
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VALUE FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

While most reinforcement learning methods today flatten the distribution of future
returns to a single scalar value, distributional RL methods exploit the return distri-
bution to provide stronger learning signals and to enable applications in exploration
and safe RL. While the predominant method for estimating the return distribution
is by modeling it as a categorical distribution over discrete bins or estimating a
finite number of quantiles, such approaches leave unanswered questions about the
fine-grained structure of the return distribution and about how to distinguish states
with high return uncertainty for decision-making. The key idea in this paper is to
use modern, flexible flow-based models to estimate the full future return distribu-
tions and identify those states with high return variance. We do so by formulating a
new flow-matching objective that generates probability density paths satisfying the
distributional Bellman equation. Building upon the learned flow models, we esti-
mate the return uncertainty of distinct states using a new flow derivative ODE. We
additionally use this uncertainty information to prioritize learning a more accurate
return estimation on certain transitions. We compare our method (Value Flows)
with prior methods in the offline and online-to-online settings. Experiments on 37
state-based and 25 image-based benchmark tasks demonstrate that Value Flows
achieves a 1.3× improvement on average in success rates.

1 INTRODUCTION

returns

time

Figure 1: Value Flows models the return distribution at
each time step using a flow-matching model that is opti-
mized to obey the Bellman Equation at each transition.

While many of the recent successes in reinforce-
ment learning (RL) have focused on estimat-
ing future returns as a single scalar, modeling
the entire future return distribution can provide
stronger learning signals and indicate bits about
uncertainty in decision-making. Distributional
RL promises to capture statistics of future re-
turns, achieving both strong convergence guaran-
tees (Bellemare et al., 2017; Wang et al., 2023a;
2024) and good performance on benchmarks
such as Atari and D4RL (Bellemare et al., 2017;
Dabney et al., 2018; Ma et al., 2021). This pa-
per aims to understand the benefits of using a
more flexible representation of the return distri-
bution, both as a critic in actor-critic RL and for
estimating the variance in the future returns.

Modern generative models, such as flow match-
ing (Lipman et al., 2023; 2024; Liu et al., 2023;
Albergo & Vanden-Eijnden, 2023) and diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), have shown great success in
representing complex, multi-modal distributions in continuous spaces. Building upon their successes,
we will use expressive flow-based models to fit the return distributions and estimate the return
uncertainty of different states. These bits of uncertainty information, in turn, allow us to prioritize
learning of the return estimation on certain transitions.

The main contribution of our work is Value Flows, a framework for modeling the return distribution
using flow-matching methods (Fig. 1). The key idea is to formulate a distributional flow-matching
objective that generates probability density paths satisfying the distributional Bellman equation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

automatically. Using the learned flow-based models, we estimate the return variance of distinct states
using a new flow derivative ODE and use it to reweight the flow-matching objective. Value Flows also
enables efficient estimation of the return expectation (Q-value), bridging a variety of policy extraction
methods. Experiments on 37 state-based and 25 image-based benchmark tasks show Value Flows
outperforms alternative offline and offline-to-online methods by 1.3× improvement on average.

2 RELATED WORK

Distributional RL views the RL problem through the lens of the future return distribution instead
of a scalar Q-value (Engel et al., 2005; Muller et al., 2024; Morimura et al., 2010). Prior work
has shown both strong convergence guarantees (Wang et al., 2023a; 2024) and good empirical
performance Farebrother et al. (2024); Bellemare et al. (2017); Ma et al. (2025) of this family of
methods, enabling applications in exploration (Mavrin et al., 2019) and safe RL (Ma et al., 2021;
2025). However, those methods typically parameterize the return distribution as discrete bins and
minimize the KL divergence to the distributional Bellman target (Bellemare et al., 2017) or use a
finite number of quantiles to approximate the full return distribution (Dabney et al., 2018). In contrast,
Value Flows models the full return distribution directly using state-of-the-art generative models.

Perhaps the most popular modern generative models are autoencoders (Kingma & Welling, 2013),
autoregressive models (Vaswani et al., 2017), denoising diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021), and flow-matching models (Lipman et al., 2023; 2024; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023). In the context of RL, these generative models have
succeeded in modeling the trajectories (Chen et al., 2021; Ajay et al., 2023), the transitions (Alonso
et al., 2024; Janner et al., 2021; Farebrother et al., 2025), the skills (Ajay et al., 2021; Pertsch et al.,
2021; Frans et al., 2024; Zheng et al., 2025), and the policies (Wang et al., 2023b; Hansen-Estruch
et al., 2023; Park et al., 2025c; Dong et al., 2025b). We employ the state-of-the-art flow-matching
objective (Lipman et al., 2023) to estimate the future return distribution.

This paper solves offline RL and offline-to-online RL problems. The goal of offline RL is to learn a
policy from previously collected datasets, often through conservative behavioral regularization (Peng
et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021a; Hansen-Estruch et al., 2023; Park et al.,
2025c) or value constraints (Kumar et al., 2020b; Kostrikov et al., 2021b). After learning the offline
policy, offline-to-online RL uses interactions with the environment to fine-tune an online policy, often
requiring balancing exploration (Yang et al., 2023; Mark et al., 2023), calibrating values (Nakamoto
et al., 2024), or maintaining offline data (Nair et al., 2021; Ball et al., 2023; Dong et al., 2025a;b).
Our approach focuses on estimating the full return distribution, resulting in more accurate Q-value
estimations that benefit both settings.

Prior work has used confidence weight from Q estimates to reweight the Bellman error (Kumar et al.,
2020a; 2019; Lee et al., 2021; Schaul et al., 2015), aiming to mitigate the issue of instability in
Q-learning (Tsitsiklis & Roy, 1997; Baird, 1995; van Hasselt et al., 2015). These methods construct
the uncertainty weight using bootstrapped errors from Q estimations (Kumar et al., 2020a; Schaul
et al., 2015) or the epistemic uncertainty from an ensemble of Q networks (Lee et al., 2021). Our
work builds on these prior works by using variance to reweight the critic objective (a flow-matching
objective in our case), and is most similar to prior methods that do weighting based on aleatoric
uncertainty (Kumar et al., 2020a; Schaul et al., 2015).

3 PRELIMINARIES

We consider a Markov decision process (MDP) (Sutton et al., 1998; Puterman, 2014) defined by a
state space S, an action space A ⊂ Rd, an initial state distribution ρ ∈ ∆(S), a bounded reward
function r : S × A → [rmin, rmax],1 a discount factor γ ∈ [0, 1), and a transition distribution
p : S ×A → ∆(S), where ∆(X) denotes the set of all possible probability distributions over a space
X . We will use h to denote the time step in an MDP, use uppercase X to denote a random variable,
use lowercase x to denote the value of X , use FX to denote the cumulative distribution function
(CDF) of X , and use pX to denote the probability density function (PDF) of X . In Appendix A.1,
we include a brief discussion about the expected discounted return and the Q function in RL.

1While we consider deterministic rewards, our discussions generalize to stochastic rewards used in prior
work (Bellemare et al., 2017; Dabney et al., 2018; Ma et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This work considers the offline RL problems (Lange et al., 2012) (Sec. 4.4), which aim to maximize
the return using a fixed dataset. We will use D = {(s, a, r, s′)} to denote the dataset with transitions
collected by some behavioral policies. We also extend our discussions to offline-to-online RL
problems (Sec. 4.4), where algorithms first pre-train a policy from the offline dataset D and then
fine-tune the policy with online interactions in the exact same environment. Those online interactions
will also be stored in D, enabling off-policy learning.

Distributional RL. Instead of focusing on the expected discounted return (scalar), distributional
RL (Morimura et al., 2010; Bellemare et al., 2017) models the entire return distribution. Given
a policy π, we denote the (discounted) return random variable as Zπ =

∑∞
h=0 γ

hr(Sh, Ah) ∈[
zmax ≜ rmin

1−γ , zmin ≜ rmax
1−γ

]
, and denote the conditional return random variable as Zπ(s, a) =

r(s, a) +
∑∞

h=1 γ
hr(Sh, Ah).2 We note that the expectation of the conditional return random

variable Zπ(s, a) is equivalent to the Q function: Qπ(s, a) = Eπ(S0=s,A0=a,S1,A1,···) [Z
π(s, a)].

Prior work (Bellemare et al., 2017) defines the distributional Bellman operator under policy π for a
conditional random variable Z(s, a) as

T πZ(s, a)
d
= r(s, a) + γZ(S′, A′), (1)

where S′ and A′ are random variables following the joint density p(s′ | s, a)π(a′ | s′) and d
= denotes

identity in distribution. This definition implies two important relationships for the CDF and the
PDF of the random variable T πZ(s, a) (see Lemma 1 and Lemma 2 in Appendix A.2). We will use
these two implications to derive our method in Sec. 4.1 and Sec. 4.2. Prior work (Bellemare et al.,
2017) has already shown that the distributional Bellman operator T π is a γ-contraction under the
p-Wasserstein distance, indicating that T π has a unique fixed point. We include a justification for the
fixed point Zπ(s, a) in Lemma 3, and will use the contraction property of T π to estimate the return
distribution with theoretical guarantees (Sec. 4.1 & 4.2).

Flow matching. Flow matching (Lipman et al., 2023; 2024; Liu et al., 2023; Albergo & Vanden-
Eijnden, 2023) refers to a family of generative models based on ordinary differential equations
(ODEs). The goal of flow matching methods is to transform a simple noise distribution into a target
distribution pX over some space X ⊂ Rd. We will use t to denote the flow time step and sample the
noise ϵ from a standard Gaussian distribution N (0, I) throughout our discussions. Flow matching
uses a time-dependent vector field v : [0, 1]×Rd → Rd to construct a time-dependent diffeomorphic
flow ϕ : [0, 1] × Rd → Rd (Lipman et al., 2023; 2024) that realizes the transformation. The
resulting probability density path p : [0, 1]×Rd → ∆(Rd) of the vector field v satisfies the continuity
equation (Lipman et al., 2023). In Sec. 4, we will estimate the return distribution using flow-based
models, utilizing the continuity equation (Sec. 4.2) and flow ODE (Sec. 4.3).

Prior work has proposed various formulations for learning the vector field (Lipman et al., 2023; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023). We adopt the simplest flow matching objectives called
conditional flow matching (CFM) (Lipman et al., 2023) to construct loss functions for optimizing the
return vector field (Sec. 4.2). Appendix A.3 includes detailed discussions of flow matching methods.

4 VALUE FLOWS

In this section, we introduce our method for efficiently estimating the return distribution using an
expressive flow-matching model, resulting in an algorithm called Value Flows. We first formalize the
problem setting, providing motivations and desiderata for the flow-based return estimation. We then
introduce the update rules for the return vector field, deriving a distributional flow matching loss to fit
the discounted return distribution. Our practical algorithm will build upon this distributional flow
matching loss and incorporate uncertainty in the return distribution.

4.1 MOTIVATIONS AND DESIDERATA

While prior actor-critic methods (Fujimoto et al., 2018; Haarnoja et al., 2018) typically involve
estimating the scalar Q function of a policy, we instead consider estimating the entire return distri-
bution using state-of-the-art generative models. Our desiderata are threefold: we want our model

2By definition, we can also write Zπ = Zπ(S0, A0).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

capable of (1) estimating the full distribution over returns without coarse-graining (2) learning proba-
bility densities satisfying the distributional Bellman backup (Eq. 9), while preserving convergence
guarantees, and (3) incorporating the uncertainty information into the distributional flow matching
losses (Lee et al., 2021; Kumar et al., 2020a). Prior distributional RL methods either discretize the
return distribution (Bellemare et al., 2017) or use a finite number of quantiles to represent the return
distribution (Dabney et al., 2018), violating these desiderata.

