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Abstract

The idea of representing a signal as the weights of
a neural network, called Implicit Neural Represen-
tations (INRs), has led to exciting implications for
compression, view synthesis and 3D volumetric
data understanding. One problem in this setting
pertains to the use of INRs for downstream pro-
cessing tasks. Despite some conceptual results,
this remains challenging because the INR for a
given image/signal often exists in isolation. What
does the neighborhood around a given INR cor-
respond to? Based on this question, we offer
an operator theoretic reformulation of the INR
model, which we call Operator INR (or O-INR).
At a high level, instead of mapping positional en-
codings to a signal, O-INR maps one function
space to another function space. A practical form
of this general casting is obtained by appealing
to Integral Transforms. The resultant model does
not need multi-layer perceptrons (MLPs), used in
most existing INR models – we show that convo-
lutions are sufficient and offer benefits including
numerically stable behavior. We show that O-INR
can easily handle most problem settings in the
literature, and offers a similar performance pro-
file as baselines. These benefits come with mini-
mal, if any, compromise. Our code is available at
https://github.com/vsingh-group/oinr.

1. Introduction
If we treat a given signal as a map from the domain of
measurement to the range space, can neural networks help
estimate this mapping? One instantiation of this idea is pop-
ularly known as Implicit Neural Representations (INRs)
(Sitzmann et al., 2020; Tancik et al., 2020; Mildenhall
et al., 2021; Fathony et al., 2021) which can parameterize
spatial/spatio-temporal data (Gropp et al., 2020; Niemeyer
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Figure 1. Overview of O-INR: f1, f2, f3 ∈ F are input functions
acting on the domain Ω. O-INR maps these functions to their
corresponding signals (functions) h1, h2, h3 ∈ H.

et al., 2019; Jiang et al., 2020) for applications in image
super-resolution (Chen et al., 2021), texture synthesis (Oech-
sle et al., 2019; Sun et al., 2023), inverse problems (Sun
et al., 2021; Yu et al., 2021b; Niemeyer et al., 2020), and
view synthesis (Mildenhall et al., 2021; Sun et al., 2022).
From one signal to a set of signals. INRs typically consist
of a neural network that is trained to map each coordinate
of a given signal’s domain to its measurements/values, and
so are also known as coordinate-value networks. The map-
ping is learned via a neural network and gives a compact
representation of the signal (Sitzmann et al., 2020; Fathony
et al., 2021; Srinivasan et al., 2023). The discussion above
describes the case of one signal (or image). When given
a set of signals, we may derive an INR for each signal in
the set – Dupont et al. (2022a) then uses these functions
(called functa) as data for downstream tasks. Alternatively,
one can estimate a meta-learned “base” (INR) network, and
associate each data sample (or signal) in the dataset as a
modulation of the base network (Dupont et al., 2022b), akin
to random effects modulating fixed effects in mixed effects
models (Lindstrom & Bates, 1990). The modulation can
also be accomplished in other ways as we will see later
(Feng et al., 2022), via introducing a surrogate vector which
is tied to a specific INR through conditioning. Now, if the
data samples were ordered with respect to a surrogate vari-
able, we get a set of INRs where each sample specific INR
can be considered as a level set with discrete values denot-
ing the levels of the surrogate variable. Our goal is to study
and develop this interpretation, see Fig. 1.
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This paper. A prevailing view is to consider the INR as
a coordinate-value transform. We study a generalization
where we still wish to parameterize a signal (i.e., same goal
as INR) but as a transformation between two function spaces.
Casting INRs in this manner yields an operator-theoretic
view: our object of interest is the operator that takes us
across function spaces. We model these transforms via in-
tegral operators (or integral transforms) which transform
between function spaces via the process of integration. If
we further constrain the integral operator to be local and
translation-equivariant, we arrive at an efficient parameteri-
zation using convolutional layers. Other than its succinct-
ness, we show how this approach gives benefits compared
to coordinate-based INRs. The key contributions are:

(1) We introduce a new type of INR called Operator INR
(O-INR) which yields comparable or superior empirical
performance relative to common methods in terms of
representation capability on 2D images and 3D scenes;

(2) While most INR parameterizations rely on large MLPs,
we show that convolution operations with sinusoidal
non-linearities are more efficient to train and evaluate.

(3) Higher order derivatives of O-INRs can be efficiently
computed in closed form, allowing efficient processing
in downstream tasks such as denoising.

(4) O-INR offers greater convenience (control over both
the input function space and the weight space), includ-
ing explicit control of the spatial interpolation behavior,
mitigating the influence of initialization, and more in-
terpretable behavior in weight space.

2. Setting up O-INRs
We denote the standard coordinate-valued network as mθ :
RD → RR where θ ∈ RN denotes the parameters of the
neural network, usually based on multi-layer perceptrons
(MLPs). Here, D denotes the dimensionality of the domain
and R denotes the range space of the continuous function
being learned. For example, when fitting an INR to a 2D
RGB image, D = 2 and R = 3.

Space of Discretized Positional Encodings: It is known
that coordinate-value networks fail when coordinate loca-
tions are directly given as input (Tancik et al., 2020; Sitz-
mann et al., 2020). Workarounds suggest lifting the coor-
dinates to higher-dimensions. These positional encodings
on the coordinate space involve sinusoids across many fre-
quencies (Mildenhall et al., 2021) or hashing (Müller et al.,
2022; Xie et al., 2023). Consider the encoding f((x, y))

=
[
sin(2lπx), cos(2lπx), sin(2lπy), cos(2lπy), . . .

]
, (1)

for l ∈ {0, · · · , L−1}. We have many choices for this input,
of the form f(x, y) = [sin(θx), cos(θx), sin(θy), cos(θy)],
where θ can even be a tunable parameter as in Zhou et al.
(2021). In fact, it even makes sense to consider the entire

family of such functions, say by varying θ, which share a
common domain and co-domain. The corresponding space
we will obtain is commonly referred to as a function space.

