dataset according to these two settings. For example, in the semantic part completion setting, we consider all four chair legs as a single part, whereas in the instance part completion setting, they are treated as four separate parts. Our model is capable of handling both settings

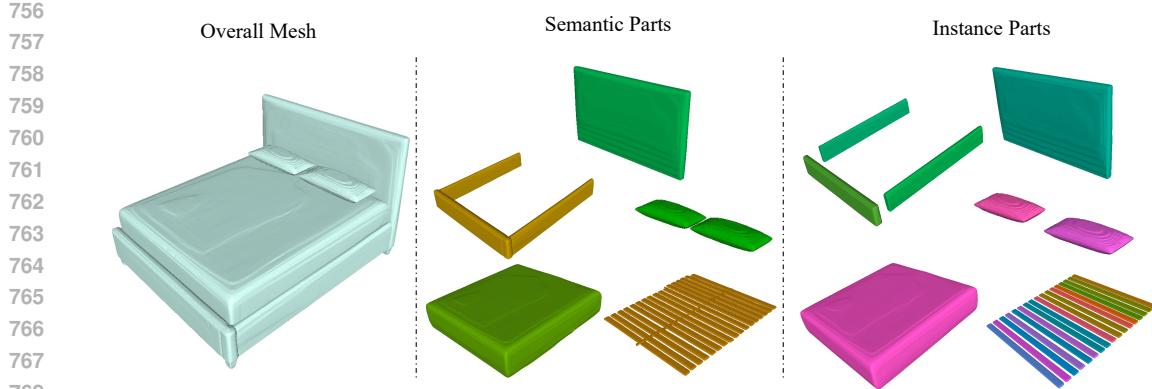


Figure 9: Ablation study of semantic and instance part completion.

Figure 10: Ablation study on segmentation mask input with different levels of granularity.

effectively. We train on the mixed dataset and present the completion results for a single bed using the same model weight, as shown in figure 9.

Necessity of Context-Aware Attention. To emphasize the importance of our proposed context-aware attention block, we provide both quantitative analysis (refer to section 4.3) and qualitative comparisons. As shown in figure 12, the absence of context-aware attention results in a lack of guidance for completing individual parts, leading to inconsistent and lower-quality completion outcomes.

Qualitative Comparison of Different Guidance Scales. In section 4.3, we provide a quantitative analysis of various guidance scales. Additionally, We illustrate the qualitative comparison of different guidance scales in figure 13. Our findings indicate that excessively large or small guidance scales can adversely impact the final completion results. Through experimentation, we identify 3.5 as an optimal value for achieving balanced outcomes.

Learning Rate Setting. During the fine-tuning stage, we experiment with a weighted learning rate approach, where the parameters of the denoising U-Net are set to 0.1 times that of the context-aware attention block. However, we observe that this approach results in unstable training and negatively impacts the final outcomes. We present the comparison of generated parts with different learning rate training setting in figure 13.

Ambiguity of Segmentation Mask. Our model is robust to different levels of segmentation granularity. As shown in figure 10, whether the chair's leg and seat are separated or merged during the segmentation stage does not affect the final quality.

A.5 MORE RESULTS OF 3D PART AMODAL SEGMENTATION

In figure 15, we showcase additional examples of 3D part amodal segmentation applied to generated meshes from 3D generation models. Initially, we employ SAMPart3D Yang et al. (2024) to segment the generated meshes, resulting in several surface masks. Subsequently, our model completes each segmented part, enabling the reconstruction of a consistent overall mesh by merging the completed parts. For instance, as demonstrated in figure 15, our model effectively completes intricate com-

810 ponents such as glasses, hats, and headsets from the generated meshes. This capability supports a
811 variety of downstream tasks, including geometry editing, geometry processing, and material editing.
812

813 **A.6 MORE RESULTS ON PARTOBJAVERSE-TINY**
814

815 We present more qualitative results on the PartObjaverse-Tiny dataset in Figures 17 and 16. Our
816 method can effectively complete the details of parts and maintain overall consistency, which other
817 methods cannot achieve.
818

819 **A.7 LIMITATIONS AND FUTURE WORKS**
820

821 The outcome of HoloPart is influenced by the quality of input surface masks. Unreasonable or low-
822 quality masks may lead to incomplete results. Therefore, a better approach moving forward would
823 be to use our method to generate a large number of 3D part-aware shapes, which can then be used
824 to train part-aware generation models.
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 15: More Results of 3D Part Amodal Segmentation.