To achieve these goals, we use an expressive flow-based model to represent the conditional return
random variable Zπ(s, a) (desiderata (1)). We will learn a time-dependent vector field v : R ×
[0, 1]× S ×A → R to model the return distribution. The desired vector field v⋆ will produce a time-
dependent probability density path p⋆ : R× [0, 1]× S ×A → ∆(R) that satisfies the distributional
Bellman equation (Eq. 10) for any flow time step t ∈ [0, 1],

p⋆(zt | t, s, a) = T πp⋆(z | t, s, a) = 1

γ
Ep(s′|s,a),π(a′|s′)

[
p⋆

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′)] . (2)

Thus, p⋆(z1 | 1, s, a) converges to the discounted return distribution pZπ (z | s, a) (desiderata (2)).
To optimize the vector field v toward v⋆, Sec. 4.2 will construct a flow matching loss that resembles
temporal difference learning (Sutton, 1988). We will show that both the expected return (Q function)
and variance of the return are easy to compute using the initial vector field v(ϵ | 0, s, a) and the
derivative of the vector field ∂v/∂z ∈ R respectively (desiderata (3); Sec. 4.3). Our practical
algorithm (Sec. 4.4) will weight our flow matching loss using the variance estimate.

4.2 ESTIMATING THE RETURN DISTRIBUTION USING FLOW-MATCHING

We start by constructing the update rules for the vector field and the probability density path, and
then derive the preliminary flow matching losses to fit the return distribution. We will use these
preliminary losses to construct the practical loss used in our algorithm (Sec. 4.4).

The vector field update rule. Similar to the standard Bellman operator (Agarwal et al., 2019;
Puterman, 2014), the distributional Bellman operator preserves convergence guarantees regardless of
initialization (Bellemare et al., 2017). This property allows us to first construct update rules for a
vector field v(zt | t, s, a) and a probability density path p(zt | t, s, a) separately and then relate them
via the continuity equation (Eq. 12).

Specifically, given a policy π and the transition p(s′ | s, a), we start from a randomly initialized
vector field vk(z

t | t, s, a) (iteration k = 0) that generates the probability density path pk(z
t | t, s, a).

We construct a new vector field and a new probability density path using vk and pk:

pk+1(z
t | t, s, a) ≜ T πpk(z

t | t, s, a) = 1

γ
Ep(s′|s,a),π(a′|s′)

[
pk

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′)] ,
vk+1(z

t | t, s, a) ≜
1
γEp(s′|s,a),π(a′|s′)

[
pk

(
zt−r(s,a)

γ

∣∣∣ t, s′, a′) vk

(
zt−r(s,a)

γ

∣∣∣ t, s′, a′)]
pk+1(zt | t, s, a)

. (3)

Importantly, these definitions only instantiate the functional form of the new vector field vk+1 and
the new probability density path pk+1, missing a connection between them. Establishing an explicit
relationship between the new vector field vk+1 and the new probability density path pk+1 requires
using the continuity equation (Eq. 12) between the vector field vk and its probability density path pk,
which we show in the following proposition.
Proposition 1 (Informal). Given the vector field vk that generates the probability density path pk,
the new vector field vk+1 generates the new probability density path pk+1.

See Appendix B.1 for the detailed statement and a proof. There are two implications of this
proposition. First, since the new vector field vk+1 generates the new probability density path pk+1,
applying the distributional Bellman operator to the probability density path pk is equivalent to
learning a vector field vk+1 that satisfies Eq. 3. This implication allows us to convert the problem
of estimating the full return distribution into the problem of learning a vector field, which naturally
fits into the flow-matching framework. Second, since the distributional Bellman operator T π is a
γ-contraction, repeatly applying T π to the probability density path pk guarantees convergence to
p⋆(zt | t, s, a) (Eq. 2). Therefore, we can construct a flow matching loss to learn the vector field
vk+1 with a guarantee to converge toward v⋆.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The distributional flow matching losses. We now derive the preliminary flow matching losses
for estimating the return distribution only using transition samples from the dataset D.3 Given the
vector field vk, one simple approach to learn a new vector field v satisfying the update rule in Eq. 3 is
minimizing the mean squared error (MSE) between v and vk+1. We call this loss the distributional
flow matching (DFM) loss:

LDFM(v, vk) = E(s,a,r)∼D,t∼UNIF([0,1])

pk+1(z
t|t,s,a)

[(
v(zt | t, s, a)− vk+1(z

t | t, s, a)
)2]

. (4)

It is easy to verify that argminv LDFM(v, vk) = vk+1 (see Lemma 4 in Appendix B). Similar to the
standard flow matching loss (Lipman et al., 2023), this loss function is not practical because of (1) the
unknown transition probability density p(s′ | s, a), and (2) the intractable integral (the expectation)
in the vector field vk+1. To tackle the issue of the intractable vector field vk+1, we optimize the
alternative distributional conditional flow matching (DCFM) loss:

LDCFM(v, vk) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),zt∼ 1
γ pk

(
zt−r

γ

∣∣∣t,s′,a′
)
[(

v(zt | t, s, a)− vk

(
zt − r

γ

∣∣∣∣ t, s′, a′))2
]
(5)

Note that we can interpret the transformed returns (zt − r)/γ as convolving the probability density
path pk and use a change of variable to simplify this DCFM loss (see Lemma 5 in Appendix B).
Unlike the DFM loss LDFM, the DCFM loss LDCFM can be easily estimated via samples from the
dataset D. Like the connection between the flow matching loss and the conditional flow matching
loss in Lipman et al. (2023), the DCFM loss has the same gradient as the DFM loss, indicating that
they have the same minimizer.

Proposition 2 (Informal). The gradient∇vLDFM(v, vk) is the same as the gradient∇vLCDFM(v, vk).

See Appendix B.1 for the detailed statement and a proof. Importantly, optimizing LDCFM does not
require access to the full transition distribution and prevents taking the intractable integral. Note that
LDCFM is a TD loss because it corresponds to applying the distributional Bellman operator T π to the
probability density path pk. Furthermore, our flow-based model produces estimations of the return
expectation (Q function; Sec. 4.4) and the return variance (aleatoric uncertainty; Sec. 4.3) easily, both
of which will be incorporated into our algorithm. In Appendix C.1, we discuss the practical flow
matching losses for fitting the return distribution.

4.3 HARNESSING UNCERTAINTY IN THE RETURN ESTIMATION

Prior works (Kumar et al., 2020a; Lee et al., 2021) have found that bootstrapping the uncertainty
information from an ensemble of value estimations stabilizes TD learning. Different from these
prior methods, which typically estimate epistemic uncertainty, our flow-based model incorporates
the aleatoric uncertainty information by modeling the full return distribution. This, our method
models the stochasticity intrinsic to the MDP. Because our flow-based model estimates the full return
distribution, we can further leverage aleatoric uncertainty information by modifying the Bellman
backup to attend to state and action pairs that contain high return variance. However, using Monte
Carlo estimations for the uncertainty in returns can be computationally costly. We first present an
estimation of return expectation using the initial vector field and an approximation of return variance
using the Taylor expansion. We then introduce a new ODE that relates the derivative of the learned
diffeomorphic flow, allowing us to estimate the return variance in practice. Using this variance
estimation, we define the confidence weight for reweighting the distributional flow matching losses.

Prior work (Frans et al., 2025) has shown that the learned vector field v (from Sec. 4.2) at the flow
time t = 0 points toward the dataset mean. We adopt the same idea to estimate the return expectation
(E[Zπ(s, a)], i.e., Q value) using Gaussian noise ϵ ∼ N (0, 1). Additionally, we estimate the return
variance Var(Zπ(s, a)) using a first-order Taylor approximation on the corresponding (diffeomorphic)
flow ϕ : R× [0, 1]×S ×A → R of the vector field v. Specifically, the flow ϕ(z | t, s, a) transforms
another noise ϵ0 ∼ N (0, 1) into a return prediction ϕ(ϵ0 | 1, s, a). We linearize the return prediction
around noise ϵ using a Taylor expansion and then compute the variance of this linearization.

3In this case, we do not have full access to the distributions of policy π(a | s) and transition p(s′ | s, a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Value Flows is a RL algorithm using flow matching to model the return distribution.

1: Input The return vector field vθ, the target return vector field vθ̄, the BC flow policy πω, the
one-step flow policy πη , and the dataset D.

2: for each iteration do
3: Sample a batch of transitions {(s, a, s′, r)} ∼ D and a batch of noises {ϵ} ∼ N (0, 1)
4: Compute the confidence weight w(s, a, ϵ) using the Euler method and VJP ▷ Sec. 4.3
5: Train the return vector field vθ by minimizing LValue Flow(θ) ▷ Appendix C.1

▽ Offline RL
6: Train the BC flow policy πω by minimizing LBC Flow(ω) ▷ Appendix C.2

▽ Online fine-tuning in offline-to-online RL
7: Train the one-step flow policy πη by minimizing LOne-step Flow(η) ▷ Appendix C.2
8: Update the target return vector field vθ̄ using exponential moving averages
9: Return vθ, πω , and πη .

Proposition 3 (Informal). The initial vector field v(ϵ | 0, s, a) produces an estimate for the return
expectation, while the first-order Taylor approximation of the flow ϕ(ϵ0 | 1, s, a) around ϵ produces
an estimate for the return variance,

Ê [Zπ(s, a)] = Eϵ∼N (0,1)[v(ϵ | 0, s, a)], V̂ar(Zπ(s, a)) = Eϵ∼N (0,1)

[(
∂ϕ

∂ϵ
(ϵ | 1, s, a)

)2
]
. (6)

See Appendix B.2 for the detailed statement and a proof. In practice, we can compute the flow
derivative ∂ϕ/∂ϵ using another ODE, drawing a connection with the vector field derivative ∂v/∂z.

Proposition 4 (Informal). The flow derivative ∂ϕ/∂ϵ and the vector field derivative ∂v/∂z satisfy a
flow derivative ODE.

See Appendix B.2 for the detailed statement and a proof. This flow derivative ODE, together
with the flow ODE (Eq. 11), enables computing both the return prediction and the return variance
estimation (Eq. 6) using a numerical solver (Alg. 2) and an efficient vector-Jacobian product (VJP)
implementation (JAX Developers, 2025).

We will use the estimated variance to reweight our flow matching losses (Appendix C.1). Since the
distributional RL algorithms typically model the aleatoric uncertainty, a high return variance indicates
high stochasticity in the environment, requiring fine-graded predictions. Therefore, the goal of our
confidence weight is to prioritize optimizing the vector field at state-action pairs with high return
uncertainty. Adapting the confidence weight in prior work (Lee et al., 2021), we define the confidence
weight for a state-action pair (s, a) and a noise ϵ as

w(s, a, ϵ) = σ

(
−τ

/∣∣∣∣∂ϕ∂ϵ (ϵ | 1, s, a)
∣∣∣∣)+ 0.5, (7)

where σ(·) denotes the sigmoid function, τ > 0 is a temperature, and w(s, a, ϵ) ∈ [0.5, 1]. The
confidence weight depends on the noise ϵ because we can use one Gaussian noise ϵ as a Monte Carlo
estimator for both return expectation and return variance (Eq. 6). We include a visualization of the
confidence weight for different temperatures in Appendix E. Our confidence weight is an increasing
function with respect to the return variance estimate, indicating that a higher uncertainty results in a
higher weight.