More importantly, for a sequence of signals defined on the
same domain, Ω, the corresponding positional encodings
f1, · · · , fn also act on Ω. These are different functions but
belong to the same family w.r.t. their domain of definition,
regularity properties, and so on. We must interpret this set
to correspond to a well defined space of functions.

Even in the simplest case of two functions f1, f2 ∈ F , the
mapping via standard INRs will be independent. We will
obtain two separate models. However, both are members
within the family of functions discussed above. And due to
how these functions are defined, there is extensive structure
in the function space that can be utilized. Based on these
observations, we define our input function space in terms
of sinusoidal positional encodings (Sitzmann et al., 2020).
Specifically,

F = {f} where f : Ω → ψ (2)

where Ω is the domain of definition, e.g., 2D plane for
images, and a 3D cube for volumes whereas ψ defines the
space of sinusoidal positional encodings.

Signal spaces: In the above discussion, the elements of the
function space F were considered to belong to the family of
sinusoidal embedding functions. But INRs learn a map from
the positional encoding space to the signal space. So, what
do f1, f2, · · · , fn yield after going through such a map? The
answer is clear when we think of the associated co-domain
of this map simply as another function space. We denote this
function space of signals by H, also defined on the domain
Ω. Elements of H, namely h1, h2, . . . , hn are essentially
the different signals (for example, frames in a video) whose
corresponding embedding in F is f1, f2, . . . , fn.

From INRs to O-INRs: Many tasks can be posed as learn-
ing a map between two function spaces F and H. We pa-
rameterize the transformation between these function spaces
via a neural network (Rosasco et al., 2010; Que et al., 2014):

Gϕ : f → h (3)

where ϕ represents the parameters of a DNN, and f ∈ F
and h ∈ H are functions. We refer to this operator based
formulation of an implicit representation as O-INR. While
(3) gives a very general transform, we need a little more
structure on the operator to allow efficient learning.

Integral operators: Let us assume a simplified setup. We
want to learn a map from f1 → h1, where f1 ∈ F and
h1 ∈ H. Consider the common domain to be Ω = R, the
1D real number line. The simplest map would be an identity
mapping, resulting in h1(x) = f1(x), ∀x ∈ Ω. At the
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Ground truth O-INR (32.14) SIREN (31.84) WIRE (22.1) MFN (32.67)

Figure 2. Performance comparisons of O-INR in multi-resolution training setting. We show the ground truth together with reconstructions
from O-INR and other baselines (L to R), with the PSNR value in dB. O-INR achieves comparable/better performance to baselines.

other extreme, we can write h1(x) = C(x, {f1(y)|y ∈ Ω}),
where the value of h1(x) depends on all evaluations of f1
via a functional C. This can be written as an integral along
the domain Ω,

h1(x) =

∫
y∈Ω

C(x, f1(y))dy (4)

This means that an integral operator achieves the transfor-
mation between the function spaces via integrating over the
domain of definition. This is helpful: since integral oper-
ators are defined using their associated kernels, the only
parameterization we need within O-INR will be this kernel!

Consider f ∈ F and h ∈ H as functions over the domain Ω,
we learn an integral operator Gϕ with the associated kernel
Kϕ, where ϕ denotes the parameterization involved. Then,
the integral transform can be represented as:

h(ω) = G
[
f
]
(ω) =

∫
ω′∈Ω

Kϕ(ω, ω
′)f(ω′)dω′, ω ∈ Ω

(5)

where G
[
f
]

denotes the application of the transform on the
function f . Note that we recover the behavior of a standard
coordinate-valued network if the kernel is modulated by a
Dirac delta function: Kϕ(ω, ω

′) = Kϕ(ω)δω′(ω). In which
case, we have h(ω) = Kϕ(ω)f(ω) = K̃ϕ̃(f(ω)). Here,
K̃ϕ̃ represents the corresponding standard INR with its own
parameterization, ϕ̃.

Interpretation via Green’s Theorem: Recall that the
Green’s function is the fundamental solution to a linear
differential operator in its Dirac delta inhomogeneous form.
Given a linear differential operator L, the Green’s function
G(ω, ω′) of the operator is any solution of:

LG(ω, ω′) = δ(ω′ − ω) (6)

where δ is the Dirac delta function. This property is used to
solve differential equations of the form:

Lu(ω) = f(ω) (7)

which is given by

u(x) =

∫
G(ω, ω′)f(ω′)dω′ (8)

Note that (8) is exactly the same as (5). Viewing INRs as
realizations of Green’s function allows us to use various op-
erators as INRs that have not been tried before. In particular,
this allows us to use operators such as convolution and the
Calderon-Zygmund operator (Beylkin et al., 1991; Pal et al.,
2023) in place of MLPs.

How to parameterize O-INR? From (5), the only parame-
terization in our formulation is through Kϕ. In its maximum
capacity, the bi-variate function Kϕ can take distinct pa-
rameters for each pair of distinct (ω, ω′). While nearly all
INR formulations perform pointwise evaluations with an
MLP decoder, we can take advantage of our model and
use convolution layers to parameterize O-INR. Considering
the associated kernel to be a convolutional kernel, we have:
Kϕ(ω, ω

′) = gϕ(ω − ω′). Therefore, with gϕ being the
standard convolutional kernel, (5) becomes:

h(ω) = G
[
f
]
(ω) =

∫
ω′∈Ω

gϕ(ω − ω′)f(ω′)dω′, ω ∈ Ω

(9)

In standard INRs, the mapping is a point-wise map, hence
in the latent space (of INRs), adjacency does not have a
semantic correspondence with the spatial dimension. But in
O-INRs, the transform is obtained over the entire domain of
definition and hence the use of location bias is permissible.
Remark 2.1. While we focus on convolutions because it is
easy to understand, easy to train, and sufficient for the tasks
we study, our formulation of O-INR is general and can be
extended to other operators including Fourier neural opera-
tors and similar techniques that are used for efficient PDE
solvers. We explore O-INRs parameterized as Calderon-
Zygmund (CZ) operator in §5.

