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ABSTRACT

To address the challenges in the lack of data for evaluating identity document fraud
detection models provided by vendors or merchants, we propose IDSPACE, a cost-
effective framework for generating high-quality synthetic identity documents. Our
IDSPACE framework can generate a large number of identity documents using only
a small number of documents from the target domain, while overcoming limitations
imposed by privacy constraints and ensuring that the evaluation results using our
synthetic images are consistent with images from the target domain. Our framework
also allows advanced users to flexibly specify the metadata regarding the entities,
capturing devices, and backgrounds of the documents to be generated. To achieve
these benefits, IDSPACE has introduced two key innovations: (1) abstracting
the synthetic data generation process as a function of control parameters and
metadata, and thus decoupling the user-centric metadata customization process
and the automatic parameter tuning process; and (2) a model-guided few-shot
document generation methodology that employs Bayesian optimization (BO) to
align generated documents with the target domain, ensuring fidelity and utility for
model evaluation using minimal samples from the target domain.

1 INTRODUCTION

The surge in digital platforms offering remote identity proofing has heightened concerns about the
forgery of identity documents, such as passports, driver’s licenses, and identity cards. In fiscal year
2023, the Financial Crimes Enforcement Network received approximately 4.6 million Suspicious
Activity Reports, with around 1.75 million of those reports related to identity fraud aba.com (2024).
Accurate detection of fraudulent identity documents is crucial for reducing authentication risks
across various sectors, including finance, healthcare, travel, retail, government, and gambling Onfido
(2023). However, due to the sensitivity of personal information in these documents, assembling a
comprehensive real-world dataset to evaluate existing fraud detection models is highly challenging.

A motivating example. Between August 2023 and April 2024, the US General Services Admin-
istration (GSA) conducted a large-scale study, recruiting 3,991 participants from five racial and
ethnic demographic groups Fatima et al. (2024). Participants were instructed to capture and upload
images of their identity documents and the corresponding selfies using mobile devices, allowing the
evaluation of five commercial remote identity verification services. Obviously, this methodology is
time-consuming, costly, and offers limited control over the quality and distribution of the collected
images. Furthermore, the involvement of human subjects restricts its generalizability.

The recent advances in AI/ML have spurred interest in generating synthetic identity documents to
augment training data for fraud detection models Arlazarov et al. (2019); Bulatovich et al. (2022);
Guan et al. (2024). However, existing approaches exhibit the following limitations that hinder their
applicability to our target scenario–evaluating the performance of fraud detection models:

• The lack of balance between cost/feasibility and quality. (1) Manual generation of identity
document datasets—such as MIDV-500 Arlazarov et al. (2019) and MIDV-2020 Bulatovich et al.
(2022), is expensive and labor-intensive, leading to limited scale. For example, MIDV-2020 Bula-
tovich et al. (2022) contains only 1,000 distinct template images across ten document categories. (2)
Training-based approaches Benalcazar et al. (2023), including those based on Generative Adversarial
Networks (GANs) Goodfellow et al. (2020) and differential privacy Dwork (2006), require large
volumes of real identity documents from the target domain, which are difficult to obtain due to

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

regulatory constraints. (3) Few-shot approaches Bothra et al. (2023); Lerouge et al. (2024); Xie et al.
(2024) aim to minimize data requirements by using inpainting techniques to fill in synthetic personal
data and face images into a template (illustrated as Template (T) in Fig. 1). While these methods
are cost-effective and improve training data diversity, they often produce content that diverges from
the target domain distribution. This domain shift can mislead fraud detection models and result in
inconsistent or unreliable evaluation outcomes.

• The lack of flexible user-level control. Comprehensive benchmarking and evaluation of fraud
detection models require testing under a wide range of conditions and edge cases, such as documents
from a minority demographic group. To support such nuanced evaluations, it is essential to provide a
flexible, user-centric interface that allows end-users to specify the characteristics of the document
they wish to generate. Such control enables targeted synthesis of evaluation data tailored to specific
benchmarking scenarios.

A few samples

Models trained on the 

target domain

ResNet ViT …

Model 

Guided 

Bayesian 

Optimization 

of Controlling 

Parameters

(Alg. 1)

User-Centric

Synthetic

Identity 

Document 

Generation

(Alg. 2)

Auto-tuned 

controlling 

parameters 

(Table 1)

Template (T)

User-

specified 

metadata 

(Table 1)

Customized Template Image

Customized Scanned Image

ResNet

ViT

…

Model

Evaluation

Identity Documents in the Target Domain, 

requiring only a few samples for each type

User

Template: distributions of age, gender, ethnicity 

group, fraud patterns, etc.

   Scan image: distribution of position,   

   orientation, etc.

   Mobile image: distribution of background, etc.

Customized Mobile Image

Figure 1: Overview of Our Synthetic Template Image Generation.

To close the gaps, we propose a cost-effective framework based on the few-shot approach, called
IDSPACE, for generating identity documents, including customized template documents, scanned
documents, and documents captured by mobile phones, to accurately and flexibly evaluate targeting
fraud detection models, as illustrated in Fig. 1. Our key contributions include:

• We proposed a novel problem abstraction that decouples the metadata that users want to specify
(e.g., age, gender, and ethnicity group of the entity), and auto-tuned control parameters that determine
how the user-specified metadata are integrated with the template (T) to compose the final output
documents. Usually, those control parameters (e.g., font style and font size for each text field, and
noise, brightness, contrast, and sharpness, which varies for different types of scanner or mobile
phone device configuration, are hard to customize for ordinary users. Different applications require
distinguishing between metadata and control parameters in different ways. For example, when the
application needs to evaluate fraud detection tasks on documents captured with low image quality, it
considers image quality parameters (e.g., the image quality level of the JPEG file, subsampling, and
q-tables Rabbani & Joshi (2002)) as user-customizable metadata. However, if all documents in the
target domain are expected to be captured using similar configurations, auto-tuning these parameters
makes more sense.

• We also demonstrate that the above flexible abstraction leads to a novel cost-effective few-shot
approach: We only need a small number (e.g., around or less than 40) of documents from the target
domain to automatically tune the control parameters to obtain high-quality generated documents using
a novel model-guided Bayesian optimization (BO) methodology. By leveraging a small set of samples
in the target domain and the target model(s) for measuring the model evaluation consistency, our
method generates synthetic evaluation data that aligns closely with the performance characteristics
observed on the target domain. The cost-effectiveness is critical to our targeting scenarios where
privacy or legal constraints limit access to real documents in the target domain.

• We provide a large-scale identity document dataset with examples illustrated in Fig. 2, publicly
released on https://huggingface.co/datasets/Anonymous-111/IDSPACE (under CC-BY 4.0). Our evalu-
ation further showed that IDSPACE achieved prediction results that are consistent with corresponding
documents from the target domain for different fraud detection models, making it effective for bench-
marking fraud detection tasks, which may extend to other tasks. (The source code of our IDSPACE
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framework is submitted as part of the supplementary material.We will open-source the code base
under the Apache 2.0 license once the paper is accepted.) We further demonstrate that the dataset
generated by IDSPACE also benefits model training. The scalability and flexibility of our generation
pipeline make it suitable for training and evaluating modern deep-learning architectures, especially in
low-resource or privacy-sensitive settings.

(a) Albania ID 

Generated by IDSPACE

(b) Albania ID 

from MIDV-2020

(c) Greek passport 

Generated by IDSPACE

(d) Greek passport 

from MIDV-2020

(f) t-SNE comparison. Each group 

contains 3 documents from different 

datasets, sharing similar metadata

MIDV-2020 (target domain)

IDNet 

IDSPACE(e) Albania ID and

Greek passport from 

IDNet, which has 

only customized 

template documents

Customized Template Documents

Scanned Documents

Figure 2: Examples and t-SNE comparison for non-fraud documents generated by our IDSPACE, IDNet Xie
et al. (2024), and MIDV-2020 (the target domain). (More examples are in the Appendix.)

2 RELATED WORK

Public Synthetic Datasets and Synthetic Data Generation Methods for Identity Documents. As
mentioned, manually crafted datasets such as MIDV-500 Arlazarov et al. (2019), MIDV-2020 Bula-
tovich et al. (2022), and KID34K Park et al. (2023) suffer from the document generation cost, limited
to around 100 templated documents for one country. SIDTD Boned et al. (2024) and FMIDV Al-
Ghadi et al. (2023) rely on MIDV-2020 to provide fraud patterns using inpainting or crop-and-move
techniques. Overall, these datasets lack diversity and flexibility in conducting comprehensive and
customizable model evaluation tasks. Other large-scale datasets suffer from different quality issues,
which fall into the following categories. (1) Redaction-based document generation. For example,
BID de Sá Soares et al. (2020) redacts sensitive information such as portrait photos from real-world
documents, which reduces their utility for many portrait-based fraud detection applications, e.g., face
morphing detection. (2) Training-based generation Benalcazar et al. (2023) Generative-Adversarial
Network (GAN) is widely used for synthetic document generation. For example, StyleGAN2 Karras
et al. (2020) was used to generate ID images due to its strong capability in synthesizing highly realistic
human faces. However, it struggled with alphanumeric characters, and it also needed thousands of
real IDs for model training, which is impractical in our target scenarios where only a small number of
documents from the target domain of models to be evaluated is available. (3) Domain adaptation
techniques Sugiyama et al. (2007); Tzeng et al. (2017). For example, CycleGAN Xie et al. (2020)
can be used to adapt low-fidelity identity documents to the target domain. However, this approach
usually requires a large number of labeled samples of the target domain, which is not practical in our
target scenarios. Ben-David et al. David et al. (2010) proposed impossibility theorems, indicating
that even with small distributional divergence or a universally good classifier, domain adaptation
can fail without labeled target data. (4) Few-shot Approaches. DocXPand-25k Lerouge et al.
(2024) applies inpainting to fill metadata into a self-designed document template, and it can hardly
generalize to real-world document types. IDNet Guan et al. (2024); Xie et al. (2024) used Bayesian
optimization to tune only a couple of parameters with an objective to maximize the similarity between
the generated documents and target domain documents. While it is instrumental in training robust
fraud detection models and has been downloaded for more than 8,600 times on Zenodo, we found
the target models tend to predict inconsistent results for the documents from the target domain and
the IDNet-generated documents. That is due to a discrepancy between the generated dataset and the
target domain, as illustrated in Fig. 2(f). In this work, we addressed such limitation by introducing
a novel model guiding data generation technique coupled with a user-centric interface that flexibly
separate metadata from control parameters.

