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ABSTRACT

Accurately modeling complex, multimodal distributions is necessary for optimal
decision-making, but doing so for rotations in three-dimensions, i.e., the SO(3)
group, is challenging due to the curvature of the rotation manifold. The recently
described implicit-PDF (IPDF) is a simple, elegant, and effective approach for
learning arbitrary distributions on SO(3) up to a given precision. However, in-
ference with IPDF requires N forward passes through the network’s final multi-
layer perceptron—where N places an upper bound on the likelihood that can be
calculated by the model—which is prohibitively slow for those without the com-
putational resources necessary to parallelize the queries. In this paper, I introduce
AQuaMaM,12 a neural network capable of both learning complex distributions on
the rotation manifold and calculating exact likelihoods for query rotations in a sin-
gle forward pass. Specifically, AQuaMaM autoregressively models the projected
components of unit quaternions as mixtures of uniform distributions that partition
their geometrically-restricted domain of values. On an “infinite” toy dataset with
ambiguous viewpoints, AQuaMaM rapidly converges to a sampling distribution
closely matching the true data distribution. In contrast, the sampling distribu-
tion for IPDF dramatically diverges from the true data distribution, despite IPDF
approaching its theoretical minimum evaluation loss during training. On a con-
structed dataset of 500,000 renders of a die in different rotations, an AQuaMaM
model trained from scratch reaches a log-likelihood 14% higher than an IPDF
model using a pretrained ResNet-50. Further, compared to IPDF, AQuaMaM uses
24% fewer parameters, has a prediction throughput 52× faster on a single GPU,
and converges in a similar amount of time during training.

1 INTRODUCTION AND RELATED WORK

In many robotics applications, e.g., robotic weed control (Wu et al., 2020), the ability to accurately
estimate the poses of objects is a prerequisite for successful deployment. However, compared to
other automation tasks, which primarily involve either classification or regression in Rn, pose esti-
mation is particularly challenging because the 3D rotation group SO(3)3 lies on a curved manifold.
As a result, standard probability distributions (e.g., the multivariate Gaussian) are not well-suited
for modeling elements of the SO(3) set. Further, because the steps for interacting with an object in
the “mean” pose between two possible poses (Figure 1) will often fail when applied to the object
when it is in one of the non-mean poses, accounting for multimodality in the context of rotations is
essential.

The recently described implicit-PDF (IPDF) (Murphy et al., 2021) is a simple,
1Pronounced “aqua ma’am”.
2All code to generate the datasets, train and evaluate the models, and generate the figures can be found at:

<anonymized for review>.
3SO(3) stands for “special orthogonal group in three dimensions”, with the “special” referring to the fact

that all rotation matrices have a determinant of one. See: https://blogs.scientificamerican.
com/roots-of-unity/a-few-of-my-favorite-spaces-so-3/ for a popular science introduc-
tion to SO(3).
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Figure 1: When minimizing the unimodal Bing-
ham loss for the two rotations R1 and R2, the
maximum likelihood estimate R̂ is a rotation that
was never observed in the dataset. Note, the die
images are for demonstration purposes only, i.e.,
no images were used during optimization. R0 is
the identity rotation.

elegant, and effective approach for modeling
distributions on SO(3) that both respects the
curvature of the rotation manifold and is in-
herently multimodal. The IPDF model f is
trained through negative sampling where, for
each ground truth image/rotation pair (X,R1),
a set of N − 1 negative rotations {Ri}N2 are
sampled and a score is assigned to each rotation
matrix as si = f(X,Ri). The final density
p(R1|X) is then approximated as p(R1|X) ≈
softmax(s)[1]/V where s is a vector contain-
ing the scores with s[1] = s1, and V = π2/N ,
i.e., the volume of SO(3) split into N pieces.
While effective, the N hyperparameter induces
a non-trivial trade-off between model precision (in terms of the maximum likelihood that can be
assigned to a rotation) and inference speed in environments that do not have the computational
resources necessary to extensively parallelize the task. Further, again due to the precision/speed
trade-off, IPDF is trained with Ntrain ≪ Ntest,4 which can make it difficult to reason about how the
model will behave in the wild.

The alternative to implicitly modeling distributions on SO(3) is explicitly modeling them. Here, I
briefly describe the three baselines used in Murphy et al. (2021), which are representative of explicit
distribution modeling approaches. Notably, IPDF outperformed each of these models by a wide
margin in a distribution modeling task (see Table 1 in Murphy et al. (2021)). First, Prokudin et al.
(2018) described a biternion network (Beyer et al., 2015) trained to output Euler angles by opti-
mizing a loss derived from the von Mises distribution. The two multimodal variants of the model
consist of: (1) a variant that outputs mixture components for a von Mises mixture distribution, and
(2) an “infinite mixture model” variant, which is implemented as a conditional (Sohn et al., 2015)
variational autoencoder (Kingma & Welling, 2014). Second, Gilitschenski et al. (2020) described
a procedure for training a network to directly model a distribution of rotations by optimizing a loss
derived from the Bingham distribution (Bingham, 1974), with the multimodal variant outputting the
mixture components for a Bingham mixture distribution. Lastly, Deng et al. (2020) extended the
work of Gilitschenski et al. (2020) by optimizing a “winner takes all” loss (Guzmán-rivera et al.,
2012; Rupprecht et al., 2017) in an attempt to overcome the difficulties (Makansi et al., 2019) com-
monly encountered when training Mixture Density Networks (Bishop, 1994).

One additional approach that needs to be introduced is the direct classification of an individual ro-
tation from a set of rotations, which, in some sense, is the explicit version of IPDF. Unfortunately,
the computational complexity of this strategy quickly becomes prohibitive as more precision is re-
quired. For example, Murphy et al. (2021) used an evaluation grid of ∼2.4 million equivolumetric
cells (Yershova et al., 2010), which would not only require an extraordinary number of parame-
ters in the final classification layer of a model, but would also require an extremely large dataset to
reasonably “fill in” the grid due to the curse of dimensionality.5

In this paper, I introduce AQuaMaM, an Autoregressive, Quaternion Manifold Model that learns
arbitrary distributions on SO(3) with a high level of precision. Specifically, AQuaMaM models the
projected components of unit quaternions as mixtures of uniform distributions that partition their
geometrically-restricted domain of values. Architecturally, AQuaMaM is a Transformer (Vaswani
et al., 2017). Although Transformers were originally motivated by language tasks, their flexibility
and expressivity have allowed them to be successfully applied to a wide range of data types, includ-
ing: images (Parmar et al., 2018; Dosovitskiy et al., 2021), tabular data (Padhi et al., 2021; Fakoor
et al., 2020; Alcorn & Nguyen, 2021c), multi-agent trajectories (Alcorn & Nguyen, 2021a), and
proteins (Rao et al., 2021). Recently, multimodal Transformers (Ramesh et al., 2021; Reed et al.,
2022), i.e., Transformers that jointly process different modalities of input (e.g., text and images),
have revealed additional fascinating capabilities of this class of neural networks. AQuaMaM is mul-
timodal in both senses of the word—it processes inputs from different modalities (images and unit
quaternions) to model distributions on the rotation manifold with multiple modes.