Multi-resolution training & Continuous convolutions:
How to sample at arbitrary resolution? When using convo-
lution kernels to parameterize O-INR, one drawback arises
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Ground Truth O-INR (ours) (32.9dB) SIREN (30.4dB) WIRE (31.5dB) MFN (30.9dB)

Figure 3. Performance comparison of O-INR with other INR methods for 2D image representation. We show the ground truth together
with reconstructions from O-INR and other baselines (L to R), with the PSNR value in dB.

when we want to sample the signal at any arbitrary reso-
lution. This is because discrete convolutions cannot adapt
their weights to different spacings, resulting in poor perfor-
mance when changing resolution. A remedy is available
via continuous convolutional kernels (Romero et al., 2021b).
We also parameterize each INR as a continuous convolu-
tional network, which is trained to map multiple resolutions
of positional encodings of the domain of definition of the
signal (e.g., the 2D plane) to corresponding resolutions of
the desired signal (e.g., images).

Remark 2.2. For spatio-temporal data, the time dimension is
treated differently in the context of the positional encoding
as we will discuss in §4.

Remark 2.3. While the rationale of positional encoding is
to provide high frequency signals as inputs to the model,
our use of convolutional layers also makes it possible to
simply use noise as a proxy for the high frequency positional
encoding term. But this is a poor choice within INRs with
MLP layers due to the lack of location bias.

Miscellaneous implementation details: While we use the
aforementioned positional encoding in our experiments for
CNNs, we also train O-INR with noise as an additional
channel to provide high frequency components and it works
well. For ease of implementation, and in cases where the
sole purpose is to fit to one resolution of the data point,
we can use discrete convolutions. We now discuss a set of
experiments starting with the use of continuous convolutions
for multi-resolution training.

3. Representation capability of O-INR
We first check the representation capability of O-INRs rel-
ative to standard INRs. We evaluate performance on 2D
images as well as 3D volumes. Additionally we show that
our proposed model can handle inverse problems such as
image denoising. For 2D images, we use images from sev-
eral sources including Agustsson & Timofte (2017) Kodak
Image Suite, scikit-image, etc. For 3D volumes, we use data
from the Stanford 3D Scanning Repository and Saragadam
et al. (2022; 2023).

Train Fern Coffee Walnut Rocket

Size 510 × 339 510 × 339 400 × 600 510 × 339 427 × 640

PS
N

R

SIREN 24.88 28.27 29.91 26.09 30.39
WIRE 34.13 37.16 31.51 33.21 31.46
MFN 26.82 31.26 32.27 28.36 30.93
iNGP 33.13 35.15 37.99 34.11 39.55
NFFB 22.17 31.93 30.09 26.15 35.25
O-INR 34.04 36.4 32.04 32.12 32.91

Ti
m

e

SIREN 38.43 53.8 68.67 51.3 89.39
WIRE 100.36 109.41 151.27 102.24 198.49
MFN 89.7 88.05 117.76 82.06 151.99
iNGP 88.0 68.2 101.3 64.83 109.63
NFFB 39.0 39.3 39.7 39.8 40.5
O-INR 57.1 57.0 56.0 57.0 56.2

Table 1. O-INR and baselines for 2D image representation. PSNR
(in dB) and time in seconds show O-INR is comparable/better than
baselines.

3.1. Multi-resolution training is possible

Task. We will assess the effectiveness of the multi-resolution
training approach for O-INR. Given an image at a particular
resolution, we train our model using its lower resolution
versions (obtained by down sampling). Can our model
effectively reconstruct images at an arbitrary resolution?

Setup. We compare our method to baselines including
SIREN (Sitzmann et al., 2020), WIRE (Saragadam et al.,
2023) and MFN (Fathony et al., 2021). Following (Sara-
gadam et al., 2023), we train the baselines on the best reso-
lution image seen by the O-INR during training. We then
compare performance of all methods for reconstructions at
the original (higher) resolution. Note that O-INRs with con-
tinuous convolutions can be trained at multiple resolutions.

Results summary. As seen in Fig. 2, O-INR achieves
comparable or slightly better performance than baselines in
terms of the Peak Signal to Noise Ratio (PSNR). Due to the
use of continuous convolutions, the number of parameters
required for O-INR are much smaller (100K) compared to
baseline models (∼130K) to achieve parity in performance.

3.2. 2D Image representation effectiveness

Task. A prominent use case of INRs is in representing
spatio-temporal signals. So, is O-INR effective at fitting 2D
images of varying resolutions?

Setup. We compare O-INR with sinusoidal representation

4



Implicit Representations via Operator Learning

Ground Truth Noisy O-INR (24.28) SIREN (20.94) WIRE (24.48) MFN (25.22)

Figure 4. Performance comparison of O-INR to other INRs for image denoising. For each method, we show the PSNR for the image in
dB. Among all methods, SIREN achieves the lowest PSNR, while O-INR and other baselines perform similarly.

networks (SIREN) (Sitzmann et al., 2020), wavelet implicit
neural representations (WIRE) (Saragadam et al., 2023),
multiplicative filter networks (MFN) (Fathony et al., 2021),
Instant NGP (iNGP) (Müller et al., 2022), and neural Fourier
filter banks (NFFB) (Wu et al., 2023) based on PSNR and
training time to reach the best possible PSNR for that spe-
cific model. While other INR models use MLP layers, our
model is solely parameterized by convolution layers. The
number of parameters in each model is comparable.

Results summary. Table 1/Fig. 3 shows that O-INR
achieves comparable or better performance than baseline
methods in terms of PSNR, only outperformed by iNGP. In
terms of training time, O-INR is faster than every method
except NFFB and SIREN, but O-INR’s quality is better.

3.3. Application to Image Denoising

Task. Our task is to assess the robustness of O-INR: is it
effective at representing noisy images?