4.4 THE COMPLETE ALGORITHM

We now discuss the policy extraction strategies based on the flow-based return models and summarize
the complete algorithm of Value Flows. We consider two different behavioral-regularized policy
extraction strategies for offline RL and offline-to-online RL. First, for offline RL, following prior
work (Li et al., 2025; Chen et al., 2022), we use rejection sampling to maximize Q estimates (Eq. 6)
while implicitly imposing a KL constraint (Hilton, 2023) toward a fixed behavioral cloning (BC)
policy. Second, for online fine-tuning in offline-to-online RL, following prior work (Park et al.,
2025c), we learn a stochastic one-step policy to maximize the Q estimates while distilling it toward
the fixed BC flow policy. See Appendix C.2 for detailed discussions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

pr
es

s b
ut

to
n 0.174

0.253

0.034

C51 CODAC Value Flows 1-Wasserstein distance

clo
se

 w
in

do
w

0.314

0.223

0.053

clo
se

 d
ra

we
r

0.269

0.188

0.106

Ground Truth C51 CODAC Value Flows
w/o confidence weight

Figure 2: Visualizing the return distribution. (Column 1) The policy completes the task of closing the window
and closing the drawer by using the buttons to lock and unlock them. While (Column 2) C51 predicts a noisy
multi-modal distribution and (Column 3) CODAC collapses to a single return mode, (Column 4) Value Flows
infers a smooth return histogram resembling the ground-truth return distribution. (Column 5) Quantitatively,
Value Flows achieves 3× lower 1-Wasserstein distance than alternaative methods. See Sec. 5.1 for details.

Our algorithm Value Flows consists of three main components: (1) the vector field estimating the
return distribution, (2) the confidence weight incorporating aleatoric uncertainty, and (3) the flow
policy selecting actions. Using neural networks to parameterize the return vector field vθ, the BC
flow policy πω , and the one-step flow policy πη , we optimize them using stochastic gradient descent.
Alg. 1 summarizes the pseudocode of Value Flows.

5 EXPERIMENTS

The goal of our experiments is to answer the following key questions:

(Q1) Does Value Flows predict returns that align with the underlying return distribution?
(Q2) Can Value Flows effectively learn a policy from a static offline dataset?
(Q3) How sample efficient is Value Flows in offline-to-online learning compared to prior methods?
(Q4) What are the key components of Value Flows?

Experiment Setup. Our experiments will use standard benchmarks introduced by prior work on
offline RL. We choose a set of 36 state-based tasks from OGBench (Park et al., 2025a) and D4RL (Fu
et al., 2021) and choose a set of 25 image-based tasks from OGBench to evaluate our algorithm in the
offline setting. We compare Value Flows against 9 baselines, measuring the performance on success
rates. Specifically, we first compare to BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021a), and
ReBRAC (Tarasov et al., 2023) as representative methods that learn scalar Q values with a Gaussian
policy. The second set of baselines is state-of-the-art methods that learn scalar Q values with a
flow policy (FBRAC, IFQL, FQL) (Park et al., 2025c). We also include comparisons against prior
distributional RL methods (C51 (Bellemare et al., 2017), IQN (Dabney et al., 2018), and CODAC (Ma
et al., 2021)) for completeness. We defer the detailed discussions about environments and datasets
to Appendix F.1 and baselines to Appendix F.3. We present the hyperparameters in Appendix F.2.

5.1 VISUALIZING RETURN DISTRIBUTIONS OF VALUE FLOWS

One of the motivations of designing Value Flows is to use flow-based models to estimate the entire
return distribution (Sec. 4.1). To investigate whether the proposed method models the underlying
return distributions, we study the return predictions from Value Flows. We compare our method

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Offline evaluation on OGBench and D4RL benchmarks. Value Flows achieves the best or near-best
performance on 9 out of 11 domains. Following prior work (Park et al., 2025c), we average results over 8 seeds
(4 seeds for image-based tasks) and bold values within 95% of the best performance for each domain. See
Table 2 for full results.

Gaussian Policies Flow Policies

Domain BC IQL ReBRAC FBRAC IFQL FQL C51 IQN CODAC Value Flows

cube-double-play (5 tasks) 2± 1 6± 2 12± 3 15± 6 14± 5 29± 6 2± 0 42± 8 61± 6 69± 4
cube-triple-play (5 tasks) 0± 0 1± 1 0± 0 0± 0 0± 0 4± 2 0± 0 6± 0 2± 1 14± 3
puzzle-3x3-play (5 tasks) 2± 1 9± 3 22± 2 14± 5 19± 1 30± 4 1± 0 15± 1 20± 5 87± 13
puzzle-4x4-play (5 tasks) 0± 0 7± 2 14± 3 13± 5 25± 8 17± 5 0± 0 27± 4 20± 18 27± 4
scene-play (5 tasks) 5± 2 28± 3 41± 7 45± 5 30± 4 56± 2 4± 1 40± 1 55± 1 59± 4

visual-antmaze-medium-navigate (5 tasks) - 84± 5 87± 4 30± 3 87± 2 38± 4 - 74± 4 - 75± 10
visual-antmaze-teleport-navigate (5 tasks) - 6± 4 4± 1 6± 3 10± 4 5± 2 - 4± 2 - 13± 4
visual-cube-double-play (5 tasks) - 11± 6 1± 1 2± 1 2± 2 6± 1 - 1± 0 - 13± 2
visual-puzzle-3x3-play (5 tasks) - 2± 3 20± 1 1± 1 21± 0 20± 1 - 19± 1 - 23± 2
visual-scene-play (5 tasks) - 26± 5 28± 5 11± 1 21± 2 41± 4 - 41± 6 - 43± 7

D4RL adroit (12 tasks) 48 53 59 50± 3 52± 4 52± 3 48± 2 50± 3 52± 1 50± 2

against two alternative distributional RL methods: C51 (Bellemare et al., 2017) and CODAC (Ma
et al., 2021). On scene-play-singletask-task2-v0 from OGBench, we visualize the 1D
return histograms inferred by different algorithms, including the ground-truth return distribution for
reference. For fair comparison, we use 5000 return samples and 60 bins for each histogram. For
quantitative evaluations, we measure the 1-Wasserstein distances (Panaretos & Zemel, 2019) between
the histogram of each method and the ground-truth histogram.

Figure 3: Offline (left) -to-online (right) RL eval-
uation. Using the same distributional flow-matching
objective, Value Flows achieves higher average success
rates. See Fig. 6 for the full results.

Fig. 2 shows the resulting histograms, super-
imposing the ground-truth return distribution,
along with the 1-Wasserstein distances for dif-
ferent methods. Observe that Value Flows pre-
dicts a smooth return histogram resembling the
ground-truth return distribution, while baselines
either infer a noisy multi-modal distribution
(C51) or collapse to a single return mode (CO-
DAC). We conjecture that the offsets between
the predicted histograms and the ground-truth
histogram can be explained by return underes-
timation or overestimation (Hasselt, 2010; Fu-
jimoto et al., 2018). Numerically, our method
achieves a 1-Wasserstein distance 3× lower than
the best performing baseline. These results sug-
gest that Value Flows can estimate the full return
distribution without using a discretized categor-
ical distribution or a finite number of quantiles.

5.2 COMPARING TO PRIOR
OFFLINE AND OFFLINE-TO-ONLINE METHODS

Offline RL. Our next experiments compare Value Flows to prior offline RL methods, including
those estimating the return distribution using alternative mechanisms. We compare our method
against baselines on both state-based tasks and image-based tasks. Results in Table 1 aggregate
over 5 tasks in each domain of OGBench and 12 tasks from D4RL, and we defer the full results
to Appendix Table 2. These results show that Value Flows matches or surpasses all baselines on
9 out of 11 domains. On state-based OGBench tasks, most baselines performed similarly on the
easier domains (cube-double-play, scene-play, and D4RL adroit), while Value Flows
is able to obtain 40% improvement on average. On those more challenging state-based tasks, we find
a marked difference between the best performing baseline and Value Flows (1.6× higher success
rate). In addition, Value Flows is able to outperform the best baseline by 24% using RGB images as
input directly (visual tasks). We conjecture that our flow-based return model results in more accurate
Q-value estimation and thus benefits the policy learning.

Offline-to-Online RL. Having established the performance of Value Flows in the offline setting,
we next study whether the proposed method can be used for online fine-tuning. We hypothesize that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Regularizing the flow-matching loss is
important. The regularization coefficient λ needs to
be tuned for better performance.

Figure 5: Reweighing the flow-matching objective
makes a difference. Choosing the correct confidence
weight boosts the performance of Value Flows.

Value Flows is directly applicable to fine-tuning an online policy, without any modifications to the
flow-matching losses. Results in Fig. 3 suggest that Value Flows was able to consistently achieve
strong fine-tune performance with high sample efficiency when directly applied to a fine-tuning
setting. In particular, on puzzle-4x4-play, Value Flows achieves 15% higher performance than
all of the prior offline-to-online RL algorithms. See Appendix Table 3 for the full results. Taken
together, Value Flows can be widely applied to a variety of settings in both offline and offline-to-online
frameworks.

5.3 THE KEY COMPONENTS OF VALUE FLOWS

To better understand the importance of different components of Value Flows, we ablate over four key
aspects: (1) the importance of the bootstrapped conditional flow matching loss as an anchor (Fig. 4),
(2) the importance of reweighting the distributional flow-matching objective using the confidence
weight (Fig. 5), (3) the number of flow steps to model the returns (Appendix Fig. 7), and (4) the
number of rejection sampling samples in the offline setting (Appendix Fig. 8). In summary, the
conditional flow matching loss as a stabilizing anchor in the vector field loss and weighting the
Bellman backup are important and should be tuned for each task, and the flow steps and number
of rejection sampling samples can be fixed as Value Flows is robust to these hyperparameters. We
provide the full analysis in Appendix D.

6 CONCLUSION

We present Value Flows, an RL algorithm that uses modern, flexible flow-based models to estimate
the full future return distributions. Theoretically, we show that our objective generates a probability
path satisfying the distributional Bellman equation. Our experiments demonstrate that Value Flows
outperforms state-of-the-art offline RL and offline-to-online RL methods in complex continuous
control tasks.

Limitations. First, although we focus on learning the full return distribution using flow-matching
and reweighting our flow-matching objective using uncertainty estimation. It remains unclear how to
disentangle the epistemic uncertainty from the aleatoric uncertainty with the current method. Second,
our discussion is orthogonal to the policy extraction mechanisms. Finding the appropriate policy
extraction method within the distributional RL framework might reveal the true benefits of estimating
the full return distribution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATMENT

We include additional implementation details for hyperparameters and dataset and evaluation protocols
in appendix F. These details also include how we tune baseline methods. We will put the open-source
implementation in the supplementary materials. One run of our method can be run with an A6000
GPU in under 6 hours for state-based and under 16 hours for pixel-based.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
V69LGwJ0lIN.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=li7qeBbCR1t.

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari, 2024. URL
https://arxiv.org/abs/2405.12399.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceedings
of the Twelfth International Conference, pp. 30–37, 1995.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data, 2023. URL https://arxiv.org/abs/2302.02948.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning. MIT
Press, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax: compos-
able transformations of python+ numpy programs. 2018.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Perry Dong, Alec M. Lessing, Annie S. Chen, and Chelsea Finn. Reinforcement learning via implicit
imitation guidance, 2025a. URL https://arxiv.org/abs/2506.07505.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies, 2025b. URL https://arxiv.org/abs/2507.07986.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with gaussian processes. In
Proceedings of the 22nd international conference on Machine learning, pp. 201–208, 2005.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

11

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=li7qeBbCR1t
https://arxiv.org/abs/2405.12399
https://arxiv.org/abs/2302.02948
https://arxiv.org/abs/2506.07505
https://arxiv.org/abs/2507.07986

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep rl, 2024. URL
https://arxiv.org/abs/2403.03950.