Synthetic Data Generation for Model Evaluation. The use of synthetic data in machine learning has
been explored across various domains. Nikolenko et al. (2021) discusses adaptation and refinement

3
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Table 1: Overview of Examplar Synthetic ID Generation Parameters

control parameters (AutoTuned) User-Customizable Metadata

Customized

Template Doc-

uments

Font: Font style and size of each text field. We support

Google’s font library, containing 1816 font families.

Text color: Color of texts that overlap with background.

Positions: Positions of each field in the template, and char-

acter spacing within each field.

Quality: JPEG image quality settings (e.g., subsam-

pling=4:2:0, qtables=standard, quality factor in [50–95]).

ID Template: File path of the template image used for

ID generation.

Fraud Pattern: Whether to simulate fraud and which

type—e.g., crop-and-move, inpaint-and-rewrite, follow-

ing SIDTD Boned et al. (2024).

Entity Information: First name, last name, DOB, ID

number, portrait photo, eye color, height, weight, issue

date, expiration date, etc.

Scanned/Mobile

Documents

Noise Level: Amount of Gaussian noise added—e.g., stan-

dard deviation in range [0, 25].

Subtle Blurring: Gaussian blur with sigma in range [0.5,

2.0] to simulate out-of-focus scans.

Brightness: Adjustment factor for image brightness—e.g.,

randomly sampled from [0.8, 1.2].

Contrast: Adjustment factor for image contrast—e.g., ran-

domly sampled from [0.8, 1.2].

Sharpness: Strength of sharpening filter—e.g., factor in

[0.5, 2.0].

ID Template Image: File path of the ID image (a cus-

tomized template document) to be scanned.

Resolution: DPI value, e.g., 200, 300, or 400.

Color Mode: One of {"color", "grayscale", "black and

white"}.

Position/Orientation (for scanned images): Placement

of the ID—e.g., rotated by ±5° or shifted ±10px.

Wear and Tear: Simulated aging artifacts—e.g., fold

marks, scratches, stains, or faded text.

Background image (for mobile images): An image to

serve as the background of the ID placement.

of the synthetic to the real domain using GANs. van Breugel et al. (2023) propose to use a deep
generative model on the test dataset to create synthetic data for evaluating model performance on
underrepresented subgroups and under distributional shifts. Their work shows that synthetic data
generated in this way outperforms real test data in estimating performance for minority subgroups
and under shifts, while also providing uncertainty estimates. However, their approach relies on the
availability of test data, which is often scarce in practice in our targeting scenarios.

3 A NOVEL PROBLEM ABSTRACTION

In this section, we present a few-shot synthetic data generation methodology designed to balance cost
and quality in evaluating fraud detection models. Our approach is to combine the decoupling of the
user-specified metadata and the control parameters finetuned by a model-guiding framework.

Table 1 illustrates how we distinguish metadata that should be explicitly specified by users from
parameters that should be automatically adjusted in this work. Parameters that can be reliably inferred
using external tools are excluded. For instance, the background color of a portrait photo can often
be extracted using standard color analysis tools and does not require automated tuning. In contrast,
detecting text color when it overlaps with complex background images is significantly more difficult,
and identifying the original font styles used in official identity documents is often infeasible due
to their proprietary nature. In such cases, we rely on auto-tuning. Importantly, advanced users can
redefine the boundary between user-specified metadata and automatically controlled parameters,
depending on their available tools, expertise, and resources. Based on this flexible and modular
design, we are the first to formalize the synthetic identity document generation problem as follows.

Problem Definition. Given a template of a type of ID document (e.g., a template of the West
Virginia driver’s license), denoted as T , generating the i-th ID image has two steps: (1) obtaining
or generating the metadata information x

i
meta

following user-specification, which consists of fraud
patterns, capturing device (e.g., scanner), capturing environments (e.g., rotation and position of the
document, color mode, and resolution), and various personal information (e.g., first name, last name,
date of birth, ID card number, portrait photo, eye color, height, weight, card issue date, expiration
date), listed as user-customizable metadata in Tab. 1. (2) filling in the metadata information into
the template to generate the final image xi, denoted as xi = Gθ(x

i
meta

, T ). Here, θ represents the
parameters that control filling the metadata into the template, such as those control parameters listed
in Tab. 1. While Gθ(·) represents the process of transforming the metadata x

i
meta

and the given
template T into a synthetic ID image xi using the parameters θ.

Given an existing machine learning model f trained for fraud detection for a target domain consisting
of ID documents sharing the same template T , denoted as Dreal = {xi}, with f ’s training dataset
Dtraining ⊂ Dreal. Assuming each sample xi ∈ Dreal having metadata meta(xi), given a small number
of samples from Dreal, we would like to learn θ so that ∀xi ∈ Dreal, we have xi = Gθ(meta(xi), T ),
and thus f(xi) = f(Gθ(meta(xi), T )).

Examples of templates (T) Xie et al. (2024); Rombach et al. (2022) are illustrated in Fig. 1.
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Algorithm 1: Model-Guided Bayesian Optimization of Control Parameters (For simplicity, it only used one
guiding model f , and the extension to multiple guiding models as illustrated in Eq. 1 is trivial)

1: Input: A small dataset fromDreal: Dsample = {x1, x2, ..., xm}, a template T

2: synthetic data generator G, the guiding model f , parameter space Θ, weight λ0, λ1

3: Output: Optimized parameter set θ∗

4: Initialize Bayesian Optimization over Θ ▷ Setup BO framework

5: for iteration t = 1 to T do

6: θt ← BO acquisition function ▷ Sample candidate parameters

7: Dsyn ← {Gθt
(meta(xi), T )|xi ∈ Dsample} ▷ Generate synthetic data

8: µt
similarity ←

1
m

∑m
i=1 similarity(xi, D

(i)
syn ) ▷ Compute similarity, e.g. SSIM (Eq. 2)

9: preal ← f(Dsample) ▷ Get model prediction results

10: psyn ← f(Dsynth)

11: µt
consistency ←

1
m

∑m
i=1 1(p

(i)
real

= p(i)
syn ) ▷ Compute consistency (Eq. 3)

12: J(θt)← λ0µ
t
similarity + λ1µ

t
consistency ▷ Compute Objective score (Eq. 1)

13: Update BO model with (θt, J(θt))
14: end for

15: return θ∗ = argmaxθ∈{θ1,...,θT } J(θ) ▷ Select best parameters

4 MODEL GUIDED AUTOMATIC TUNING OF CONTROL PARAMETERS

To address the problem formalized in Sec. 3, we propose combining Bayesian optimization Frazier
(2018) with our custom optimization objective that introduces l guiding models f1, . . . , fl, which are
trained in the target domain. These k models are not necessarily the target models to be evaluated.
The objective is not only to maximize the overall similarity (e.g., measured using structural similarity
index measure (SSIM)) between each input document xi and the corresponding generated document
Gθ(meta(xi), T ) for i = 1, ...,m (See Eq. 2), but also to improve evaluation consistency between
fk(xi) and fk(Gθ(meta(xi), T )) for i = 1, ...,m and k = 1, ..., l (See Eq. 3). Here, m denotes the
number of samples from the target domain, which is assumed to be small, given the sensitive nature
of ID data. Our custom optimization objective is formalized in Eq. 1, which is a weighted sum of the
similarity metric (Eq. 2) and the evaluation consistency metric (Eq. 3).

θ
∗
= argmax

θ∈Θ
(λ0 · µsimilarity(θ) + λ1 · µ

1
consistency(θ) + · · ·+ λl · µ

l

consistency(θ)) (1)

µsimilarity(θ) =
1

m

∑

xi=x1,...,xm∈Dreal

similarity(xi, Gθ(meta(xi), T )). (2)

µ
k

consistency(θ) =
1

m

∑

xi=x1,...,xm∈Dreal

1(fk(xi) = f(Gθ(meta(xi), T ))), k = 1, . . . , l (3)

Our proposed Bayesian optimization algorithm formalized in Alg. 1 (1) trains a surrogate model
to learn the relationship between θ (the control parameters of the data generation process) and an
objective metric as formalized in Eq. 1, (2) iteratively selects θ guided by the surrogate model to
optimize the objective, and (3) in each iteration, evaluates the effectiveness of the selected θ using
the objective function, and use the measured results to update the surrogate model. The Bayesian
optimization strategy can be replaced with other search methods, such as Hyperband Li et al. (2018),
which are evaluated and compared to our approach in Sec. 6.3.