4In Murphy et al. (2021), Ntrain = 4,096 and Ntest = 2,359,296, i.e., Ntrain/Ntest = 0.2%.
5Notably, Mahendran et al. (2018) used a maximum of 200 rotations in their classification approach.
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To summarize my contributions, I find that:

• AQuaMaM is highly effective at modeling arbitrary distributions on the rotation manifold.
On an “infinite” toy dataset with ambiguous viewpoints, AQuaMaM rapidly converges to a
sampling distribution closely matching the true data distribution (Section 4.1). In contrast,
the sampling distribution for IPDF dramatically diverges from the true data distribution,
despite IPDF approaching its theoretical minimum evaluation loss during training. Ad-
ditionally, on a constructed dataset of 500,000 renders of a die in different rotations, an
AQuaMaM model trained from scratch reaches a log-likelihood 14% higher than an IPDF
model using a pretrained ResNet-50 (Section 4.2).

• AQuaMaM is fast, reaching a prediction throughput 52× faster than IPDF on a single GPU.
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Figure 2: Because there is a bijective mapping between the unit disk B2 = {v ∈ R2 : ∥v∥ < 1}
and the unit hemisphere S̃2 = {v ∈ R3 : ∥v∥ = 1, z > 0}, the challenging task of estimating
a distribution on the curved S̃2 manifold can be simplified to estimating a distribution on the non-
curved B2. (a) Here, the true distribution on S̃2 is a uniform distribution, i.e., each point has a
density of 1

2π (because S̃2 has a surface area of 2π). (b) Points that are uniformly sampled from S̃2

and then projected onto B2 are more concentrated towards the edges of B2 due to the curvature of
S̃2. If we model the distribution of (x, y) coordinates onB2 as a mixture of uniform distributions, we
can calculate p(x, y, z) by dividing p(x, y) by the area of the parallelogram defined by the Jacobian
located at (x, y, z) on the hemisphere. (c) The p(x, y, z) calculated through this procedure are
generally quite close to the expected density. The mean density µ of the 1,000 points shown in (c) is
0.154 (compared to 0.159 for the true density). A similar procedure is used by AQuaMaM to obtain
the probability of a unit quaternion p(q) while only modeling the first three components of q: qx,
qy , and qz . See Section A.1 for additional details.

2.1 THE QUATERNION FORMALISM OF ROTATIONS

Several different formalisms exists for rotations in three dimensions, likely the most widely en-
countered of which is the rotation matrix—a 3 × 3 orthonormal matrix that has a determinant of
one. Another formalism, particularly popular in computer graphics software, is the unit quater-
nion. Quaternions (typically denoted as the algebra H) are extensions of the complex numbers,
where the quaternion q is defined as q = qxi + qyj + qzk + qw with qx, qy, qz, qw ∈ R and
i2 = j2 = k2 = ijk = −1. Remarkably, the axis and angle of every 3D rotation can be encoded
as a unit quaternion q ∈ H1 = {q ∈ H : ∥q∥ = 1}, i.e., qw = cos(θ/2), qx = ex sin(θ/2),
qy = ey sin(θ/2), and qz = ez sin(θ/2) where e = [ex, ey, ez] is a unit vector indicating the axis of
rotation and the angle θ describes the magnitude of the rotation about the axis.

2.2 MODELING A DISTRIBUTION ON A “HYPER-HEMISPHERE”

Due to the curvature of the 3-sphere S3 = {v ∈ R4 : ∥v∥ = 1}, directly modeling distributions
on H1 is difficult. However, two facts about H1 present an opportunity for tackling this challenging
task. First, the unit quaternions q and −q encode the same rotation, i.e., H1 double covers SO(3).
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As a result, we can narrow our focus to the subset of unit quaternions with qw > 0, i.e., H̃1 =
{q ∈ H1 : qw > 0} (practically speaking, we can convert any q in a dataset with qw < 0 to −q).
Second, because all q ∈ H1 have a unit norm, qx, qy , and qz must all be contained within the unit
3-ball B3 = {v ∈ R3 : ∥v∥ < 1}, which is not curved. Therefore, p(qx, qy, qz) can be estimated
using standard probability distributions. Importantly, ∀q ∈ H̃1, qw is fully determined by qx, qy ,
and qz because of the unit norm constraint, i.e., there is a bijective mapping f : B3 → H̃1 such that
f(qx, qy, qz) = [qx, qy, qz, qw] where qw =

√
1− q2x − q2y − q2z . Together, these facts mean we can

calculate p(q) by simply applying the appropriate density transformation to p(qx, qy, qz).

Intuitively, thinking about the probability density of a point as its infinitesimal probability mass
divided by its infinitesimal volume, the density p(qx, qy, qz) needs to be “diluted” by however much
its volume expands when transported to H̃1.6 Specifically, the diluting factor is 1/sq where sq is the
magnitude of the wedge product of the columns of the Jacobian matrix J for f . Similar to how the
magnitude of the cross product of two vectors equals the area of the parallelogram defined by the
vectors, the magnitude of the wedge product for three vectors is the volume of the parallelepiped
defined by the vectors.7 In this case, sq = 1/qw, i.e., the diluting factor is qw.8 Figure 2 visualizes
an analogous density transformation for the unit disk and unit hemisphere.

2.3 MODELING SO(3) DISTRIBUTIONS AS MIXTURES OF UNIFORM DISTRIBUTIONS ON
PROJECTED UNIT QUATERNIONS

Figure 3: When modeling the conditional distribution p(qy|qx) as a mixture of uniform distributions,
the geometric constraints of the unit quaternion are easily enforced. Here, I focus on non-negative
bins for clarity, i.e., intervals [ai, bi) where 0 ≤ a < b ≤ 1, but the same logic applies to negative
bins. Given qx = 0.7, we know that |qy| ≤

√
1− 0.72 because q has a unit norm. As a result,

the mixture proportion πi for any bin where
√
1− 0.72 < ai must be zero. AQuaMaM enforces

this constraint by assigning a value of −∞ to the output scores for “strictly illegal bins” during
training.9For the remaining bins, the corresponding uniform distribution is U(qy; ai, b̂i) where b̂i =
min(

√
1− 0.72, bi), i.e., the upper bound of the uniform distribution for the partially legal bin is

reduced to
√
1− 0.72.

Using the chain rule of probability, we can factor the joint probability p(qx, qy, qz) as p(qx, qy, qz) =
p(qx)p(qy|qx)p(qz|qy, qx). To model this distribution, desiderata for each factor include: (1) the
flexibility to handle complex multimodal distributions and (2) the ability to satisfy the unit norm
constraint of q ∈ H̃1. By partitioning [−1, 1] intoN bins, each with a width of 2

N , we can model the
distributions for qx, qy , and qz as mixtures of uniform distributions where N controls the maximum
precision of the model. Recall that the density for the uniform distribution U[a,b) with −∞ < a <

b <∞ is U(x; a, b) =

{
1

b−a for x ∈ [a, b)

0 otherwise
. Therefore, the density for qx is:

p(qx) =

N∑
i=1

πiU(qx; ai, bi) = πkU(qx; ak, bk) = πk
1

bk − ak
= πk

1

2/N
= πk

N

2
(1)

6See the lecture notes here: https://www.cs.cornell.edu/courses/cs6630/2015fa/
notes/pdf-transform.pdf for a survey of probability density transformations.

