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Figure 1: Visual comparison results on text-to-image generation and image editing with current
state-of-the-art methods, demonstrating improved text alignment across various semantic attributes.

ABSTRACT

Recent breakthroughs of transformer-based diffusion models, particularly with
Multimodal Diffusion Transformers (MMDiT) driven models like FLUX and
Qwen Image, have facilitated thrilling experiences in text-to-image generation and
editing. To understand the internal mechanism of MMDiT-based models, existing
methods tried to analyze the effect of specific components like positional encoding
and attention layers. Yet, a comprehensive understanding of how different blocks
and their interactions with textual conditions contribute to the synthesis process
remains elusive. In this paper, we first develop a systematic pipeline to compre-
hensively investigate each block’s functionality by removing, disabling and en-
hancing textual hidden-states at corresponding blocks. Our analysis reveals that
1) semantic information appears in earlier blocks and finer details are rendered in
later blocks, 2) removing specific blocks is usually less disruptive than disabling
text conditions, and 3) enhancing textual conditions in selective blocks improves
semantic attributes. Building on these observations, we further propose novel
training-free strategies for improved text alignment, precise editing, and acceler-
ation. Extensive experiments demonstrated that our method outperforms various
baselines and remains flexible across text-to-image generation, image editing, and
inference acceleration. Our method improves T2I-Combench++ from 56.92% to
63.00% and GenEval from 66.42% to 71.63% on SD3.5, without sacrificing syn-
thesis quality. These results advance understanding of MMDiT models and pro-
vide valuable insights to unlock new possibilities for further improvements.
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021), especially diffusion transformers (DiT) (Pee-
bles & Xie, 2023; Bao et al., 2023), have become the de-facto paradigm for real-world applica-
tions across various domains, including text-to-image (Rombach et al., 2022; Chen et al., 2024) and
text-to-video generation (Ma et al., 2024; Yang et al., 2025; Wan et al., 2025), unlocking unprece-
dented experiences for content creation. In particular, recent breakthroughs such as Stable Diffusion
3 (Esser et al., 2024), FLUX (Labs, 2024), and Qwen-Image (Wu et al., 2025) further advance the
synthesis quality via incorporating the flow matching (Lipman et al., 2023; Liu et al., 2023) training
objective and the top-performing multimodal diffusion transformer (MMDiT) architecture (Esser
et al., 2024; Labs, 2024). Specifically, MMDiT concatenates vision and textual tokens and performs
joint self-attention to facilitate a seamless information fusion between these modalities.

Despite MMDiT’s remarkable success, it remains unclear how different internal MMDiT blocks
interact with textual representations and collaborate with each other to produce coherent outputs.
Unlike UNet-based diffusion models (Rombach et al., 2022; Song et al., 2021; Hertz et al., 2022;
Zhang et al., 2023) that show a hierarchical coarser to finer semantic representation, MMDiT-based
models do not reflect a similar phenomenon due to their isomorphic structure (Peebles & Xie, 2023;
Avrahami et al., 2025; Li et al., 2024). Therefore, it is crucial to investigate the intrinsic mechanisms
within MMDiT-based models. Several techniques have been proposed to identify the influences of
different components and better understand MMDiT. Stable Flow (Avrahami et al., 2025) detected
vital blocks by bypassing each block, and TACA (Lv et al., 2025) proposed a timestep-aware at-
tention weighting mechanism to balance multimodal interactions. FreeFlux (Wei et al., 2025) and
E-MMDiT (Shin et al., 2025) analyzed MMDiT’s attention mechanism by shifting RoPE and de-
composing attention metrics, respectively. However, prior studies primarily focus on isolating or
manipulating individual aspects, overlooking the synergistic effects that arise from the complex in-
teractions across different blocks and modalities. Consequently, a deeper and detailed analysis of
how MMDiT blocks collectively contribute to sophisticated outputs would not only enrich our un-
derstanding of MMDiT models but also open avenues for improving synthesis quality and inference
efficiency. For instance, by identifying which blocks control specific attributes (e.g., color, amount,
spatial relationships), we can revise the corresponding blocks accordingly (see the results in Fig. 1).

To identify each block’s detailed role and functionality, this paper conducts a comprehensive analysis
of the internal cooperation of MMDiT blocks and their interactions with text conditions. Specifi-
cally, we first construct dedicated prompts for each attribute (i.e., color, amount, spatial relation-
ships) and quantify the influence of three popular MMDiT-based models (SD3.5, FLUX, Qwen
Image) by: 1) removing specific blocks to assess their individual contributions; 2) disabling block-
level textual conditions to test semantic understanding; and 3) enhancing textual hidden-states of
different blocks to investigate their potential to refine the coherence and detail of synthesized out-
puts. Through these analysis, we reveal several significant findings: First, semantic information
appears in earlier blocks and fine-grained details are rendered in later blocks. Interestingly, differ-
ent blocks appear to prefer certain semantic attributes, e.g.,, earlier blocks handle spatial relations
and colors, while relatively later blocks influence amount (as shown the results in Sec. 2). Second,
removing blocks is less disruptive than disabling conditions, indicating MMDiT models rely more
on conditional guidance and are robust to removing blocks. Last, enhancing textual representations
of selective blocks could improve overall text alignment without compromising synthesis quality.
These insights clearly clarify the efficacy and interactions of MMDiT components, guiding further
optimization and improvements across applications.

Capitalizing on these observations, we develop a novel training-free framework to improve the text
alignment, facilitate editing, and accelerate model inference within MMDiT-based models. After
identifying each block’s contribution to specific semantic attributes, we can strategically enhance
their text-visual interactions to improve text alignment. Regarding editing tasks, we can priori-
tize blocks controlling certain attributes, such as color or amount, ensuring accurate and effective
modifications. Additionally, we could accelerate the inference process by skipping blocks that are
less critical for semantic understanding, thus streamlining computations while preserving synthesis
quality. Together, our framework facilitates efficient, precise, and generalizable model performance
across different tasks without requiring additional training. Extensive results show that our method
consistently improves performance across various baselines (SD3.5, FLUX, and Qwen Image), eval-
uation benchmarks (GenEval (Ghosh et al., 2023), T2I-Combench++ (Huang et al., 2025)), metrics
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(CLIP Score (Radford et al., 2021)), and different tasks (generation, editing, acceleration), demon-
strating its effectiveness and generalizability. More importantly, the overall synthesis quality is
maintained at a high standard as evidenced by both automatic metrics (HPSv2 (Wu et al., 2023),
Aesthetic Score (Schuhmann, 2022)) and human evaluation.

To sum up, our contributions are: 1) We systematically investigate the internal interactions across
blocks and modalities within MMDiT-based models, offering valuable insights to guide further im-
provements; 2) We develop novel training-free strategies to enhance text-to-image alignment, editing
capabilities, and acceleration, fully unlocking the potential of baseline models; 3) Extensive evalua-
tions across multiple baseline models and diverse benchmarks for various tasks consistently demon-
strate the effectiveness and generalizability of our approach in advancing model performance.

2 SYSTEMATIC ANALYSIS OF BLOCK-WISE INTERACTIONS IN MMDIT
2.1 PRELIMINARIES

Diffusion Models (DMs) involve a forward process and a reverse generation process. During the
forward process, random noise is gradually added to data (x0 ∼ q(x)) across t ∼ (1...T ) timesteps:

xt =
√
αtxt−1 +

√
1− αtϵt−1. (1)

In the reverse generation process, the model iteratively reconstruct the original data following a
trajectory opposite to the forward process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ and Σθ are learnable mean and covariance, respectively.

MMDiT-based Models, pioneered in SD3 (Esser et al., 2024), leverage a joint multimodal architec-
ture to process text embeddings c ∈ RNc×D and visual features x ∈ RNx×D in a unified attention
operation by concatenating them as hin = [c;x] ∈ R(Nc+Nx)×D. This sequence is then processed
by multiple MMDiT blocks with a joint self-attention layer:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V, (3)

where Q,K, V denotes the concatenated query, key and value of text and image tokens.

2.2 UNDERSTANDING BLOCK-WISE INTERACTIONS OF MMDIT

C 𝒁𝒕

𝒙𝟎

MM-DiT Block 1

MM-DiT Block n

MM-DiT Block 2

𝝉𝜽

MM-DiT Block i

…

MM-DiT Block

Q K V
Attention

(ii) Disabling conditions

Empty

(iii) Enhancing conditions
Q K V

Q K V

(i) Removing blocks

Figure 2: Systematic analysis overview.