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
Touati. Temporal difference flows, 2025. URL https://arxiv.org/abs/2503.09817.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement
learning via functional reward encodings. In International Conference on Machine Learning, pp.
13927–13942. PMLR, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=OlzB6LnXcS.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning
algorithms. In International Conference on Machine Learning, pp. 2021–2030. PMLR, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning,
2021. URL https://arxiv.org/abs/2106.06860.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should
i trust you, bellman? the bellman error is a poor replacement for value error. In International
Conference on Machine Learning, pp. 6918–6943. PMLR, 2022.

Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier Corporation,
2000.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023. URL https:
//arxiv.org/abs/2304.10573.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Jacob Hilton. Kl divergence of max-of-n. https://www.jacobh.co.uk/bon_kl.pdf, 2023.
URL https://www.jacobh.co.uk/bon_kl.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Michael Janner, Igor Mordatch, and Sergey Levine. Generative temporal difference learning for
infinite-horizon prediction, 2021. URL https://arxiv.org/abs/2010.14496.

JAX Developers. The autodiff cookbook. https://docs.jax.dev/en/latest/
notebooks/autodiff_cookbook.html, 2025. URL https://docs.jax.dev/en/
latest/notebooks/autodiff_cookbook.html.

Vadim Kaplunovsky. Gradient, divergence, curl and related formulae. https://web2.ph.
utexas.edu/~vadim/Classes/2016s/diffop.pdf, 2016. URL https://web2.
ph.utexas.edu/~vadim/Classes/2016s/diffop.pdf.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

12

https://arxiv.org/abs/2403.03950
https://arxiv.org/abs/2503.09817
https://openreview.net/forum?id=OlzB6LnXcS
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/2304.10573
https://arxiv.org/abs/2304.10573
https://www.jacobh.co.uk/bon_kl.pdf
https://www.jacobh.co.uk/bon_kl.pdf
https://arxiv.org/abs/2010.14496
https://docs.jax.dev/en/latest/notebooks/autodiff_cookbook.html
https://docs.jax.dev/en/latest/notebooks/autodiff_cookbook.html
https://docs.jax.dev/en/latest/notebooks/autodiff_cookbook.html
https://docs.jax.dev/en/latest/notebooks/autodiff_cookbook.html
https://web2.ph.utexas.edu/~vadim/Classes/2016s/diffop.pdf
https://web2.ph.utexas.edu/~vadim/Classes/2016s/diffop.pdf
https://web2.ph.utexas.edu/~vadim/Classes/2016s/diffop.pdf
https://web2.ph.utexas.edu/~vadim/Classes/2016s/diffop.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning, 2021a. URL https://arxiv.org/abs/2110.06169.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization, 2021b. URL https://arxiv.org/abs/2103.
08050.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction, 2019. URL https://arxiv.org/abs/1906.00949.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. Advances in neural information processing systems, 33:
18560–18572, 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020b. URL https://arxiv.org/abs/2006.04779.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International conference on
machine learning, pp. 6131–6141. PMLR, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Xiaoteng Ma, Junyao Chen, Li Xia, Jun Yang, Qianchuan Zhao, and Zhengyuan Zhou. Dsac:
Distributional soft actor-critic for risk-sensitive reinforcement learning, 2025. URL https:
//arxiv.org/abs/2004.14547.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforcement
learning. Advances in neural information processing systems, 34:19235–19247, 2021.

Max Sobol Mark, Archit Sharma, Fahim Tajwar, Rafael Rafailov, Sergey Levine, and Chelsea Finn.
Offline retraining for online rl: Decoupled policy learning to mitigate exploration bias. arXiv
preprint arXiv:2310.08558, 2023.

Borislav Mavrin, Shangtong Zhang, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang Yu.
Distributional reinforcement learning for efficient exploration, 2019. URL https://arxiv.
org/abs/1905.06125.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Nonparametric return distribution approximation for reinforcement learning. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), pp. 799–806, 2010.

Timothy H Muller, James L Butler, Sebastijan Veselic, Bruno Miranda, Joni D Wallis, Peter Dayan,
Timothy EJ Behrens, Zeb Kurth-Nelson, and Steven W Kennerley. Distributional reinforcement
learning in prefrontal cortex. Nature Neuroscience, 27(3):403–408, 2024.

13

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/1906.00949
https://arxiv.org/abs/2006.04779
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://arxiv.org/abs/2004.14547
https://arxiv.org/abs/2004.14547
https://arxiv.org/abs/1905.06125
https://arxiv.org/abs/1905.06125

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets, 2021. URL https://arxiv.org/abs/2006.
09359.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36:62244–62269, 2023.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning,
2024. URL https://arxiv.org/abs/2303.05479.

Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review of
statistics and its application, 6(1):405–431, 2019.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl, 2025a. URL https://arxiv.org/abs/2410.20092.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. arXiv preprint arXiv:2506.04168, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning, 2023. URL https://arxiv.org/
abs/2305.09836.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. In IEEE Transactions on Automatic Controle, pp. 674–690, 1997.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning, 2015. URL https://arxiv.org/abs/1509.06461.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

14

https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2303.05479
https://arxiv.org/abs/2410.20092
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2305.09836
https://arxiv.org/abs/2305.09836
https://arxiv.org/abs/1509.06461

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kaiwen Wang, Kevin Zhou, Runzhe Wu, Nathan Kallus, and Wen Sun. The benefits of being
distributional: Small-loss bounds for reinforcement learning, 2023a. URL https://arxiv.
org/abs/2305.15703.

Kaiwen Wang, Owen Oertell, Alekh Agarwal, Nathan Kallus, and Wen Sun. More benefits of
being distributional: Second-order bounds for reinforcement learning, 2024. URL https:
//arxiv.org/abs/2402.07198.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning, 2023b. URL https://arxiv.org/abs/2208.
06193.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019. URL https://arxiv.org/abs/1911.11361.

Hanlin Yang, Chao Yu, Siji Chen, et al. Hybrid policy optimization from imperfect demonstrations.
Advances in Neural Information Processing Systems, 36:4653–4663, 2023.

Chongyi Zheng, Seohong Park, Sergey Levine, and Benjamin Eysenbach. Intention-conditioned flow
occupancy models. arXiv preprint arXiv:2506.08902, 2025.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online rein-
forcement learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762,
2024.

15

https://arxiv.org/abs/2305.15703
https://arxiv.org/abs/2305.15703
https://arxiv.org/abs/2402.07198
https://arxiv.org/abs/2402.07198
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/1911.11361

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PRELIMINARIES

A.1 THE RETURN AND THE Q FUNCTION

The goal of RL is to learn a policy π : S → ∆(A) that maximizes the expected discounted re-
turn Eπ(S0,A0,S1,A1,···)

[∑∞
h=0 γ

hr(Sh, Ah)
]

over trajectories (S0, A0, S1, A1, · · ·). Starting from
a state-action pair (s, a), we denote the conditional trajectories as (S0 = s,A0 = a, S1, A1, · · ·).
This notation allows us to define the Q function of the policy π as Qπ(s, a) =
Eπ(S0=s,A0=a,S1,A1,···)

[∑∞
h=0 γ

hr(Sh, Ah)
]
. Prior actor-critic methods (Fujimoto et al., 2018;

Haarnoja et al., 2018) typically estimate the Q function by minimizing the temporal difference (TD)
error (Ernst et al., 2005; Fu et al., 2019; Fujimoto et al., 2022). We will construct TD errors to learn
the entire return distribution in Sec. 4.2.

A.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

Lemma 1 (Proposition 1 of Morimura et al. (2010)). For a policy π, return value z ∈ [zmin, zmax],
state s ∈ S , and action a ∈ A, the cumulative distribution function of the random variable T πZ(s, a),
i.e., FT πZ(· | s, a), satisfies

FT πZ(z | s, a) = Ep(s′|s,a),π(a′|s′)

[
FZ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] . (8)

For completeness, we include a full proof.

Proof. By the definition of identity in distribution, we have

FT πZ(z | s, a) = Fr(s,a)+γZ(S′,A′)(z | s, a).

Expanding the definition of the CDF Fr(s,a)+γZ(S′,A′) gives us

Fr(s,a)+γZ(S′,A′)(z | s, a) = P(r(s, a) + γZ(S′, A′) ≤ z | s, a)
(a)
= Ep(s′|s,a),π(a′|s′) [P (r(s, a) + γZ(s′, a′) ≤ z | s′, a′)]

= Ep(s′|s,a),π(a′|s′)

[
P
(
Z(s′, a′) ≤ z − r(s, a)

γ

∣∣∣∣ s′, a′)]
= Ep(s′|s,a),π(a′|s′)

[
P
(
Z(s′, a′) ≤ z − r(s, a)

γ

∣∣∣∣ s′, a′)]
(b)
= Ep(s′|s,a),π(a′|s′)

[
FZ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)]
in (a) we use the law of total probability and in (b) we use the definition of the CDF FZ . Thus, we
conclude that FT πZ(z | s, a) = Ep(s′|s,a),π(a′|s′)

[
FZ

(
z−r(s,a)

γ

∣∣∣ s′, a′)].

The connection between the CDFs of T πZ and Z also allows us to derive an identity between their
PDFs, suggesting an alternative definition of the distributional Bellman operator:

Lemma 2 (Chapter 4 of Bellemare et al. (2023)). For a policy π, return value z ∈ [zmin, zmax], state
s ∈ S, and action a ∈ A, the probability density function of the random variable T πZ(s, a), i.e.,
pT πZ(· | s, a), satisfies

pT πZ(z | s, a) =
1

γ
Ep(s′|s,a),π(a′|s′)

[
pZ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] .
Alternatively, the distributional Bellman operator can operate on the density function directly,

T πpZ(z | s, a) ≜ pT πZ(z | s, a). (9)

For completeness, we include a full proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Since the PDF of a continuous random variable can be obtained by taking the derivative of its
CDF, we can easily show the desired identity by taking the derivative on both sides of Eq. 8.

d

dz
FT πZ(z | s, a) =

d

dz
Ep(s′|s,a),π(a′|s′)

[
FZ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] ,
pT πZ(z | s, a)

(a)
=

1

γ
Ep(s′|s,a),π(a′|s′)

[
pZ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] ,
where we use the chain rule of derivatives in (a).

