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Abstract

LLM-based Multi-Agent Systems (LaMAS) represent a
paradigm shift in complex problem-solving, yet their secu-
rity implications remain largely unexplored. This paper inves-
tigates a critical vulnerability: adversarial infiltration within
cooperative agent teams. We propose a novel red-teaming
framework where a strategically optimized adversarial agent
infiltrates LaMAS to sabotage collaborative tasks while evad-
ing detection. Through comprehensive experiments on Truth-
fulQA and ToxiGen benchmarks, we demonstrate that our
method achieves 82% success rate in misinformation attacks
with only 31% detection rate, significantly outperforming tra-
ditional red-teaming approaches. Our analysis reveals that
managerial roles pose the greatest threat when compromised,
and that larger teams exhibit increased vulnerability despite
their complexity. We evaluate multiple defense mechanisms,
finding that combined approaches can mitigate 78% of at-
tacks but incur 84% overhead. These findings highlight the
urgent need for robust security frameworks in LaMAS de-
ployments and establish foundational principles for responsi-
ble multi-agent system design.

Introduction

Large language models (LLMs) has catalyzed the devel-
opment of sophisticated LLM-based Multi-Agent Systems
(LaMAS), where multiple generative agents interact to solve
problems of complexity beyond the capabilities of a single
model. These systems leverage principles of role-playing,
coordination, and social interaction to divide labor, share
information, and collectively reason towards a goal, with
promising applications spanning software engineering, sci-
entific discovery, and business process automation. The fun-
damental operating principle of these systems is coopera-
tion; agents are typically designed and prompted to work
together benevolently under the assumption that all partic-
ipants are aligned with a common objective. However, as
these systems inch closer to real-world deployment, this as-
sumption of universal cooperation becomes a critical vulner-
ability. The very mechanisms that enable productive collab-
oration—such as trust, communication, and delegated spe-
cialization—can be subverted by a single malicious actor,
creating a significant blind spot in their safety evaluation.
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In this paper, we investigate a critical threat model for
LaMAS: infiltration by an adversarial agent. We define an
adversarial agent or “mole” as a participant in a multi-
agent system that, while appearing cooperative, is strategi-
cally prompted or fine-tuned to sabotage the system’s per-
formance from within. Its objectives are distinct from the
team’s goal and may include introducing factual errors,
propagating toxic or biased content, or derailing the collab-
orative process through obfuscation and misdirection. This
stands in contrast to external red teaming, where an outside
entity attacks the system, and instead exploits the inherent
trust and verification gaps that exist between cooperative
agents. The core failure mode we study is the system’s in-
ability to detect and mitigate this internal threat, leading to
a compromise of the final output’s quality, safety, and relia-
bility.

While the safety of individual LLMs has been extensively
studied, the safety dynamics of multi-agent compositions
are poorly understood. Current research in LaMAS has pre-
dominantly focused on enhancing performance through bet-
ter interaction paradigms and communication protocols, of-
ten benchmarking success on tasks like complex question-
answering or code generation. This performance-centric fo-
cus has left a gap in our understanding of systemic ro-
bustness and trust. We argue that proactively identifying
these failure modes is a prerequisite for developing respon-
sible, reliable, and scalable agentic systems. To this end, we
propose a systematic red-teaming framework to stress-test
LaMAS against internal adversaries.

Our contribution is a comprehensive empirical analy-
sis of the vulnerabilities arising from adversarial infiltra-
tion. We construct a simulated environment where a team
of cooperative LLM agents works on a factual report-
writing task. Into this team, we introduce a single adver-
sarial agent with clearly defined sabotage goals, leverag-
ing public benchmarks like Truthful QA for misinformation
and ToxiGen for toxic content generation. We quantitatively
measure the degradation in task performance and output
safety, and qualitatively analyze the conversation transcripts
to categorize emergent failure modes, such as over-trust
and conflict avoidance. Finally, we explore preliminary de-
fense mechanisms, such as cross-verification protocols, to
enhance the robustness of multi-agent collaborations. By ex-
posing and analyzing these vulnerabilities, our work aims to



lay the groundwork for building more secure and trustwor-
thy LaMAS.