In this part, we develop a systematic framework
to automatically investigate block-wise interac-
tions and their influence on specific semantic
attributes (i.e., color, amount, spatial relation-
ships). As shown in Fig. 2, our study involves
three key operations: 1) removing specific blocks
to probe each block’s individual importance for
generation; 2) disabling text conditions of dif-
ferent blocks to evaluate their reliance on tex-
tual guidance; 3) enhancing textual representa-
tions of certain blocks to investigate their poten-
tial to refine both coherence and detail in syn-
thesized outputs. Specifically, we amplify the
text condition hidden states by a factor of 2 as
c → 2c, to investigate each block’s latent ca-
pacity for assimilating semantic information. Re-
garding the disabling operation, we mute the tex-
tual hidden states via attaching an empty tensor
with torch.zeros like(c).

Then, we construct a challenging prompt dataset
with GPT-5, comprising 333 diverse and difficult
prompts across three attributes: color, amount,
and spatial relationships. For each prompt, we
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(a) Removing color blocks.
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(b) Disabling color conditions.
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(c) Enhancing color conditions.
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(d) Removing spatial blocks.
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(e) Disabling spatial conditions.
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(f) Enhancing spatial conditions.
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(g) DINOv2 score of removing.
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(h) DINOv2 score of disabling.
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(i) DINOv2 score of enhacing.

Figure 3: Block-wise analysis results across various MMDiT-based models on different at-
tributes. We identify each block’s specific role in generating images and its interactions with textual
conditions. The accuracy of different attributes is evaluated by QwenVL-2.5-72B on multiple runs,
and DINOv2 score shows the perceptual similarities. See supplementary Fig. A2 for more results.

perform removing, disabling and enhancing on SD3.5-Large (Stability-AI, 2024), FLUX.1-
Dev (Labs, 2024), and Qwen Image (Wu et al., 2025) models, operating on one block at a time. Fi-
nally, for color and spatial relationships, we evaluate generated images using Qwen2.5-VL-72B (Bai
et al., 2025) via question-answering pairs on the prompts and the generated images. Regarding the
amount attribute, we adopt CountGD (Amini-Naieni et al., 2024) to precisely evaluate the numer-
acy results. Further, we evaluate perceptual (DINOv2 (Oquab et al., 2023)) and semantic similarities
(CLIP Score (Radford et al., 2021)) between images from our modified and original models to quan-
tify the effect of our block-wise manipulations. Notably, each evaluation is averaged over five runs
with different random seeds to ensure reliability (see supplementary Sec. D.1 for more details).

The analysis results on different attributes across SD3.5 (38 blocks), FLUX (58 blocks), and Qwen
Image (60 blocks) are shown in Fig. 3. For each subfigure, we plot the quantitative curves of per-
forming our analysis method, i.e., removing (1st column), disabling (2nd column), enhancing (3rd
column), on three semantic attributes, namely color, spatial relationships and amount. Despite test-
ing on different models, we could consistently observe several interesting findings from these results.

Removing less critical blocks tends not to significantly impact overall performance. Fig. 3a
and 3d illustrate the impact of removing different blocks. We could observe that all models are
sensitive to removing earlier (0 − 5) and late blocks, causing significant performance drops. We
attribute this sensitivity to the critical roles of early blocks in initializing inputs and of late blocks
in refining details for the final output. By contrast, removing middle-layer blocks generally has
a smaller impact on synthesis performance and DINOv2/CLIP scores. Such observation indicates
that these blocks might be less critical for maintaining the fidelity and coherence of the generated
outputs. Thus, some of these blocks can be removed to improve efficiency without degrading quality.

Disabling textual conditions is more disruptive than removing specific blocks. Fig. 3b and
3e reveal that disabling textual conditions, especially in the earlier blocks (0 − 20), causes a more
pronounced degradation in the synthesis performance compared to merely removing specific blocks.
That is, textual conditions paly a crucial role in guiding the models’ generative process. Moreover,
we can see that the results of disabling conditions of late blocks are less detrimental to the overall
performance, particularly the CLIP Score, suggesting that these blocks are specialized in refining
details and the core semantics are rendered by the earlier blocks.
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Enhancing textual conditions on certain blocks could improve the synthesis performance.
Fig. 3c and 3f show the enhancing results. Though the simple ×2 operation may not yield opti-
mal results, enhancing textual conditions on certain blocks can improve the synthesis performance.
Remarkably, for color and spatial attributes, all models show performance improvements compared
with the original baseline, despite Qwen Image showing less improvement due to its strong baseline.
Interestingly, different blocks seem to reflect a preference for certain semantic attributes, e.g., earlier
blocks improve color and spatial attributes, while enhancing later blocks benefits amount. To our
knowledge, this observation has never been documented in existing literature. In return, one could
manipulate specific attributes (e.g., amount or color in Fig. 1 and 6) by altering textual information
at the corresponding blocks. Additionally, enhancing textual conditions by ×2 can sometimes re-
duce performance (SD3.5 amount, Fig. A2c). This may result from the enhancements exceeding the
model’s activation range or targeting incorrect blocks. (See Sec. 4 and D.3 for detailed results.)

Overall, our analysis provides a comprehensive investigation of the block-wise capabilities and their
interactions with textual conditions, yielding several interesting insights on how different blocks
contribute to the output. These findings contribute to a better understanding of MMDiT-based mod-
els, offering valuable perspectives that could facilitate further enhancements and optimizations.

3 METHODOLOGY

Based on the insights derived from our systematic analysis of block-wise interactions in MMDiT
models, we propose innovative, training-free techniques designed to boost performance. After as-
sessing each block’s contribution to semantic understanding and the final output, we propose to 1)
enhance textual-visual interactions in pivotal blocks, 2) precisely edit specific attributes in blocks
that dominantly control them, and 3) accelerate generation by removing low-impact blocks.

3.1 ENHANCING TEXT-VISUAL INTERACTIONS

We propose a straightforward, training-free method to enhance text-visual interactions within blocks
by capitalizing on their pivotal roles. Specifically, we enhance the hidden states of textual conditions
in these vital blocks V by a factor of λ(l):

c
(l)
enh = λ(l) · c(l), ∀l ∈ V, (4)

where c(l) denotes the original textual hidden states of block l and⊙ is element-wise multiplication.
λ(l) can be a constant or a block-dependent function.

'A' 'brown' 'dog' 'and' 'a' 'white' 'cat' '</s>'Generated

Figure 4: Attention map of different tokens. We can enhance specific tokens to boost their impact.

Token-level Enhancement. To further improve the semantic understanding capability of certain
blocks on specific attributes, we introduce token-level enhancement to amplify key textual tokens.
As shown in Fig. 4, such an operation ensures that critical semantic attributes receive greater em-
phasis. Formally, let M denote the corresponding indices of enhanced textual tokens, we perform:

c
(l)
enh = (1−M)⊙ c(l) + λ(l) ·M ⊙ c(l), ∀l ∈ V. (5)

Then, the enhanced textual signals c(l)enh are then concatenated with vision signals: hin=[x(l), c
(l)
enh]

as the input of following blocks. In this way, our method allows for a better understanding of textual
conditions, emphasizing key semantic attributes within the model.

3.2 ENABLING PRECISE TEXT-BASED EDITING

We incorporate our enhancement into editing tasks, facilitating precise textual editing with the target
text instructions. Specifically, we perform image editing via parallel generation following Avrahami
et al. (2025), producing the source image I and target image Î in parallel from the source prompt
psrc and edited prompt ptgt. During inference, self-attention features from the source image are
injected into the target image to preserve visual content. However, existing methods often struggle

5
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The fluffy teddy bear and leather collar sit on the 
glass shelf by the wooden bed

An oval picture frame and a 
rectangular photograph

Two printers, one person and two pillows

The green diamond was nestled between the yellow 
hexagon and the blue cylinder

SD3.5 FLUX Qwen-ImageOurs Ours Ours

a fabric dress and a glass vase

three ships sailed alongside one swan one egg, three camels, four cars and four pillows

a fabric dress and a glass jar

a triangular clock and a square picture

Figure 5: Qualitative comparisons between baselines and our method. Our method significantly
improves the text alignment across various semantic attributes including amount, colors, textures,
and complex prompts, etc. Zoom in for details and see more results in the supplementary Sec. F.

to precisely edit specific attributes due to limited alignment with target instructions. Our empiri-
cal findings motivate us to enhance target prompts p̂ across critical blocks to improve the editing
accuracy. Formally, the self-attention injection is performed as:

K
tgt,(l)
t ← [K

Isrc,(l)
t ;K

penh
tgt ,(l)

t ], V
tgt,(l)
t ← [V

Isrc,(l)
t ;V

penh
tgt ,(l)

t ], ∀l ∈ V

O
(l)
t = softmax(Q

(l)
t (K

tgt,(l)
t )T /

√
d)V

tgt,(l)
t ,

(6)

where penhtgt denotes the enhanced target text embeddings using Eq. 5. Such enhancement enables
the model to concentrate on the attributes indicated by target text instructions, thereby improving
the editing accuracy as shown in Fig. 1 and 6.