5 USER-CENTRIC SYNTHETIC IDENTITY DOCUMENT GENERATION PROCESS

After optimizing the control parameters using Alg. 1, we apply a synthetic data generation process
formalized in Alg. 2. It consists of two steps:

Step 1. Generating metadata following user specification (line 3 in Alg. 2). By customizing the
metadata, users can control which aspects of the model performance to focus on during the evaluation
process. For example, if a user needs to evaluate the model’s fraud detection fairness on different
gender, age, or ethnicity groups, s/he may request to generate documents with uniform distributions
across all groups, including minority groups. Users can specify metadata by either uploading a CSV
file that lists metadata for each document or a JSON file that defines the probability distribution of
each type of metadata, used as θuser in Alg. 2. Portrait Photos are selected based on metadata.
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Algorithm 2: User-Centric Synthetic Data Generation

1: Input: User-specified metadata: θuser ; control parameters tuned using Alg. 1: θ∗;ID template: T ; Synthetic data generator: G;

Metadata generator: F
2: Output: Generated document xsyn

3: meta← Fθuser () ▷ Generate metadata based on user specification

4: return xsyn = Gθ∗ (meta, T ) ▷ Generate data using tuned control parameters

Step 2. Generating the documents (line 4 in Alg. 2). Customized template documents, as shown in
Fig. 1 and Fig. 2, emphasize geometric precision in text alignment and compliance with governmental
design specifications. Such quality requirements are satisfied via the control parameters (θ∗) tuned
by our model-guided Bayesian optimization algorithm and the function (Gθ∗(·)) that applies those
parameters to drive varying-scale synthesis by filling in the template with user-specified personal
information and fraud patterns. (Details about the fraud patterns supported in this work can be found
in Appendix Sec. A.7.1.) The function (Gθ∗(·)) needs to be engineered for each type of document,
involving recognizing all fields to be customized, and mapping each field to the corresponding
user-provided metadata (i.e., information to be filled) and control parameters (i.e., controlling how
to fill the information into the fields). However, this is a one-time cost, which is amortized to the
cost-effective generation of unlimited high-quality documents (see Appendix Sec. A.4). In addition
to the generated document, each output includes annotations such as typographic specifications,
positional coordinates, semantic segment masks, and bounding boxes in JSON format, facilitating
downstream tasks, e.g., constructing scanned or mobile documents, as shown in Fig. 1.

Taking scanned documents as an example, the pipeline first loads the user-specified customized
template document. Then, it invokes a function to apply both of the tuned control parameters and
user-specified metadata to transform the template image. For example, if the customized template
document contains Machine Readable Zone (MRZ), our pipeline will apply slight sharpening or
contrast enhancement to that specific region. It also masks areas containing security features, such as
holograms, to avoid excessive blurring or color alteration. In addition, following the user specification
on wear and tear, it will introduce subtle imperfections such as scratches, fading, or corner rounding.
Then, the function generates the scanner background image and combines the transformed customized
template document and the background following the user-specified position and rotation parameters.
The function also adds subtle shadows to create a more realistic appearance. The generation of mobile
documents is similar, which we discuss in Appendix Sec. A.10.

6 EVALUATION

We conducted a comprehensive empirical study to investigate the following research questions. R1.
Will models trained on the target domain achieve consistent evaluation results on our generated
document and the corresponding document from the target domain with the same metadata? Will the
evaluation consistency of our generated documents outperform alternatives? R2. Does the dataset
generated by IDSPACE also benefit the learning process? R3. How is the Bayesian optimization-based
parameter tuning approach compared to alternatives?

System Environment. All experiments were conducted on an Ubuntu Linux server equipped with
48 CPU cores (Intel Xeon Silver 4310, 2.10 GHz), 125 GB of RAM, and two NVIDIA A10 GPUs
(24GB VRAM each). The server is installed with 256GB NVMe SSD and 1TB HDD drive.

Experiment Setup. We used the MIDV-2020 and SIDTD datasets, which are under the CC BY-SA
2.5 and CC-BY-4.0 licenses, as the target domain. They include ten types of European country
identity documents, with 100 templated documents and around 100 fraud templated documents in
each type. We sampled 50% of documents to form a training set for learning the fraud detection
models, which are used as the guiding models for parameter tuning and the target models to be
evaluated. 30% of samples form the testing set to evaluate the consistency of the prediction of the
model of all the baseline data generation methods. The additional 20% of the documents compose a
tuning set to adjust the control parameters following Alg. 1. Due to space limitations, our evaluation
focuses on fraud detection using customized template images, which is fundamental to identity fraud
detection Boned et al. (2024); MIDV-2020; Guan et al. (2024). We put the corresponding evaluation
results for scanned documents in the Appendix. In our implementation of Alg. 1, we used SSIM as
our similarity metric. We set λ0 to 1 and λi to 1/l (l is the number of guiding models, i = 1, . . . , l)

6
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to balance similarity and consistency. The tuning of λi is discussed in the Appendix. Due to space
limitations, we mainly showed the results on the Albania ID documents. The results on other types of
documents are similar, also detailed in the Appendix.

6.1 R1. MODEL PREDICTION CONSISTENCY COMPARISON

To answer R1, following existing works on fraud detection for identity documents Boned et al. (2024);
Park et al. (2023); Onfido (2023); Bayer et al. (2025); Khare et al. (2024); Mahadevan et al. (2023);
Bruveris et al. (2020); Gietema et al. (2024), we used five fraud detection models with varying model
architectures, including ViT-large, ResNet50, Inception-v3, VGG16, and DenseNet trained from the
target domain, achieving accuracies of 1.0000, 1.0000, 1.0000, 0.9873, and 1.0000, respectively (see
Appendix Sec. A.9 for more details about those models’ usage on identity document fraud detection).

We then use each of the following baselines with the tuning set to generate a dataset, using the same
metadata as the samples from the testing set from the target domain. We further compare the model
prediction consistency, defined in Eq. 3, between the dataset generated by each baseline and the
testing set for each of the five models.

• BO w/ SSIM-only objective: This is a variation of IDSPACE without any model guidance, i.e.,
using Eq. 2 as the objective function of the Bayesian Optimization (BO) search.

• CycleGAN: This is a widely used domain adaptation approach with pre-trained models publicly
available Zhu et al. (2017); CycleGAN under BSD license. We chose the CycleGAN model pretrained
on the Flickr dataset Flickr, and finetuned it using the tuning set to adapt an ID dataset generated by
BO w/ SSIM-only objective to the target domain.

• IDSPACE: This is our approach using different combinations of guiding models for BO search.

The comparison results are presented in Tab. 2. We observed significant improvement of consistency
scores using our proposed model-guided Bayesian optimization methodology, ranging from 15.62%
to 30.55% compared to BO w/ SSIM-only objective, and 27.40% to 42.33% compared to CycleGAN.
We also found that using our proposed approach, the consistency is not only improved for the guiding
models used in the BO objective function, but also improved for other models trained on the target
domain. In addition, incorporating more guiding models further improved consistency in the majority
of the cases. The algorithm demonstrated robustness across different architectures (mean consistency
= 0.9354±0.003%). Using our approach, small models such as Inception-v3 and DenseNet are easier
to achieve better consistency than other larger models.

To investigate how the model prediction consistency changes with the number of samples available
from the target domain for different baselines, we applied 2, 20, and 40 samples (with balanced fraud
and non-fraud labels) from the tuning set to finetune the CycleGAN model, and to tune the control
parameters for the baseline using BO w/ SSIM-only objective and our model-guided IDSPACE

approach. We used the testing set that is disjoint with the tuning set to measure the prediction
consistency of the ResNet50 model used in Tab. 2 between the documents from the testing set and
the generated documents, both of which share the same metadata (i.e., field values and photos). Our
IDSPACE approach used the target ResNet50 model as the guiding model.

The results in Tab. 3 showed that our approach consistently and significantly improved consistency
even when fewer samples are available from the target domain. This result demonstrated the benefits
of incorporating guiding models into the search objective for a few-shot approach. Furthermore,
the overall objective function improved as the number of samples from the target domain increased.
Notably, even with just two samples, our algorithm demonstrated substantial improvement compared
to baselines, proving the effectiveness of our proposed model-guided framework.

Discussions on Other Baselines. We trained StyleGAN Karras et al. (2020) using different amounts
of documents from MIDV and SIDTD, and found that the available documents in these datasets are
insufficient to obtain reasonable outputs. We also investigated the zero-shot and few-shot capabilities
of existing generative AI models, such as gpt-image-1 from OpenAI Chatgpt, and identified that the
documents generated by those tools have a poor visual fidelity. In addition, fine-tuning or adapting
these models for synthetic document generation requires many documents from the target domain,
which is infeasible in our target use case, given the sensitivity of the identities. More detailed analysis
is presented in Appendix Sec. A.5 and Sec. A.6.
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Table 2: Model prediction consistency evaluation on different models with best results highlighted in blue

Consistency with Target Test Data (Mean ± Std)
Average(row)

ViT-Large ResNet50 Inception-v3 VGG16 DenseNet

CycleGAN 0.5648± 0.004 0.5324± 0.000 0.5093± 0.000 0.5648± 0.000 0.5000± 0.000 0.5343± 0.001
BO w/ SSIM-only objective 0.7257± 0.018 0.5382± 0.006 0.8646± 0.012 0.6146± 0.006 0.5174± 0.012 0.6521± 0.017