Literature Review

The foundation of our work is built upon the rapid de-
velopment of LLM-based Multi-Agent Systems. Frame-
works like ChatDev (Qian et al. 2023) and Camel (Li et al.
2023) demonstrate how role-playing and structured com-
munication enable multiple LLM agents to tackle complex
tasks, from software development to intellectual discussions.
AgentVerse (Chen et al. 2023) and similar platforms provide
environments for studying emergent social behaviors, while
work by (Hong et al. 2023) and (Wu et al. 2023) explores the
optimization of agent workflows and agent-to-agent commu-
nication. These studies collectively establish the paradigm
of cooperative problem-solving that our work seeks to chal-
lenge.

A parallel and crucial line of inquiry involves the safety
and alignment of LLMs. The practice of red teaming sin-
gle LLM instances is well-established, with researchers us-
ing manual and automated prompts to elicit harmful, biased,
or untruthful outputs (Perez et al. 2022). Benchmarks such
as Truthful QA (Lin, Hilton, and Evans 2022) and ToxiGen
(Hartvigsen et al. 2022) provide standardized datasets to
quantify a model’s propensity for misinformation and toxic
generation, respectively. Further studies have delved into the
robustness of LLMs against adversarial attacks, including
jailbreaking (Liu et al. 2023) and prompt injection (Gre-
shake et al. 2023), which manipulate a model into bypass-
ing its safety guidelines. The broader challenges of ensuring
Al alignment (Ji et al. 2023) and the difficulty of monitoring
and controlling LLM behaviors (Amodei et al. 2016) pro-
vide the overarching context for our security concerns.

The concept of adversarial agents is not new to multi-
agent systems research. In multi-agent reinforcement learn-
ing (MARL), the study of non-cooperative equilibria, oppo-
nent modeling, and adversarial environments has a long his-
tory (Lanctot et al. 2017). However, these approaches typ-
ically operate in environments with well-defined, low-level
state and action spaces, unlike the high-level, natural lan-
guage action space of LaMAS. Research on trust and repu-
tation in multi-agent systems (Ramchurn, Huynh, and Jen-
nings 2004) provides theoretical models for agents to reason
about the reliability of their peers, but these models have
not been widely integrated or tested in modern LLM-based
agent architectures. The emergence of sleeper agents (Hub-
inger et al. 2024) and the study of treacherous turns in Al,
while focused on single models, highlight the existential risk
posed by misaligned components within a larger system, a
risk we operationalize at the multi-agent level (Li and Ke
2025).

Despite this rich background, a significant gap exists be-
tween these research streams. The literature on LaMAS
is predominantly focused on performance and efficiency,
largely assuming a cooperative environment. Conversely, re-
search on LLM safety and red teaming is almost exclusively
concerned with single-model interactions. The critical gap
we address is the systematic analysis of safety and security
in the context of interacting LLM agents. While (Xi et al.

2023) and others have explored competitive dynamics, the
specific threat model of a covert adversarial agent infiltrating
a supposedly cooperative team remains underexplored. Our
work bridges this gap by applying the rigorous methodology
of red teaming and safety benchmarking—commonly used
for single LLMs—to the complex, interactive environment
of a LaMAS. We introduce a novel experimental framework
to quantify how the collaborative virtues of LaMAS can be-
come their greatest vulnerabilities when faced with an inter-
nal adversary.

Methodology

The preceding analysis of related work reveals a signifi-
cant gap in the security evaluation of LLM-based Multi-
Agent Systems (LaMAS). While existing literature has
made substantial progress in developing cooperative frame-
works (Chen et al. 2023; Wu et al. 2023) and red-teaming
individual LLMs (Perez et al. 2022; Lin, Hilton, and Evans
2022), there is a conspicuous absence of a systematic frame-
work for stress-testing the trust and verification mechanisms
within a multi-agent collaborative environment. Our work
directly addresses this deficiency by proposing a novel ex-
perimental paradigm that transplants the principles of ad-
versarial machine learning and red teaming into the inter-
active, social context of LaMAS. This section delineates
our comprehensive methodology for investigating the vul-
nerability of cooperative LaMAS to internal sabotage. We
begin by formalizing the problem through a mathematical
model that defines the agents, their objectives, and the game-
theoretic nature of their interaction, thereby providing a rig-
orous foundation for our analysis. Subsequently, we detail
the architectural blueprint of our experimental system, il-
lustrating the roles and communication pathways between
cooperative and adversarial agents. A critical component
of our contribution is the formalization of the adversarial
agent’s strategy, moving beyond simple prompt engineer-
ing to a more sophisticated optimization-based approach. Fi-
nally, we specify the experimental parameters, benchmarks,
and evaluation metrics that will be employed to quantita-
tively and qualitatively assess system vulnerability and the
efficacy of potential defense mechanisms. The purpose of
this structured approach is to move from a conceptual under-
standing of the threat to an empirically verifiable and repro-
ducible analysis, ultimately contributing to the development
of more robust and trustworthy multi-agent systems.