Setup. Given an image, following (Saragadam et al., 2023),
we add photon noise for each pixel via independently dis-
tributed Poisson r.v. (maximum mean photon count 30,
readout count 2). These noisy images are then used to learn
O-INR models. We compare performance with SIREN,
WIRE, MFN, Instant NGP and NFFB. As in previous exper-
iments, all models have comparable number of parameters.

Results summary. From Tab. 2/Fig. 4, we see that O-INR
is able to recover the true signal to a similar degree as other
methods. The methods with an explicit spatial component
in their representation (iNGP and NFFB) tend to memorize
the signal and thus overfit the noise. This experiment (also
see appendix) indicates O-INR’s effectiveness in solving
some inverse problems.

3.4. 3D Volume representation

Task. INRs are commonly used as a continuous represen-
tation of 3D volumes or surfaces. How well can O-INR
encode 3D volumetric data?

Setup. We consider occupancy volume sampled over a
512 × 512 × 512 voxel grid, where each voxel within the

volume is assigned a value of 1 inside an object and 0 oth-
erwise. We compare O-INR with SIREN, WIRE and MFN
based on intersection over union (IoU). We ensure a similar
number of parameters when comparing with baselines.

Results summary. Fig. 5 shows that O-INR performs
well in IoU in all cases. For SIREN and WIRE, we report
the best performance (achieved with a model with slightly
fewer number of parameters). Increasing the parameters of
SIREN and WIRE involves an interplay with other hyper-
parameters. We should clarify that the convolutional param-
eterization of O-INR in 3D and higher dimensions can be
computationally expensive.

4. Representing a sequence of signals/functions
Task. Given a sequence of signals captured over a predefined
fixed domain, it is natural to consider the data as a sequence
of functions defined over the domain yielding a sequence
of functions (or signals). For example, frames in a short-
burst video are a sequence of images (captured by different
functions over the same domain).

In standard INR formulations, such signals are represented
by considering an additional parameter (usually time) in
the domain of definition and parameterized using mθ :
(x, y, t) → (r, g, b). While this is reasonable, a more natural
approach from a operator (functional) perspective is to con-
sider the sequence of frames as different (but related) func-
tions acting on the same domain rather than a function (with
a rather large redundancy) acting on the spatio-temporal
volume. Our experiment checks if O-INR is effective here.

Setup. We consider learning a transform between spaces
consisting of sequence of functions. More precisely, in this
case O-INR takes the following form:

Gϕ : FN →HN ; FN = {fn(Ω)|n ∈ N}
HN = {hn(Ω)|n ∈ N}

(10)

where ϕ denotes the to-be-learned parameters and Ω is the
domain of definition. We use sinusoidal positional encod-
ings as the input function space. A key question here is how
to define a sequence of functions over the domain under
consideration, while still ensuring that all such functions
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Ground Truth O-INR (0.9999) MFN (0.9946) SIREN (0.9665) WIRE (0.9658)

Figure 5. Performance comparison of O-INR to other INRs for surface reconstruction. O-INR achieves the best performance among all
methods, capturing fine details in the geometry (see inset).

provide both low and high frequency signals as an input
to our O-INR. Here, we consider the domain Ω as the 2D
plane over which frames are defined, with (x, y) ∈ Ω and
γn = α+ ((β−α)/N)n as the frame-specific offset which
is added to the standard coordinate embeddings in order to
fit different frames with the same convolutional weights.

fn(x, y) = [ sin(2lπx) + γ, cos(2lπx) + γ,

sin(2lπy) + γ, cos(2lπy) + γ, . . .]
(11)

where l ∈ {0, · · · , L − 1} for some L ∈ N, levels of
frequencies chosen to be part of the input signal. Here, α, β
are empirically determined constants and N is the total
number of functions that the O-INR is trained to encode.

Results summary. We trained O-INR on 100 randomly
sampled videos from the UCF-101 (Soomro et al., 2012)
dataset and 300 randomly sampled GIFs from the TGIF
dataset (Li et al., 2016). Fig. 6, shows an example from the
UCF dataset (appendix includes more examples). We find
that these results are comparable with SIREN. We achieve
an average PSNR of 43.76dB and 42.78dB on the UCF and
the TGIF datasets respectively. Thus, we can conclude that
O-INR can accurately represent frames in videos exploiting
the regularity property of the function space associated with
a related sequence of signals.

5. Calderon-Zygmund Operators as O-INR
Task. Does the formulation allow the applicability of the
model to operators other than convolution?

Setup. We consider the Calderon-Zygmund (CZ) operator
(Beylkin et al., 1991; Pal et al., 2023) (Appendix A) to
map the coordinates of the pixels in an image to their RGB
values.

Result Summary. As can be seen from Fig. 7, this choice
of CZ operator in O-INR enables it to faithfully represent

Figure 6. Rows show frames from a video from the UCF-101
dataset (Soomro et al., 2012). (Top) Original and (Bottom) pre-
dicted from O-INR trained on sparsely sampled frames of a long
video sequence. O-INR represents the scenes in the sequence well.

Figure 7. The CZ-Operator in O-INR can successfully represent
images with high PSNR values.

an example image from ImageNet-1K (Deng et al., 2009)
dataset. We notice that a PSNR of 36.47dB is achieved
which is higher than SIREN.

6. Brain Imaging: Slice Imputation
Task. Available software tools (like FreeSurfer (Fischl,
2012)) for the analysis of brain imaging data target high
resolution scans, acquired within research studies.

However, as noted in (Dalca et al., 2018), typical clinical
(non-research) scans have much lower out of plane res-
olution (often for slice-by-slice reading by radiologists).
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Figure 8. Top and Bottom rows: Overlay of filtered statistic image
from group difference analysis of original (full resolution) and
images generated via O-INR trained on sparsely sampled (30%
slices) AD and CN images respectively. The above images indicate
that O-INR is successful in preserving the group difference in 3D
brain imaging data.