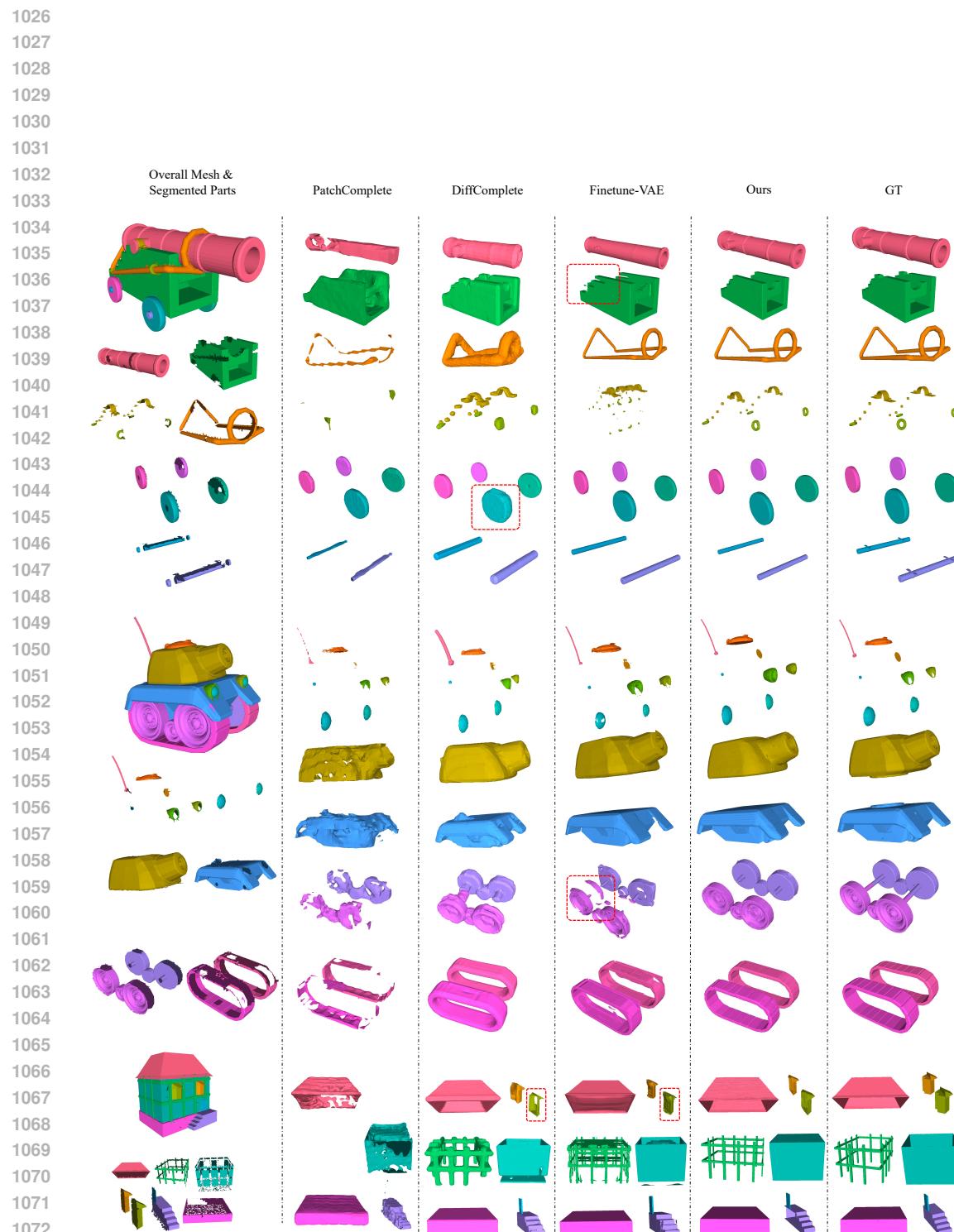


Figure 16: More qualitative results on the PartObjaverse-Tiny dataset.