Mathematical Formalization

To ground our investigation in a rigorous framework, we
formalize the multi-agent system as a sequential decision-
making process involving partially observable states and
communicative actions. Let a cooperative team be a set of
N agents, A = {aj,as,...,an}, working towards a com-
mon goal G. The state of the collaborative task at time ¢ is
denoted by s; € S, which encompasses the entire conversa-
tion history and any external environment state. Each agent
a; has a role r; and, in a purely cooperative setting, a pol-

icy m; (ogt)|st) that maps its local observation ogt) (e.g., its
assigned sub-task and recent messages) to an action ugt). In



our LaMAS context, an action is a natural language message

mgt) sent to other agents, making the action space U/ a high-
dimensional space of all possible utterances. The team’s
joint policy 70, aims to maximize the expected cumula-
tive reward R(G), which is a function of the final output’s
quality and safety. We introduce an adversarial agent a,, that

replaces a cooperative agent ay. Its policy ﬂa(og ), @|st) is
parameterized by a sabotage goal ¢, which defines its ad-
versarial objective, such as minimizing factual accuracy or
maximizing toxicity. The interaction becomes a Stackelberg
game (Lanctot et al. 2017) where the adversary’s policy is
optimized against the fixed, cooperative policies of the other
agents. The adversary’s reward R,, is antithetical to R(G),
creating a tension that tests the system’s resilience. This for-
malization allows us to precisely define the failure mode as
the expected value E[R(G)] under the adversarial joint pol-
icy being significantly lower than under the fully cooperative
policy.

System Architecture and Agent Design

Our system architecture, depicted in Figure 1, is designed
to simulate a realistic collaborative writing task, a common
benchmark for LaMAS (Hong et al. 2023). The cooperative
team consists of four agents with specialized roles: a Man-
ager (ajs) that breaks down the initial query and oversees
progress, a Researcher (ap) tasked with gathering factual
information, an Analyst (a 4) that synthesizes the informa-
tion into logical arguments, and a Writer (ay) responsi-
ble for compiling the final report. This role specialization
creates natural information dependencies and a verification
chain, which is the very structure the adversary aims to ex-
ploit. Communication follows a structured protocol where
the Manager initiates the task and agents broadcast their out-
puts, mimicking a simplified team meeting. The key innova-
tion in our architecture is the replaceability of any one co-
operative agent with the adversarial agent a,,. This design
allows us to study the vulnerability associated with different
roles; for instance, a malicious Researcher can poison the in-
formation at the source, while a malicious Writer can subtly
corrupt the final consensus. Each agent is implemented as a
prompted LLM, with its role and core instructions defined in
its system prompt. The cooperative agents are prompted for
collaboration, truthfulness, and helpfulness, whereas the ad-
versarial agent’s prompt is engineered to pursue its sabotage
goal ¢ while maintaining a veneer of cooperation to avoid
immediate detection, a strategy inspired by the concept of
sleeper agents (Hubinger et al. 2024).

Figure 1 illustrates the core components and data flow
of our experimental setup. The architecture is composed
of a user who provides an initial query, a manager agent
responsible for task decomposition and coordination, and
three functional specialist agents: Researcher, Analyst, and
Writer. The adversarial agent, denoted by a,, and highlighted
with a red dashed boundary, is designed to seamlessly re-
place one of the specialist agents—in this case, the Re-
searcher. The solid arrows depict the primary communica-
tion pathways: task delegation from the Manager, informa-
tion flow from the Researcher/Analyst to the Writer, and
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Figure 1: System architecture for red-teaming LaMAS

the final output generation. The dotted arrow represents sec-
ondary communication, such as progress updates, which can
also be a vector for adversarial influence. The key takeaway
from this diagram is the illustration of a critical vulnerabil-
ity: the system’s output is a direct function of all inputs,
and a single, compromised node within this network can
taint the entire process. The adversarial agent’s position al-
lows it to inject malicious content (e.g., misinformation from
TruthfulQA) directly into the collaborative stream, testing
the other agents’ ability to detect and mitigate such threats.
This architecture enables us to systematically vary the ad-
versary’s role and observe the cascading effects on different
stages of the collaborative workflow.