7See the lecture notes here: https://sheelganatra.com/spring2013_math113/notes/
cross_products.pdf for additional connections between the cross product and the wedge product.

8See Section A.1 for the exact recipe.
9See Section A.2 for a subtlety regarding “strictly illegal bins”.

4

https://www.cs.cornell.edu/courses/cs6630/2015fa/notes/pdf-transform.pdf
https://www.cs.cornell.edu/courses/cs6630/2015fa/notes/pdf-transform.pdf
https://sheelganatra.com/spring2013_math113/notes/cross_products.pdf
https://sheelganatra.com/spring2013_math113/notes/cross_products.pdf


Under review as a conference paper at ICLR 2023

where πi is the mixture proportion for the mixture component/bin indexed by i, and k is the index
for the bin that contains qx.

For qy and qz , the conditional densities are similar to the density for qx, but the unit norm constraint
on q presents opportunities for introducing inductive biases into a model (Figure 3). For example,
consider the bins that are fully contained within R≥0, i.e., where a, b ≥ 0. For any such bin where√
1− q2x < ai, we know that πi = 0 for qy because ∥q∥ = 1. Further, again due to the unit norm

constraint, the conditional density for qy is in fact:

p(qy|qx) = πk
1

min(
√
1− q2x, bk)− ak

(2)

i.e., when ak <
√
1− q2x < bk, the upper bound of the bin’s uniform distribution is reduced.

Similarly, p(qz|qy, qx) = πk/(min(
√
1− q2x − q2y, bk) − ak). The full density for p(qx, qy, qz) is

thus:

p(qx, qy, qz) = πqx
N

2
πqy

1

ωqy

πqz
1

ωqz

= πqxπqyπqz
N

2ωqyωqz

(3)

where πqc is the mixture proportion for the bin containing component qc and ωqc is the potentially
reduced width of the bin for qc used in Equation 2.

2.4 OPTIMIZING p(q) AS A “QUATERNION LANGUAGE MODEL”

After incorporating the diluting factor from Section 2.2, the final density for q ∈ H̃1 is:

p(q) = πqxπqyπqz
Nqw

2ωqyωqz

(4)

As previously demonstrated by Alcorn & Nguyen (2021b), models using mixtures of uniform dis-
tributions that partition some domain can be optimized solely using a “language model loss”. Here,
the negative log-likelihood (NLL) for a dataset X is (where d is the index for a sample):

L = −
|X |∑
d=1

lnπqd,x + lnπqd,y + lnπqd,z + ln
Nqd,w

2ωqd,yωqd,z

(5)

Notice that the last term is constant for a given dataset, i.e., it can be ignored during optimization.
The final loss is then L̂ = −

∑|X |
d=1 lnπqd,x + lnπqd,y + lnπqd,z , which is exactly the loss of a three

token autoregressive language model.

As a final point, it is worth noting that the last term in Equation 4 is bounded below such that
Nqw

2ωqyωqz
≥ N3qw

8 , i.e., for a given πqxπqyπqz , the likelihood increases at least cubically with the
number of bins. For 50,257 bins (i.e., the size of GPT-2/3’s vocabulary (Radford et al., 2019; Brown
et al., 2020)), N3 = 1.26 × 1014. In contrast, the likelihood for IPDF only scales linearly with the
number of equivolumetric grid cells (the equivalent user-defined precision hyperparameter).

3 AQUAMAM

3.1 ARCHITECTURE

Here, I describe AQuaMaM (Figure 4), a Transformer10 that performs pose estimation using the
autoregressive quaternion framework described in Section 2. Specifically, AQuaMaM consists of a

10See Section A.3 for a brief introduction to Transformers.
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Transformer

Patch Embeddings

Attention Mask

( ),

Figure 4: An overview of the AQuaMaM architecture. Given an image/rotation matrix pair (X,R),
the image is first converted into a sequence of P patch embeddings while the rotation matrix is con-
verted into its unit quaternion representation q = [qx, qy, qz, qw]. By restricting the unit quaternions
to those with positive real components (which is allowed because q and −q encode the same rota-
tion), qw becomes fully determined and does not need to be modeled. Next, each of the first two
components qc of q is mapped to an embedding zqc by a separate subnetwork gqc . The full input
to the Transformer is thus a sequence consisting of the P patch embeddings, a special [START]
embedding z0, and the two unit quaternion embeddings. The labels lqx , lqy , and lqz are generated by
assigning qx, qy , and qz to one of N labels through a binning function Bin. Using a partially causal
attention mask, AQuaMaM models the conditional distribution p(qx, qy, qz|X) autoregressively, i.e.,
p(qx, qy, qz|X) = p(qx|X)p(qy|qx,X)p(qz|qx, qy,X) where each component is modeled as a mixture
of uniform distributions that partition the component’s geometrically constrained domain. Because
minimizing the loss of a mixture of uniform distributions is equivalent (up to a constant) to mini-
mizing the classification loss over the bins, AQuaMaM is trained as a “quaternion language model”.

Vision Transformer (ViT) (Dosovitskiy et al., 2021) with a few modifications. As with ViT, AQua-
MaM tokenizes an input image X by splitting it into P patches that are then passed through a linear
layer to obtain P dmodel-dimensional embeddings. Three additional embeddings are then appended
to this sequence: (1) a [START] embedding z0 (similar to the [START] embedding used in lan-
guage models) and (2) two embeddings zqx and zqx corresponding to the first two components of q.
Each zqc is obtained by passing qc through a subnetwork gqc consisting of a NeRF-like positional
encoding function (Vaswani et al., 2017; Mildenhall et al., 2020; Tancik et al., 2020) followed by a
multilayer perceptron (MLP), i.e., the size of the input for the MLPs is 1 + 2 × L where L is the
number of positional encoding functions.

Once positional embeddings have been added to the input sequence, the full sequence is then fed
into a Transformer along with a partially causal attention mask (Alcorn & Nguyen, 2021a;b), which
allows AQuaMaM to autoregressively model the conditional distribution p(qx, qy, qz|X) using the
density from Equation 4. The transformed z0, zqx , and zqy embeddings—ẑ0, ẑqx , and ẑqy—are
used to assign a probability to the labels for qx, qy , and qz , e.g., πqx = h(ẑ0)[lqx ] where h is the
classification head and lqx = Bin(qx) where Bin is the binning function.11 Notably, AQuaMaM
somewhat sidesteps the curse of dimensionality by effectively learning three different models with
shared parameters: p(qx|X), p(qy|qx,X), and p(qz|qy, qx,X), each of which only needs to classify
N bins, as opposed to learning a single model that must classify on the order of N3 bins.