The stochasticity of the distributional Bellman operator T π mainly comes from (1) the environmental
transition p(s′ | s, a) and (2) the stochastic policy π(a | s). We next justify the unique fixed point
Zπ of the distributional Bellman operator T π .
Lemma 3. The distributional Bellman operator T π admits the unique fixed point Zπ. Specifically,
we have

T πZπ(s, a)
d
= Zπ(s, a),

T πpZπ (z | s, a) = pZπ (z | s, a). (10)

Proof. By definition of Zπ(s, a) and T π , we have

Zπ(s, a) = r(S0 = s,A0 = a) + γ

∞∑
t=1

γh−1r(Sh, Ah)

d
=
(a)

r(s, a) + γZπ

=
(b)

r(s, a) + γZπ(S′, A′)

d
= T πZπ(s, a),

with S′ and A′ being random variables of the next state-action pair, in (a) we use the stationary
property of MDP, and in (b) we plug in the definition of Zπ . Thus, we conclude that T πZπ(s, a)

d
=

Zπ(s, a). By Lemma 1, the CDF of Zπ(s, a) satisfies

FZπ (z | s, a) = FT πZπ (z | s, a) = Ep(s′|s,a),π(a′|s′)

[
FZπ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] .
Taking derivatives with respect to z on both sides, the PDF of Zπ(s, a) satisfies

pZπ (z | s, a) = 1

γ
Ep(s′|s,a),π(a′|s′)

[
pZπ

(
z − r(s, a)

γ

∣∣∣∣ s′, a′)] .
We conclude that T πpZπ (z | s, a) = pZπ (z | s, a) using the definition of the distributional Bellman
operator T π on PDFs (Lemma 2).

A.3 FLOW MATCHING

Algorithm 2 Euler method for solving the flow
ODE (Eq. 11).

1: Input The vector field v, the noise ϵ, the initial
flow time tinit, the final flow time tfinal, and the
number of steps T .

2: Initialize t = tinit, ∆t = tfinal−tinit
T , xt = ϵ.

3: for each step t = tinit, tinit +∆t, · · · , tfinal do
4: xt+∆t ← xt + v(xt | t) ·∆t.
5: Return xtfinal .

Flow matching (Lipman et al., 2023; 2024; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023)
refers to a family of generative models based on
ordinary differential equations (ODEs), which
are close cousins of denoising diffusion mod-
els (Sohl-Dickstein et al., 2015; Song et al.,
2021; Ho et al., 2020) based on stochastic dif-
ferential equations (SDEs). The deterministic
nature of ODEs equips flow-matching methods
with simpler learning objectives and faster infer-
ence speed than denoising diffusion models (Lip-
man et al., 2023; 2024). The goal of flow match-
ing methods is to transform a simple noise distribution into a target distribution over some space

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

X ⊂ Rd. We will use t to denote the flow time step and sample the noise ϵ from a standard Gaussian
distributionN (0, Id) throughout our discussions. We will use X to denote the d-dimensional random
variable that generates the target data samples using the distribution pX .

Specifically, flow matching uses a time-dependent vector field v : [0, 1]× Rd → Rd to construct a
time-dependent diffeomorphic flow ϕ : [0, 1]× Rd → Rd (Lipman et al., 2023; 2024) that realizes
the transformation from a single noise ϵ to a generative sample x̂ by following the ODE

d

dt
ϕ(ϵ | t) = v(ϕ(ϵ | t) | t), ϕ(ϵ | 0) = ϵ, ϕ(ϵ | 1) = x̂. (11)

The vector field v generates a time-dependent probability density path p : [0, 1]× Rd → ∆(Rd) if it
satisfies the continuity equation (Lipman et al., 2023)

∂

∂t
p(xt | t) + div(p(xt | t)v(xt | t)) = 0, (12)

where div(·) denotes the divergence operator. Prior work has proposed various formulations for
learning the vector field (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023).
We adopt the simplest flow matching objectives, built upon optimal transport (Liu et al., 2023), called
conditional flow matching (CFM) (Lipman et al., 2023). Using UNIF([0, 1]) to denote the uniform
distribution over the unit interval and xt = tx+ (1− t)ϵ to denote a linear interpolation between the
ground truth sample x and the Gaussian noise ϵ, the CFM loss can be written as

LCFM(v) = E t∼UNIF([0,1]),
x∼pX(x),ϵ∼N (0,I)

[
∥v(xt | t)− (x− ϵ)∥22

]
. (13)

Practically, we can generate a sample from the vector field v by numerically solving the ODE (Eq. 11).
We will use the Euler method (Alg. 2) as our ODE solver following prior practice (Liu et al., 2023;
Park et al., 2025c).

B THEORETICAL ANALYSIS

B.1 ESTIMATING THE RETURN DISTRIBUTION USING FLOW-MATCHING

Proposition 1. For a policy π, an iteration k ∈ N, a return value zt ∈ [zmin, zmax], a flow time
t ∈ [0, 1], a state s ∈ S, a action a ∈ A, and a vector field vk(z

t | t, s, a) that generates the
probability density path pk(z

t | t, s, a), the new vector field vk+1(z
t | t, s, a) generates the new

probability density path pk+1(z
t | t, s, a).

Proof. By definition, a vector field generates a probability density path, meaning that they both
satisfy the continuity equation (Eq. 12) (Lipman et al., 2023). We will check the continuity equation
for vk+1(z

t | t, s, a) and pk+1(z
t | t, s, a). On one hand, for pk+1, we have

∂

∂t
pk+1(z

t | t, s, a)

(a)
=

∂

∂t

1

γ
Ep(s′|s,a),π(a′|s′)

[
pk

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′)]
(b)
=

1

γ
Ep(s′|s,a),π(a′|s′)

[
∂

∂t
pk

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′)]
(c)
= − 1

γ
Ep(s′|s,a),π(a′|s′)

[
div

(
pk

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′) vk

(
zt − r(s, a)

γ

∣∣∣∣ t, s′, a′))] ,
in (a), we plug in the definition of pk+1(z

t | t, s, a), in (b), we swap the partial differentiation with
the expectation because the integral does not depend on time t, and in (c), we apply the continuity
equation for pk. On the other hand, by the definition of vk+1, we have

pk+1(z
t | t, s, a)vk+1(z

t | t, s, a)

=
1

γ
Ep(s′|s,a),π(a′|s′)

[
pk

(
zt − r(s, a)

γ

∣∣∣∣ t, s, a) vk

(
zt − r(s, a)

γ

∣∣∣∣ t, s, a)] .
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Since the divergence div(·) is a linear operator (Kaplunovsky, 2016) and the expectation does not
depend on the return value z, we can swap the divergence with the expectation, resulting in

∂

∂t
pk+1(z

t | t, s, a) = −div
(
pk+1(z

t | t, s, a)vk+1(z
t | t, s, a)

)
, (14)

which means vk+1 and pk+1 follow the continuity equation exactly.

Lemma 4. Given a vector field vk, the distributional flow matching loss (Eq. 4) has the minimizer
argminv LDFM(v, vk) = vk+1.

Proof. Since LDFM is an MSE loss, intuitively, the minimizer of it will be vk+1. Formally, we
compute the minimizer of LDFM by using the calculus of variations (Gelfand et al., 2000) and deriving
the functional derivative of LDFM with respect to v, i.e. δLDFM(v, vk)/δv:

δLDFM(v, vk)

δv
= 2D(s, a, r)pk+1(z

t | t, s, a)
(
v(zt | t, s, a)− vk+1(z

t | t, s, a)
)
,

Setting this functional derivative to zero, we have argminv LDFM(v, vk) = vk+1.

Lemma 5. Given a vector field vk, the distributional conditional flow matching (Eq. 5) can be
rewritten as

LDCFM(v, vk) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),zt∼pk(zt|t,s′,a′)

[(
v(r + γzt | t, s, a)− vk

(
zt
∣∣ t, s′, a′))2]

Proof. With slight abuse of notations, we use z̃t to denote the samples from the convolved probability
density path pk((z̃

t − r)/γ | t, s, a)/γ. Setting (z̃t − r)/γ = zt, we have

LDCFM(v, vk) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),z̃t∼ 1
γ pk

(
z̃t−r

γ

∣∣∣t,s′,a′
)
[(

v(z̃t | t, s, a)− vk

(
z̃t − r

γ

∣∣∣∣ t, s′, a′))2
]

= E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),zt∼pk(zt|t,s′,a′)

[(
v(r + γzt | t, s, a)− vk

(
zt
∣∣ t, s′, a′))2] . (15)

Proposition 2. For a policy π, a vector field vk that generates the probability density path pk at
iteration k ∈ N, and a candidate vector field v, we have LDFM(v, vk) = LDCFM(v, vk) + const.,
where the constant is independent of v. Therefore, the gradient ∇vLDFM(v, vk) is the same as the
gradient∇vLCDFM(v, vk).

Proof. We first expand the quadratic terms in LDFM,(
v(t, zt | s, a)− vk

(
t,
zt − r

γ

∣∣∣∣ s′, a′))2

= v(t, zt | s, a)2 − 2v(t, zt | s, a)vk
(
t,
zt − r

γ

∣∣∣∣ s′, a′)+ vk

(
t,
zt − r

γ

∣∣∣∣ s′, a′)2

Since only the first two terms depend on the vector field v, we next examine the expectation of them
respectively.

E(s,a,r)∼D,t∼UNIF([0,1]),

zt∼pk+1(z
t|t,s,a)

[
v(zt | t, s, a)

] (a)
= E (s,a,r,s′)∼D,t∼UNIF([0,1]),

a′∼π(a′|s′),zt∼ 1
γ pk

(
zt−r

γ

∣∣∣t,s′,a′
)
[
v(zt | t, s′, a′)

]
E(s,a,r)∼D,t∼UNIF([0,1]),

zt∼pk+1(z
t|t,s,a)

[
v(zt | t, s, a)vk+1(z

t | t, s, a)
]

(b)
= E(s,a,r)∼D,t∼UNIF([0,1]),

zt∼pk+1(z
t|t,s,a)

v(zt | t, s, a) · 1
γEp(s′|s,a),π(a′|s′)

[
pk

(
zt−r
γ

∣∣∣ t, s′, a′) vk

(
zt−r
γ

∣∣∣ t, s′, a′)]
pk+1(zt | t, s, a)


(c)
= E (s,a,r,s′)∼D,t∼UNIF([0,1]),

a′∼π(a′|s′),zt∼ 1
γ pk

(
zt−r

γ

∣∣∣t,s′,a′
)
[
v(zt | t, s, a)vk

(
zt − r

γ

∣∣∣∣ t, s′, a′)] ,
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

in (a), we plug in the definition of pk+1 and use the next state s′ in the transition from the dataset
as the sample from the transition probability, in (b), we plug in the definition of vk+1, and, in (c),
we use the linearity of expectation. Thus, we conclude that LDFM(v, vk) = LDCFM(v, vk) + const.,
where the constant is independent of v.

B.2 HARNESSING UNCERTAINTY IN THE RETURN ESTIMATION

With slight abuse of notations, we prove the following Lemmas as a generalization of Proposition 3
and Proposition 4 to the standard flow-matching problem. We will use the notations introduced
in Appendix A.3.

Lemma 6. (Formal statement of conclusions from Frans et al. (2025)) For a vector field v learned
by the conditional flow matching loss LCFM (Eq. 13) for fitting data from the random variable X ,
noises ϵ sampled from N (0, Id), we have the vector field at flow time t = 0 produces an estimate for
the expectation E [X]:

Ê[X] = Eϵ∼N (0,Id) [v(ϵ | 0)] .

Proof. We note that LCFM is also an MSE loss, and will use the same idea as in Lemma 4 to find
its minimizer. Specifically, we use the calculus of variations and derive the functional derivative of
LCFM with respect to v, i.e., δLCFM(v)/δv:

δLCFM(v)

δv
= 2Ex∼pX(x),ϵ∼N (0,Id)

[
v(xt | t)− (x− ϵ)

]
,

= 2v(xt | t)− 2Ex∼pX(x),ϵ∼N (0,Id)

[
x− ϵ | xt

]
.

Setting this functional derivative to zero, we have

v⋆(xt | t) = argminLCFM(v) = Ex∼pX(x),ϵ∼N (0,Id)

[
x− ϵ | xt

]
.