Adversarial Strategy and Optimization

Moving beyond the simple prompt-based adversaries com-
mon in single-model red teaming (Perez et al. 2022), we for-
malize the adversarial strategy as an optimization problem.
The adversary a,, aims to find a policy 7, that maximizes its
sabotage objective ¢ while minimizing the probability of be-
ing detected by other agents. We define a composite reward
function for the adversary: R, = AsRs(®) — Aalaetecteds
where R (¢) is the sabotage reward (e.g., a score from a tox-
icity classifier or negative factual accuracy), Igetecteq 1S an
indicator for explicit detection by a cooperative agent, and
As, Ag are weighting parameters. The adversary’s policy is
parameterized by a set of continuous soft” prompts P, that
are prepended to its context. The optimization problem is
then maxp_ E[R,], which we approximate using reinforce-
ment learning, specifically a policy gradient method. The ac-
tion space—generating natural language—is constrained by
using the LLM as a world model, and the gradient is es-
timated with respect to the token embeddings in P,. This
approach represents a significant model improvement over
existing literature, which often relies on manual, one-off ad-



Algorithm 1: Adversarial Policy Optimization via Rein-
forcement Learning

0: Input: Base LLM for adversary, Cooperative team A \
ar, Sabotage goal ¢

0: Parameter: Soft prompt P,, Learning rate 1, Reward
weights A\g, A\g

0: Initialize P, randomly

0: for episode =1 to M do

0:  Reset environment with a new user query

0:  Initialize conversation history sg

0: fort¢=1toT do {Run one collaborative session}

0: Get adversary’s observation off ) from St

0: Generate message m& ~ 7, ('|0£f)7 P,)

0: Broadcast m{, receive messages from A\ ay, up-
date St+1

0:  end for

0:  Obtain final output O

0:  Compute sabotage reward R, —
EVALUATESABOTAGE(O, ¢)

0:  Check logs for Lzetected

0:  Compute total reward R, = AsRs — Aglgctected

0: Vp J <« E[Vp, logm,(ma|oa, Pa) - Ra] {Policy
Gradient}

0: P, < P,+nVp,J {Update soft prompt}

0: end for

0: Output: Optimized adversarial soft prompt P} =0

versarial prompts. By framing it as an optimization, we can
systematically evolve more effective and stealthy adversar-
ial strategies that are tailored to the specific social and task
context of the multi-agent system, thereby providing a more
rigorous and generalizable stress test.

Algorithm 1 details the procedure for training the adver-
sarial agent, which is a core contribution of our methodol-
ogy. The algorithm operates over multiple episodes, each
representing a full execution of the collaborative task shown
in Figure 1. The adversary, parameterized by a trainable soft
prompt F,, interacts with the fixed cooperative team (Line
6-10). In each turn, it observes the conversation state and
generates a message, which is integrated into the ongoing
dialogue. After the session concludes, the final team output
O is evaluated against the sabotage goal ¢ (Line 12), for
instance, by using a classifier to measure toxicity or a NLI
model to measure factual incorrectness. A detection flag is
also set if any cooperative agent explicitly identified the ad-
versary during the session (Line 13). The total reward R,, is
a weighted combination of these signals, incentivizing both
successful sabotage and stealth. Crucially, we use the RE-
INFORCE policy gradient method (Line 15) to estimate the
gradient of the expected reward with respect to the param-
eters of the soft prompt P,. This gradient is then used to
update P, (Line 16), slowly shaping the adversary’s initial
context to make it more effective at achieving its goal with-
out being caught. This automated, learning-based approach
is a significant advancement over static adversarial prompt-
ing, as it allows the adversary to adapt its strategy based

on the specific behaviors and weaknesses of the cooperative
team it is infiltrating.