Astronaut Cat Kodak05 Kodak19 Rocket

Size 512 × 512 300 × 451 512 × 768 256 × 171 427 × 640

SIREN 20.94 24.8 18.27 22.13 25.27
WIRE 24.48 27.4 20.47 24.6 26.27
MFN 25.22 24.8 23.6 20.96 25.78
iNGP 20.07 19.75 21.17 18.61 21.84
NFFB 19.83 21.14 23.45 21.39 26.18
O-INR 24.28 25.1 21.9 22.7 26.11

Table 2. Comparison of PSNR values (in dB) for O-INR and base-
lines for 2D image denoising.

Processing such scans with existing tools poses difficulties,
and the results often need to be manually checked. Even
partially mitigating this issue can radically increase sam-
ple sizes available for scientific analysis. We demonstrate
the use of O-INR in representing such low resolution brain
imaging data in (a) obtaining a faithful representation and
(b) preserving statistical group differences.

Setup. We consider MRI data from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (Mueller et al., 2005;
Jack Jr et al., 2008) and model 2D slices in a 3D brain scan
via a sequence of functions as described in §4. Our data
includes approximately 140 subjects each from cognitively
normal (CN) and diseased (AD) individuals. O-INRs are
trained for each image. For each 3D image, we progres-
sively dropped more slices in one out of plane direction to
simulate poor resolution, and use it for training.

Results summary. We observe that O-INR remains robust
up to a high percentage of missing slices. The MSE of
the reconstructed brain volumes reported in Tab. 3 show
that O-INR is capable of learning the representation well
even when more than 80% of the slices are dropped. More
realistic downsampling, as in (Zhao et al., 2020), can also
be adopted but is not used in our experiments. Finally,
we use SnPM (Statistical NonParametric Mapping) toolbox

% missing 50 66 75 80 82

Train MSE 2.17e-5 3.10e-5 1.39e-6 1.58e-5 2.69e-6
Test MSE 8.33e-5 2.38e-4 4.70e-4 7.66e-4 1.08e-3

Table 3. Train/test MSE for 3D brain images with % of missing
slices during training O-INR.

(Ashburner, 2010) to perform a statistical group difference
analysis (voxel-wise t-test) on the real data (CN versus
AD). Then, the same analysis was performed on O-INR
derived data (CN versus AD). We find that voxels reported
to be significant (uncorrected p-values) on the real data
analysis overlap with the analysis on data based on O-INR
slice imputation. Sizable clusters agree although the spatial
extent is reduced (higher Type 2 error). Statistical analysis
results with brain image underlay in Fig. 8 and additional
results from group difference analysis are in Appendix §I.

7. Learning downstream tasks on O-INRs
Task. Using INRs for downstream tasks is an exciting emer-
gent problem setting. Recently (Navon et al., 2023b) pro-
posed an equivariant architecture for learning in the so-
called “deep weight spaces” of INRs. However, in general,
with standard INRs, signal processing operations on the la-
tent space of MLPs remain difficult (Xu et al., 2022). Most
methods must resort to discretization leading to loss in prop-
erties like continuity. The result in (Xu et al., 2022) explores
the use of differential operators on INR: it is interesting but
is not memory efficient (see pp 10 (Xu et al., 2022)). Since
the O-INR operates on function spaces, many operations in
signal processing (e.g., evaluating derivatives) are incredi-
bly easy in principle. So, can these benefits be verified in
practice?

Setup. When using O-INR to encode a signal e.g., an image,
the signal is represented as the convolution of a known
simple signal (e.g., a positional encoding) with a sequence
of learned kernels. For ease of presentation, consider the
domain to be one dimensional. Then our model is:

h(x) = f(x) ∗ g(x) (12)

where h(x) is the true signal we want to represent, f(x) is
the positional encoding and g(x) is the learned transform
(convolution filters) between f(x) and h(x). When taking
into account our multi-layer convolutional model with sine
non-linearities, (12) can be written as (e.g., for 3 layers):

h(x) = (sin(sin(f(x) ∗ g1(x))) ∗ g2(x)) ∗ g3(x) (13)

We make use of the property of computing derivatives over
the convolution operation, namely:

h(x) = f(x) ∗ g(x) =⇒ h′(x) = f ′(x) ∗ g(x) (14)

Then, the derivative of our original signal is:

7
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Figure 9. (L to R) Original image, true gradient of the image via
Sobel filter and gradient obtained via O-INR (see §7). We see
that the O-INR derivative closely matches the true derivative in all
cases. Small discrepancies are due to the residual between the true
image and its O-INR representation.

h′(x) = (sin(sin(f(x) ∗ g1(x))) ∗ g2(x))′ ∗ g3(x) (15)

which on repeated application of (14) and the chain rule
leads to cos(sin(f(x) ∗ g1(x))) ∗ g2(x)) ⊙ cos(f(x) ∗
g1(x)) ⊙ f ′(x) ∗ g1(x) ∗ g2(x) ∗ g3(x), where ⊙ denotes
point-wise multiplication and ∗ denotes convolution opera-
tion. Extension to higher order derivatives follows similarly.

Results summary. We show the effectiveness of this ap-
proach in computing derivatives in Fig. 9. We see that once
an O-INR is trained, it can map different functions to their
desired signals. Here, the input functions are the positional
encodings of the grid and its derivative, which are then
mapped via O-INR to their corresponding outputs: signal
(image) and its first-order gradient. This shows that O-INR
allows seamless calculus operations in the function space, a
functionality difficult to achieve otherwise (Xu et al., 2022)
thereby limiting the choice of baselines to the numerically
obtained ground truth derivative.

We leverage this capability of computing gradients seam-
lessly in the recently proposed work (Chen et al., 2023)
where INRs are used to solve time-dependent PDEs. The
method involves computing the gradients of the network
w.r.t. the inputs which is achieved via back-propagation.
We simply replace this INR with our proposed O-INR and
hence are able to compute such gradients simply via a for-
ward pass as demonstrated above. It provides speeds up by
50% relative to (Chen et al., 2023) in iterations per sec.