3.3 ACCELERATING INFERENCE PROCESS

Recall that our analysis indicates that removing some blocks causes a smaller impact on the output,
suggesting their role in rendering fine-grained details instead of vital semantics.

Accordingly, we accelerate inference with a training-free mechanism by skipping specific blocks
identified as less critical from our probing analysis, denoted as S = {s1, s2, . . . , sm}. Then, for a
skipped block s, the input feature for the next block is:

Z
(s)
out = Z

(s−1)
out if (s ∈ S), Block(s)(Z

(s−1)
out ) otherwise (s /∈ S). (7)

Notably, when classifier-free guidance (CFG) is enabled during inference, we can achieve a ×2
inference time acceleration on both the conditional and unconditional predictions.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Baseline Models. We apply our method on several state-of-the-art MMDiT-based models, namely
SD3.5-Large (Stability-AI, 2024), FLUX.1-Dev (Labs, 2024) and Qwen Image (Wu et al., 2025).
Based on the observations from our systematic analysis in Sec. 2, we perform our enhancement on
selected pivotal blocks according to the attribute in Tab. 1. We evaluate the editing and acceler-
ation performance on FLUX.1-Dev, the editing instructions are enhanced based on their semantic
attributes. For acceleration, we remove blocks that are identified less critical for the final output, i.e.,
blocks in 20− 40 of FLUX. Additionally, we also incorporate our method into TeaCache (Liu et al.,
2025) to testify our compatibility. Regarding the comparison methods, we compare our method
on T2I generation with TACA (Lv et al., 2025), which attach a timestep-aware importance on the

6
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Table 1: Selected blocks for enhancing, editing, and acceleration for different attributes.
Models Total Blocks Color Spatial Amount Others (Shape, etc.)

SD3.5-Large Stability-AI (2024) [0, 37] [3,9,15,20] [3,10,17,22] [26,29,33,36] [3,9,15,21]
FLUX.1-Dev Labs (2024) [0, 57] [2,8,14,20,28] [2,7,14,20,27] [32,37,45,49,54] [2,7,12,17,22]
Qwen Image Wu et al. (2025) [0, 59] [4,11,17,24,29] [3,8,11,19,28] [34,40,45,51,54] [3,9,15,21,27]

A 3D render of 
a dog standing 
on a sidewalk 

on a sunny 
afternoon

..golden dog.. ..two dogs.. .. with a bell..

An illustration 
of a koala 

clinging to a 
tree with misty 

mountains

An illustration 
of a deer in a 

forest clearing 
in golden hour 

light

An illustration 
of a panda 

sitting with 
bamboo 
nearby

..golden koala.. ..two koalas.. ..blue glasses..

.. brown panda.. ..three pandas.. .. wearing a red bandana.. ..write deer.. ..three deers.. .. with a frisbee..

Stable Flow
O

urs
Stable Flow

O
urs

Source Source

Source Source

Figure 6: Qualitative comparison of editing results between Stable Flow and our method. Our
method enables more precise editing on specific attributes on changing the color, amount, etc.

textual conditions within the attention. We implement our method on Stable Flow (Avrahami et al.,
2025) and compare with it, leaving other details untouched. The enhancing parameter λ(l) in Eq. 5
is set to 1.5 unless otherwise specified. All inference parameters, including CFG scale, denoising
steps, etc., follow the official default settings for our systematic analysis in Sec. 2 and the evaluation
results. All experiments are carried out on NVIDIA 4090 and H100 GPUs.

Datasets and Evaluation metrics. We evaluate our method on the T2I-CompBench++ (Huang
et al., 2025) and GenEval (Ghosh et al., 2023) benchmarks, which are widely adopted for text-to-
image alignment. We follow the official guidance for evaluation. For instruction-based editing, we
employ GPT-5 to generate 1, 000 diverse source–target text pairs, each with multiple editing instruc-
tions (e.g., color change, object addition), yielding 4, 000 evaluation samples. We adopt CLIPimg to
evaluate the similarity between the source images and edited images, and CLIPtxt (Radford et al.,
2021) score to evaluate the alignment between edit instructions and the edited images. Additionally,
we utilize Aesthetics score (Schuhmann, 2022) and HPSv2 (Wu et al., 2023) to evaluate the overall
image quality, ensuring that our method does not negatively impact the synthesis quality of the orig-
inal models. Furthermore, we perform human evaluations on text-to-image and image editing tasks,
3 individuals are presented with random 100 images and asked to select images with higher quality.
More details are presented in supplementary Sec. E.

4.2 MAIN RESULTS

Improved Text Alignment of Text-to-Image Generation. Tab. 2 and 3 shows the quantitative re-
sults on T2I-CompBench++ and GenEval benchmarks. We could observe that our proposed method
consistently obtains performance gains across various attributes on all three models, demonstrating
the superiority and flexibility of our method. Remarkably, we achieve substantial improvement of
12% on Shape, 10% on Texture, and 8% on Color, in a totally training-free manner. Additionally,
the quantitative results of HPSv2 and Aesthetics scores demonstrate that our method improves the
text alignment while maintaining the high aesthetic quality. Together with the quantitative results,
the qualitative results in Fig. 1 and 5 further show the efficacy of our method on improving semantic
understanding across various attributes.

Instruction-based Editing Results. The quantitative comparison results of our method and the
baseline Stable Flow (Avrahami et al., 2025) are presented in Tab. 4. Our method outperforms
Stable Flow on CLIPtxt score (↑0.94), showing more accurate editing towards textural instructions.
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Table 2: Quantitative results on T2I-CompBench++. * denotes token-level enhancement.

Model Attribute Binding Object Relationship Amount* Complex Image Quality

Color Shape Texture 2D Spatial 3D Spatial Non-Spatial HPSv2 Aes.

TACA 0.7434 0.5784 0.7444 0.2947 0.3839 0.3114 0.6029 0.3820 29.3225 6.2297
SD3.5 0.7284 0.5592 0.7471 0.2866 0.3816 0.3118 0.5969 0.3727 29.2869 6.0978
+ Ours 0.8052 0.6744 0.8428 0.3647 0.3923 0.3169 0.6088 0.4047 28.9501 5.9401

TACA(r=64) 0.7535 0.5126 0.6522 0.3043 0.3814 0.3045 0.5855 0.3619 29.1525 6.3327
TACA(r=16) 0.7296 0.4898 0.6549 0.2991 0.3790 0.3034 0.5780 0.3585 29.1375 6.3205
FLUX 0.7322 0.4908 0.6490 0.2935 0.3739 0.3044 0.5877 0.3597 29.1586 6.3563
+ Ours 0.7804 0.5482 0.6980 0.3280 0.3900 0.3054 0.6091 0.3691 29.2267 6.4110

Qwen Image 0.8554 0.6358 0.7650 0.3973 0.4077 0.3110 0.7406 0.3983 28.8831 6.1925
+ Ours 0.8677 0.6348 0.7796 0.4560 0.4202 0.3123 0.7616 0.4104 29.0212 6.2378

Table 3: Quantitative results on GenEval. * denotes token-level enhancement.
Model Overall Single object Two object Counting* Colors Position Color attribution HPSv2 Aes.