3.2 GENERATING A SINGLE PREDICTION

While AQuaMaM could generate a single prediction by optimizing q under the full density (Equa-
tion 4)—similar to what was done in Murphy et al. (2021)—predictions obtained via optimiza-
tion are slow. An alternative strategy is to embrace AQuaMaM as a “quaternion language model”
and use a greedy search to return a “quaternion sentence” as a prediction. While sentences cor-
responding to regions where qw ≈ 0 will contain a wider range of compatible rotations, with
a sufficiently large N , the range of rotations can be kept reasonably small. For example, when
N = 500 (as in the AQuaMaM die experiment; see Section 4.2), if qx ∈ [0.996, 1], then
qw ∈ [0,

√
1− 0.9962], and the geodesic distance between the rotations corresponding to the quater-

nions q1 = [0.996, 0, 0,
√
1− 0.9962] and q2 = [1, 0, 0, 0] is 10.3°. Using the analogous numbers

11PyTorch pseudocode for AQuaMaM’s forward pass can be found in Listing 4 in Section A.6.

6



Under review as a conference paper at ICLR 2023

for N = 50,257 (as in the AQuaMaM toy experiment; see Section 4.1), the geodesic distance be-
tween q1 and q2 is 1.0°.

Generating a quaternion sentence with AQuaMaM requires three passes through the network. How-
ever, the last two passes can be considerably optimized by noting that the first P + 1 tokens do
not depend on the last two tokens due to the partially causal attention mask. A naive decoding
strategy where a full (padded) sequence is passed through AQuaMaM three times has an attention
complexity of O(3(P + 3)2). By only passing the first P + 1 tokens through AQuaMaM and
caching the attention outputs, the complexity of the attention operations when decoding reduces to
O((P + 1)2 + (P + 2) + (P + 3)). Empirically, I found that using this caching strategy increased
the prediction throughput by approximately twofold.

4 EXPERIMENTS AND RESULTS
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Figure 5: On the infinite toy
dataset, AQuaMaM rapidly
reached its theoretical minimum
(classification) average negative
log-likelihood (NLL). In con-
trast, IPDF never reached its
theoretical minimum validation
NLL, despite converging to its
training theoretical minimum.

Compared to the standard datasets used for computer vision
tasks like image classification (Deng et al., 2009) and object
detection (Lin et al., 2014)—which contain millions of labeled
samples—many commonly used pose estimation datasets are
relatively small, with PASCAL3D+ (Xiang et al., 2014) con-
sisting of ∼20,000 training images12 and T-LESS (Hodan et al.,
2017) consisting of ∼38,000 training images. The SYMSOL
I and II datasets created by Murphy et al. (2021) consisted of
100,000 renders for each of eight different objects, but the pub-
licly released versions only contain 50,000 renders per object.13

In addition to their relatively small sizes, these different pose
datasets have the additional complication of including multiple
categories of objects. The “canonical” pose for a category of
objects is arbitrary, so it is not entirely clear whether combining
categories of objects makes pose estimation harder or easier for
a learning algorithm (a jointly trained model essentially needs to
do both classification and pose estimation).14 Therefore, to in-
vestigate the properties of AQuaMaM in moderately large data
regimes where Transformers excel, I trained AQuaMaM on two
constructed datasets for pose estimation, an “infinite” toy dataset
(Section 4.1) and a dataset of 500,000 renders of a die (Section
4.2). Because Murphy et al. (2021) found that IPDF outperformed other multimodal approaches by
a wide margin in their distribution estimation task, I only compare to an IPDF baseline here.

4.1 TOY EXPERIMENT

The infinite toy dataset consisted of six categories of viewpoints indexed i = 0, 1, . . . , 5. I associated
each viewpoint i with 2i randomly sampled rotation matrices Ri = {Rj}2

i

1 , i.e., each viewpoint
had a different number of rotation modes reflecting its level of ambiguity. I defined the true data-
generating process as a hierarchical model such that a sample was generated by first randomly
selecting a viewpoint from a uniform distribution over i, and then randomly selecting a rotation from
a uniform distribution over Ri. Given this hierarchical model, calculating the average log-likelihood
(LL) in the limit of infinite evaluation test samples simply involves replicating each (i,Rj) pair
25−i times and then averaging the LLs for each sample. Importantly, because the infinite dataset has
identical training and test distributions, it is impossible for a model to overfit the dataset.

12Using the standard filtering pipeline where occluded and truncated images are excluded.
13The publicly released dataset can be found at: https://www.tensorflow.org/datasets/

catalog/symmetric_solids.
14Further confusing the issue is the fact that many authors augment the PASCAL3D+ dataset with synthetic

data, which makes it difficult to separate the influence of the architecture vs. the data augmentations when
evaluating model performance.
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Figure 6: (a) The proportions of sampled rotations from the AQuaMaM model trained on the in-
finite toy dataset closely approximate the expected uniform distributions. (b) In contrast, despite
approaching its theoretical minimum log-likelihood during training (Figure 5), the proportions of
sampled rotations from the IPDF model drastically diverge from the expected uniform distributions.

Using this toy dataset, I trained an AQuaMaM model with N = 50,257.15 Because I was only in-
terested in the distribution learning aspects of the model for the toy dataset, the category for each
training sample was mapped to a Pdmodel-dimensional embedding that was converted into a se-
quence of P dmodel-dimensional patch embeddings. I also trained an IPDF baseline using the same
hyperparameters and learning rate schedule from Murphy et al. (2021) for the SYMSOL I dataset,
except that I increased the number of iterations from 100,000 to 300,000 after observing that the
model was still improving at the end of 100,000 updates. Like the AQuaMaM model, I replaced
the image processing component of IPDF, a ResNet-50 (He et al., 2015), with dResNet-50-dimensional
embeddings where dResNet-50 = 2,048. In total, the AQuaMaM model had 3,510,609 parameters and
the IPDF model had 748,545 parameters; however, 93% of AQuaMaM’s parameters were contained
in the final classification layer, with only 243,904 being found in the rest of the model.

The final average LL for AQuaMaM on the toy dataset was 27.12. In comparison, IPDF reached
an average LL of 12.32 using the 2.4 million equivolumetric grid from Murphy et al. (2021). Note
that the theoretical maximum LL for IPDF when using a 2.4 million grid is 12.38, which AQuaMaM
comfortably surpassed. In fact, IPDF would need to use a grid of nearly six trillion cells for it to
even be theoretically possible for it to match the LL of AQuaMaM.

Figure 6 shows the results of generating 40,000 samples from the hierarchical model while using
AQuaMaM and IPDF to specify the rotation distributions for each sampled viewpoint.16 For each
sampled rotation, the rotation was assigned to the ground truth rotation mode from the sampled
viewpoint with the smallest geodesic distance. For AQuaMaM, the average distance was 0.04°,
while the average distance for IPDF was 0.84°. Further, the sampled rotations for AQuaMaM closely
matched the true uniform distributions for each viewpoint. In contrast, IPDF’s sampled distribution
drastically diverged from the true data distribution despite its seemingly strong evaluation LL relative
to its theoretical maximum. Notably, of the 40,000 quaternion sentences generated by AQuaMaM,
only 23 (0.06%) were not from the true distribution.