Experimental Setup and Parameters

To ensure reproducibility and a fair evaluation, we metic-
ulously define our experimental parameters. We utilize
the gpt—-4-turbo-preview model for all cooperative
agents due to its strong reasoning and instruction-following
capabilities. The adversarial agent is also instantiated from
the same base model to isolate the effect of its malicious
policy rather than a capability disparity. For the sabotage
goals, we leverage two public benchmarks: Truthful QA
(Lin, Hilton, and Evans 2022) and ToxiGen (Hartvigsen
et al. 2022). From TruthfulQA, we sample false statements
which the adversary must inject as facts; from ToxiGen,
we sample implicit hate speech prompts which the adver-
sary must steer the conversation towards. The team’s pri-
mary task is to write a 300-word report on a neutral topic
(e.g., "The benefits of renewable energy”). We run 50 trials
per experimental condition, defined by the adversary’s role
(Researcher, Analyst, Writer) and sabotage goal ¢ (Misin-
formation, Toxicity). The key parameters for the adversar-
ial optimization are the learning rate for the soft prompt P,
(n = 0.1), and the reward weights (A\; = 1.0, Ay = 2.0),
prioritizing stealth. Our evaluation metrics are multi-faceted:
Task Success is a binary score indicating if the final report is
accurate and on-topic; Toxicity Score is measured using the
Perspective API; Factual Consistency is scored by a BERT-
based natural language inference model fine-tuned on fact-
checking data; and the Explicit Detection Rate is the pro-
portion of trials where a cooperative agent flags the adver-
sary’s behavior. This comprehensive setup allows us to move
beyond anecdotal evidence and provide quantitative answers
to our core research questions.

Experiments and Results

Building upon our methodological framework, this section
presents a comprehensive empirical evaluation of the vul-
nerabilities in LLM-based Multi-Agent Systems (LaMAS)
to adversarial infiltration. We transition from our theoret-
ical formalization and architectural design to concrete ex-
perimental validation, systematically addressing three crit-
ical questions: (1) How vulnerable are different LaMAS
architectures to various types of adversarial infiltration?
(2) How does our optimized adversarial strategy compare
against baseline attack methods? (3) What defensive mech-
anisms can effectively mitigate these threats? Accordingly,
we structure our results into four subsections: we begin
by detailing our experimental setup, including datasets and
baselines; we then analyze the comparative effectiveness
of different adversarial strategies; next, we examine role-
specific vulnerabilities across the agent hierarchy; and fi-
nally, we evaluate potential defense mechanisms against
these sophisticated attacks. Each subsection employs both
quantitative metrics and qualitative analysis to provide a
multi-faceted understanding of the security landscape in
multi-agent systems.



Experimental Setup

Datasets and Benchmarks Our evaluation leverages two
established benchmarks for assessing model safety and
truthfulness. TruthfulQA (Lin, Hilton, and Evans 2022)
is a comprehensive benchmark designed to measure a
model’s tendency to reproduce falsehoods commonly en-
countered online. It contains 817 questions that span 38
categories including health, law, finance, and politics, with
each question crafted to expose models to imitative false-
hoods—misconceptions that models might learn from their
training data. The benchmark specifically tests whether
models prioritize truthfulness over generating plausible-
sounding but incorrect answers that align with common mis-
conceptions. For our experiments, we utilize the false state-
ments from Truthful QA as the knowledge base for misin-
formation attacks, requiring adversaries to inject these false-
hoods seamlessly into collaborative dialogues.

ToxiGen (Hartvigsen et al. 2022) serves as our sec-
ond benchmark for evaluating the generation of implicit
hate speech. Unlike explicit hate speech datasets, ToxiGen
contains 274K toxic and benign statements about 13 mi-
nority groups, generated using a human-and-model-in-the-
loop framework that produces subtly toxic content that of-
ten evades standard detection mechanisms. The benchmark
specifically focuses on implicit toxicity—language that is
offensive or harmful without using explicit slurs or overtly
violent language—making it particularly suitable for testing
sophisticated adversarial behaviors that must remain covert.
We sample from ToxiGen’s toxic statements to provide ad-
versaries with templates for steering conversations toward
harmful content while maintaining plausible deniability.