At flow time t = 0, plugging in x0 = (1− 1) · x+ 1 · ϵ = ϵ into the minimizer v⋆, we have

v⋆(ϵ | 0) = Ex∼pX(x)[x | ϵ]− ϵ

(a)
= Ex∼pX(x) [x]− ϵ,

in (a), we use the fact that x is independent of ϵ. Taking expectation over ϵ ∼ N (0, Id) gives us

Eϵ∼N (0,Id) [v
⋆(ϵ | 0)] = Ex∼pX(x)[x] = E[X].

Thus, we conclude that, for a learned vector field v, Eϵ∼N (0,Id) [v(ϵ | 0)] is an estimate for the
expectation E[X].

We next discuss the variance estimation using a learned flow. We will use Jv ∈ Rd×d to denote the
Jacobian of a vector field v(xt | t) with respect to the input xt and Jϕ ∈ Rd×d to denote the Jacobian
of the corresponding diffeomorphic flow ϕ(ϵ | t) with respect to the input ϵ:

Jv =


∂v1
∂xt

1
· · · ∂v1

∂xt
d

...
. . .

...
∂vd

∂xt
1
· · · ∂vd

∂xt
d

 , Jϕ =


∂ϕ1

∂ϵt1
· · · ∂ϕ1

∂ϵtd
...

. . .
...

∂ϕd

∂ϵt1
· · · ∂ϕd

∂ϵtd

 .

Lemma 7. For a vector field v fitting data from the random variable X with the corresponding
diffeomorphic flow ϕ, two independent noises ϵ0 and ϵ sampled from N (0, Id), the first-order Taylor
approximation of the flow ϕ(ϵ0 | 1) around ϵ is

ϕ(ϵ0 | 1) ≈ ϕ(ϵ | 1) + Jϕ(ϵ | 1)(ϵ0 − ϵ).

This first-order Taylor approximation produces an estimate for the covariance Cov(X):

Ĉov(X) = Eϵ∼N (0,Id)

[
Jϕ(ϵ | 1)Jϕ(ϵ | 1)⊤

]
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. The Taylor expansion of ϕ(ϵ0 | 1) around ϕ(ϵ | 1) is

ϕ(ϵ0 | 1) = ϕ(ϵ | 1) + Jϕ(ϵ | 1)(ϵ0 − ϵ) +O(∥ϵ0 − ϵ∥2),

where O(∥ϵ0−ϵ∥2) denotes terms with order higher than (ϵ0−ϵ)⊤(ϵ0−ϵ). Thus, we can approximate
samples from the random variable X using the first-order Taylor expansion of ϕ(ϵ0 | 1) around
ϕ(ϵ | 1),

x̂ = ϕ(ϵ0 | 1) ≈ ϕ(ϵ | 1) + Jϕ(ϵ | 1)(ϵ0 − ϵ).

By the property (affine transformation) of covariance, we have the covariance estimate for X at ϵ:

Ĉov(X | ϵ) = Cov(ϕ(ϵ0 | 1))
= Jϕ(ϵ | 1)Cov(ϵ0)Jϕ(ϵ | 1)⊤

= Jϕ(ϵ | 1)Jϕ(ϵ | 1)⊤.
Taking expectation over ϵ ∼ N (0, Id) on both side, we conclude that

Ĉov(X) = Eϵ∼N (0,Id)

[
Ĉov(X | ϵ)

]
= Eϵ∼N (0,Id)

[
Jϕ(ϵ | 1)Jϕ(ϵ | 1)⊤

]
.

We are now ready to prove Proposition 3 for the return random variable Zπ(s, a).
Proposition 3. For a policy π, a state s ∈ S, a action a ∈ A, two independent noises ϵ0 and ϵ
sampled from N (0, 1), the learned return vector field v fitting the conditional return distribution
Zπ(s, a), the first-order Taylor approximation of the corresponding diffeomorphic flow ϕ(ϵ0 | 1, s, a)
around ϵ is

ϕ(ϵ0 | 1, s, a) ≈ ϕ(ϵ | 1, s, a) + Jϕ(ϵ | 1, s, a)(ϵ0 − ϵ).

We have the vector field at flow time t = 0 produces an estimate for the return expectation E [Zπ(s, a)],
while the first-order Taylor approximation of the flow produces an estimate for the return variance
Var(Zπ(s, a)):

Ê [Zπ(s, a)] = Eϵ∼N (0,1)[v(ϵ | 0, s, a)], V̂ar(Zπ(s, a)) = Eϵ∼N (0,1)

[(
∂ϕ

∂ϵ
(ϵ | 1, s, a)

)2
]
.

Proof. Applying Lemma 6 and Lemma 7 to the 1-dimensional conditional return random variable
Zπ(s, a), we get the desired estimates.

We next discuss a lemma that relates the Jacobian of the flow Jϕ to the Jacobian of the vector field Jv
using a flow Jacobian ODE.
Lemma 8. For a learned vector field fitting data from the random variable X with the corresponding
diffeomorphic flow ϕ, a noise ϵ sampled from N (0, Id), the flow Jacobian Jϕ and the vector field
Jacobian Jv satisfy the following flow Jacobian ODE,

d

dt
Jϕ(ϵ | t) = Jv(x

t | t)Jϕ(ϵ | t), Jϕ(ϵ | 0) = Id, (16)

where xt = ϕ(ϵ | t) follows the flow ODE (Eq. 11).

Proof. By definition, the vector field v and the diffeomorphic flow ϕ satisfy the flow ODE (Eq. 11)
for any flow time t ∈ [0, 1],

d

dt
ϕ(ϵ | t) = v(ϕ(ϵ | t) | t), xt = ϕ(ϵ | t).

Taking Jacobians with respect to the d-dimensional noise ϵ on both sides gives us
d

dt
Jϕ(ϵ | t) = Jv(x

t | t)Jϕ(ϵ | t).

Since the covariance of the noise ϵ is the identity matrix Id, we set Jϕ(ϵ | 0) = Id to conclude the
proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Similarly, the learned return vector field v with its diffeomorphic flow ϕ satisfies the following flow
derivative ODE for the conditional return random variable Zπ(s, a).
Proposition 4. For a state s ∈ S, an action a ∈ A, a noise ϵ sampled from N (0, 1), and a learned
return vector field v with the corresponding diffeomorphic flow ϕ, the flow derivative ∂ϕ/∂ϵ and the
vector field derivative ∂v/∂z satisfy the following flow derivative ODE,

d

dt

∂ϕ

∂ϵ
(ϵ | t, s, a) = ∂v

∂z
(zt | t, s, a) · ∂ϕ

∂ϵ
(ϵ | t, s, a), ∂ϕ

∂ϵ
(ϵ | 0, s, a) = 1,

where zt = ϕ(ϵ | t, s, a) follows the flow ODE (Eq. 11).

Proof. Applying Lemma 8 to the 1-dimensional conditional return random variable Zπ(s, a), we get
the desired flow derivative ODE.

C COMPONENTS OF THE PRACTICAL ALGORITHM

C.1 PRACTICAL FLOW MATCHING LOSSES

Our practical loss for fitting the return distribution involves the DCFM loss and a bootstrapped
regularization based on TD learning. Since it is computationally inefficient to keep track of a single
historical vector field vk and optimize the new vector field v until convergence, we will use a target
vector field v̄ (Farebrother et al., 2025), which aggregates all the historical vector fields {vk}, to
replace the single historical vector field in LDCFM (Eq. 15). Using zt ∼ p̄(zt | t, s′, a′) to denote the
sampling procedure of (1) first sampling a noise ϵ ∼ N (0, 1) and (2) then invoking the Euler method
(Alg. 2), we have

LDCFM(v) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),zt∼p̄(zt|t,s′,a′)

[(
v(r + γzt | t, s, a)− vk

(
zt | t, s′, a′

))2]
.

However, in our initial experiments, naively optimizing LDCFM(v) produced a divergent vector field.
To stabilize learning, we use the return predictions at the next state-action pair (s′, a′) and the flow
time t = 1 to construct a bootstrapped target return and invoke the standard conditional flow matching
loss (Eq. 13). The resulting loss function, called bootstrapped conditional flow matching (BCFM)
loss, resembles the standard Bellman error. Specifically, using z1TD = r(s, a) + γz1 to denote the
target return, and using ztTD = tz1TD + (1− t)ϵ to denote a linear interpolation between z1 and ϵ,4 the
BCFM loss can be written as

LBCFM(v) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),z1∼p̄(z1|1,s′,a′)

[(
v(ztTD | t, s, a)− (z1TD − ϵ)

)2]
.

Therefore, using λ to denote a balancing coefficient, the regularized flow matching loss function
is LDCFM(v) + λLBCFM(v). Our complete loss function also incorporates the confidence weight
(Sec. 4.3) into the DCFM loss and the BCFM regularization:

LwDCFM(v) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),zt∼p̄(zt|t,s′,a′)

[
w(s, a, ϵ) ·

(
v(r + γzt | t, s, a)− vk

(
zt | t, s′, a′

))2]
.

LwBCFM(v) = E (s,a,r,s′)∼D,t∼UNIF([0,1])

a′∼π(a′|s′),z1∼p̄(z1|1,s′,a′)

[
w(s, a, ϵ) ·

(
v(ztTD | t, s, a)− (z1TD − ϵ)

)2]
.

We use LValue Flow(v) = LwDCFM(v) + λLwBCFM(v) to denote the practical loss for fitting the return
distribution.

C.2 POLICY EXTRACTION STRATEGIES

We consider two different behavioral-regularized policy extraction strategies for offline RL and
offline-to-online RL. First, for offline RL, following prior work (Li et al., 2025; Chen et al., 2022), we
use rejection sampling to maximize Q estimates while implicitly imposing a KL constraint (Hilton,
2023) toward a fixed behavioral cloning (BC) policy. Practically, for a state s, we learn a stochastic
BC flow policy πβ : S×Rd → A that transforms a d-dimensional noise ϵd ∼ N (0, Id) into an action

4The same noise ϵ is used to sample z1 and construct ztTD and z1TD − ϵ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

πβ(s, ϵd) ∈ A using the standard conditional flow matching loss LBC Flow(π
β) (Park et al., 2025b).

Rejection sampling first uses the learned BC flow policy to sample a set of actions {a1, · · · , aN},
and then selects the best action that maximizes the Q estimates (Eq. 6):

Q̂(s, a) = Eϵ∼N (0,1)[v(ϵ | 0, s, a)], a⋆ = argmax
{a1,··· ,aN : ai∼πβ}

Q̂(s, ai).

Second, for online fine-tuning in offline-to-online RL, following prior work (Park et al., 2025c), we
learn a stochastic one-step policy π : S × Rd → A to minimize a DDPG-style loss with behavioral
regularization (Fujimoto & Gu, 2021). This loss function guides the policy to select actions that
maximize the Q estimates while distilling it toward the fixed BC flow policy:

LOne-step Flow(π) = Es∼D,ϵd∼N (0,Id)

[
−Q̂(s, π(s, ϵd)) + α∥π(s, ϵd)− πβ(s, ϵd)∥2

]
,

where α controls the distillation strength. The benefit of learning a parametric policy is introducing
flexibility for adjusting the degree of behavioral regularization during online interactions, mitigating
the issue of over-pessimism (Lee et al., 2022; Zhou et al., 2024; Nakamoto et al., 2023).