Guiding models IDSPACE

DenseNet 0.8819± 0.093 0.8646± 0.018 0.9965± 0.006 0.8715± 0.040 1.0000± 0.000 0.9229± 0.005
DenseNet + Inception-v3 0.8021± 0.136 0.8750± 0.017 0.9931± 0.007 0.8715± 0.060 1.0000± 0.000 0.9083± 0.007
DenseNet + Inception-v3 + ResNet50 0.8194± 0.091 0.9306± 0.017 1.0000± 0.000 0.8889± 0.028 1.0000± 0.000 0.9278± 0.006
DenseNet + Inception-v3 + VGG16 0.8924± 0.015 0.8646± 0.036 1.0000± 0.000 0.9410± 0.025 1.0000± 0.000 0.9396± 0.004
DenseNet + Inception-v3 + ViT-Large 0.9306± 0.020 0.8889± 0.045 0.9965± 0.006 0.9097± 0.036 1.0000± 0.000 0.9451± 0.003
DenseNet + ResNet50 0.9340± 0.015 0.9236± 0.016 1.0000± 0.000 0.8819± 0.035 1.0000± 0.000 0.9479± 0.003
DenseNet + ResNet50 + VGG16 0.9236± 0.029 0.8924± 0.006 1.0000± 0.000 0.9375± 0.016 1.0000± 0.000 0.9507± 0.002
DenseNet + Resnet50 + ViT-Large 0.9201± 0.033 0.9062± 0.041 0.9792± 0.036 0.8403± 0.094 0.9965± 0.006 0.9285± 0.004
DenseNet + VGG16 0.9132± 0.012 0.8819± 0.029 1.0000± 0.000 0.9306± 0.034 1.0000± 0.000 0.9451± 0.003
DenseNet + VGG16 + ViT-Large 0.9306± 0.017 0.8542± 0.030 1.0000± 0.000 0.9479± 0.032 1.0000± 0.000 0.9465± 0.004
DenseNet + ViT-Large 0.9306± 0.039 0.8646± 0.060 1.0000± 0.000 0.8958± 0.029 1.0000± 0.000 0.9382± 0.004
Inception-v3 0.6146± 0.108 0.7778± 0.057 0.9931± 0.007 0.7118± 0.129 0.9444± 0.056 0.8083± 0.025
Inception-v3 + ResNet50 0.7708± 0.068 0.9340± 0.030 0.9965± 0.006 0.8681± 0.012 0.9965± 0.006 0.9132± 0.009
Inception-v3 + ResNet50 + VGG16 0.9375± 0.023 0.9097± 0.025 0.9965± 0.006 0.9479± 0.027 0.9965± 0.006 0.9576± 0.001
Inception-v3 + ResNet50 + ViT-Large 0.9375± 0.007 0.9271± 0.027 0.9965± 0.006 0.8785± 0.027 1.0000± 0.000 0.9479± 0.003
Inception-v3 + VGG16 0.9375± 0.030 0.8750± 0.026 1.0000± 0.000 0.9549± 0.025 1.0000± 0.000 0.9535± 0.003
Inception-v3 + VGG16 + ViT-Large 0.9410± 0.030 0.8194± 0.033 1.0000± 0.000 0.9410± 0.025 1.0000± 0.000 0.9403± 0.005
Inception-v3 + ViT-Large 0.9340± 0.023 0.8576± 0.021 0.9965± 0.006 0.9062± 0.032 1.0000± 0.000 0.9389± 0.004
ResNet50 0.9271± 0.015 0.9514± 0.012 1.0000± 0.000 0.8993± 0.023 1.0000± 0.000 0.9556± 0.002
ResNet50 + VGG16 0.9097± 0.016 0.9097± 0.029 1.0000± 0.000 0.9306± 0.014 1.0000± 0.000 0.9500± 0.002
ResNet50 + VGG16 + ViT-Large 0.9375± 0.012 0.9167± 0.026 1.0000± 0.000 0.9132± 0.006 1.0000± 0.000 0.9535± 0.002
ResNet50 + ViT-Large 0.9132± 0.023 0.9340± 0.050 0.9965± 0.006 0.8785± 0.032 1.0000± 0.000 0.9444± 0.003
VGG16 0.9271± 0.040 0.8368± 0.054 0.9965± 0.006 0.9306± 0.052 1.0000± 0.000 0.9382± 0.004
VGG16 + ViT-Large 0.9514± 0.021 0.8542± 0.025 1.0000± 0.000 0.9444± 0.017 1.0000± 0.000 0.9500± 0.004
ViT-Large 0.9375± 0.016 0.8646± 0.065 0.9861± 0.010 0.8750± 0.024 0.9965± 0.006 0.9319± 0.004
Average(Column) 0.8982± 0.006 0.8846± 0.002 0.9969± 0.000 0.8999± 0.003 0.9972± 0.000

Table 3: Comparison of consistency with ResNet50 trained in the target domain for different baselines with
best results highlighted in blue.

Samples from Target Domain CycleGAN BO w/ SSIM-only objective IDSPACE

2 0.5463± 0.000 0.4132± 0.000 0.8056± 0.008
20 0.5417± 0.000 0.1701± 0.000 0.9444± 0.000
40 0.5324± 0.000 0.5382± 0.006 0.9514± 0.012

6.2 R2. FRAUD DETECTION TRAINING ACCURACY ON DIFFERENT SYNTHETIC DATASETS

As demonstrated in Sec. 6.1, our proposed approach significantly improved the evaluation consistency
of the generated documents with the testing set. Next, we will evaluate whether the fraud detection
models trained on our generated dataset could also generalize well to the documents in the target
domain. We applied the IDSPACE framework to generate a synthetic ID dataset. We only used
ResNet50 used in Sec. 6.1 as the guiding model. We used the tuning set with 40 documents with
balanced labels from the target domain to tune the control parameters. Leveraging these tuned
parameters, we then reuse the metadata distribution of the IDNet dataset, which was released on
Zenodo in 2024, to generate a dataset with the same number of non-fraud samples, which is 5,979
samples, for each of ten European country’s indentity document types contained in the (non-fraud)
MIDV-2020 and the (fraud) SIDTD datasets. In addition, we generate 5,979 samples for each of two
fraud patterns (i.e., crop-and-move, inpainting and rewriting) proposed by the SIDTD benchmark,
and also included in the IDNet dataset, detailed in Appendix Sec. A.7.1. To compare the utility of the
generated dataset to the IDNet dataset, we trained different fraud detection models on each dataset
and evaluated the utility of these models using the evaluation dataset from MIDV-2020/SIDTD (i.e.,
the target domain). The results are shown in Tab. 4, which demonstrates the excellent utility of our
IDSPACE framework in learning fraud detection tasks in the target domain.

6.3 R3. COMPARISON OF PARAMETER TUNING APPROACHES

In this section, we compare our model-guided Bayesian optimization (BO) method with Hyperband,
which accelerates the search for optimal configurations by adaptively allocating resources to promising
candidates using early-stopping and successive halving Li et al. (2018). For both approaches, we used
40 (i.e., 20%) samples from the tuning set, and ResNet50 served as the guiding and the target model.
In BO, hyperparameters init_point and n_iter control the accuracy vs latency tradeoff. Similarly, in
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Target Models

ResNet50 Inception-v3 DenseNet EfficientNet

IDNet 0.9156 ± 0.016 0.9536 ± 0.006 0.8734 ± 0.012 0.9873 ± 0.000

IDSPACE 0.9866 ± 0.000 0.9958 ± 0.000 0.9536 ± 0.006 0.9958 ± 0.000

Table 4: Utility (detection accuracy of the copy-and-move frauds) of the
models trained on IDNet and IDSPACE, w/ best values highlighted in blue.

50 100 150 200 250 300
Latency (Minutes)

0.4

0.6
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5
6
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Figure 3: Bayesian search vs.
Hyperband search

Hyperband search, max_resources controls the maximum amount of resources that can be allocated to
a single configuration, and η controls the proportion of configurations discarded in each round of suc-
cessive halving. Let us denote each instance of (init_point, n_iter) pairs and (max_resources, η)
pairs as bi and hi, respectively. In Fig. 3, the evaluated {b1, b2, ..., b6} (green points) for BO
are {(50, 100), (50, 150), (50, 200), (100, 400), (100, 600), (100, 800)}, and {h1, h2, ..., h6} (red
points) for Hyperband search include {(500, 3), (700, 3), (500, 2), (900, 2), (1000, 2), (1050, 2)}.
As shown in the figure, BO outperforms Hyperband search in terms of both tuning latency and
consistency score. We observe that BO achieves the peak consistency score of 0.95 for b3, which
took 48.9 minutes, while the Hyperband search reached its maximum consistency score of 0.85 for
h5, taking 280.15 minutes. Therefore, BO outperforms the Hyperband by 5.7× in terms of tuning
latency while the peak consistency score achieved by Bayesian optimization is 11.76% better than
the best consistency score of Hyperband search.

7 OUR IDSPACE DATASET AND CONCLUSIONS

Our IDSPACE Dataset. As mentioned in Sec. 6.2, we generated 5,979 non-fraud documents,
and 5,979 fraud documents for each fraud pattern, for each of ten European identity document
types. Moreover, for each of these documents, we also generated one scanned document using
randomly selected positions and rotations, using IDSPACE. In total, our new dataset consists
of 179,370 customized template documents, 179,370 scanned documents, and a small set of 500
mobile documents, with details described in Sec. A.10. More examples are shown in Appendix
Sec. A.1 and Sec. A.10. We published our dataset on HuggingFacehttps://huggingface.co/datasets/
Anonymous-111/IDSPACE for public access. We discussed and evaluated the efforts required to extend
IDSPACE to a new type of identity document (e.g., West Virginia Drivers’ license) in Appendix
Sec. A.4, and the generation stealty in Sec. A.7.2.