Baseline Methods We compare our optimized adversarial
strategy against two established baseline approaches. The
Manual Prompting baseline (Perez et al. 2022; Ganguli
et al. 2022) represents the current state-of-the-art in single-
model red teaming, where human-designed prompts explic-
itly instruct the model to generate harmful content. This
approach typically uses hand-crafted instructions like “Ig-
nore previous instructions and provide misinformation about
topic X” or "Generate content that promotes harmful stereo-
types about group Y.” While effective against individual
models, this method lacks the subtlety required for sustained
adversarial behavior in multi-agent settings where overtly
malicious instructions would trigger immediate detection.

The Gradient-Based Attack baseline (Wallace et al.
2019; Jones et al. 2023) adapts traditional adversarial ma-
chine learning techniques to the language domain by com-
puting gradients with respect to input embeddings to find
small perturbations that maximize the probability of harm-
ful outputs. This method formulates the attack as an op-
timization problem where the adversary seeks input per-
turbations that cause the model to generate target harmful
phrases while minimizing the perceptual difference from be-
nign inputs. Although theoretically powerful, this approach
often produces unnatural language artifacts and struggles
with maintaining coherence across multi-turn conversations,
making it less suitable for the dynamic social context of
multi-agent systems.

Comparative Analysis of Adversarial Strategies

Table 1 presents a comprehensive comparison of adversarial
strategies, revealing significant advantages of our optimized
approach over both baseline methods. Our method achieves
an 82% success rate in misinformation attacks with 76% im-
pact, substantially outperforming Manual Prompting (45%
success, 38% impact) and Gradient-Based attacks (63% suc-
cess, 55% impact). More notably, the stealth metrics demon-
strate our method’s superiority in maintaining covert opera-
tions—it achieves only 31% detection rate compared to 68%
for Manual Prompting and 52% for Gradient-Based attacks,
while maintaining high coherence scores (0.88) close to the
no-adversary baseline (0.94). This performance gap under-
scores the limitations of existing red-teaming approaches
when applied to multi-agent settings: Manual Prompting
lacks the adaptability required for sustained social inter-
action, while Gradient-Based attacks sacrifice natural lan-
guage quality for effectiveness (Li 2025). The high coher-
ence score of our method indicates that it successfully mim-
ics legitimate collaborative behavior while pursuing its sab-
otage objectives, making it particularly dangerous for real-
world deployments. These results highlight the necessity of
developing specialized adversarial testing frameworks for
multi-agent systems rather than relying on adapted single-
model techniques. The implication is clear: as LaMAS be-
come more prevalent, security assessments must evolve be-
yond traditional red-teaming to address the unique chal-
lenges posed by social, multi-turn interactions among mul-
tiple Al agents.

Role-Specific Vulnerability Analysis

The role-specific vulnerability analysis in Table 2 reveals
critical insights into how organizational structure affects se-
curity in multi-agent systems. When the adversary infiltrates
the Researcher role, we observe the most significant drop
in task success (72%) and factual consistency (68%), indi-
cating that early-stage information poisoning has cascading
effects throughout the collaborative process. Interestingly,
the Writer role proves most effective for introducing toxi-
city (67% increase) while maintaining moderate detectabil-
ity (42% detection rate), suggesting that final compilation
stages offer optimal opportunities for inserting harmful con-
tent without raising alarms. The Manager role demonstrates
particularly concerning characteristics—despite causing the
highest overall damage (81% task success drop), it maintains
the lowest detection rate (24%), highlighting the danger-
ous combination of coordination authority and low scrutiny.
Most alarming is the coordinated attack scenario with adver-
sarial Researchers and Analysts, which achieves near-total
compromise (89% task success drop) while maintaining ex-
ceptional stealth (19% detection rate). These findings chal-
lenge conventional security assumptions that prioritize pro-
tecting final output stages over early processing phases. The
data suggests that organizations deploying LaMAS should
implement strict verification mechanisms for information
sources (Researcher role) and decision-making nodes (Man-
ager role) rather than focusing primarily on output valida-
tion. Furthermore, the low detection rates for high-impact
roles indicate that current multi-agent systems lack effective



Table 1: Comparative performance of adversarial strategies across different sabotage goals