D FULL EXPERIMENT RESULTS

D.1 OFFLINE RESULTS

Table 2: Full offline evaluation on OGBench and D4RL benchmarks. We present the full evaluation results
on 49 OGBench tasks and 12 D4RL tasks. Following prior work (Park et al., 2025c), we use (*) to indicate the
task for hyperparameter tuning in each domain. We aggregate the results over 8 seeds (4 seeds for image-based
tasks), and bold values within 95% of the best performance for each task.

Gaussian Policies Flow Policies

BC IQL ReBRAC FBRAC IFQL FQL C51 IQN CODAC Value Flows

cube-double-play-singletask-task1-v0 8± 3 27± 5 45± 6 47± 11 35± 9 61± 9 9± 0 70± 14 80± 11 97± 1
cube-double-play-singletask-task2-v0 (*) 0± 0 1± 1 7± 3 22± 12 9± 5 36± 6 0± 0 24± 9 63± 4 76± 7
cube-double-play-singletask-task3-v0 0± 0 0± 0 4± 1 4± 2 8± 5 22± 5 0± 0 25± 6 66± 9 73± 4
cube-double-play-singletask-task4-v0 0± 0 0± 0 1± 1 0± 1 1± 1 5± 2 0± 0 10± 1 13± 2 30± 5
cube-double-play-singletask-task5-v0 0± 0 4± 3 4± 2 2± 2 17± 6 19± 10 0± 0 81± 8 82± 4 69± 5

scene-play-singletask-task1-v0 19± 6 94± 3 95± 2 96± 8 98± 3 100± 0 17± 3 100± 0 99± 0 99± 0
scene-play-singletask-task2-v0 (*) 1± 1 12± 3 50± 13 46± 10 0± 0 76± 9 2± 1 1± 0 85± 4 97± 1
scene-play-singletask-task3-v0 1± 1 32± 7 55± 16 78± 4 54± 19 98± 1 0± 1 94± 2 90± 3 94± 2
scene-play-singletask-task4-v0 2± 2 0± 1 3± 3 4± 4 0± 0 5± 1 2± 1 3± 1 0± 0 7± 17
scene-play-singletask-task5-v0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

puzzle-3x3-play-singletask-task1-v0 5± 2 33± 6 97± 4 63± 19 94± 3 90± 4 5± 0 71± 3 78± 8 99± 0
puzzle-3x3-play-singletask-task2-v0 1± 1 4± 3 1± 1 2± 2 1± 2 16± 5 0± 0 2± 2 5± 2 98± 2
puzzle-3x3-play-singletask-task3-v0 1± 1 3± 2 3± 1 1± 1 0± 0 10± 3 0± 0 0± 0 4± 3 97± 1
puzzle-3x3-play-singletask-task4-v0 (*) 1± 1 2± 1 2± 1 2± 2 0± 0 16± 5 0± 0 0± 0 5± 5 84± 24
puzzle-3x3-play-singletask-task5-v0 1± 0 3± 2 5± 3 2± 2 0± 0 16± 3 0± 0 0± 0 6± 5 58± 39

puzzle-4x4-play-singletask-task1-v0 1± 1 12± 2 26± 4 32± 9 49± 9 34± 8 0± 0 41± 2 37± 32 36± 3
puzzle-4x4-play-singletask-task2-v0 0± 0 7± 4 12± 4 5± 3 4± 4 16± 5 0± 0 12± 4 10± 10 27± 5
puzzle-4x4-play-singletask-task3-v0 0± 0 9± 3 15± 3 20± 10 50± 14 18± 5 0± 0 45± 7 33± 29 30± 4
puzzle-4x4-play-singletask-task4-v0 (*) 0± 0 5± 2 10± 3 5± 1 21± 11 11± 3 0± 0 23± 2 12± 10 28± 5
puzzle-4x4-play-singletask-task5-v0 0± 0 4± 1 7± 3 2± 2 2± 2 7± 3 0± 0 16± 6 10± 8 13± 2

cube-triple-play-singletask-task1-v0 (*) 1± 1 4± 4 1± 2 0± 0 2± 2 20± 6 1± 0 29± 2 9± 5 59± 12
cube-triple-play-singletask-task2-v0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 0± 0 0± 0 1± 0 0± 0
cube-triple-play-singletask-task3-v0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 0 0± 0 7± 3
cube-triple-play-singletask-task4-v0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0
cube-triple-play-singletask-task5-v0 0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1

pen-human-v1 71 78 103 77± 7 71± 12 53± 6 69± 8 69± 3 67± 0 66± 4
pen-cloned-v1 52 83 103 67± 9 80± 11 74± 11 67± 9 80± 11 76± 2 73± 5
pen-expert-v1 110 128 152 119± 7 139± 5 142± 6 110± 3 118± 19 136± 2 117± 3
door-human-v1 2 3 0 4± 2 7± 2 0± 0 0± 0 0± 0 3± 1 7± 2
door-cloned-v1 0 3 0 2± 1 2± 1 2± 1 0± 0 0± 0 0± 0 0± 0
door-expert-v1 105 107 106 104± 1 104± 2 104± 1 104± 1 105± 0 104± 0 104± 1
hammer-human-v1 3 2 0 2± 1 3± 1 1± 1 3± 1 2± 1 3± 1 1± 0
hammer-cloned-v1 1 2 5 2± 1 2± 1 11± 9 0± 0 0± 0 6± 0 1± 0
hammer-expert-v1 127 129 134 119± 9 117± 9 125± 3 122± 1 121± 7 126± 1 125± 5
relocate-human-v1 0 0 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0
relocate-cloned-v1 0 0 2 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0
relocate-expert-v1 108 106 108 105± 2 104± 3 107± 1 103± 0 103± 0 103± 2 102± 2

visual-antmaze-medium-navigate-singletask-task1-v0 (*) - 78± 9 54± 15 27± 3 81± 3 32± 3 - 62± 7 - 77± 4
visual-antmaze-medium-navigate-singletask-task2-v0 - 90± 3 96± 1 42± 4 87± 1 60± 2 - 88± 2 - 75± 5
visual-antmaze-medium-navigate-singletask-task3-v0 - 80± 6 97± 1 32± 4 92± 1 35± 8 - 64± 5 - 81± 7
visual-antmaze-medium-navigate-singletask-task4-v0 - 89± 4 93± 2 23± 2 84± 3 35± 2 - 71± 6 - 71± 6
visual-antmaze-medium-navigate-singletask-task5-v0 - 84± 2 97± 1 25± 4 89± 2 29± 7 - 84± 1 - 70± 26

visual-antmaze-teleport-navigate-singletask-task1-v0 (*) - 5± 2 2± 0 1± 1 7± 4 2± 1 - 2± 1 - 10± 4
visual-antmaze-teleport-navigate-singletask-task2-v0 - 10± 2 10± 3 6± 5 13± 3 6± 1 - 7± 3 - 17± 5
visual-antmaze-teleport-navigate-singletask-task3-v0 - 7± 7 4± 1 10± 4 8± 9 9± 4 - 6± 4 - 16± 3
visual-antmaze-teleport-navigate-singletask-task4-v0 - 4± 6 4± 0 10± 2 18± 2 9± 1 - 4± 2 - 16± 5
visual-antmaze-teleport-navigate-singletask-task5-v0 - 2± 1 2± 1 2± 1 4± 2 1± 1 - 2± 1 - 8± 2

visual-cube-double-play-singletask-task1-v0 (*) - 34± 23 4± 4 6± 2 8± 6 23± 4 - 4± 1 - 35± 2
visual-cube-double-play-singletask-task2-v0 - 3± 1 0± 0 2± 2 0± 0 0± 0 - 0± 0 - 4± 2
visual-cube-double-play-singletask-task3-v0 - 7± 4 2± 2 2± 1 1± 1 4± 2 - 0± 0 - 11± 2
visual-cube-double-play-singletask-task4-v0 - 2± 1 0± 0 0± 0 0± 0 0± 0 - 0± 0 - 2± 1
visual-cube-double-play-singletask-task5-v0 - 11± 2 0± 0 0± 0 2± 1 4± 1 - 1± 1 - 13± 3

visual-scene-play-singletask-task1-v0 (*) - 97± 2 98± 4 46± 4 86± 10 98± 3 - 95± 2 - 99± 0
visual-scene-play-singletask-task2-v0 - 21± 16 30± 15 0± 0 0± 0 86± 8 - 79± 15 - 40± 27
visual-scene-play-singletask-task3-v0 - 12± 9 10± 7 10± 3 19± 2 22± 6 - 31± 14 - 66± 1
visual-scene-play-singletask-task4-v0 - 1± 0 0± 0 0± 0 0± 0 1± 1 - 0± 0 - 10± 6
visual-scene-play-singletask-task5-v0 - 0± 0 0± 0 0± 0 0± 0 0± 0 - 0± 0 - 0± 0

visual-puzzle-3x3-play-singletask-task1-v0 (*) - 7± 15 88± 4 7± 2 100± 0 94± 1 - 84± 1 - 93± 5
visual-puzzle-3x3-play-singletask-task2-v0 - 0± 0 12± 1 0± 0 0± 0 0± 0 - 6± 2 - 12± 1
visual-puzzle-3x3-play-singletask-task3-v0 - 0± 0 1± 1 0± 0 2± 1 0± 0 - 1± 0 - 3± 1
visual-puzzle-3x3-play-singletask-task4-v0 - 1± 1 0± 1 0± 0 1± 0 5± 4 - 3± 0 - 6± 2
visual-puzzle-3x3-play-singletask-task5-v0 - 0± 0 0± 0 0± 0 0± 0 1± 2 - 1± 0 - 2± 0

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 OFFLINE-TO-ONLINE RESULTS

Table 3: Offline-to-online evaluations on OGBench and D4RL tasks. Value Flows achieves strong fine-tuning
performance compared to baselines. The results are averaged over 8 seeds.

IQN IFQL FQL RLPD IQL Value Flows

antmaze-large-navigate 55± 5→ 91± 1 11± 3→ 3± 2 87± 7 → 99± 12 0± 0→ 3± 2 41± 5→ 45± 5 72± 4 → 96± 1
humanoidmaze-medium-navigate 23± 3→ 14± 2 56± 12 → 82± 7 12± 7→ 22± 12 0± 0→ 8± 3 21± 5→ 16± 3 29± 6 → 86± 3
cube-double-play 29± 4→ 42± 7 12± 3→ 41± 2 40± 11 → 92± 3 0± 0→ 0± 0 0± 0→ 0± 0 65± 7→ 79± 6
cube-triple-play 25± 5→ 14± 6 2± 1→ 7± 5 4± 1 → 83± 12 0± 0→ 0± 0 3± 1→ 0± 0 29± 8→ 70± 7
puzzle-4x4-play 22± 2→ 6± 1 23± 2→ 19± 12 8± 3→ 38± 52 0± 0 → 100± 0 5± 1→ 0± 0 14± 3→ 51± 12
scene-play 0± 0→ 0± 0 0± 0→ 60± 14 82± 11 → 100± 1 0± 0 → 100± 0 15± 4→ 10± 3 92± 23 → 100± 0

Figure 6: Training curves for offline-to-online experiments for Value Flows. Value Flows can be used
directly for online fine-tuning and achieve strong performance without modifications to the vector field loss. The
results are averaged over 8 seeds.

D.3 ANALYSIS ON ABLATIONS

Figure 7: Flow steps can be fixed. The number of
flow steps to learn the returns generally does not affect
performance.

Figure 8: Number of rejection sampling samples
can be fixed. Value Flows is robust to the number of
rejection sampling samples.