Summary. The work is motivated by real-world requirements for a flexible and parameterized
synthetic identity document generation framework from US General Services Administration and US
Department of Homeland Security, where privacy regulations cause the lack of data for evaluating
vendors’ software. Our experiments demonstrate that IDSPACE effectively bridges the gap between
synthetic and the target domain of identity documents for fraud detection model evaluation and
training. By leveraging model-guided BO-tuned generation, the synthetic data preserves the model
prediction consistency of documents from the target domain, enabling reliable model evaluation.
Additionally, the framework offers a user-centric interface that allows users to decouple metadata
that can be flexibly specified by users from control parameters that needs to be automatically tuned.

Impact. IDSPACE is a novel model-guided synthetic data generation approach, designed to address
the shortage of accessible real data for trustworthy, reliable, comprehensive, and flexible evaluation
of existing fraud detection models. Furthermore, our Bayesian optimization-based strategy ensures
that synthetic data can be aligned with the target domain using only a small set of real samples,
significantly reducing the costs and dependency on sensitive real documents for both evaluation and
training. Empirical evidence shows that both model evaluation and training conducted on datasets
generated using our IDSPACE outperform other baselines.

Ethics. Synthetic data plays a critical role in reducing privacy risks, yet we recognize the potential
for dual-use. Malicious actors might attempt to misuse our framework for producing counterfeit
documents. To mitigate this, we deliberately restrict the realism of generated outputs, ensuring that
synthetic IDs do not contain functionally valid elements such as scannable barcodes. In addition, all
portrait photos and ID entity information used in this study are 100% synthetically generated.
The portrait photos are collected from a public synthetic dataset for academic research Photos.
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Reproducibility Discussion. In our code base (submitted as part of the supplementary material),
we provided detailed documentation and automated Python scripts to ensure reproduction. The
data required for reproduction has been uploaded to https://huggingface.co/datasets/Anonymous-111/

IDSPACE
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 MORE DOCUMENT EXAMPLES.

Figures 4 to 13 illustrate sample identity documents from datasets corresponding to 10 countries:
Albania (ALB), Azerbaijan (AZE), Spain (ESP), Estonia (EST), Finland (FIN), Greece (GRC), Latvia
(LVA), Russia (RUS), Serbia (SRB), and Slovakia (SVK). The subfigures (a) through (j) in each of
the three figures depict the following aspects, and the fraudulent regions are highlighted with red
bounding boxes in subfigures (b), (c), (e) and (f):

(a) Non-fraud template image from the MIDV dataset.

(b) Inpaint-and-rewrite fraud sample based on the MIDV image created by SIDTD dataset.

(c) Crop-and-replace fraud sample based on the MIDV image created by SIDTD dataset.

(d) Sample from our improved dataset(IDSPACE) generated using SSIM combined with ResNet50
model guidance as the BO objective.

(e) Inpaint-and-rewrite fraud sample using a template generated by IDSPACE.

(f) Crop-and-replace fraud sample using a template generated by IDSPACE.

(g) Scanned image from the MIDV dataset.

(h) Simulated scanned version of the samples in MIDV dataset, replicating the scanning artifacts of
(d).

(i) Simulated scanned version of the samples in MIDV dataset, replicating the scanning artifacts of
(e).

(j) Simulated scanned version of the samples in MIDV dataset, replicating the scanning artifacts of
(f).

These examples demonstrate the diversity and realism of our generated dataset.

A.2 CONSISTENCY EVALUATION RESULTS FOR MORE TYPES OF CUSTOMIZED TEMPLATE

DOCUMENTS.

We applied our Bayesian Optimization (BO) search-based approach using different combinations of
guiding models to generate customized template documents of othercountries, such as Finland, with
the same experimental settings introduced in Section 6. The comparison results are shown in Table 5.
Similar to the results presented in Table 2, we observe a significant improvement in consistency scores
when using our proposed model-guided BO methodology, compared to the method that uses SSIM
as the sole objective (first row in the table). Specifically, our model-guided BO approach achieves
relative improvements in consistency scores ranging from 22.00% to 34.86% over the SSIM-only
baseline.

A.3 CONSISTENCY EVALUATION RESULTS FOR SCANNED DOCUMENTS.

We further evaluated the effectiveness of our synthetic data generation framework by applying the
proposed method to scanned document images. Due to the absence of annotated fraud patterns in
existing scanned datasets such as MIDV-2020/SIDTD, we generated our target domain for scanned
fraud/non-fraud documents using IDSPACE by randomly selecting control parameters, such as noise
level, brightness, contrast, sharpness, and subtle blurring, as illustrated in Tab. 1. For instance, the
noise level and contrast were sampled from the range [0.5, 1.5], while the shadow shift was randomly
chosen from the range [−3, 3]. The ranges were selected based on visual inspection and alignment
with scanned (non-fraud) documents from the MIDV dataset to ensure visual realism. These control
parameters, once selected, are used to generate all documents of each type. Most of the user-defined
metadata (also illustrated in Tab. 1 is randomly sampled for each document generation so that each
generated document may differ in these aspects (e.g., different position and orientation).

Using this approach, we created a small dataset consisting of 100 non-fraud images and 100 inpaint-
and-rewrite fraud images for each country.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 4: Examples from multiple datasets containing Albanian ID card images.

We followed the same methodology as with the template images: training models on the generated
dataset and performing Bayesian Optimization (BO) with and without model guidance to search over
the predefined parameter set. We then evaluated the consistency scores using different combinations
of guiding models for the BO process with scanned documents in Albania and Finland. The results
are presented in Table 6 and Table 7, respectively.

From these results, we observe that the consistency scores of the model-guided BO method are
generally higher than those obtained on template images. The explanation is that the template region
in scanned images typically occupies only around 20% of the entire image. As a result, the SSIM-only
objective is not sufficiently sensitive to capture subtle manipulations in these regions, allowing the
model-guided approach to dominate in optimizing the objective function.

A.4 SCALING TO NEW DOCUMENT TYPES.

We released documents from only ten European countries because each of these document types has
around 100 high-quality identity documents for non-fraud and fraud classes, respectively, enabling us
to train and drive our model-guided approach to generate meaningful synthetic data. These ten types
of documents, including five types of passports and five types of ID cards, encompass most of the
security features and schema elements found in general identity documents. They also cover different
languages.

To demonstrate that our technique could apply to other types, we used the synthetic West Virginia
driver’s licenses dataset from prior work Xie et al. (2024); Guan et al. (2024), which consists of 5,979
synthetic non-fraud documents and 5,979 synthetic fraud documents for each of the fraud patterns.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 5: Examples from multiple datasets containing Azerbaijani passport images.

We trained the EfficientNet-b3, ResNet50, and ViT-Large models using 1000 non-fraud documents
and 1000 fraud documents, which are split into training, validation, and testing sets by 5:2:3. Similar
to the experimental setting used for Table 2 in our submitted paper, we used 20 non-fraud documents
and 20 fraud documents for Bayesian Optimization search with and without guiding models for
finetuning the hyper-parameters.

The model consistency evaluation results (similar to Tab. 2), obtained on the testing sets (including
300 non-fraud documents and 300 fraud documents), are illustrated in Tab. 8 and Tab. 9, highlighting
the good generalization capability of our IDSPACE synthetic data generation approach proposed in
this work.

Adding a new document template does require an engineering pass to identify field positions and
mapping logic. Still, we emphasize that each new template requires a one-time specification of field
mappings; however, the effort is modest and is amortized by the scalable generation. This cost is
orders of magnitude smaller than collecting and annotating new real data.

Tab. 10 illustrates a detailed breakdown of the time spent preparing a new template for the above
experiment on the West Virginia Driver’s License dataset by a Ph.D student with one year of
experience in the identity document design domain:

The automatic processing times are illustrated in Tab. 11, which are tested on an Ubuntu Linux server
equipped with 48 CPU cores (Intel Xeon Silver 4310, 2.10 GHz), 125 GB of RAM, and two NVIDIA
A10 GPUs (24GB VRAM each).
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 6: Examples from multiple datasets containing Spanish ID card images.

A.5 STYLEGAN RESULTS.

To evaluate the identity generation capability of GANs, we fine-tuned a pre-trained StyleGAN
model using 40 Albanian identity documents in the MIDV/SIDTD dataset. We adopted the official
StyleGAN3 training configuration with the following parameters: cfg=stylegan2, snap=10,
mirror=1, batch=32, and gamma=8.2. Training was conducted using the pretrained model
stylegan2-ffhq-1024x1024.pkl. Since StyleGAN3 requires square inputs, we resized the original
image dimensions from (2167, 1360) to (1024, 1024), preserving the aspect ratio as much as possible.
Model performance was assessed using the FID50K_full metric (Fréchet Inception Distance) against
the full dataset. The best FID score of 57.52 was achieved using the pretrained model, and the
corresponding checkpoint was selected for evaluation.

Figure 14 presents example output. As illustrated, the model struggles to generate semantically
meaningful or identity-consistent images mainly due to the limited size of the training dataset. GANs
generally require hundreds to thousands of high-quality images to learn robust and high-fidelity
representations.

A.6 GENERATIVE RESULTS.

We also experimented with using GPT-4o and GPT-image-1 for ID image generation. The following
prompt was provided for both of the models: “Using the provided sample as a reference, generate a
realistic-looking ID card that closely mimics the layout, design, and visual elements. Replace all
personal information (name, date of birth, ID number, place of birth, etc.) with clearly fictional data.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 7: Examples from multiple datasets containing Estonian ID card images.

Ensure that all formatting, fonts, and security features (such as watermarks, holograms, and layout
positioning) remain as similar to the original as possible.”