SD3.5 0.6642 0.9438 0.8939 0.6344 0.8059 0.2325 0.4750 29.5759 5.8871
+ Ours 0.7163 0.9781 0.9672 0.6375 0.8650 0.3925 0.4825 29.3729 5.7902

FLUX 0.6538 0.9904 0.8258 0.6375 0.7713 0.2575 0.4400 29.8115 6.3650
+ Ours 0.6826 0.9688 0.8914 0.6438 0.7739 0.3475 0.4700 29.8207 6.4043

Qwen Image 0.8551 0.9906 0.9520 0.8562 0.8617 0.7375 0.7325 30.4510 6.2327
+ Ours 0.8777 0.9906 0.9722 0.8594 0.8989 0.7475 0.7975 30.6851 6.2113

Meanwhile, the CLIPimg similarity remains nearly unchanged (↓0.008), suggesting that our method
effectively enables more precise editing in line with the given instructions while preserving the
visual integrity and coherence of the images. Furthermore, the result of human preference further
reflects the effectiveness of our method. Combined with the qualitative results in Fig. 1 and 6, these
results highlight also the efficacy of our method.

Table 4: Image editing results.
Method CLIPimg CLIPtxt Human Preference

Stable Flow 0.9642 35.2584 40.83%
+ Ours 0.9637 36.1988 59.17%

Inference Acceleration. Tab. 5 reports inference acceler-
ation results by skipping less critical blocks, showing av-
eraged inference time over 400 prompts on NVIDIA 4090
and H100 GPUs. The results show that our method substan-
tially reduces inference time and can be seamlessly com-
bined with existing acceleration techniques Liu et al. (2025) for further acceleration. Importantly,
image quality metrics (i.e., HPSv2, Aesthetic, CLIPtxt) confirm that synthesis quality is preserved
with accelerated inference.

4.3 ABLATION ANALYSIS

Analysis on the scale of λ(l). Here, we investigate the sensitivity of the scale λ(l) to identify its
impact. Specifically, we evaluate the performance of different attributes on FLUX with λ(l) ranging
from 1.2 to 2.0. As shown in Fig 7 (a), our method consistently achieves significantly better results
than the baseline despite some fluctuations, indicating the effectiveness of our method. Additionally,
we also evaluate the performance of weakening the textual conditions in Tab. 6. It turns out that the
weakening operation significantly decreases the model’s performance, further demonstrating the
importance of these vital blocks and validating the soundness of our method.

Table 5: Acceleration results.
Method Time(4090) Time(H100) HPSV2 Aes

FLUX 36.7889s 13.0876s 29.0533 6.1903
+ Ours 31.6931s 11.3010s 28.8408 6.1034

TeaCache 26.6187s 9.6125s 28.8951 6.2067
+ Ours 24.5276s 8.8804s 28.8647 6.1801

Analysis on the selection of enhanced blocks. To evalu-
ate the effectiveness of our analysis in selecting the proper
number of blocks for enhancement, we apply our en-
hancement to varying block counts N ∈ {1, 3, 5, 7, 9}.
Fig. 7(b) shows that increasing N initially boosts perfor-
mance, but manipulating more blocks (> 9) might lead
to degradation due to distribution shift. Furthermore, we
perform enhancement on random chosen blocks of FLUX
(5 and all) rather than our selected blocks, the results are given in Tab. 6. We can derive from the
table that enhancing randomly selected or all blocks underperforms enhancing dedicated blocks
identified from our analysis, highlighting the efficacy of our proposed approach. What’s more, this
observation also reflects that different blocks do not contribute equally to different attributes, con-
sistent with our findings in Sec. 2. More analysis results are given in the supplementary Sec. F.
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(a) Scale of 𝜆 (b) Num. of enhanced blocks

Figure 7: Ablation analysis on the enhancing scale (left) and the selection of blocks (right).

5 RELATED WORK

Table 6: Ablation analysis on
smaller λ and block selections.

Methods Color Shape 2D Spatial

0.7 0.3161 0.2653 0.1100
0.9 0.6891 0.4395 0.2611

Random 5 blocks 0.7624 0.5072 0.3119
All blocks 0.2360 0.2736 0.0495
Ours 0.7804 0.5482 0.3280

Diffusion Transformers DiT (Peebles & Xie, 2023) have
become the dominant paradigm for high-fidelity image and
video generation, which adopt transformer (Vaswani et al.,
2017) architecture as the main backbone, demonstrating su-
perior scalability and training efficiency compared to previous
UNet-based (Ho et al., 2020; Dhariwal & Nichol, 2021; Ho
& Salimans, 2022) models. Recent variants, such as open-
sourced SD3 (Esser et al., 2024), FLUX (Labs, 2024), Qwen
Image (Wu et al., 2025), Hunyuan Image (Team, 2025b) and
Hunyuan Video (Team, 2024), and commercial models like
Seedream series (Gong et al., 2025; Gao et al., 2025), Sora (OpenAI, 2024), Imagen3 (Baldridge
et al., 2024), further advance text-to-image/video to an unprecedented level with the top-performing
multimodal diffusion transformer (MMDiT) architecture. Besides scaling the MMDiT-based mod-
els, many efforts have also focused on accelerating the iterative denoising process (Lu et al., 2022;
Song et al., 2023; Luo et al., 2023), controlling the results (Zhang et al., 2023; Tan et al., 2024;
Xiang et al., 2025), editing the outputs (Avrahami et al., 2025; Wei et al., 2025), etc.

Understanding and Improving Diffusion Models. Numerous prior works proposed various tech-
niques to analyze the roles of different components of UNet-based diffusion models. For instance,
P2P (Hertz et al., 2022) showed that cross-attention layers are essential for rendering the spatial
layout, MasaCtrl (Cao et al., 2023) and Liu et al. (2024a) demonstrated that self-attention maps
are more important for preserving the geometric and shape details. FreeU (Si et al., 2024) and
PBC (Zhou et al., 2025) respectively analyzed the functionality of skip connections and position
encoding mechanism in diffusion UNet. Further, Yi et al. (2024) investigated the working mech-
anism of text prompts and Williams et al. (2023) developed a unified framework for designing and
analysing UNet architectures. However, the understanding of MMDiT components remains under-
explored, and it is crucial to gain a comprehensive insight into these components to advance the
field. Existing approaches explored the roles of layers (Avrahami et al., 2025), rotary position em-
beddings (RoPE) (Wei et al., 2025), and attention embeddings (Shin et al., 2025), but often focus on
specific applications like editing and lack systematic evaluation of MMDiT components. TACA (Lv
et al., 2025) indicated an imbalanced issue in the cross-model attention and ameliorated this with a
timestep-aware weighting scheme. Nevertheless, none of the current approaches provides a holistic
view of how these components jointly influence the model’s overall performance and versatility.

6 CONCLUSIONS

Conclusions. In this work, we systematically analyze block-wise contributions and their interactions
with text conditions, offering a better understanding of the internal mechanisms within MMDiT-
based generative models. Meanwhile, our analysis reveals several valuable findings that unlock
new possibilities for improving the synthesis quality. Based on these findings, we propose training-
free techniques for improved text alignment, precise semantic editing, and accelerated inference.
Extensive results demonstrate the effectiveness of our method.

Limitations and Future Works. Despite substantial performance gains, our method has limitations.
It relies on automatic block-wise analysis and cannot perfectly synthesize highly complex prompts
due to pretraining constraints. Future work could incorporate trainable modules and token-level
dynamic routing to further improve synthesis quality and semantic understanding.
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Ethics Statement. This work follows the ICLR Code of Ethics. Experiments use only public
datasets and models, and our constructed dataset will be released. No sensitive or personally identi-
fiable data is involved.

Reproducibility Statement. All implementation details, hyperparameters, and evaluation protocols
are provided in the paper and appendix. We will release code and scripts upon publication to ensure
reproducibility: https://anonymous.4open.science/r/Revisiting_MMDiT_for_
Improved_Synthesis/readme.md.
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A OVERVIEW OF APPENDIX

The appendix provides supplementary information and results supporting the main text. It begins
with a discussion on the use of large language models (LLMs) and Limitations This is followed
by a detailed analysis of probing results (Sec. D), including descriptions of baseline models and
implementation details, datasets used for probing, quantitative metrics such as amount and CLIP
score analysis, and evaluation procedures. Next, the appendix (Sec. E) presents the detailed setup of
evaluation results, covering inference configurations, evaluation benchmarks, token-level enhance-
ment mask localization, editing task details, and acceleration experiments. Additional quantitative
results (Sec. F) are provided, including analyses on enhanced block selection, scaling schemes, abla-
tion studies, and token-level enhancements. More qualitative results (Sec. G) show visual examples
across different models and tasks, such as generation, editing, and model-specific outputs. The ap-
pendix also discusses failure cases and limitations observed during experiments. Last, the human
evaluation protocol used to assess output quality and alignment (Sec. H). Together, these sections
offer a comprehensive resource for reproducing experiments, understanding model behavior, and
exploring additional findings beyond the main text.

B USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of Large Language Models (LLMs) in preparing this work, specifically for the
following purposes. (1).Writing assistance. The LLMs were used to polish grammar and phrasing
in parts of the paper. But all substantive content, ideas, and claims were written by the authors.
(2).Prompt generation for probing analysis and editing prompts. GPT-51 was used to generate an
initial set of candidate prompts for probing analysis and editing prompts. The final prompts were
manually screened, refined, and verified by the authors before use. All research contributions, anal-
yses, and conclusions are solely the responsibility of the authors.

C LIMITATIONS

Although our proposed method delivers substantial performance gains across multiple tasks, certain
limitations remain.

Dependence on the preliminary block-wise analysis. A core part of our enhancement pipeline re-
lies on an initial, automatic analysis that identifies block-wise interactions inside the model. Luckily,
our analysis is totally automatic and could be performed across various models with different num-
bers of blocks, varied model sizes, as well as different models (e.g., SD3.5, FLUX, Qwen Image).

Limited fidelity on very complex prompts. For extremely complex or highly detailed prompts,
our method may fail to capture all fine-grained elements. This limitation mainly stems from the
pretraining data distribution, where rare object combinations or subtle high-frequency details are
underrepresented, sometimes resulting in missing elements or artifacts in the output. As could also
be observed from the failure cases in Fig. A9.

Evaluation and generalization limits. Our evaluation on standard benchmarks may not fully re-
flect perceptual quality or robustness, and gains might not generalize to niche domains or prompts
requiring world knowledge absent from pretraining.

1https://chatgpt.com
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D DETAILED ANALYSIS OF PROBING RESULTS

D.1 BASELINE MODELS AND IMPLEMENTATION DETAILS

We implement our probing analysis based on the widely adopted MMDiT-based text-to-image mod-
els, including:

• Stable Diffusion 3.5-Large2 (Stability-AI, 2024): A latent diffusion model with approx-
imately 8 billion parameters, based on the Multimodal Diffusion Transformer (MMDiT)
architecture. It demonstrates strong performance in prompt adherence, typography, and
supports a mature ecosystem of extensions.

• FLUX.1-Dev3 (Labs, 2024): A 12B-parameter rectified-flow transformer model that adopts
advanced training techniques and a substantially larger dataset to enhance visual fidelity.
It has attracted significant community attention for its improvements in prompt alignment,
detail rendering, and efficient sampling.

• Qwen Image4 (Wu et al., 2025): A 20B-parameter MMDiT model developed within the
Qwen series, designed for robust multimodal reasoning and high-quality image synthesis.
It is particularly noted for its strong performance in complex text rendering (especially
Chinese) and text-guided image editing.

We use the official checkpoints provided by the authors and the diffusers library (Team, 2025a) for
implementation. During inference, model weights are loaded in 16-bit precision. No acceleration
techniques such as xformers or memory-efficient attention are used. The default parameters during
inference are summarized in Tab. A1.

Table A1: Model information and default parameters during inference.

Models SD3.5-large FLUX.1-Dev Qwen Image

MMDiT Blocks [0,37] [0,57] [0,59]
Parameters 8B 12B 20B
Inference Steps 28 28 50
CFG Scale 7.0 3.5 4.0
Size (1024,1024) (1024,1024) (1024,1024)

During probing analysis, we use identical hyperparameters for all models to ensure fair comparison,
as summarized in Tab. A1. For each model with N blocks, we fix a random seed and generate
one baseline image, N disable images, N remove images, and N enhance images—constituting
one experimental group. For each of the three MMDiT-based models, we conduct five experimental
groups using five different random seeds (0, 42, 329, 1234, 99514). Final results are reported as the
average across these five groups.

D.2 CONSTRUCTED DATASET FOR PROBING ANALYSIS

We construct a challenging prompt dataset with GPT-5, comprising 333 diverse and complex
prompts across three attributes: color (129 prompts), spatial relationship (104 prompts), and amount
(100 prompts). For color attributes, we focus on objects with distinctive colors (e.g., “red apple”,
“yellow banana”). For spatial relationships, we include prompts describing eight positional relations
(e.g., “left”, “right”, “above”, “below”, “upper left”, “upper right”, “lower left”, “lower right”). For
amount attributes, we cover a range of quantities from “three” to “nine”. We also ensure diver-
sity in object categories, including human, animal, natural scenes, indoor scenes, food, clothing &
accessories, vehicles, and so on.

The distribution of prompts across these attributes is illustrated in Fig. A1. We ensure that the
prompts are diverse and challenging, covering various object categories, colors, spatial relations,
and quantities.

2https://huggingface.co/stabilityai/stable-diffusion-3.5-large
3https://huggingface.co/black-forest-labs/FLUX.1-dev
4https://huggingface.co/Qwen/Qwen Image
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Figure A1: Statistics of our constructed datasets for probing analysis. Each subfigure presents the
distribution of prompts for a specific attribute: color, spatial relation, amount, and object category.

D.3 AMOUNT AND CLIP SCORE ANALYSIS FOR ALL MODELS

Due to space limitations, the main paper only presents the block-wise analysis results for the color
and spatial relationship attributes on three models under the removing, disabling, and enhancing
strategies, as well as the corresponding changes in DINOv2 similarity relative to the baseline. Here,
we provide additional results, including the block-wise analysis for the amount attribute on all three
models, and the overall CLIP score trends under the removing, disabling, and enhancing strategies
for all models. The detailed results are shown in Fig. A2. Notably, the amount attribute exhibits a
different sensitivity to the number of blocks compared to color and spatial attributes, and enhance-
ment does not lead to a clear improvement, which may be attributed to the inherent limitations of
MMDiT models in understanding quantity. The overall CLIP score trends are consistent with those
of DINOv2 similarity, further validating the effectiveness and stability of our method.
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(f) CLIP score of enhancing.

Figure A2: More detailed probing results on three MMDiT models: Stable Diffusion 3.5-Large,
FLUX.1-Dev, and Qwen Image. Each subfigure presents the performance curves for a specific
attribute (amount or overall CLIP score) under different probing strategies (removing, disabling,
enhancing).

D.4 DETAILS OF EVALUATION FOR PROBING ANALYSIS

In probing analysis, we use the open-sourced Qwen2.5-VL 72B5 (Bai et al., 2025) model for color
and spatial relationship evaluation. We design specific systematic prompts to guide the model in
accurately assessing whether the generated images align with the intended attributes in the text
prompts. The detailed prompts for color and spatial relationship evaluation are provided in following
colored boxes.

5https://github.com/QwenLM/Qwen2.5-VL
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Color Evaluation Prompt

You are given an image, its caption, and a set of objects with their expected colors.
Your task: 1).For each object: check if the color in the caption matches the actual color in
the image. 2).If the color matches, return ”Yes”. If the color does not match or the object is
not visible, return ”No”.
Rules:

• Output ONLY a single valid JSON object.
• The JSON keys must be exactly the provided object names.
• The values must be strictly ”Yes” or ”No”.
• Do not generate any other words.
• Do not add explanations, extra text, or formatting outside the JSON.

Example:

Color Evaluation System Prompt ......

{bicycle: blue,  wheels:yellow, 
wall: gray} 

{bicycle: yes,  wheels:yes, wall:no} 

Spatial Evaluation Prompt

You are given an image, its caption, and a question about the spatial relationship between
two objects in the image.
Your task: 1).Check whether the spatial relationship described in the question can be con-
firmed from the image.2).If the relationship is clearly visible and correct, return ”Yes”.3).If
the relationship is not correct, cannot be seen, or the objects are unclear, return ”No”.
Rules:

• Output ONLY a single string. The value must be strictly ”Yes” or ”No”.
• Do not generate any other words.
• Do not add explanations, extra text, or formatting outside the answer.

Example:

Spatial Evaluation System Prompt ......

Is the chair above the giant ice 
cream cone? 

Yes

For amount evaluation, we use CountGD6 (Amini-Naieni et al., 2024), an open-world object count-
ing model based on Grounding-DINO (Liu et al., 2024b). The detection confidence threshold is set
to 0.5 for higher precision. Counting accuracy is computed as the proportion of images where the
predicted count exactly matches the ground-truth specified in the prompt.