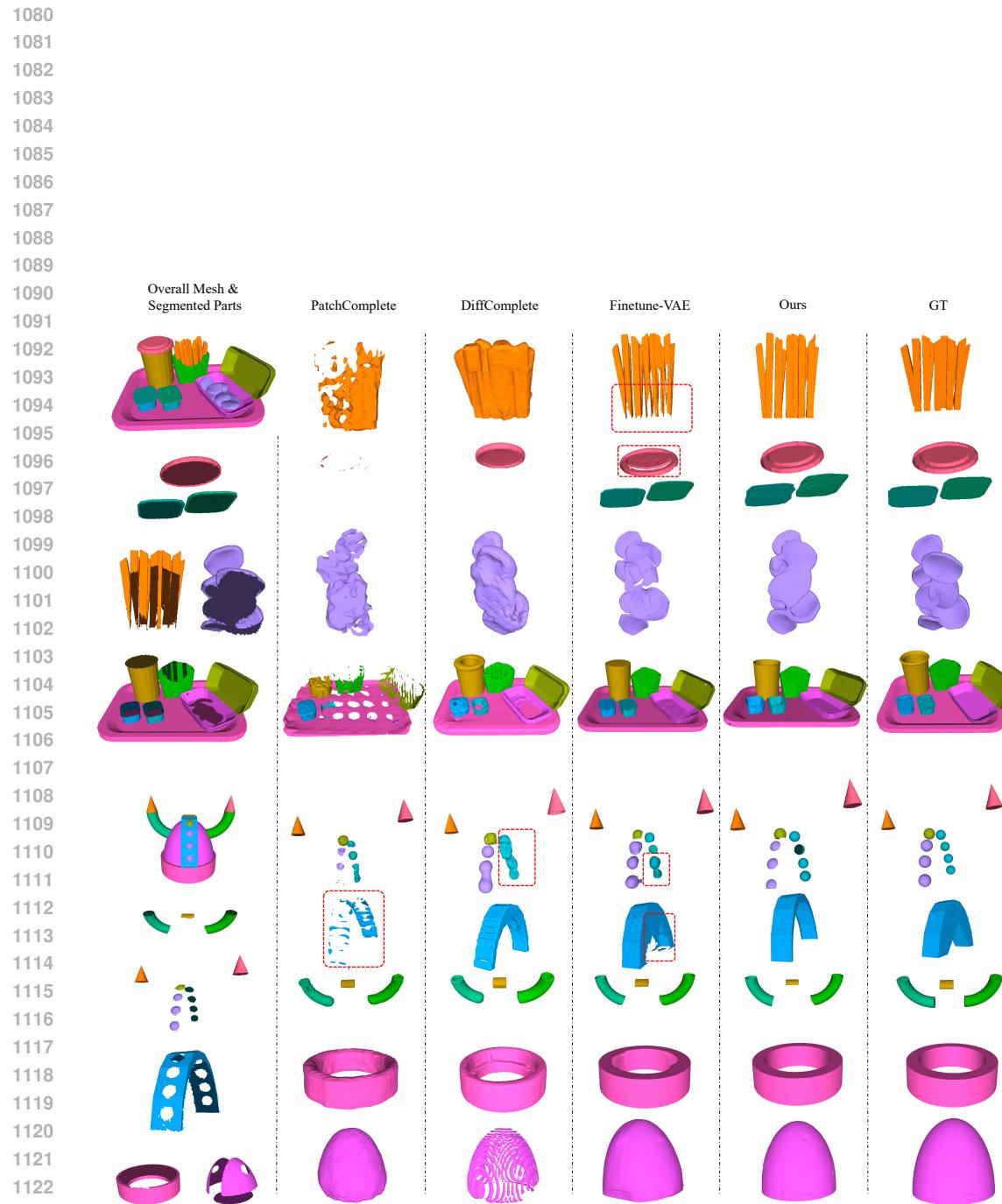


Figure 17: More qualitative results on the PartObjaverse-Tiny dataset.