Figure 15 presents four images: the original sample (a), the image generated by GPT-4o (b), the
image generated by IDSPACE (c), and the image generated by GPT-Image-1 (d). As shown, the image
generated by GPT-4o replicates certain background elements; however, it fails to fully preserve the
original template structure. While some personal details were modified, others—such as the expiry
date—remained unchanged. Additionally, the layout was inconsistently altered, affecting fields such
as the issuing authority, personal number, and date of issue.

The image generated by GPT-Image-1 demonstrates a clear improvement over GPT-4o by successfully
modifying all personal information as instructed. However, it changes the background design of the
ID, resulting in a noticeable difference that can be easily identified by a human observer. Furthermore,
both models fail to accurately replicate the font size and style, which are critical for maintaining the
authenticity of identity documents. The output image dimensions from both GPT-4o and GPT-Image-1
also differ from those of the original input.

These inconsistencies suggest that although GPT-4o and GPT-Image-1 exhibit some capacity for
layout replication, they lack the precision necessary to maintain the structural and semantic fidelity
required for realistic ID template generation.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 8: Examples from multiple datasets containing Finnish ID card images.

A.7 FIDELITY DISCUSSION

A.7.1 FRAUD PATTERNS

Crop-and-move and inpaint-and-rewrite are standard fraud patterns, as discussed in existing works,
such as SIDTD Boned et al. (2024). We exactly used SIDTD’s methodology to generate these two
fraud patterns randomly. The details are as follows:

(1) Inpaint-and-Rewrite Fraud Pattern. One text field is randomly selected from all the available
fields (except photos and signature) on the ID. A realistic mask is then applied to this specific region
containing the field, while the font size and style for the replacement text are chosen randomly from
the fonts available.

(2) Crop-and-Move Fraud Pattern. In this method, a field (e.g., last name, date of birth, address, etc.)
is randomly selected from one ID and then cropped and replaced with a field from another ID. In
both cases, the fields are selected randomly, with a 95% probability that the same field is chosen in
both IDs and a 5% probability that different PII fields are selected, following SIDTD.

Additionally, these two fraud patterns account for the majority of digital identity fraud. For example,
the Identity Fraud Report 2024 Onfido (2023), released by Onfido (now Entrust), a top technology
company on remote identity verification, reveals the following long-standing trends:

Digital fraudsters are more inclined to use an existing template, e.g., an image of a document found
online, and alter it or manipulate it using digital tools.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 9: Examples from multiple datasets containing Greek passport images.

Most of the document fraud from 2023 (80.3%) follows the above fraud patterns, which may even
include document elements that are obviously wrong and visible to the trained eye, e.g., a manipulated
field, or wrong printing techniques.

The fraudsters are seeking results with minimal effort and maximum reward, and achieve this by
attacking in large volumes. By using scalable models to target businesses, they can determine what
works before exploiting that loophole to attack en masse.

Our tool will help businesses establish a scalable fraud detection system to identify and prevent these
large-scale attacks.

A.7.2 CAN LLM DETECT IDSPACE DOCUMENTS AS GENERATED OR SYNTHETIC?

We conducted experiments to test whether existing LLM models such as GPT-4o could detect that
our generated documents are generated. As shown in the table below, we tested with a zero-shot
method and the few-shot method, providing 2, 4, and 6 examples in the generated and real categories,
respectively, but the performance of GPT-4o remained poor as shown in Tab. 12. Our synthetic data
generation method is stealthy to GPT-4o.
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 10: Examples from multiple datasets containing Latvian passport images.

A.8 ABLATION STUDY: TUNING OF λi .

To investigate the impact of the λ coefficients on consistency in the objective function, we conducted
additional experiments on the model-guided BO method using the SIDTD dataset for the Albanian
(ALB) region. We fixed the guiding model to ResNet50 and set the SSIM weight (λ0) to 1. We then
varied the consistency weight (λ1) across a range of values: 0, 0.2, 0.5, 1, 1.5, 2, 5, and 10. The
results are presented in Table 13.

From the results, we observe that the consistency score increases as the consistency weight λ1

increases, up to a value of 2. Beyond this point, the consistency score begins to slightly decline. This
trend suggests that both SSIM and the consistency score play important roles in guiding the generation
process. SSIM, which measures perceptual similarity to the target image, remains fundamental for
maintaining visual quality, while the consistency term helps ensure semantic alignment. Therefore, a
balanced combination of these two objectives is essential for optimal performance.

A.9 IDENTITY DOCUMENT FRAUD DETECTION MODELS USED IN ACADEMIC AND INDUSTRY

First, this work focuses on fraud detection in documents digitally captured under white light condi-
tions, rather than using multi-spectral imaging techniques such as near-infrared and ultraviolet light.
It also focuses on a binary classification task for specific fraud patterns following a broad class of
academic works in this area Boned et al. (2024). We utilized six commonly used, open-source vision
architectures (ViT, ResNet, Inception, DenseNet, VGG16, and EfficientNet), each widely employed
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 11: Examples from multiple datasets containing Russian passport images.

in recent academic research Boned et al. (2024); Park et al. (2023); Khare et al. (2024) and industrial
fraud detection pipelines Onfido (2023); Bruveris et al. (2020); Gietema et al. (2024); Mahadevan
et al. (2023); Bayer et al. (2025) for remote identity verification, as shown in Tab. 14 and Tab. 15. Our
selected fraud detection models, fine-tuned on real data, serve as strong surrogates for generalizable
fraud detection behavior. Our synthetic data generation method can be easily adopted in commercial
black box platforms that are typically inaccessible due to IP restrictions. These platforms could use
their models as guiding models to apply our approach to generate documents for model evaluation.

A.10 MOBILE DOCUMENT GENERATION

A key application of the IDSPACE is the generation of realistic mobile document images, including
photographs of identity documents captured under diverse real-world backgrounds. In this section,
we present a pipeline for generating such data by replacing a document in an existing background
image with a document generated by IDSPACE. The challenge in this process is to ensure that the
inserted document appears natural and visually consistent within the context of the original image.
This involves solving several technical problems, including accurately detecting and localizing the
original document, segmenting it from the background, aligning the new document to match the
original perspective, and blending it seamlessly into the scene.

To address these challenges, we employ a combination of advanced computer vision models and
image processing techniques. In particular, we use Grounding DINO (Liu et al., 2024), a state-of-the-
art model that integrates object detection and language grounding, to detect and localize the document
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 12: Examples from multiple datasets containing Serbian passport images.

in the original background image. Once localized, the Segment Anything Model (SAM) (Kirillov
et al., 2023) is applied to obtain an accurate segmentation mask of the original document. The
prompt-based interface of SAM allows for precise and flexible segmentation, which is critical for
accurate geometric alignment.

For the blending stage, we adopt the Deep Image Blending (DIB) framework (Zhang et al., 2020),
which synthesizes high-quality images by optimizing a combination of loss functions including
Poisson gradient loss, content loss, style loss, histogram loss, and total variation loss. To enhance
structural fidelity, we extend the DIB loss with an additional differentiable Structural Similarity Index
(SSIM) loss. This augmentation improves both local and global consistency between the blended
image and the background.

Parameterization. Once we have the enhanced DIB model trained, for each generation, a user
can flexibly specify to use the background of a certain existing mobile ID image (e.g., a picture
of A’s driver’s license (DL) placed on top of the keyboard of a computer), and a template image,
e.g., B’s DL, to be blended by replacing A’s DL in the image by B’s DL. When generating a batch
of documents, the users can flexibly specify the distribution of background images. For example,
given a database of existing mobile documents that are annotated with labels describing the objects
in the background, indoor or outdoor, lighting condition, the type of mobile phone used to capture
the image, etc., e.g., MIDV’s collection of mobile documents, users can specify whether the new
mobile dataset to generate will focus on indoor settings or outdoor settings, or it should involve 50%
of indoor images and 50% of outdoor images. Users can also specify the distribution of age, gender,
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(a) Template sample from MIDV (b) Inpaint&Rewrite sample from SIDTD (c) Crop&Replace sample from SIDTD

(d) Template sample from IDSPACE (e) Inpaint&Rewrite sample from IDSPACE (f) Crop&Replace sample from IDSPACE

(g) Scanned sample from MIDV (h) Scanned sample from IDSPACE (i) Scanned sample with In-

paint&Rewrite from IDSPACE

(j) Scanned sample with

Crop&Replace from IDSPACE

Figure 13: Examples from multiple datasets containing Slovakian ID card images.