We compared O-INR with Deep Weight-Space Networks
(DWSNets) (Navon et al., 2023a). We evaluated classifying
images represented as O-INR, i.e. we performed a head

to head comparison of O-INR with DWSNets. For both
MNIST and Fashion-MNIST, we trained O-INR and then
used a NN-classifier (with 10 neighbors) on the trained
model weights to measure test set accuracy. As can be seen
from Table 4, O-INR achieves excellent performance in this
task. This shows that the weights of O-INR correlate very
well with the underlying data requiring minimal processing
for downstream applications such as classification.

MNIST Fashion-MNIST

DWSNets 85.71 67.06
O-INR 96.57 80.18

Table 4. Test set classification accuracy obtained via NN-classifier
on the weights of DWSNets and O-INR on MNIST and Fashion-
MNIST datasets.

8. O-INR weight interpolation
Task. We verified above that operations like derivatives are
possible, suggesting that the structure in G can be queried.
So, does this ability allow other operations (interpolation)?

Setup. We investigate whether the convolutional weight
space of O-INRs produces a more structured latent space
than coordinate-based networks. One way to do this is by
visualizing interpolations between O-INRs fit on different
images from the CelebA dataset (Liu et al., 2015).

We should note that no generative model was trained on
CelebA – the only two images that O-INR sees are the ones
being interpolated.

Results summary. (Ainsworth et al., 2022) demonstrated
the use of special weight-matching algorithms to align two
models in the weight space. Using this idea, we permute
the channel ordering of one O-INR’s layers to minimize
the total cosine distance between the activation statistics
of the two O-INRs. Interpolation results presented in Fig.
10 use this strategy. Interestingly, even without an explicit
weight matching, we find that all trends hold. We find that
performing linear interpolation between the convolutional
weights (in O-INR) corresponding to different images leads
to reasonable and interpretable outputs, whereas interpolat-
ing individual layers in coordinate-based MLPs like SIREN
does not yield coherent outputs Fig. 10. More examples
of such interpolations obtained by manipulating individual
convolutional layers are in Appendix §J. It is worthwhile to
note that in (Skorokhodov et al., 2021), an explicit coupling
variable was used to enforce continuity and hence interpo-
late between INRs. This is compute intensive as noted in
(Skorokhodov et al., 2021). In our case, in Fig. 10, O-INRs
are trained independently (no coupling was utilized). We
simply move from one O-INR to the other.

8
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Figure 10. Interpolations between two CelebA images fit with SIREN versus O-INR. All layer weights are linearly interpolated.

9. Related Work
Implicit Neural Representations: INRs are useful in a
wide range of tasks. By virtue of learning a continuous
mapping, INRs can be sampled at any resolution thereby
making them applicable in super-resolution and denoising
(Saragadam et al., 2022; 2023; Peng et al., 2020). Other
tasks including 3D rendering, boundary value problems,
PDEs and generative modeling (Skorokhodov et al., 2021;
Esmaeilzadeh et al., 2020; Schwarz et al., 2020) have also
been studied using INRs. In (Shaham et al., 2021), the
authors leveraged INRs for high resolution image to image
translation. While the original development of INRs was
intended for Euclidean data, more general non-Euclidean
domains have been studied recently as in (Grattarola &
Vandergheynst). Many works have also adapted INRs for
scene representation (Niemeyer & Geiger, 2021; Guo et al.,
2020; Yu et al.) and scene editing (Yuan et al., 2022; Feng
et al., 2022; Fan et al., 2022; Gong et al., 2023).

Recall that the original formulation of an INR is as a multi-
layer perceptron (MLP). Various reparameterizations have
been developed that seek to offload computation to other
components to enable efficiency, especially for their use in
NeRFs. For example, plenoxels (Fridovich-Keil et al., 2022)
and plenoctrees (Yu et al., 2021a) represent a radiance field
with explicit voxel or octree structures and DirectVoxGO
(Sun et al., 2022) stores features on a voxel grid which is
decoded into radiance values with a tiny MLP.

A few approaches are available for learning in the context of
downstream tasks using INRs (Wang & Golland, 2022; Xu
et al., 2022; Dupont et al., 2022a;b). The use of differential
operators on INRs has been shown in (Xu et al., 2022)
by treating INRs as functions which enables modification
without explicit decoding. Further, in Wang & Golland
(2022), the authors treat neural fields as integrable maps and
propose discretization invariant layers that map elements of
this function space for use in DNN models. Other works
focus on learning in INR weight space (Dupont et al., 2022a;
Navon et al., 2023a), or represent transformations of the
underlying signal (e.g., modeling the evolution of a PDE)
by modulating INR weights over time (Chen et al., 2023).

Continuous convolutions: Since discrete convolutions
learn weights which are tied to the relative positions, con-
tinuous convolutions were initially designed to handle ir-
regularly sampled data (Schütt et al., 2017; Simonovsky &
Komodakis, 2017; Wu et al., 2019). Continuous time convo-
lutions are well studied, but their recent use in deep learning
applications includes modeling point clouds (Wang et al.,
2021; Boulch, 2019), graphs (Fey et al., 2017), fluids (Um-
menhofer et al., 2019), and even sequential data (Romero
et al., 2021b;a). We note that the use of convolutions within
INRs is rare (Peng et al., 2020). In most settings above, ir-
regular sampling intervals can be handled while maintaining
locality and translation invariance. CNNs for modeling long
range dependencies in arbitrary number of dimensions have
also been studied (Romero et al., 2022).

10. Conclusions
O-INR is a novel approach for fitting INRs that treats co-
ordinate encodings as a function space, offering efficient
and compact training on complex signals and particularly
sequences of signals. O-INR also leverages the properties
of convolutions and sinusoidal activations to produce fast
closed form derivatives useful in downstream tasks as well
as an interpretable latent weight space. O-INR is effec-
tive on a wide range of problems, and requires little to no
hyper-parameter tuning. Future work will expand on some
possibilities enabled by O-INR, such as fitting a radiance
field with a single interpolation-free CNN whose input cap-
tures all relevant information about camera rays and their
query points. We also hope to address some limitations, e.g.,
maintaining high performance and efficiency on arbitrary
non-grid inputs, relevant in many 3D applications. Another
direction is to use sparse grids to handle higher dimensions.
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Appendix
We present additional experimental details and empirical results for various experiments presented in the main paper and
some ablation studies, pertaining to the use of noise as a channel for positional encoding. We start with a short discussion of
the Calderon-Zygmund operator.