4.2 DIE EXPERIMENT

The die dataset consisted of 520,000 renders17 of a die (the same seen in Figure 1) where the die
was randomly rotated to generate each image, and the dataset was split into training/validation/test
set sizes of 500,000/10,000/10,000. Similar to the SYMSOL II dataset from Murphy et al. (2021),
different viewpoints of the die have differing levels of ambiguity, which makes the die dataset ap-
propriate for exploring how AQuaMaM handles uncertainty. Note that, while 500,000 samples is
a moderately large training set, for N = 500, there are over 65 million unique token sequences

15Full training details for both experiments can be found in Section A.5.
16See Section A.4 for additional details.
17The die renders were generated using the renderer from Alcorn et al. (2019) and the 3D die model from:

https://github.com/garykac/3d-cubes.
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(a) (b)

Figure 7: AQuaMaM effectively models the uncertainty of different viewpoints for the die object. In
the plots, each point corresponds to a rotation vector θ = θe, i.e., all rotation vectors are contained
within a ball of radius π. Both the color and the transparency of each point are a function of the log
density ln(p(q)) with redder, more opaque points representing more likely rotations and bluer, more
transparent points representing less likely rotations. 1,000 rotations are depicted in each plot—one
rotation (labeled 0) corresponds to the ground truth, 499 rotations were obtained by sampling from
the AQuaMaM distribution, and the remaining 500 rotations were randomly selected from the uni-
form distribution on SO(3). Each image of a die corresponds to one of the points in its respective
plot. The number before the colon indicates the associated annotated point, and the number after
the colon is the ln(p(q)) for that pose. (a) Because the five side of the die is facing the camera
in the die’s default pose, all rotations showing only the five occur along the (0, 0, 1) axis, which is
reflected by the locations of the red points in the plot. Additionally, there are four high probability
regions along the axis corresponding to the four rotations that could produce an identical image (see
Figure 8 in Section A.8 for a plot of rotations sampled from this density). (b) For this unambiguous
viewpoint, almost all of the probability is concentrated at the correct rotation, which causes the other
points to fade entirely from view (the maximum ln(p(q)) among the random rotations was -74.7).

covering SO(3),18 and only 135 of the 10,000 token sequences in the test set were also found in
the training set, i.e., AQuaMaM must still be able to generalize. I trained a ∼20 million parameter
AQuaMaM with N = 500 on the die dataset in addition to a ∼26 million parameter IPDF baseline
that was identical to the model trained on the SYMSOL I dataset in Murphy et al. (2021).

The average LL for AQuaMaM on the die dataset was 14.01 compared to 12.29 for IPDF, i.e., IPDF
would need to use a grid of over 12 million cells for it to even be theoretically possible for it to
match the average LL of AQuaMaM. When generating single predictions, AQuaMaM had a mean
prediction error of 4.32° compared to 4.57° for IPDF, i.e., a 5.5% improvement.19 In addition to
reaching a higher average LL and a lower average prediction error, both the evaluation and prediction
throughput for AQuaMaM were over 52× faster than IPDF on a single GPU. Lastly, as can be seen
in Figure 7, AQuaMaM effectively models the uncertainty of viewpoints with differing levels of
ambiguity. Figure 7 uses a novel visualization method where low probability rotations are more
transparent, which allows all of the dimensions describing the rotation to be displayed, in contrast
to the visualization method introduced by Murphy et al. (2021).20

5 CONCLUSION

In this paper, I have shown that a Transformer trained using an autoregressive “quaternion language
model” framework is highly effective for learning complex distributions on the SO(3) manifold.
Compared to IPDF, AQuaMaM makes more accurate predictions at a much faster throughput and
produces far more accurate sampling distributions. The autoregressive factoring of the quaternion
could be applied to other multidimensional datasets where high levels of precision are desirable,
e.g., modeling the trajectory of a basketball as in Alcorn & Nguyen (2021a), which was partial
inspiration for this work.

185003 × ( 4π
3

÷ 23) ≈ 65,000,000, i.e., the fraction of grid cells in a cube with a side of two that fall inside
the unit sphere.

19See Section A.7 for additional details.
20Additional experiments for a cylinder dataset and a mixture of Gaussians design can be found in Section

A.9.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Michael A Alcorn and Anh Nguyen. baller2vec: A multi-entity transformer for multi-agent spa-
tiotemporal modeling. arXiv preprint arXiv:2102.03291, 2021a.

Michael A Alcorn and Anh Nguyen. baller2vec++: A look-ahead multi-entity transformer for mod-
eling coordinated agents. arXiv preprint arXiv:2104.11980, 2021b.

Michael A. Alcorn and Anh Nguyen. The deformer: An order-agnostic distribution estimating
transformer. ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit
Likelihood Models (INNF+), 2021c.

Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh Nguyen.
Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4845–4854, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Lucas Beyer, Alexander Hermans, and Bastian Leibe. Biternion nets: Continuous head pose regres-
sion from discrete training labels. In German Conference on Pattern Recognition, pp. 157–168.
Springer, 2015.

Christopher Bingham. An antipodally symmetric distribution on the sphere. The Annals of Statistics,
pp. 1201–1225, 1974.

Christopher M Bishop. Mixture density networks. 1994.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Haowen Deng, Mai Bui, Nassir Navab, Leonidas Guibas, Slobodan Ilic, and Tolga Birdal. Deep
bingham networks: Dealing with uncertainty and ambiguity in pose estimation, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and Alexander J Smola. Trade: Transformers
for density estimation. Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood
Models Workshop, 2020.

Igor Gilitschenski, Roshni Sahoo, Wilko Schwarting, Alexander Amini, Sertac Karaman, and
Daniela Rus. Deep orientation uncertainty learning based on a bingham loss. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ryloogSKDS.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=ryloogSKDS
https://openreview.net/forum?id=ryloogSKDS


Under review as a conference paper at ICLR 2023

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Abner Guzmán-rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning: Learning to
produce multiple structured outputs. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
cfbce4c1d7c425baf21d6b6f2babe6be-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.
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A APPENDIX

A.1 TRANSFORMING A DENSITY ON THE UNIT DISK TO A DENSITY ON THE UNIT
HEMISPHERE

Here, I briefly walk through the diluting procedure for a 2D example that is directly analogous
to H̃1 and B3. Consider the task of approximating a uniform distribution on the unit hemisphere
S̃2 = {v ∈ R3 : ∥v∥ = 1 and vz > 0} by modeling the projected coordinates of v ∈ S̃2 as a
mixture of uniform distributions on the unit disk B2 = {v ∈ R2 : ∥v∥ < 1} (Figure 2). Note that
f(x, y) = [x, y, z] and:

J =

 1 0
0 1
−x
z

−y
z


where z =

√
1− x2 − y2. The columns of J define a parallelogram tangent to the hemisphere at

(x, y, z) with an area equal to the square root of the sum of the squared 2× 2 minors in J⊤,2122 i.e.:

a =

√∣∣∣∣ 0 1
−x
z

−y
z

∣∣∣∣2 + ∣∣∣∣ 1 0
−x
z

−y
z

∣∣∣∣2 + ∣∣∣∣1 0
0 1

∣∣∣∣2 =

√
x2

z2
+
y2

z2
+ 1 =

√
x2 + y2 + z2

z2
=

1

z

We can now calculate p(x, y, z) as p(x, y, z) = p(x,y)
a = p(x, y)z. Intuitively, z = 1 corresponds

to the top of the hemisphere where the tangent parallelogram is parallel to B2 and there is no ex-
pansion/dilution. In contrast, as z → 0, the tangent parallelogram becomes increasingly “stretched”
leading to greater dilution of p(x, y).