Statistical Significance. We acknowledge that both the LLM-based evaluation and CountGD have
inherent limitations. LLMs may misinterpret visual details or be affected by biases in their training
data, while CountGD may produce inaccurate counts for small, overlapping, or occluded objects. To
address these issues, we conduct multiple experimental runs with different random seeds and report
averaged results, thereby reducing the impact of individual evaluation errors. To further ensure the
validity and robustness of our conclusions, we additionally employ alternative evaluation methods
that are independent of the primary approaches. This cross-validation helps to mitigate the influence
of dataset bias and evaluation inaccuracies on our experimental findings.

6https://github.com/niki-amini-naieni/CountGD
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E DETAILED SETUP OF EVALUATION RESULTS

E.1 INFERENCE DETAILS

During evaluation of text-to-image generation, editing, and acceleration, we use the same hyperpa-
rameters in Tab. A1. The enhancement strength λ is set to 1.5 by default. For the enhanced blocks,
we select the block index in Tab. 1.

For all attributes except amount, we adopt a sentence-level approach, which has already demon-
strated strong performance. For token-level enhancement, we construct the enhancement mask M
by passing the target phrases (e.g., “two apples”, “a person”, “seven”).

E.2 EVALUATION BENCHMARKS

For text-to-image generation, we evaluate our method on the widely used T2I-
CompBench++ (Huang et al., 2025) and GenEval (Ghosh et al., 2023) benchmarks. T2I-
CompBench++ contains 8, 000 compositional prompts spanning color, spatial, 3D spatial, shape,
texture, non-spatial relations, numeracy, and complex attributes. It extends the original bench-
mark (Huang et al., 2023) and introduces more challenging tasks (e.g., 3D spatial and numerical
compositionality). We use all prompts and generate one sample per prompt. GenEval consists of 553
structured prompts targeting single-object, two-object, counting, color, position, and color–attribute
binding. Each prompt is paired with four generated samples, and performance is computed with
an automatic evaluation pipeline based on object detection, counting, and attribute classification,
providing interpretable error types (e.g., missing objects, incorrect color, or miscount).

We evaluate image quality and text–image alignment using LAION Aesthetic v2 (Schuhmann, 2022)
and HPSv2 (Wu et al., 2023). LAION Aesthetic v2 measures visual appeal, while HPSv2 evaluates
prompt-image alignment relative to human judgments. As these metrics capture different aspects,
we report both and supplement them with task-specific evaluations and human studies to ensure a
comprehensive assessment.

E.3 TOKEN-LEVEL ENHANCEMENT MASK LOCALIZATION

During inference, we record the multi-head self-attention of the concatenated features Zin at each
MMDiT block and denoising step. To obtain a stable token-region corresponding, we aggregate the
attention maps across all heads and denoising steps. Eventually, we get attention maps of shape
[N,H ×W,T ], where N is the number of MMDiT blocks, H ×W is the spatial dimension of the
image features, and T is the number of text tokens. For visualization, we average all the MMDiT
blocks’ attention maps to get a single attention map of shape [H ×W,T ]. We then normalize the
attention maps along the spatial dimension and then resize them to the original image size. The
visualization results are shown in Figure A3. We can see that ’dog’ and ’cat’ tokens have high
attention values in the corresponding image regions, indicating that the token-level enhancement
can effectively target specific areas in the image.

Based on the above analysis, we first tokenize the input prompt P using the same tokenizer as the
MMDiT model, obtaining a sequence of token IDs P = [p1, p2, . . . , pN ]. Given a target phrase
Q (e.g., “brown”, “firetruck”), we tokenize it as Q = [q1, q2, . . . , qM ]. We then search for all
subsequences in P that match Q. The starting indices of these matches are collected in the set I =
{i | (pi, pi+1, . . . , pi+M−1) = (q1, q2, . . . , qM )}. The mask M is constructed with the following
rule:

Mj =

{
1, if I = ∅ or ∃(i, i+M − 1) ∈ I with j ∈ [i, i+M − 1],

0, otherwise.

Here, Mj indicates whether the j-th token in the prompt should be enhanced. If not matched, the
token-level enhancement defaults to sentence-level enhancement by setting all entries of M to 1.

E.4 EDITING DETAILS

Stable Flow (Avrahami et al., 2025) is adopted as the baseline, which selects vital blocks based on
the perceptual similarity. However, its block selection is not task-specific and may be inaccurate for
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'A' 'red' 'fire' 'truck' '' 'parked' 'at' 'the' 'right' 'of'

'' 'a' 'wooden' 'dog' 'house' 'decorated' 'with' 'yellow' 'bands' '</s>'

A red firetruck parked at the right of a wooden doghouse decorated with yellow bands

'one' 'guitar' 'and' 'two' 'suitcase' 's' '</s>' '<pad>'

one guitar and two suitcases

'<pad>''<pad>'

'A' 'young' 'boy' 'wearing' '' 'a' 'red' '' 'hat' 'gently'

'pe' 'tting' '' 'sheep' '</s>' '<pad>' '<pad>' '<pad>'

A young boy wearing a red hat gently petting a gray sheep

'a' 'gray'

Figure A3: Visualization of token-level attention maps. Colored boxes indicate the target tokens in
the prompt. The attention maps highlight the corresponding text tokens’ indices in the image.

fine-grained editing, whereas our approach leverages probing analysis to identify blocks tailored to
the editing task. Prior benchmarks lack coverage of quantity, attribute binding, and spatial relation-
ship editing. To address this, we construct a new editing benchmark comprising 1, 000 images and
corresponding editing prompts. Each source prompt is paired with four target prompts, covering
object addition (with varying colors), background changes, color and lighting adjustments, shape
and direction modifications, positional changes, quantity variations, and object actions. Evaluation
is performed for each image–prompt pair using CLIP-image similarity and CLIP score to assess
image quality and prompt adherence. Human evaluation details are provided in Section H.

E.5 ACCELERATION DETAILS

Our method is conceptually related to TeaCache (Liu et al., 2025), which accelerates video diffusion
by using timestep embeddings to estimate output differences and cache intermediate results selec-
tively. In contrast, we skip blocks deemed irrelevant for the current editing task based on probing
analysis. While TeaCache reduces redundancy across timesteps, our approach reduces computation
across feature blocks, enabling acceleration without affecting editing quality.

For acceleration, we skip one-third of the CFG steps and remove three MMDiT blocks. Apply-
ing our method to both the FLUX baseline and TeaCache demonstrates significant speedup while
maintaining comparable image quality. In each experiment, we randomly select 400 prompts
from T2I-CompBench++ and generate one sample per prompt. The CFG steps skipped are
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50], and the removed MMDiT blocks are [30, 40, 50]. We repeat
the experiments on both NVIDIA 4090 and H100 GPUs to verify the stability and robustness of our
approach.

We present additional examples of accelerated generation in Fig. A4. The results in Tab. 5 and
Fig. A4 demonstrate that our method can seamlessly integrate with TeaCache, achieving significant
speedup while maintaining high-quality generation.
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FLUX FLUX + Ours Teacache Teacache + Ours

Figure A4: Examples of accelerated generation. Our method removes certain blocks, which may
lead to different details in the generated image, yet the overall synthesis quality and textual semantics
are consistent with the user prompts. The four prompts are (1) “a balloon on the right of a mouse”,
(2) “a rabbit hidden by a bee”, (3) “a man in a blue and blur hat with a gray shirt and bowtie”, (4) “a
fabric towel and a glass vase”.
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F MORE QUANTITATIVE RESULTS

F.1 ANALYSIS ON THE SELECTION OF ENHANCED BLOCKS

In the main paper, Tab. 6 only shows the results of color, shape, and spatial of different enhanced
blocks and different strengthening scales. Here we provide the full results of T2I-CompBench++ in
Tab. A2.

For the weakening experiments, we keep the same number and position of the enhanced blocks in
the Tab. 1. All the metrics drop compared to the baseline and the 0.7 scale, even worse than the
0.9 scale, indicating that these vital blocks are indeed important for compositional generation. We
also try to randomly select five blocks and all blocks to strengthen. Enhancing random five blocks
can also improve the performance, but not as good as our selected blocks. This further validates the
effectiveness of our probing analysis. Enhancing all blocks leads to a significant performance drop,
which may be due to the excessive enhancement that distorts the original feature distribution and
harms the generation quality.

Table A2: Full results of small λ(l) enhancement and block selection experiments. All the experi-
ments are conducted with FLUX on T2I-CompBench++.