A. Calderon-Zygmund (CZ) Operator
Calderon-Zygmund (CZ) operators (Journé, 2006) are singular integrals with the special property that the kernel of the
operator, a(t, s) is smooth away from the diagonal and satisfies:

|a(t, s)| ≤ 1

|t− s|

|∂Mt a(t, s)|+|∂Ms a(t, s)| ≤ C0

|t− s|1+M

(16)

where C0 > 0 is a constant and M ≥ 1 is an integer which corresponds to the M -th partial derivative.

B. Multi-resolution training for 2D images
For each image we trained the O-INR model on a set of lower resolution images. For example: the cameraman image was
originally of size 256× 256, and hence O-INR was trained using images in the range 120× 120 to 224× 224. Similarly, for
the human face image, O-INR was trained on images with size in the range 256× 256 to 360× 360 and final performance
was evaluated on the original image of size 512 × 512. Since, baselines such as SIREN (Sitzmann et al., 2020), WIRE
(Saragadam et al., 2023) and MFN (Fathony et al., 2021) can only be trained on an image of a specific resolution, we
first trained them on the lowest, highest and average resolution of image used for training O-INR, however, as expected
the performance of baseline models was the best when they were trained using the highest resolution of image shown to
O-INR. Hence, we report PSNR for all baseline methods trained on the highest resolution of image used to train O-INR.
The performance is measured on the original (higher) resolution image in all cases.

For training O-INR, we used a learning rate of 0.0005 for 1000 epochs and the number of sinusoidal frequencies used for
each dimension was 20, 10 coming from sin and 10 coming from cos. The number of parameters for O-INR model to
achieve comparable performance was ≈ 100k whereas baseline methods required ≈ 130k parameters. Additional results are
presented in Fig. 11

C. 2D Image Representation
For comparing representation capability of 2D images, O-INR and baseline methods were trained on a single image (fixed
resolution). We report the representation capability in terms of PSNR. All models had ≈ 172k trainable parameters and
trained until convergence with learning rate in the order of 0.001. Here, the number of sinusoidal frequencies used for
each dimension was 20, 10 coming from sin and 10 from cos. In Fig. 12, we present additional results for 2D image
representation.

Ground truth O-INR (26.05) SIREN (28.56) WIRE (26.44) MFN (29.36)

Figure 11. Performance comparisons of O-INR in multi-resolution training setting. The ground-truth together with images from O-INR
and other baselines (L to R), with the PSNR value in dB. O-INR achieves comparable performance
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Ground truth O-INR(32.04) SIREN (29.91) WIRE (31.51) MFN (32.27)

Ground truth O-INR(36.4) SIREN (28.27) WIRE (37.16) MFN (31.26)

Ground truth O-INR (32.12) SIREN (26.09) WIRE (33.21) MFN (28.36)

Figure 12. Performance comparison of O-INR for 2D image representation. Each row displays the ground-truth together with images
from O-INR and other baselines (L to R), with the PSNR value in dB.

D. 3D Volume Representation
For 3D volume representation both O-INR and baseline models were trained with ≈ 1M parameters. We used a learning
rate of 0.001. In this case, the number of sinusoidal frequencies used for each dimension was 16, 8 coming from sin and 8
from cos. Additional results in Fig. 13 show that in terms of IoU, O-INR performs competitive with alternatives.

E. 2D Image denoising
In recovering an image from a noisy version, we trained O-INR and all baseline models on noisy variants obtained by
following the noise addition procedure in (Saragadam et al., 2023). All models had roughly 130k trainable parameters. We
used a learning rate of 0.003 for O-INR. Here, the number of sinusoidal frequencies used for each dimension was 20, 10
coming from sin and 10 from cos. In Fig. 14 we present additional results.

Lucy O-INR (0.9995) MFN (0.9978) SIREN (0.9753) WIRE (0.9753)

Figure 13. We report IoU achieved for each method after training converged. O-INR achieves best performance among all baselines.
Zoomed in parts in each case show the that minute details are captured better by O-INR.
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Original Noisy O-INR (25.1) SIREN (24.8) WIRE (27.4) MFN (24.8)

Original Noisy O-INR (26.11) SIREN (25.27) WIRE (26.27) MFN (25.78)

Original Noisy O-INR (21.9) SIREN (18.27) WIRE (20.47) MFN (23.6)

Original Noisy O-INR (22.7) SIREN (22.13) WIRE (24.6) MFN (20.96)

Figure 14. Performance comparisons of O-INR for representing noisy images. For each method, we note the PSNR it achieves on the
image in dB. O-INR and other baselines perform similarly.

F. Effectiveness of Continuous Convolution in O-INR
We present results for 2D image representation and 2D image denoising where continuous convolution was used in O-INR.
As described in the main paper, continuous convolutions are not strictly necessary for these tasks. Here, we demonstrate that
performance of O-INR is not impacted by this choice as the PSNR is comparable whether one uses continuous or discrete
convolutions. For example, in Fig. 15, the coffee-mug image attains a PSNR of 31.18 with continuous convolution O-INR
whereas with discrete convolution O-INR, PSNR on the same image is 32.04 as reported in Fig. 3.

Similarly, in the case of representing noisy images, as can be seen in Fig. 16, for the image of an astronaut, continuous
convolution based O-INR achieves PSNR of 23.5. On the other hand, as shown in the main paper, with discrete convolutions,
we can achieve a PSNR of 24.48 on the same image. Hence, it is clear that the performance of O-INR appears to be not
heavily dependent on the choice of continuous or discrete convolution and one can decide based on the representation task
at hand.