The recipe for calculating sq is nearly identical, with:

J =


1 0 0
0 1 0
0 0 1

−qx
qw

−qy
qw

−qz
qw


and 3× 3 minors being used in place of 2× 2 minors. As a result, sq = 1

qw
, i.e., the diluting factor

for AQuaMaM is qw.

A.2 DEFINING “STRICTLY ILLEGAL BINS”

The definition of “strictly illegal bins” used by AQuaMaM is best motivated by an example. Con-
sider a model that was trained on a dataset consisting of a single rotation. Python pseudocode for
a naive sampling algorithm can be found in Listing 1 where the get probs naive function as-
signs a probability of zero to any bins where all of the values would violate the unit norm constraint
given the components of q generated up to that point. This naive sampling procedure will generate
sequences of bins that were not found in the training dataset. For example, assume the q for the
single rotation had qx = 0.42 and qy = 0.901 and that N = 20 for the model. Given a globally
optimal model, q̂x will be sampled from [0.4, 0.5]; however, if q̂x >

√
1− 0.92 ≈ 0.436, then

get probs naive will assign zero probability to the bin [0.9, 1.0].

1 def naive_sample_q(AQuaMaM):
2 q_cs = []
3 for i in range(3):
4 bin_probs = AQuaMaM.get_probs_naive(q_cs)
5 l_q_c = categorical(bin_probs)

21This procedure resembles the “formal determinant” method for computing the cross product: https:
//en.wikipedia.org/wiki/Cross_product#Matrix_notation.

22The area of the parallelogram can also be computed by taking the square root of the determinant of the
Gram matrix G = J⊤J .
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6 (lower, upper) = AQuaMaM.bin_edges[l_q_c]
7 q_cs.append(constrained_uniform(lower, upper, q_cs))
8

9 (q_x, q_y, q_z) = q_cs
10 q_w = sqrt(1 - q_x**2 - q_y**2 - q_z**2)
11 return (q_x, q_y, q_z, q_w)

Listing 1: Python pseudocode for naively generating a unit quaternion sample with AQuaMaM.

To avoid this issue, AQuaMaM defines “strictly illegal bins” as those that would violate the unit
norm constraint given the components of q generated up to that point when using the minimum
magnitudes of their corresponding bins. Effectively, during training AQuaMaM must learn to assign
zero probability to bins bordering “edge bins” rather than being told that they have zero probability
(which is the case for strictly illegal bins). Python pseudocode for the final sampling algorithm can
be found in Listing 2. In summary, the sampling procedure involves first generating a sequence of
bins, and then sampling from the region defined by the edges of those bins using rejection sampling.
When viewed as a generative model, AQuaMaM can be interpreted as modeling noisy measurements
of unit quaternions.

1 def sample_q(AQuaMaM):
2 # The q_c_hats are used for generating the bins, but are not the

final q_cs.
3 q_c_hats = []
4 cell_edges = []
5 for i in range(3):
6 bin_probs = AQuaMaM.get_probs(q_c_hats)
7 l_q_c = categorical(bin_probs)
8 (lower, upper) = AQuaMaM.bin_edges[l_q_c]
9 q_c_hats.append(uniform(lower, upper))

10 cell_edges.append((lower, upper))
11

12 (q_x, q_y, q_z) = rejection_sample(cell_edges)
13 q_w = sqrt(1 - q_x**2 - q_y**2 - q_z**2)
14 return (q_x, q_y, q_z, q_w)

Listing 2: Python pseudocode for generating a unit quaternion sample with AQuaMaM.

A.3 BACKGROUND ON TRANSFORMERS

In this section, I briefly describe the Transformer (Vaswani et al., 2017) architecture at a high level,
and define the Transformer-specific terms used in the main text. Readers who seek a deeper under-
standing of Transformers are encouraged to explore the following excellent pedagogical materials:

1. The Illustrated Transformer by Jay Alammar: https://jalammar.github.io/
illustrated-transformer/

2. The Annotated Transformer by Sasha Rush, Austin Huang, Suraj Subramanian, Jonathan
Sum, Khalid Almubarak, and Stella Biderman: http://nlp.seas.harvard.edu/
annotated-transformer/

3. Attention? Attention! by Lilian Weng https://lilianweng.github.io/
posts/2018-06-24-attention/

Transformers are a class of neural networks that are capable of processing sequential data without
being explicitly sequential. To understand what that means, it is instructive to contrast Transform-
ers with recurrent neural networks (RNNs), which are explicitly sequential. Both Transformers
and RNNs take as input a sequence of N d-dimensional vectors and output a sequence of N d-
dimensional vectors. During both training and testing, RNNs operate by iteratively applying the
same neural network to each element of a sequence and an evolving hidden state. In contrast, during
training, Transformers process an entire sequence in parallel.

To accomplish this parallelism, Transformers use the attention mechanism (Graves, 2013; Graves
et al., 2014; Weston et al., 2015; Bahdanau et al., 2015).23 Intuitively, the attention mechanism is

23“Attention is all [they] need” - Vaswani et al. (2017).
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a function that tells a neural network how much to “focus” on the different elements of a sequence
when processing a specific element of that sequence. The pure attention approach to sequence
modeling provides two main benefits: (1) it can greatly speed up training because sequences are
processed in parallel through the network, and (2) long-term dependencies are much easier to model
because distant elements of the sequence do not need to communicate through many neural network
layers (which is the case for RNNs).

While the attention mechanism is extremely powerful, it is also permutation invariant. As a re-
sult, Transformers must encode positional information and conditional dependencies through other
means, i.e., with position embeddings and attention masks. Consider the following sequences of
word embeddings:24

W1 = [w[START],wthe,wcat,win,wthe,what]

W2 = [w[START],win,wthe,wcat,wthe,what]

Because the attention mechanism is permutation invariant, W1 and W2 look identical to a Trans-
former. Therefore, to encode the order of the word embeddings, the Transformer adds a position
embedding ti to each word embedding where i indicates the word embedding’s position in the
sequence. As a result, W1 becomes:

W̃1 = [w[START] + t1,wthe + t2,wcat + t3,win + t4,wthe + t5,what + t6]

and the attention mechanism would be applied to W̃1 and W̃2.