Figure 14: Images generated by StyleGAN3 using 40 identity samples from the MIDV/SIDTD
dataset.

ethnicity groups, and fraud patterns of the entities involved in the new template images to be blended
with existing documents. For example, using our tool and a database of existing mobile documents, a
user can easily generate a batch of mobile documents featuring 100 Spanish IDs for Asian Females
with ages uniformly distributed from 5 to 95, with an indoor background captured by a discontinued
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Table 5: Model prediction consistency evaluation on different models with best results highlighted in blue (FIN)

Guiding models ViT-Large ResNet50 Inception-v3 VGG16 DenseNet Average

SSIM-only objective 0.5143± 0.007 0.5238± 0.040 0.5667± 0.015 0.7714± 0.004 0.5952± 0.050 0.5943± 0.009
DenseNet 0.8667± 0.002 0.8762± 0.007 0.8571± 0.003 0.8714± 0.000 0.9905± 0.000 0.8924± 0.002
DenseNet + Inception-v3 0.9000± 0.003 0.8762± 0.003 0.8905± 0.005 0.8667± 0.001 0.9857± 0.000 0.9038± 0.002
DenseNet + Inception-v3 + ResNet50 0.9333± 0.001 0.8905± 0.003 0.8714± 0.001 0.8857± 0.000 0.9952± 0.000 0.9152± 0.002
DenseNet + Inception-v3 + VGG16 0.9190± 0.002 0.9048± 0.001 0.9190± 0.002 0.8905± 0.000 1.0000± 0.000 0.9267± 0.001
DenseNet + Inception-v3 + ViT-Large 0.9143± 0.002 0.9048± 0.002 0.9000± 0.003 0.8810± 0.001 0.9667± 0.002 0.9133± 0.001
DenseNet + ResNet50 0.7905± 0.002 0.9190± 0.002 0.8238± 0.003 0.8810± 0.001 0.9952± 0.000 0.8819± 0.005
DenseNet + ResNet50 + VGG16 0.8952± 0.004 0.8952± 0.001 0.8476± 0.005 0.8762± 0.000 0.9524± 0.003 0.8933± 0.001
DenseNet + ResNet50 + ViT-Large 0.8476± 0.006 0.8905± 0.004 0.8095± 0.011 0.8905± 0.001 0.9190± 0.003 0.8714± 0.001
DenseNet + VGG16 0.8381± 0.002 0.8714± 0.002 0.8000± 0.004 0.8619± 0.001 0.9714± 0.001 0.8686± 0.003
DenseNet + VGG16 + ViT-Large 0.9667± 0.000 0.9238± 0.000 0.9143± 0.001 0.8952± 0.000 0.9143± 0.000 0.9229± 0.001
DenseNet + ViT-Large 0.8762± 0.003 0.8952± 0.002 0.7952± 0.008 0.8476± 0.001 0.9571± 0.001 0.8743± 0.003
Inception-v3 0.9048± 0.002 0.8619± 0.004 0.8619± 0.006 0.8667± 0.000 0.9810± 0.000 0.8952± 0.002
Inception-v3 + ResNet50 0.9571± 0.000 0.9095± 0.000 0.9571± 0.001 0.8905± 0.000 1.0000± 0.000 0.9429± 0.002
Inception-v3 + ResNet50 + VGG16 0.8095± 0.006 0.9190± 0.001 0.8238± 0.002 0.8714± 0.000 0.8762± 0.008 0.8600± 0.002
Inception-v3 + ResNet50 + ViT-Large 0.9000± 0.004 0.8714± 0.001 0.8810± 0.001 0.8667± 0.001 0.9762± 0.001 0.8990± 0.002
Inception-v3 + VGG16 0.9571± 0.000 0.9667± 0.000 0.9381± 0.000 0.9095± 0.000 0.8952± 0.000 0.9333± 0.001
Inception-v3 + VGG16 + ViT-Large 0.9286± 0.003 0.9190± 0.001 0.9238± 0.002 0.8952± 0.000 0.9238± 0.003 0.9181± 0.000
Inception-v3 + ViT-Large 0.9333± 0.001 0.9238± 0.000 0.8571± 0.005 0.8905± 0.000 0.9333± 0.001 0.9076± 0.001
ResNet50 0.8190± 0.002 0.8571± 0.001 0.7048± 0.004 0.8476± 0.000 0.8429± 0.000 0.8143± 0.003
ResNet50 + VGG16 0.8667± 0.001 0.8905± 0.001 0.8286± 0.000 0.8762± 0.000 0.9667± 0.001 0.8857± 0.002
ResNet50 + VGG16 + ViT-Large 0.9143± 0.002 0.8619± 0.003 0.8857± 0.005 0.8857± 0.001 0.9857± 0.000 0.9067± 0.002
ResNet50 + ViT-Large 0.8905± 0.001 0.9429± 0.001 0.8952± 0.002 0.8857± 0.001 0.8905± 0.003 0.9010± 0.000
VGG16 0.8000± 0.010 0.8810± 0.003 0.7476± 0.007 0.8571± 0.001 0.8238± 0.030 0.8219± 0.002
VGG16 + ViT-Large 0.9524± 0.000 0.9238± 0.001 0.9048± 0.003 0.8905± 0.000 0.9571± 0.004 0.9257± 0.001
ViT-Large 0.9524± 0.000 0.9429± 0.000 0.9333± 0.000 0.9048± 0.000 0.9000± 0.000 0.9267± 0.000

Table 6: Model prediction consistency evaluation for scanned documents on different models with best results
highlighted in blue (ALB)

Guiding models ViT-Large ResNet50 Inception-v3 VGG16 DenseNet Average

SSIM-only objective 0.4933± 0.000 0.4933± 0.000 0.4933± 0.000 0.4933± 0.000 0.5733± 0.000 0.5093± 0.001
DenseNet 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9778± 0.000 0.9884± 0.000
DenseNet + Inception-v3 1.0000± 0.000 0.9733± 0.000 0.9822± 0.000 0.9689± 0.002 0.9600± 0.000 0.9769± 0.000
DenseNet + Inception-v3 + ResNet50 1.0000± 0.000 0.9733± 0.000 0.9867± 0.000 1.0000± 0.000 0.9556± 0.001 0.9831± 0.000
DenseNet + Inception-v3 + VGG16 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9733± 0.000 0.9876± 0.000
DenseNet + Inception-v3 + ViT-Large 1.0000± 0.000 0.9822± 0.000 0.9867± 0.000 1.0000± 0.000 0.9733± 0.000 0.9884± 0.000
DenseNet + ResNet50 1.0000± 0.000 0.9733± 0.000 0.9867± 0.000 1.0000± 0.000 0.9733± 0.000 0.9867± 0.000
DenseNet + ResNet50 + VGG16 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9511± 0.000 0.9831± 0.000
DenseNet + ResNet50 + ViT-Large 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9689± 0.000 0.9867± 0.000
DenseNet + VGG16 1.0000± 0.000 0.9911± 0.000 0.9867± 0.000 1.0000± 0.000 0.9689± 0.000 0.9893± 0.000
DenseNet + VGG16 + ViT-Large 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9778± 0.000 0.9884± 0.000
DenseNet + ViT-Large 1.0000± 0.000 0.9822± 0.000 0.9867± 0.000 1.0000± 0.000 0.9644± 0.000 0.9867± 0.000
Inception-v3 1.0000± 0.000 0.9867± 0.000 0.9867± 0.000 1.0000± 0.000 0.9689± 0.000 0.9884± 0.000
Inception-v3 + ResNet50 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9644± 0.001 0.9858± 0.000
Inception-v3 + ResNet50 + VGG16 1.0000± 0.000 0.9733± 0.000 0.9822± 0.000 1.0000± 0.000 0.9689± 0.000 0.9849± 0.000
Inception-v3 + ResNet50 + ViT-Large 1.0000± 0.000 0.9956± 0.000 0.9867± 0.000 1.0000± 0.000 0.9644± 0.000 0.9893± 0.000
Inception-v3 + VGG16 1.0000± 0.000 0.9733± 0.000 0.9867± 0.000 1.0000± 0.000 0.9644± 0.000 0.9849± 0.000
Inception-v3 + VGG16 + ViT-Large 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9689± 0.000 0.9867± 0.000
Inception-v3 + ViT-Large 1.0000± 0.000 0.9733± 0.000 0.9867± 0.000 1.0000± 0.000 0.9600± 0.000 0.9840± 0.000
ResNet50 1.0000± 0.000 0.9867± 0.000 0.9333± 0.006 0.9689± 0.002 0.8978± 0.006 0.9573± 0.001
ResNet50 + VGG16 1.0000± 0.000 0.9911± 0.000 0.9867± 0.000 1.0000± 0.000 0.9822± 0.000 0.9920± 0.000
ResNet50 + VGG16 + ViT-Large 1.0000± 0.000 0.9822± 0.000 0.9867± 0.000 1.0000± 0.000 0.9511± 0.000 0.9840± 0.000
ResNet50 + ViT-Large 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9556± 0.000 0.9840± 0.000
VGG16 1.0000± 0.000 0.9778± 0.000 0.9867± 0.000 1.0000± 0.000 0.9867± 0.000 0.9902± 0.000
VGG16 + ViT-Large 1.0000± 0.000 0.9733± 0.000 0.9822± 0.000 1.0000± 0.000 0.9822± 0.000 0.9876± 0.000
ViT-Large 1.0000± 0.000 0.9733± 0.000 0.9244± 0.006 0.9600± 0.003 0.9200± 0.009 0.9556± 0.001

Samsung Galaxy C5 mobile phone, for testing their newly trained models. The control parameters to
be automatically tuned are the same with scanned images, as shown in Tab. 1.