G. Noise as Positional Encoding for O-INR
As mentioned in Remark 2 of the main paper, O-INR is capable of simply using noise as a proxy for the high frequency
positional encoding term due to the use of convolutional layers. But this is a poor choice for standard INRs with MLP layers
due to the lack of location bias. Here, we present empirical evidence for the effectiveness of using noise sampled from
standard normal distribution as a means of providing high frequency component for the positional encoding. We see results
in Fig. 17.
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Ground truth O-INR (31.18) Ground truth O-INR (32.46)

Figure 15. Performance of O-INR for 2D image representation using continuous convolution. The ground-truth together with images
from O-INR with the PSNR value in dB. Performance is comparable to O-INR using discrete convolution

Original Noisy O-INR (23.5) Original Noisy O-INR (24.14)

Figure 16. Performance of O-INR with continuous convolution for representing noisy images. We note the PSNR it achieves on the image
in dB. Performance is comparable to O-INR using discrete convolution

Ground truth O-INR (26.68) Ground truth O-INR (29.77)

Figure 17. Performance of O-INR for 2D image representation using standard normal noise for high frequency positional encoding. The
ground-truth together with images from O-INR with the PSNR value in dB.

H. O-INR for sequence data
We used a learning rate of 0.001 along with 20 positional encodings for each spatial dimension, 10 for sin and 10 for cos for
training an O-INR model. When trained on the first 16 frames of a cat video (Sitzmann et al., 2020), O-INR can achieve an
average PSNR of 35.68 (or MSE of 0.00027). Additionally, we also trained O-INR on frames obtained from sub-sampling a
video, demonstrating a capability to recover the original sequence despite only seeing a sparse version. In the supplementary
material, please refer to videos in the “Result” folder for original and videos recovered from trained O-INR, corresponding
to both experimental settings: “consecutive” and “sparse”. The “consecutive” sub-folder contains results for the scenario
where O-INR was trained on consecutive frames. The folder names therein indicate the video, either of a cat or a road
scene and the number denotes the value of ‘n’ for the first ‘n’ consecutive frames in the video. The “sparse” sub-folder has
results for the scenario, where O-INR was trained on a sparse subset of sub-sampled frames from the video. Folder names
therein indicate the dataset, the number of frames used to train the model and the final number of frames present in the video
recovered via O-INR.

I. Applications to Brain Imaging
For the 3D brain imaging data, we chose approximately 140 subjects each from the cognitively normal (CN) and diseased
(AD) groups and trained O-INR on the T1 MRI scans as mentioned in §6. For performing the group difference analysis
using O-INR we use only 34% of available slices, by sampling every third slice along the Coronal direction for training
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Figure 18. Top/Bottom: Rows show frames from a video from the TGIF dataset: original and the ones from O-INR trained on sparsely
sampled frames of a long video sequence. O-INR represents the scenes in the sequence well.

Figure 19. Top to Bottom: Rows represent frames from cat video (Sitzmann et al., 2020) original and ones obtained from O-INR
representation. In this case the model was trained on consecutive frames of the video.

Figure 20. Top/Bottom: Rows show frames from a bike video: original and the ones from O-INR trained on sparsely sampled frames of a
long video sequence. O-INR represents the scenes in the sequence well.

the O-INRs. We used 20 positional encodings for each spatial dimension: 10 for sin and 10 for cos. An initial learning
rate of 0.001 was used alongside a Cosine Annealing scheduler with a minimum learning rate of 5× 10−4 and maximum
steps of 10000. The whole brain image was generated at the original resolution using the trained model. The models trained
achieved an MSE of 2.67× 10−4 at the original resolution, indicating that O-INR is able to represent the 3D volume well.

In order to perform statistical analysis, we used the Statistical non-Parametric Mapping (SnPM) toolbox. We performed
statistical group difference (voxel-wise t-test) on the real data (CN versus AD) with 10000 permutations. Then, the same
analysis process was repeated on O-INR derived data (CN versus AD). Note that the O-INR’s were trained only a fraction of
the original resolution. We find that voxels reported to be significant (uncorrected p-values) on the real (non-sampled) data
agree fully with the analysis results on data based on O-INR slice imputation. Sizable clusters agree although the spatial
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Figure 21. Top and Bottom rows: Overlay of filtered statistic image from group difference analysis of original (full resolution) and images
generated via O-INR trained on sparsely sampled (30% slices) AD and CN images respectively. The above images indicate that O-INR is
successful in preserving the group difference in 3D brain imaging data.

extent is reduced (higher Type 2 error). This is evident in both the overlay diagram in Fig. 21 as well as the T -statistic and
uncorrected p-values in Fig. 22.

Figure 22. Statistical analysis results from SnPM showing T -statistics, uncorrected p-values and the cluster center location of sizable
clusters. Table on the left summarizes the analysis results on the real data whereas the table on the right summarizes the analysis on the
data from O-INR slice imputation. Nearly all sizable clusters (in bold) on the left have a corresponding cluster on the right (the rank may
be slightly up or down) indicating strong agreement between the results.

J. Weight space interpolations of O-INR
In addition to performing interpolation between two different O-INRs, we also manipulated convolutional layers in individual
O-INRs. We find that manipulating individual convolutional layers by interpolating its weights while holding others fixed
yields structurally coherent changes to the image as shown in Fig. 23. In particular, early layers in the O-INR capture
large-scale features of the image (Conv1 perturbs the shape of the head, Conv3 perturbs the eyes and nose) while later layers
reflect local properties such as color and texture (Conv4 and Conv5). In Fig. 24 we present additional results for weight
interpolation between O-INRs trained on images from CelebA (Liu et al., 2015).
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Figure 23. Images produced by interpolating the weights of a single convolutional layer between two O-INRs fit on different CelebA
images. Other weights are held fixed.

Figure 24. Randomly selected examples of images produced by interpolating the weights of O-INRs fit on different images from the
CelebA dataset.
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