Methods Attribute Binding Object Relationship Amount Complex
Color Shape Texture 2D Spatial 3D Spatial Non-Spatial

FLUX 0.7322 0.4908 0.6490 0.2935 0.3739 0.3044 0.5877 0.3597
0.7 0.3161 0.2653 0.2707 0.1100 0.1831 0.2890 0.3944 0.2630
0.9 0.6891 0.4395 0.5622 0.2611 0.3247 0.3029 0.5482 0.3419

Random 5 blocks 0.7624 0.5072 0.6492 0.3119 0.3797 0.3042 0.5842 0.3605
All blocks 0.2360 0.2736 0.2581 0.0495 0.1522 0.2928 0.2448 0.2233

Ours 0.7804 0.5482 0.6980 0.3280 0.3900 0.3054 0.5860 0.3691

F.2 MORE ABLATION STUDIES ON SCALE SCHEMES

We study the impact of different enhancement scale schemes λ(l), including uniform
(U(1.2, 1.8), U(1.8, 1.2)), exponential (Exp(1.6, 0.95)), and fixed (1.5) scales. As shown in
Tab. A3, all schemes improve over the baseline, confirming the robustness of our selected enhancing
blocks. The fixed scale is notably simple and achieves balanced performance across all dimensions,
making it practical for general use. In contrast, other schemes have their own strengths: linearly
increasing scales favor spatial performance, while decaying scales (e.g., U(1.8, 1.2)) further boost
fine-grained attributes like color and shape. These findings indicate that both the magnitude and
distribution of enhancement strength across blocks are important for compositional generation.

Table A3: Comparison of different scale schemes across blocks on T2I-CompBench++.

Methods Attribute Binding Object Relationship Amount Complex
Color Shape Texture 2D Spatial 3D Spatial Non-Spatial

FLUX 0.7322 0.4908 0.6490 0.2935 0.3739 0.3044 0.5877 0.3597
U(1.2,1.8) 0.7795 0.5438 0.6827 0.3311 0.3865 0.3051 0.5845 0.3685
U(1.8,1.2) 0.8035 0.5551 0.6940 0.3203 0.3893 0.3051 0.5654 0.3722

Exp(1.6,0.95) 0.7783 0.5507 0.7049 0.3296 0.3947 0.3060 0.5763 0.3710
1.5 (Fixed) 0.7804 0.5482 0.6980 0.3280 0.3900 0.3054 0.5860 0.3691
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F.3 ORIGINAL DATA FOR ENHANCING SCALE AND BLOCK ABLATION

In Fig. 7, we present experiments conducted with a fixed enhancing scale ranging from 1.2 to 2.0, as
well as experiments varying the number of enhancing blocks. In the main text, the vertical axes were
normalized to emphasize consistent trends across different models and evaluation metrics. Here, we
provide the original, unnormalized data for reference (see Tab. A4 and Tab. A5 for details). In
addition, we include the corresponding results for SD3.5 under the same enhancing scale settings.
It could be observed that the results consistently reflect identical conclusions with the main paper.

Table A4: Results of the enhancing scale experiments. Except the FLUX data presented in the main
text, we also provide the corresponding results for SD3.5 under the same experimental settings.

Methods/λ(l) Baseline 1.2 1.3 1.4 1.5 1.6 1.8 2.0

FLUX
color 0.7322 0.7776 0.7768 0.7775 0.7804 0.7708 0.7643 0.7415
shape 0.4908 0.5389 0.5489 0.5381 0.5482 0.5449 0.5226 0.5093
spatial 0.6603 0.6827 0.7244 0.6987 0.7340 0.7147 0.7083 0.6795

SD3.5
color 0.7284 0.7992 0.8064 0.8072 0.8052 0.7874 0.7785 0.7608
shape 0.5592 0.6432 0.6656 0.6642 0.6744 0.6659 0.6255 0.6048
spatial 0.6418 0.6683 0.7596 0.7716 0.7885 0.7933 0.7740 0.7486

Table A5: Results of experiments varying the number of enhancing blocks on FLUX.

Methods Baseline 1 3 5 7 9

color 0.7365 0.7533 0.7776 0.7863 0.7613 0.7073
shape 0.4720 0.5159 0.5181 0.5254 0.5201 0.4919
spatial 0.2985 0.3109 0.3152 0.3327 0.2841 0.2581

F.4 MORE RESULTS ABOUT TOKEN-LEVEL ENHANCEMENT

As shown in Table A6, token-level enhancement generally provides more precise guidance com-
pared to sentence-level enhancement, leading to consistent but modest improvements across amount-
related attributes. The gains, however, remain limited, which can be attributed to the intrinsic weak-
ness of current diffusion models in numerical reasoning and counting.

Table A6: Token-level vs. sentence-level enhancement on amount-related attributes.

Methods Amount(T2I-CompBench++) Count(GenEval)

SD3.5 0.5969 0.6344
ours(sentence) 0.5929 0.6125
ours(token) 0.6088 0.6375

FLUX 0.5877 0.6375
ours(sentence) 0.5860 0.6000
ours(token) 0.6091 0.6438

Qwen Image 0.7406 0.8562
ours(sentence) 0.7359 0.8275
ours(token) 0.7616 0.8594
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F.5 DETAILED ACCELERATION RESULTS

In the main paper Tab. 5, we evaluate the results of our method for inference acceleration by remov-
ing less critical blocks. Here we provide more detailed results in Tab. A7, including the time cost
on both NVIDIA 4090 and H100 GPUs, and the image quality metrics (HPSV2, LaionAesthetic
V2, CLIP-Text) on different models. We test two baseline models: the original FLUX.1-Dev and
the TeaCache-optimized version. For each baseline, we apply our method with different CFG step
skipping and block removal strategies.

The CFG steps skipped are seq(5, 50, 10), seq(5, 55, 5), and seq(6, 58, 3), and the removed MMDiT
blocks are [30, 40, 50], where seq(a, b, c) denotes the arithmetic sequence starting from a to b with
step c. We can see that skipping more CFG steps leads to faster inference without significantly
affecting image quality. We finally choose to skip CFG seq(6, 58, 3) steps and remove [30, 40, 50]
blocks as the default setting for a good trade-off between speed and quality.

Table A7: Details of acceleration

Method Time(4090)↓ Time(H100)↓ HPSV2↑ LaionAes V2↑ CLIP-Text↑
FLUX 36.7889 13.0876 29.0533 6.1903 26.9986
skip CFG seq(5, 50, 10) 35.5859 12.6414 29.0395 6.2081 26.9761
skip CFG seq(5, 55, 5) 33.6433 11.9846 28.7259 6.1340 26.8841
skip CFG seq(6, 58, 3) 31.6931 11.3010 28.8408 6.1034 26.7460
Ours 33.3387 11.8734 28.9212 6.1874 26.7807

Teacache 26.6187 9.6125 28.8951 6.2067 26.8346
skip CFG seq(5, 50, 10) 26.1385 9.4414 28.9054 6.1983 26.8646
skip CFG seq(5, 55, 5) 25.2994 9.1565 28.8822 6.1973 26.8984
skip CFG seq(6, 58, 3) 24.5276 8.8804 28.8647 6.1801 26.7946
Ours 24.9992 9.0743 28.9481 6.2256 26.7722
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G MORE QUALITATIVE RESULTS

G.1 MORE SD3.5 RESULTS

A red rabbit and a yellow ratA bathroom with white tile and a beige toilet.

A rubber tire and a metallic fork

A bird on the right of a cup

Seven camelsFour sinks, two rabbits, and a stool completed
 the bathroom Three clocks ticked on the wall

A blue pen and a black ink

A boy on the left of a balloon A cat on the left of a lamp

The plastic fork and leather napkin holder rest on 
the fluffy placemat on the wooden table.

SD3.5  Ours SD3.5   Ours SD3.5   Ours 

A woman is doing aerobics in her living room.

A circular light fixture and a triangular wall shelf An oval mirror and a square picture frame A big elephant and a small flea

A man is standing on a soapbox giving a speech. A woman is holding a tray of cookies and 
offering them to guests.

Rubber sole shoes and a leather jacket

Figure A5: More qualitative results of SD3.5 and our method, covering aspects such as amount,
color, spatial arrangement, texture, shape, and non-CLIP attributes. Our method consistently demon-
strates better text alignment.
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G.2 MORE FLUX RESULTS

A blue bench and a green cake

A giraffe on the left of a train

Six fish swam in the aquarium

A turtle next to a bowl A sheep on the left of a lamp

A leather wallet and a glass mirror

FLUX Ours FLUX Ours FLUX Ours 

A circular mirror and a triangular corner shelf

Three airplanes, two cups, one chair, two lemons 
and four bowls

Three oranges are grouped together, bright skins 
shiny, subtle_highlights.