In order to fully understand how Transformers model conditional dependencies, additional technical
details about the attention mechanism are necessary. The basic attention mechanism in Transform-
ers consists of two architectural pieces: (1) a query/key/value function ϕ and (2) a score function
ψ. The query/key/value function ϕ independently maps each element of a (position encoded) se-
quence W̃[i] to a query, key, and value vector, i.e.:

[qi,ki,vi] = ϕ(W̃[i])

The score function ψ takes a query vector qi and a key vector kj as input and outputs a scalar score,
i.e.:

si,j = ψ(qi,kj)

The score matrix Ψ is thus an N × N matrix where Ψ[i, j] = si,j . The final step of the attention
mechanism involves calculating a new vector for each element in the sequence:

Ŵ[i] =

N∑
j=1

ai,jvj

where:

ai,j =
esi,j∑N
k=1 e

si,k

i.e., the attention weights ai,j are calculated by applying the softmax function to each row of Ψ.

Now consider the common natural language processing task of “language modeling”, i.e., learning
p(S) where S is a sentence with N − 1 words. A common way to factorize p(S) is as:25

p(S) = p(S[1])p(S[2]|S[1]) . . . p([STOP]|S[N − 1], . . . ,S[2],S[1])

24w[START] is a special embedding that is appended to the beginning of sequences in both Transformers and
RNNs in situations where the first element of the sequence is being modeled.

25[STOP] is a special token indicating the end of a sentence.
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which is using the chain rule of probability. To enforce such conditional dependencies, Transformers
use an attention mask M , which is an N × N matrix where M [i, j] = 0 if the Transformer is
allowed to “look” at element W̃[j] of the sequence when processing element W̃[i], and M [i, j] =
−∞ if the “looking” is not allowed. Instead of applying the softmax function to each row of the
raw score matrix Ψ, Transformers apply the softmax function to each row of a masked score matrix
Ψ̃ = Ψ+M . As a result, ai,j = 0 when the Transformer is not allowed to “look” at element W̃[j]

of the sequence when processing element W̃[i] (because e−∞ = 0).

To model the chain rule factorization described earlier, M takes the form of a strictly upper trian-
gular matrix where all of the values above the diagonal are set to −∞. Because a strictly upper
triangular attention mask means each element in the sequence cannot be influenced by elements that
occur later than that element in the sequence (i.e., the present is only affected by the past), this
particular attention mask is referred to as a causal attention mask. Because AQuaMaM is model-
ing the distribution of H̃1 conditioned on an image, the Transformer is allowed to “look” at all of
the image patch embeddings when processing any single patch embedding, i.e., AQuaMaM uses a
partially causal attention mask, which is depicted in Figure 4.

The full Transformer architecture consists of L blocks where each block (indexed by ℓ) first applies
the masked attention mechanism to the full sequence with ϕℓ and ψℓ, and then passes each element
of the resulting sequence through an MLP fℓ, i.e.:

Ẅ[i] = fℓ(Ŵ[i])

As previously mentioned, the pure attention approach to sequence modeling means Transformers
can evaluate entire sequences in parallel, i.e., the likelihood of a full sequence can be calculated in a
single forward pass. However, both making predictions and generating samples require N forward
passes through the Transformer because the elements of the sequence can only be “filled in” one
by one. The naive Transformer decoding algorithm thus starts off with a sequence of [NULL]
embeddings26 following the [START] embedding, e.g.:

W = [w[START],w[NULL],w[NULL],w[NULL],w[NULL],w[NULL]]

and then iteratively generates the words of the sentence. As discussed in Section 3.2, the caching
strategy used by AQuaMaM is motivated by the fact that this naive decoding algorithm is computa-
tionally wasteful with regards to the attention mechanism.

A.4 GENERATING SAMPLES

Generating samples with IPDF simply involves sampling from the probability distribution defined
by IPDF over the equivolumetric grid. For AQuaMaM, the sampling procedure uses a conditional
version of the algorithm found in Listing 2. Python pseudocode for the conditional AQuaMaM
sampling procedure can be found in Listing 3.

1 def sample_q(AQuaMaM, image):
2 # The q_c_hats are used for generating the bins, but are not the

final q_cs.
3 q_c_hats = []
4 cell_edges = []
5 for i in range(3):
6 bin_probs = AQuaMaM.get_probs(image, q_c_hats)
7 l_q_c = categorical(bin_probs)
8 (lower, upper) = AQuaMaM.bin_edges[l_q_c]
9 q_c_hats.append(uniform(lower, upper))

10 cell_edges.append((lower, upper))
11

12 (q_x, q_y, q_z) = rejection_sample(cell_edges)
13 q_w = sqrt(1 - q_x**2 - q_y**2 - q_z**2)

26For example, a vector full of zeros, although the actual values are irrelevant.
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14 return (q_x, q_y, q_z, q_w)

Listing 3: Python pseudocode for generating a unit quaternion sample conditioned on an image with
AQuaMaM.

A.5 AQUAMAM TRAINING DETAILS

A.5.1 TOY EXPERIMENT

For the toy dataset, the hyperparameters for the AQuaMaM model were dmodel = 64, P = 196
(i.e., the number of 16 × 16 patches in a 224 × 224 image), eight attention heads, dff = 256 (the
dimension of the inner feedforward layers of the Transformer), three Transformer layers, L = 6,
gqc MLPs with 16, 32, and 64 output nodes and Gaussian Error Linear Unit (GELU) nonlinearities
(Hendrycks & Gimpel, 2016), and N = 50,257. I used the Adam optimizer (Kingma & Ba, 2015)
with an initial learning rate of 10−4, β1 = 0.9, β2 = 0.999, and ϵ = 10−9 to update the model’s
parameters. The learning rate was reduced by half every time the validation loss did not improve for
five consecutive epochs. The model was implemented in PyTorch and trained with a batch size of
128 on a single Tesla V100 GPU for ∼2.5 hours (624 epochs) where each epoch consisted of 40,000
training samples, and the evaluation loss was used for early stopping.

A.5.2 DIE EXPERIMENT

For the die dataset, the hyperparameters for the AQuaMaM model were dmodel = 512, P = 196,
eight attention heads, dff = 2,048, six Transformer layers, L = 6, gqc MLPs with 128, 256, and
512 output nodes and GELU nonlinearities, and N = 500. In total, this AQuaMaM model had
20,000,756 parameters. The model was trained using an identical optimization strategy to the toy
experiment, and was trained for ∼2 days (121 epochs).
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A.6 THE AQUAMAM FORWARD PASS

1 # Shape values come from Section A.5.
2

3 # imgs has a shape of (128, 3, 224, 224).
4 # qs has a shape of (128, 4).
5 # self.z_0 has a shape of (1, 1, 512).
6 # self.pos_embed (the position embeddings) has a shape of (1, 199, 512).
7 # self.attn_mask has a shape of (199, 199).
8 # self.h = nn.Sequential(nn.LayerNorm(512), nn.Linear(512, 500)).
9 def forward(self, imgs, qs):

10 # patch_embeds has a shape of (128, 196, 512).
11 patch_embeds = self.patch_embed(imgs)
12

13 # z_0 has a shape of (128, 1, 512).
14 z_0 = self.z_0.expand(len(patch_embeds), -1, -1)
15 # z_q_x has a shape of (128, 1, 512).
16 z_q_x = self.g_q_x(qs[:, 0])
17 # z_q_y has a shape of (128, 1, 512).
18 z_q_y = self.g_q_y(qs[:, 1])
19

20 # x has a shape of (128, 199, 512), i.e., 199 = 196 + 3.
21 x = torch.cat([patch_embeds, z_0, z_q_x, z_q_y], dim=1)
22 x = x + self.pos_embed
23 # x still has a shape of (128, 199, 512).
24 x = self.transformer(x, self.attn_mask)
25

26 # x has a shape of (128, 3, 500).
27 x = self.h(x[:, -3:])
28

29 # See Section 2.3. x still has a shape of (128, 3, 500).
30 x = constrain_qs(qs, self.bins, x)
31

32 return x

Listing 4: PyTorch pseudocode for the AQuaMaM forward pass.