How important is bootstrapped conditional flow matching loss as anchor? To better understand
the role of the bootstrapped conditional flow matching loss as a stabilizing anchor in the vector
field loss, we ablate over different values of λ in the loss compare the performance of Value Flows

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

under different settings. We present the results in Fig. 4. We see that the absence of the anchor
and only using the distributional conditional flow matching loss resulted in poor performance on
both cube-double and puzzle-3x3 as LDCFM(v) can result in a divergence vector field due
to the lack of stable learning signals. This results in the policy being unable to learn to solve the
task. However, policy performance increases as soon as some amount of anchor is added, as the
vector field loss can quickly stabilize. With different values of λ, we see that there is a difference in
policy performance with some choices of the hyperparameter resulting in more optimal policies. This
suggest the amount of anchoring is an important hyperparameter of Value Flows and should be tuned
for each setting.

How important is the confidence weight? A key design choice of Value Flows is to reweight the
distributional flow-matching objective by our confidence weight. We next ablate over the effect of
this design choice on performance, as well as if the magnitude of this weighting makes a difference.
We present the results in Fig. 5. As can be seen from the plots, compared with the anchoring
coefficient, the weighting coefficient tends to affect performance to a lesser extent, but remains
important. In particular, we see in puzzle-3x3 that not using this weighting can result in slower
convergence of the policy, as it takes much longer for the Bellman backup to learn the uncertainty
information. For cube-double, not using this weighting resulted in slightly worse performance.
We also note that Value Flows was able to get better performance than baselines on puzzle-3x3
and cube-double without using the weighting. Comparing against different magnitudes of the
weighting, we find that Value Flows is relatively less sensitive to the magnitude of the weighting
coefficient, though weighting often results in better performance.

Figure 9: The uncertainty weight for different τ
coefficients for Bellman backup. A smaller coefficient
will cause the weight to increase more drastically for a
larger variance in returns.

Does the number of flow steps or rejection
sampling samples affect how well the return
distribution is modeled? Since we use flow
matching to model the return the distribution, an
important variable is the number of flow steps
used to train the return distribution. We ablate
over this hyperparamter and present the results
in Fig. 7. Note that we keep the number of
flow steps for the policy fixed for this evalua-
tion, and only alter the number of flow steps
to learn the return vector field. We see that in
puzzle-3x3, using too few flow steps could
hurt performance, likely because it makes the
network less expressive and thus less able to ac-
curately model the return distribution. However,
in general, the performance of Value Flows is
not as affected by the number of flow steps. We
found that 10 flow steps worked for all the ex-
periments in this paper. We also ablate over the
number of rejection samples for policy extrac-
tion in the offline setting, since we use a rejection sampling based policy extraction method. We
present the results in Fig. 8. We see that Value Flows is robust to the number of rejection samples. In
our experiments, we found 16 samples to work well across a variety of tasks.

E VISUALIZING THE CONFIDENCE WEIGHT

We visualize different hyperparameters for the confidence weight for reweighting the distributional
flow-matching objective in Fig. 9. The y-axis is the confidence weight equation in a logarithmic scale,
and we plot the curve for x ∈ [0, 1]. A smaller coefficient will cause the weight to increase more
drastically for a larger variance in returns, which makes the flow update focus more on that state and
action pair. In contrast, a larger coefficient will decrease the weighting for the same return variance.

F EXPERIMENT DETAILS

We implement Value Flows using the JAX library (Bradbury et al., 2018) on top of the implementation
provided by OGBench (Park et al., 2025a).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.1 ENVIRONMENTS

We use OGBench (Park et al., 2025a) and D4RL (Fu et al., 2021) to perform experimental evaluations.
OGBench is a benchmark for offline goal-conditioned reinforcement learning, with single-task
variants for standard reward-maximizing RL algorithms. We use the single-task variants of the
tasks for all the environments. The reward is given as -1 and 0 for locomotion tasks where 0 is
received upon task completion, and −ntask to 0 for manipulation depending on how many subtasks
are complete. We use the following datasets from OGBench in our evaluation, each consisting of 5
tasks:

• cube-double-play-v0

• cube-triple-play-v0

• scene-play-v0

• puzzle-3x3-play-v0

• puzzle-4x4-play-v0

• visual-antmaze-medium-navigate-v0

• visual-antmaze-teleport-navigate-v0

• visual-scene-play-v0

• visual-puzzle-3x3-play-v0

• visual-cube-double-play-v0

D4RL is a popular benchmark for studying offline RL. We measure performance of these tasks
following the original criterion for normalized returns proposed by Fu et al. (2021). We use the
following 12 tasks from Adroit, which require highly dexterous manipulation and feature a high
dimensional 24-DoF action space, for comparison:

• pen-human-v1

• pen-cloned-v1

• pen-expert-v1

• door-human-v1

• door-cloned-v1

• door-expert-v1

• hammer-human-v1

• hammer-expert-v1

• hammer-cloned-v1

• relocate-human-v1

• relocate-cloned-v1

• relocate-expert-v1

The cube-double and cube-triple tasks involve learning complex pick-and-place manipula-
tion of colored cube blocks from unstructured data. The scene tasks involve long-horizon reasoning
and manipulation with various objects in view. The puzzle-3x3 and puzzle-4x4 tasks involve
using the robot arm to solve the "Lights Out" puzzle and further tests combinatorial generalization.
The Adroit benchmarks involve controlling a 28-DoF hand to perform dexterous skills of spinning a
pen, opening a door, relocating a ball, and using a hammer to knock a button. The antmaze and
humanoidmaze tasks are designed to navigate a challenging maze by controlling a 8-DoF ant and
21-DoF humanoid, respectively. The visual variants of these navigation tasks further involve working
with a partially observable MDP as there are no low-dimensional state information and the algorithm
must learn entirely from pixel observations. We focus on manipulation for state-based offline setting
as these are highly challenging tasks that require handling multimodality and long-horizon reasoning.
We further include navigation for visual offline tasks as these have the added challenge of partial
observability and choose a diverse mix of tasks to evaluate in the offline-to-online setting.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.2 HYPERPARAMETERS

Table 4: Domain specific hyperparameters on OGBench and D4RL benchmarks.

Hyperparameter Anchor Coefficient λ Uncertainty weight Discount

cube-double-play 1 3 0.995
cube-triple-play 0.3 0.03 0.995
puzzle-3x3-play 2 0.3 0.99
puzzle-4x4-play 0.3 100 0.99
scene 1 0.3 0.99

visual-antmaze-medium-navigate 3 0.03 0.99
visual-antmaze-teleport-navigate 3 0.03 0.99
visual-cube-double-play 1 0.3 0.995
visual-puzzle-3x3-play 3 0.3 0.99
visual-scene-play 1 0.3 0.99

pen-human 0.3 1.0 0.99
pen-cloned 0.3 1.0 0.99
pen-expert 0.3 0.01 0.99
door-human 0.3 0.01 0.99
door-cloned 0.1 0.3 0.99
door-expert 0.1 0.3 0.99
hammer-human 0.3 0.3 0.99
hammer-cloned 0.3 0.3 0.99
hammer-expert 0.1 1.0 0.99
relocate-human 0.1 0.01 0.99
relocate-cloned 0.3 0.01 0.99
relocate-expert 0.3 0.1 0.99

Table 5: Common hyperparameters on OGBench and D4RL benchmarks.

Hyperparameter All

Optimizer Adam
Batch Size 256

Learning Rate 3e-4
MLP Hidden Dim 512

MLP Hidden Layers 4
Flow Steps 10

Actor Flow Steps 10
Actor Layer Norm True
Value Layer Norm True

Num Samples 16
Target τ 0.005

Q-Ensemble Size 2

F.3 METHODS FOR COMPARISON

We evaluate Value Flows against 9 state-of-the-art baselines, namely BC, IQL, and ReBRAC as
standard Gaussian RL methods; FBRAC, IFQL, FQL as methods that use more expressive flow
matching policies; and distributional algorithms C51, IQN, and CoDAC. We instantiate all distri-
butional baselines with flow matching as the policy class. We use rejection sampling as the policy
extraction method for C51 and IQN, and FQL policy extraction for CoDAC. For the non-distributional
baselines, we take results from FQL (Park et al., 2025c) directly for comparison with the tasks that are
available, and use the implementations provided by Park et al. (2025c) to run experiments otherwise.
We describe the methods below:

BC. Behavior cloning maximizes the log likelihood of the data. We train a Gaussian policy to
maximize log likelihood with [512, 512, 512, 512] MLPs as the backbone.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

IQL (Kostrikov et al., 2021a). Implicit Q-Learning is an offline RL method that uses expectile
regression to learn the best action within the support of the data. We perform hyperparameter search
over expectiles in {0.7, 0.9} and temperatures in {0.3, 1, 3, 10}.

ReBRAC (Tarasov et al., 2023). ReBRAC is a TD3+BC based method that implements several
design choices such as layernorm actor and critic decoupling for better performance. We perform
sweeps over the actor and critic coefficients with values {0.003, 0.01, 0.03, 0.1, 0.3, 1} for the actor
BC coefficient and {0, 0.001, 0.01, 0.1} for the critic BC coefficient.

IFQL (Hansen-Estruch et al., 2023). We implement IFQL as a version of Implicit Diffusion
Q-Learning with flow matching as the policy class. We compare against IFQL to keep the policy
classes consistent across methods, as the focus of our paper is on value learning and not policy class.
IFQL uses a flow matching policy to propose samples and uses a value function learned with the IQL
expectile loss to select actions. We tune expectiles in {0.7, 0.9} and the number of samples from
{32, 64, 128}.

FBRAC (Wu et al., 2019). We implement FBRAC as a version of Behavior Regularized Actor
Critic with flow policies instead of Gaussian policies. We tune the number of samples in {32, 64, 128}
and the BC coefficient from {1, 3, 10, 30, 100, 300}.

FQL (Park et al., 2025c). Flow Q-Learning uses a one-step flow policy to maximize value and
distill from a multistep BC flow policy to avoid backpropagating the Q-value through time. We
consider the BC distillation coefficient in {3, 10, 30, 100, 300, 1000}.

C51 (Bellemare et al., 2017). C51 is a classic distributional RL method that discretizes the return
distribution into a fixed number of bins and uses cross-entropy loss to update these categorical
distributions. We tune the number of atoms in {51, 101}.

IQN (Dabney et al., 2018). IQN is a distributional RL method that approximates the return
distribution by predicting quantile values at randomly sampled quantile fractions. We tune κ in
{0.7, 0.8, 0.9, 0.95}.

CoDAC (Ma et al., 2021). CoDAC combines the distributional value learning with conservative
policy updates. We sweep over the BC coefficient in {100, 300, 1000, 3000, 10000, 30000} and the
penalty coefficient {0.1, 1, 100}.

28

	Introduction
	Related Work
	Preliminaries
	Value flows
	Motivations and desiderata
	Estimating the return distribution using flow-matching
	Harnessing uncertainty in the return estimation
	The complete algorithm

	Experiments
	Visualizing return distributions of
	Comparing to prior offline and offline-to-online methods
	The key components of Value Flows

	Conclusion
	Preliminaries
	The return and the Q function
	Distributional reinforcement learning
	Flow matching

	Theoretical Analysis
	Estimating the return distribution using flow-matching
	Harnessing uncertainty in the return estimation

	Components of the practical algorithm
	Practical flow matching losses
	Policy extraction strategies

	Full Experiment Results
	Offline Results
	Offline-to-Online Results
	Analysis on Ablations

	Visualizing the confidence weight
	Experiment details
	Environments
	Hyperparameters
	Methods for Comparison