Using the above methodology, we have generated 50 mobile documents for each of the ten European
identity document types included in the IDSPACE dataset to illustrate the robust use case of our
IDSPACE framework. Samples of the mobile documents generated for each of ten European identity
document types are described in Figure 16. While some small issues remain to be improved, such as
collecting a diverse set of background images with detailed annotations to facilitate semantic search
of backgrounds to match user requirements, and addressing inconsistent sizes and lighting conditions
between the document in the background image and user requirements, we believe the solutions to
these problems are orthogonal with the parameterized and model-guided framework we proposed in
this work, and can be addressed in our future works.
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Table 7: Model prediction consistency evaluation for scanned documents on different models with best results
highlighted in blue (FIN)

Guiding models ViT-Large ResNet50 Inception-v3 VGG16 DenseNet Average

SSIM-only objective 0.4949± 0.001 0.5505± 0.002 0.5960± 0.013 0.5000± 0.001 0.5505± 0.011 0.5384± 0.001
DenseNet 0.9848± 0.000 0.9747± 0.000 0.9747± 0.000 0.9646± 0.000 0.9747± 0.000 0.9747± 0.000
DenseNet + Inception-v3 0.9848± 0.000 0.9798± 0.000 0.9848± 0.000 0.9747± 0.000 1.0000± 0.000 0.9848± 0.000
DenseNet + Inception-v3 + ResNet50 0.9848± 0.000 0.9798± 0.000 0.9747± 0.000 0.9697± 0.000 0.9949± 0.000 0.9808± 0.000
DenseNet + Inception-v3 + VGG16 0.9848± 0.000 0.9646± 0.000 0.9697± 0.000 0.9899± 0.000 1.0000± 0.000 0.9818± 0.000
DenseNet + Inception-v3 + ViT-Large 0.9848± 0.000 0.9697± 0.000 0.9798± 0.000 0.9697± 0.000 0.9949± 0.000 0.9798± 0.000
DenseNet + ResNet50 0.9848± 0.000 0.9798± 0.000 0.9798± 0.000 0.9747± 0.000 0.9545± 0.001 0.9747± 0.000
DenseNet + ResNet50 + VGG16 0.9848± 0.000 0.9798± 0.000 0.9747± 0.000 0.9747± 0.000 1.0000± 0.000 0.9828± 0.000
DenseNet + ResNet50 + ViT-Large 0.9848± 0.000 0.9798± 0.000 0.9798± 0.000 0.9646± 0.000 1.0000± 0.000 0.9818± 0.000
DenseNet + VGG16 0.9848± 0.000 0.9697± 0.000 0.9747± 0.000 0.9646± 0.000 1.0000± 0.000 0.9788± 0.000
DenseNet + VGG16 + ViT-Large 0.9848± 0.000 0.9646± 0.000 0.9747± 0.000 0.9798± 0.000 1.0000± 0.000 0.9808± 0.000
DenseNet + ViT-Large 0.9848± 0.000 0.9747± 0.000 0.9747± 0.000 0.9697± 0.000 0.9697± 0.001 0.9747± 0.000
Inception-v3 0.9848± 0.000 0.9747± 0.000 0.9747± 0.000 0.9596± 0.000 0.9848± 0.000 0.9758± 0.000
Inception-v3 + ResNet50 0.9848± 0.000 0.9848± 0.000 0.9747± 0.000 0.9596± 0.000 0.9949± 0.000 0.9798± 0.000
Inception-v3 + ResNet50 + VGG16 0.9848± 0.000 0.9798± 0.000 0.9747± 0.000 0.9697± 0.000 1.0000± 0.000 0.9818± 0.000
Inception-v3 + ResNet50 + ViT-Large 0.9848± 0.000 0.9899± 0.000 0.9747± 0.000 0.9697± 0.000 1.0000± 0.000 0.9838± 0.000
Inception-v3 + VGG16 0.9848± 0.000 0.9697± 0.000 0.9697± 0.000 0.9697± 0.000 1.0000± 0.000 0.9788± 0.000
Inception-v3 + VGG16 + ViT-Large 0.9848± 0.000 0.9848± 0.000 0.9747± 0.000 0.9596± 0.000 0.9848± 0.000 0.9778± 0.000
Inception-v3 + ViT-Large 0.9848± 0.000 0.9697± 0.000 0.9798± 0.000 0.9545± 0.000 1.0000± 0.000 0.9778± 0.000
ResNet50 0.9848± 0.000 0.9697± 0.000 0.9242± 0.004 0.9697± 0.000 0.9899± 0.000 0.9677± 0.001
ResNet50 + VGG16 0.9848± 0.000 0.9899± 0.000 0.9242± 0.004 0.9545± 0.000 0.9848± 0.000 0.9677± 0.001
ResNet50 + VGG16 + ViT-Large 0.9848± 0.000 0.9697± 0.000 0.9293± 0.003 0.9697± 0.000 0.9848± 0.000 0.9677± 0.000
ResNet50 + ViT-Large 0.9848± 0.000 0.9646± 0.000 0.8434± 0.010 0.8586± 0.018 0.9646± 0.001 0.9232± 0.004
VGG16 0.9848± 0.000 0.9747± 0.000 0.9697± 0.000 0.9798± 0.000 0.9899± 0.000 0.9798± 0.000
VGG16 + ViT-Large 0.9798± 0.000 0.9394± 0.001 0.8838± 0.015 0.9545± 0.001 0.9141± 0.015 0.9343± 0.001
ViT-Large 0.9848± 0.000 0.9747± 0.000 0.9848± 0.000 0.9747± 0.000 0.9697± 0.001 0.9778± 0.000

Table 8: Consistency Score (Mean ± Std) for Various Target Models W/O Guiding Models (Baseline)

EfficientNet-b3 ResNet50 ViT-Large Average

BO w/ SSIM-only objective 0.9566 ± 0.028 0.6728 ± 0.131 0.6465 ± 0.193 0.7586 ± 0.172

Table 9: Consistency Score (Mean ± Std) for Various Target Models W/ Guiding Models (Our proposed
approach)

Guiding Models EfficientNet-b3 ResNet50 ViT-Large Average

EfficientNet-b3 0.9860 ± 0.004 0.7655 ± 0.166 0.8531 ± 0.169 0.8682 ± 0.091

EfficientNet-b3 + ResNet50 0.9851 ± 0.004 0.9204 ± 0.023 0.9078 ± 0.048 0.9378 ± 0.041

EfficientNet-b3 + ViT-Large 0.9817 ± 0.002 0.8310 ± 0.118 0.9301 ± 0.011 0.9143 ± 0.077

ResNet50 0.9779 ± 0.012 0.9356 ± 0.004 0.9301 ± 0.018 0.9479 ± 0.026

ResNet50 + ViT-Large 0.9782 ± 0.006 0.9135 ± 0.026 0.9247 ± 0.026 0.9388 ± 0.035

ViT-Large 0.9802 ± 0.008 0.8597 ± 0.038 0.9161 ± 0.037 0.9187 ± 0.060

Table 10: Breakdown of the manual effort required to introduce a new type of identity document

Steps Time Required (seconds)

Identify meta data 148 ( for all 21 fields)

Generate template(prompt development and tuning) 246

Predefine hyperparameter for each field 1356

Configure the scripts for filling metadata to template 1210

Table 11: Breakdown of the automatic processing (i.e., our scripts) required to generate documents for the new
type of identity document

Steps Computing Time (seconds)

Stable diffusion Generate template 16.9

Generate synthetic metadata 39.53 (for automatically generating 1000 images)

Hyperparameter search 42,264

Fill metadata to template 1413 (for 1000 images)

Table 12: Results of using GPT-4o to detect generated/diffused samples

Methods ACC PRC Recall F1

Zero-shot 0.4667 ± 0.058 0.4167 ± 0.144 0.1167 ± 0.02 0.1801 ± 0.04

Few-shot (2 demonstrations for real and generated respectively) 0.5167 ± 0.058 0.5170 ± 0.058 0.5167 ± 0.076 0.5159 ± 0.061

Few-shot (4 demonstrations for real and generated respectively) 0.5917 ± 0.076 0.5796 ± 0.060 0.6667 ± 0.126 0.6177 ± 0.081

Few-shot (6 demonstrations for real and generated respectively) 0.5750 ± 0.090 0.5693 ± 0.077 0.5833 ± 0.144 0.5747 ± 0.107
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(a) Sample Image (b) Generated Image from GPT-4o

(c) Generated Image from IDSPACE (d) Generated Image from GPT-Image-1

Figure 15: Comparison of Sample and Generated Image

Table 13: Consistency for different λ1(Mean ± Variance)

λ1 0 0.2 0.5 1 1.5 2 5 10

Consistency 0.4889± 0.061 0.9315± 0.000 0.9167± 0.001 0.9407± 0.001 0.9481± 0.000 0.9537± 0.000 0.9509± 0.000 0.9306± 0.001

Table 14: Vision Models Used in Recent Academic Research

Models Used for Fraud Detection

SIDTD Boned et al. (2024) EfficientNet-B3, ResNet50, ViT-large, etc.

Kid34k Park et al. (2023) ResNet18, ResNet34, EfficientNet, DenseNet, etc.

Khare et al. (2024) CNN, EfficientNet, etc.

Table 15: Vision Models in Industrial Fraud Detection Pipelines

Models Used for Fraud Detection

Onfido (Now Entrust) Onfido’s Atlas AI platform supports micro-model ensembles ( 10k ML mod-

els Onfido (2023)), including convolutional models Gietema et al. (2024)

such as ResNet Bruveris et al. (2020), VGG16 Mahadevan et al. (2023), and

ViT Mahadevan et al. (2023) backbones.

MicroBlink MicroBlink’s Know Your Customer (KYC) platform leverages ViT models

for core platform and EfficientNet models for edge Microblink (2025).

Jumio CNN-based document neural networks Bayer et al. (2025).
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(a) Albania (b) Azerbaijan (c) Spain

(d) Estonia (e) Finland (f) Greece

(g) Latvia (h) Russia (i) Serbia

(j) Slovakia

Figure 16: Example Mobile document images generated for the 10 different templates.

27



1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Under review as a conference paper at ICLR 2026

(a) Background for Fig. 16(a) (b) Background for Fig. 16(b) (c) Background for Fig. 16(c)

(d) Background for Fig. 16(d) (e) Background for Fig. 16(e) (f) Background for Fig. 16(f)

(g) Background for Fig. 16(g) (h) Background for Fig. 16(h) (i) Background for Fig. 16(i)

(j) Background for Fig. 16(j)

Figure 17: Background images used in Fig. 16.
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