A rubber ball and a plastic phone case A wooden table and a glass vase

A round ball and a square clock An oval rug and a rectangular doormat

A woman is holding a clipboard and 
organizing a fundraiser.

The detective carefully examined the 
evidence found at the crime scene. The brown dog was lying on the green mat.

A brown banana and a green giraffe A stop sign and red white line

Figure A6: More qualitative results of FLUX and our method. Our approach achieves better text-
image alignment and, in some cases, improved aesthetics over the baseline.
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G.3 MORE QWEN IMAGE RESULTS

An red cat sleeping on top of a orange car.A blue cloud and a white sky

A fabric dress and a fluffy towel

A backpack on the top of a chicken

Two toys and one helicopterFour lamps and four dogs

A brown car and a red dog

A balloon on the bottom of a person A bicycle on the right of a girl

A rubber tire and a fluffy sweater

Qwen Image Ours Qwen Image Ours Qwen Image Ours 

A person is admiring the architecture of a historic 
building.

A circular ceiling fan and a triangular air vent A diamond engagement ring and a teardrop necklace

A child is playing with a magnifying glass and 
examining insects.

The magician wowed the audience with their sleight 
of hand tricks.

Three bears, two girls, one chair, three cups and 
three chickens

A leather belt and a glass jar

A pentagonal keychain and a cylindrical key

Figure A7: More qualitative results of Qwen Image and our method. Although the baseline fails on
”A blue cloud and a white sky”, our method succeeds.
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G.4 MORE EDITING RESULTS

A watercolor 
painting of a 
rabbit lying 

down on a soccer 
field, facing 

forward ..two rabbits.. ..shifted downward.... on a space station..

A 3D render of 
a rabbit 

jumping at a 
cafe, overhead 

view

A photo of a 
dog jumping in 
a garden with 

tiny fairy lights 
in the 

background

An oil painting 
of a dancer 
waving on a 

lake pier

..black scales.. ..standing.. ..three rabbits..

.. five dancers.. ..in a graden.. .. in a navy hat .. ..three dogs.. .. to the left side.. ..yellow dog..

Stable Flow
O

urs
Stable Flow

O
urs

Source Source

Source Source

A photo of an 
eagle gliding in 
a snowy field

A 3D render of 
a car flying at a 

train station

.. parking.. .. In a foggy forest.. ..  two cars.. ..standing.. ..with fairy lights.. .. two eagles..

Stable Flow
O

urs

Source Source

An illustration of 
a drone flying in 

a sunrise field 
with fluorescent 
indoor lighting, 

facing right

A 3D render of 
a bear running 

on a music 
stage

.. Shifted upward.. ..acting.. .. three bears.. ..green drone.. .. at a carnival.. .. two blue balloons..

Stable Flow
O

urs

Source Source

Figure A8: More editing examples on FLUX with our method and StableFlow. Our approach par-
ticularly surpasses StableFlow in quantity while maintaining high fidelity and strong text-image
alignment.
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G.5 FAILURE CASES

StableFlow

A blue cup and a red orange A red backpack and a blue orange

The glass vase and metallic vase stand hold the 
wooden flowers on the fabric tablecloth.

A horse on the top of a man

One banana, two bicycles, four strawberries
 and one sofaFour apples were picked from the tree

A red bench and a green orange

A bee near a desk A balloon on the bottom of a dog

The wooden clipboard and glass paperweight hold 
the metallic documents for the fluffy meeting.

SD3.5 Ours FLUX Ours Qwen Image Ours 

A rectangular table and a pentagonal tablecloth A pentagonal badge and a pyramidal crystal

Seven printers

The glass vase and metallic tongs hold the rubber-
tipped tweezers on the wooden workbench.

The circular clock with its triangular hands and 
square frame told time in the teardrop classroom.

An illustration of a 
scooter parked near 

a cafe under a pergola
..two scooters..

Source StableFlow

A watercolor painting of 
a keyboard on a desk in 

harsh midday sun
..two keyboards..

Source Ours

A digital art image of a 
horse walking along a 
beach with neon lights

..golden horse..

..two keyboards..

..golden horse..

Ours

..two scooters..

A digital art image of a 
airplane on a runway 
with autumn colors

..on top of a small 
pedestal..

..on top of a small 
pedestal..

Figure A9: Failure cases of generation and editing. SD3.5 sometimes misidentifies attributes, con-
fusing colors and objects. For rare real-world cases, our method may produce correct attributes but
also hallucinations, e.g., a dog missing its body. In editing, hard cases mainly involve amount, re-
flecting the model’s limited counting ability.
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G.6 ALL-BLOCK SHOWCASES OF PROBING ANALYSIS

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-38

(a) removing all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-38

(b) disabling all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-38

(c) enhancing all-block showcase.

Figure A10: All-block showcases of probing analysis on Stable Diffusion 3.5-large. From top to
bottom, the prompts are: (a).“A white rabbit is hopping to the right of a brown basket.”,(b).“A red
car with golden rims speeds along a coastal road.”, (c).“Seven lemons are arranged on a wooden
cutting board, skins textured, color bright.”
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-58

(a) removing all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-58

(b) disabling all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-58

(c) enhancing all-block showcase.
Figure A11: All-block showcases of probing analysis on FLUX.1-Dev. From top to bottom, the
prompts are: (a).“Eight green limes rest in a basket, shiny skins and small droplets of water visi-
ble.”,(b).“A brown teddy bear with a blue ribbon sits on a child’s bed with striped sheets.”, (c).“A
small turtle moves to the right of a seashell.”
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-60

(a) removing all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-60

(b) disabling all-block showcase.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10Baseline

Layer 11-20

Layer 21-30

Layer 31-40

Layer 41-50

Layer 51-60

(c) enhancing all-block showcase.

Figure A12: All-block showcases of probing analysis on Qwen Image. From top to bottom, the
prompts are: (a).“A red bench with white cushions stands in a quiet city park.”,(b).“A striped um-
brella is positioned at the top-left of a wooden bench.”, (c).“Five seashells lie in a row on sand, each
detailed with ridges and soft reflections.” 32
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H HUMAN EVALUATION DETAILS

We conduct human evaluations for both generation and editing tasks. For text-to-image generation,
we sample 100 prompts from T2I-Compbench++ and generate results using FLUX.1-Dev and our
method. Participants are provided with the prompt and the two generated images in random order,
and answer the questions in Fig. A13a. The human preference score is defined as

Human Preference = 1
4Alignment + 1

4Aesthetic + 1
2Overall.

For image editing, we randomly select 100 samples from the editing dataset and apply our method
and the baseline Avrahami et al. (2025) with identical prompts. Three participants are recruited and,
given the original image, the editing prompt, and two edited results in random order, they answer
the questions in Fig. A13b. The final preference score is computed as

Human Preference = 1
4Alignment + 1

4Preservation + 1
2Overall.

The corresponding quantitative results are summarized in Tab. A8 and Tab. A9.

Table A8: Human evaluation results for generation.

MethodsAlignmentAestheticOverallHuman Preference

FLUX 118 134 109 39.17%
+ Ours 182 166 191 60.83%

Table A9: Human evaluation results for editing.

Methods AlignmentPreservationOverallHuman Preference

StableFlow 124 136 115 40.83%
Our Method 176 164 185 59.17%

Model Generation Evaluation

Prompt  A blue bench and a green cake

Result 1 Result 2

1. Which result better matches the text prompt?

Result 1
 Result 2

2. Which result is more visually pleasing and reasonable?

Result 1
 Result 2

3. Overall, which result is better?

Result 1
 Result 2

Submit

(a) Interface for generation evaluation.

Image Editing Evaluation

Source Prompt: An illustration of a panda sitting with bamboo nearby
Target Prompt: An illustration of three pandas sitting with bamboo nearby

Editing Result 1 Editing Result 2

1. Which of the results is better in adhering to the text prompt?

Result 1
 Result 2

2. Which of the results is better in preserving the information of the input image?

Result 1
 Result 2

3. Which of the results is better overall?

Result 1
 Result 2

Submit

Source Image

(b) Interface for editing evaluation

Figure A13: Human evaluation interfaces for (a) generation and (b) editing.Participants are asked
three questions corresponding to the given prompts and images.
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