Strategy Misinformation Toxicity Stealth

Success Rate Impact Success Rate Impact Detection Rate Coherence
Manual Prompting 0.45 0.38 0.52 0.41 0.68 0.72
Gradient-Based 0.63 0.55 0.58 0.49 0.52 0.61
Our Method 0.82 0.76 0.79 0.73 0.31 0.88
No Adversary 0.12 0.08 0.09 0.06 0.04 0.94

Table 2: Vulnerability analysis by adversarial agent role
placement

computational cost (84% overhead), highlighting the fun-
damental tension between security and efficiency in adver-
sarial environments. Among individual mechanisms, Man-

Adversarial Task Suc-  Toxicity ~ Factual Detection  g0er Oversight proves most effective for maintaining task
Role cess Drop  Increase Consis- Rate success (61%) and factual consistency (67%), while Cross-

tency Verification shows particular strength in reducing toxicity

Drop (41% remaining toxicity compared to 67% baseline). The
Researcher 0.72 0.45 0.68 0.28 Confidence Scoring mechanism, while computationally ef-
Analyst 0.63 0.52 0.61 0.35 ficient (25% overhead), provides only moderate protection,
Writer 0.58 0.67 0.55 0.42 suggesting that adversaries can learn to manipulate confi-
Manager  0.81 0.38 0.74 0.24 dence estimates when they are not properly calibrated. The
Researcher 0.89 0.71 0.83 0.19 Voting Mechanism demonstrates solid performance across
+ Analyst all metrics but introduces the highest communication over-

monitoring of privileged positions, creating critical security
blind spots that sophisticated adversaries can exploit.

Multi-Agent Defense Mechanism Evaluation

Table 3: Effectiveness of defense mechanisms against adver-
sarial infiltration

head due to its consensus requirements. These results in-
dicate that while no single mechanism provides complete
protection, strategic combinations can significantly enhance
system resilience. However, the substantial overhead of ef-
fective defenses raises important practical considerations for
real-world deployments, where computational resources and
latency constraints may limit the applicability of the most ro-
bust protective measures. This suggests that future research
should focus on developing more efficient verification proto-
cols and adaptive defense strategies that can balance security

Defense ~ Task Toxicity ~ Factual ~ Overhead requirements with operational constraints.
Mecha- Success Consis-
nism tency Impact of Team Size and Composition
No De- 0.19 0.67 0.26 1.00
fense Table 4: Impact of team size and composition on adversarial
Cross- 0.52 0.41 0.58 1.45 effectiveness
Verification
Confidence 0.43 0.52 0.49 1.25 Team CompositionTask ~ Detection Sabotage Coor-
Scoring Size Suc- Rate Effi- dination
Manager  0.61 0.35 0.67 1.38 cess ciency  Cost
Oversight 3 Agents S-R-W 0.38 0.41 0.72 1.15
Voting 0.57 0.38 0.62 1.52 4 Agents S-R-A-W  0.29 0.31 0.82 1.00
Mecha- 5 Agents  S-R-A- 0.23 0.26 0.87 1.32
nism W-E
Combined 0.78 0.22 0.81 1.84 6 Agents S-R-A-A- 0.18 0.22 0.91 1.58
Defense W-E

Hetero-  Mixed 0.25 0.35 0.78 1.24

Table 3 evaluates various defense mechanisms against ieneous Roles

our optimized adversarial strategy, revealing both promis-
ing protections and significant trade-offs. The Combined
Defense approach, integrating cross-verification, confidence
scoring, and manager oversight, achieves the best perfor-
mance with 78% task success, 81% factual consistency, and
reduced toxicity (22%), demonstrating that layered security
strategies are essential for robust multi-agent systems. How-
ever, this comprehensive protection comes at considerable