A.7 GENERATING PREDICTIONS

Generating a prediction with IPDF simply involves taking the highest probability element from the
probability distribution defined by IPDF over the equivolumetric grid. For AQuaMaM, generating
a deterministic prediction is similar to the steps for generating a sample (See Listing 3), except the
maximum probability bin is always selected and qc is set as the midpoint of the selected bin rather
than sampled from it. Python pseudocode for the conditional AQuaMaM sampling procedure can
be found in Listing 5.

1 def predict_q(AQuaMaM, image):
2 # The q_c_hats are used for selecting the bins, but are not the final

q_cs.
3 q_c_hats = []
4 for i in range(3):
5 l_q_c = AQuaMaM.get_probs(image, q_c_hats).argmax()
6 (lower, upper) = AQuaMaM.bin_edges[l_q_c]
7 q_c_hats.append((lower + upper) / 2)
8

9 if norm(q_c_hats) <= 1:
10 q_cs = q_c_hats
11 else:
12 q_cs = normalize(q_c_hats)
13

14 q_w = sqrt(1 - q_x**2 - q_y**2 - q_z**2)
15 return (q_x, q_y, q_z, q_w)

Listing 5: Python pseudocode for deterministically predicting a unit quaternion given an image with
AQuaMaM.
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A.8 SAMPLED ROTATIONS FOR FIGURE 10A

Figure 8: 1,000 sampled rotations from the AQuaMaM density shown in Figure 10a. Each of the
equivalent modes is represented, and there are no points in incorrect regions.
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A.9 ADDITIONAL EXPERIMENTS

A.9.1 CYLINDER EXPERIMENT

Figure 9: AQuaMaM is also capable of learning distributions for objects with continuous symme-
tries, as shown here for a viewpoint of the cylinder. 1,000 rotations are depicted in the plot—one
rotation (labeled 0) corresponds to the ground truth, 499 rotations were obtained by sampling from
the AQuaMaM distribution, and the remaining 500 rotations were randomly selected from the uni-
form distribution on SO(3). The cylinder’s two axes of symmetry are clearly visible as high density
curves in the rotation vector ball.

Following the same training setup as the die experiment (Section 4.2), I trained an AQuaMaM and
IPDF model on a cylinder27 dataset (notably, a cylinder is one of the objects in the SYMSOL I
dataset). The average LL for AQuaMaM on the cylinder dataset was 7.24 compared to 5.94 for
IPDF.28 Figure 9 visualizes the distribution learned by AQuaMaM using the same visualization
technique described in Figure 7.

A.9.2 MIXTURE OF GAUSSIANS EXPERIMENT

This section describes a mixture of Gaussians (MoG) variant of AQuaMaM, AQuaMaM-MoG,
which is conceptually similar to how (non-curved) densities are modeled in RNADE (Uria et al.,
2013). As a preliminary, recall the change-of-variable technique:29

Let X be a continuous random variable with generic probability density function
f(x) defined over the support c1 < x < c2. And, let Y = u(X) be an invertible
function of X with inverse function X = v(Y ). Then, using the change-of-
variable technique, the probability density function of Y is:

27The 3D cylinder model can be found at: https://github.com/jlamarche/Old-Blog-Code/
blob/master/Wavefront OBJ Loader/Models/Cylinder.obj.

28The reported average LL on the cylinder dataset in Murphy et al. (2021) was 4.26, but they used a consid-
erably smaller training dataset (100,000 vs. 500,000) and updated the model considerably fewer times during
training (100,000 vs. 300,000).

29Taken verbatim from: https://online.stat.psu.edu/stat414/lesson/22/22.2.
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fY (y) = fX(v(y))× |v′(y)|
defined over the support u(c1) < y < u(c2).

Let qc = ℓqc + (uqc − ℓqc)
1

1+e−sqc
where ℓqc and uqc define the lower and upper bounds for

quaternion component qc (i.e., ℓqc = −uqc ), and sqc is distributed according to a MoG parameterized
by AQuaMaM-MoG. In words, sqc determines where qc falls in (−uqc , uqc) through the logistic
function. Solving for sqc (to get the equivalent of v(y)) gives:

qc = −uqc + 2uqc
1

1 + e−sqc

1 + e−sqc =
2uqc

qc + uqc

e−sqc =
2uqc

qc + uqc
− 1

e−sqc =
2uqc − (qc + uqc)

qc + uqc

e−sqc =
uqc − qc
qc + uqc

−sqc = ln(uqc − qc)− ln(qc + uqc)

ln(qc + uqc)− ln(uqc − qc) = sqc

(a) (b)

Figure 10: Plots of the denominator for the |v′(y)| term in the change-of-variable formula when
using a mixture of Gaussians approach with AQuaMaM. (a) = |− q2c +12| and (b) = |− q2c +0.52|.

Differentiating with respect to qc (to get the equivalent of v′(y)) gives:

d

dqc
[ln(qc + uqc)− ln(uqc − qc)] =

1

qc + uqc
+

1

uqc − qc

=
uqc − qc + qc + uqc
(qc + uqc)(uqc − qc)

=
2uqc

u2qc − q2c

Note that the minimum of |u2qc − q2c | is zero and occurs when qc = ±uqc (see Figure 10), i.e.,
|v′(y)| → ∞ as qc → ±uqc .
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The full AQuaMaM-MoG density is thus:

p(q) = πsqx

∣∣∣∣ 2

u2qx − q2x

∣∣∣∣πsqy
∣∣∣∣∣ 2uqy
u2qy − q2y

∣∣∣∣∣πsqz
∣∣∣∣ 2uqz
u2qz − q2z

∣∣∣∣ qw (6)

where πsqc is the density assigned to sqc by the MoG parameterized by AQuaMaM-MoG. Because
the change-of-variable terms are constant for a given dataset, the training loss for AQuaMaM-MoG
is:

L = −
|X |∑
d=1

lnπd,sqx + lnπd,sqy + lnπd,sqz (7)

I trained an AQuaMaM-MoG model on the toy dataset described in Section 4.1 using 512 mixture
components and otherwise identical hyperparameters as described in Section A.5.1. The LL on the
test set for AQuaMaM-MoG was 10.52, which is not only far worse than AQuaMaM (27.12), but is
also considerably worse than IPDF (12.32). Further, the sampling distribution of AQuaMaM-MoG
is far from the true data distribution, as can be seen in Figure 11.
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Figure 11: Rotations sampled from AQuaMaM-MoG for the unimodal viewpoint in the toy dataset
are often far from the true rotation (the red point).
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