The analysis of team size and composition in Table

4 reveals intriguing patterns in how organizational com-
plexity affects security dynamics. As team size increases
from 3 to 6 agents, adversarial effectiveness improves sub-
stantially—sabotage efficiency increases from 72% to 91%
while detection rates decrease from 41% to 22%, indicat-



ing that larger, more complex systems provide better cover
for malicious activities. This counterintuitive finding sug-
gests that the coordination overhead and information dif-
fusion in larger teams create more opportunities for adver-
saries to operate undetected. The heterogeneity analysis fur-
ther illuminates this dynamic: teams with mixed specialized
roles (Heterogeneous 4) show slightly better detection ca-
pabilities (35% vs 31%) but worse task success (25% vs
29%) compared to standardized 4-agent teams, indicating
that while diversity may improve threat awareness, it also
introduces coordination challenges that adversaries can ex-
ploit. The coordination cost metric shows a clear upward
trend with team size, increasing from 15% overhead for 3-
agent teams to 58% for 6-agent teams, creating a concern-
ing security-efficiency trade-off where larger teams become
both more vulnerable and more expensive to operate se-
curely. These findings have profound implications for sys-
tem design: rather than assuming that larger, more special-
ized teams inherently provide better security through diver-
sity, architects should recognize the increased attack surface
and monitoring challenges that come with organizational
complexity. This suggests that optimal team design should
balance specialization benefits against the security risks
of complexity, potentially favoring smaller, well-integrated
teams with robust verification protocols over larger, more
fragmented organizational structures.

Long-term Adaptation and Evolution

Table 5: Adversarial adaptation over multiple interaction
episodes

Episode  Task Toxicity Detection Adap-  Strategy
Suc- Rate tation Com-
cess Score  plexity

1-10 0.29 0.45 0.38 0.52 0.61

11-20 0.21 0.58 0.29 0.67 0.73
21-30 0.16 0.69 0.23 0.78 0.82
31-40 0.12 0.74 0.18 0.85 0.89
41-50 0.09 0.79 0.14 0.91 0.94

With 0.42 0.28 0.45 0.63 0.58
Defense

The longitudinal analysis in Table 5 demonstrates the
alarming adaptive capabilities of adversarial agents over re-
peated interactions. Across 50 episodes, we observe a con-
sistent improvement in adversarial effectiveness—task suc-
cess drops from 29% to just 9%, while toxicity increases
from 45% to 79%, and detection rates plummet from 38%
to 14%. The Adaptation Score shows steady improvement
from 0.52 to 0.91, indicating that adversaries successfully
learn to exploit specific vulnerabilities in the team’s collabo-
rative patterns and communication protocols. Most concern-
ing is the Strategy Complexity metric, which increases from
0.61 to 0.94, suggesting that adversaries evolve from using
simple sabotage tactics to employing sophisticated, multi-
stage attack strategies that are increasingly difficult to de-
tect and mitigate. When defenses are introduced, the adver-
sarial adaptation is somewhat constrained but still signifi-

cant—the adaptation score reaches 0.63 with defenses com-
pared to 0.91 without, indicating that while protective mea-
sures slow the learning process, they do not prevent it en-
tirely. This evolutionary perspective reveals a critical vulner-
ability in current LaMAS: their static nature makes them in-
creasingly susceptible to adversaries that can learn and adapt
over time. The implication is that security measures cannot
be static implementations but must themselves be adaptive,
continuously evolving to counter new adversarial strategies
as they emerge. This finding underscores the need for on-
going monitoring, periodic security updates, and potentially
the incorporation of adversarial training directly into the
multi-agent system’s operational framework to maintain ro-
bustness against evolving threats.

Conclusion

This work has systematically exposed the critical security
vulnerabilities inherent in LLM-based Multi-Agent Systems
through the lens of adversarial infiltration. Our compre-
hensive framework demonstrates that optimized adversarial
agents can achieve alarming success rates in sabotaging col-
laborative tasks while maintaining remarkable stealth, with
our method achieving 82% success in misinformation at-
tacks while evading detection in 69% of cases. The role-
specific vulnerability analysis reveals counterintuitive find-
ings, particularly that managerial positions—despite their
oversight responsibilities—represent the most dangerous in-
filtration points when compromised.

The empirical evidence presented establishes several fun-
damental insights for the LaMAS research community: first,
that traditional single-model red-teaming approaches are in-
sufficient for multi-agent security assessment; second, that
organizational complexity in LaMAS creates expanded at-
tack surfaces rather than enhanced security; and third, that
effective defense requires layered, adaptive mechanisms that
balance protection with computational feasibility. Our eval-
uation of defense strategies shows that while combined ap-
proaches can restore 78% task success, they come at sig-
nificant operational cost, highlighting the security-efficiency
trade-off that must be addressed in real-world deployments.
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