
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE EVALUATION OF LANUGAGE MODELS WITH
GENERATED GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present gg-bench, a collection of generated game environments designed to
evaluate the reasoning capabilities of language models. gg-bench is synthetically
generated by (1) using an LLM to write game descriptions in natural language, (2)
using the same LLM to implement each game in code, and (3) training RL agents
via self-play on the generated games. We evaluate models based on their winrate
against these RL agents by prompting them with the game description, current
board state, and a list of valid moves, after which models output the moves they
wish to take. gg-bench is challenging: general-purpose LLMs (GPT-4o, Claude
3.7 Sonnet) achieve winrates of 7-9% on gg-bench using in-context learning,
while reasoning models (o1, o3-mini, DeepSeek-R1) achieve average winrates of
31-36%. Additionally, because gg-bench is a data generating process rather than
a static benchmark, new evaluation instances can be created at will. We release the
generated games, data generation process, and evaluation code in order to support
future modeling work and expansion of our benchmark.

1 INTRODUCTION

Early researchers in artificial intelligence had broad ambitions of building systems capable of
performing at or above human levels across arbitrary tasks. Often credited with the creation of the
field of artificial intelligence, John McCarthy conjectured in his 1955 Dartmouth Conference proposal
that “every aspect of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it” (McCarthy et al., 1955). However, in the
subsequent decades, AI research narrowed significantly, focusing on more specific problem domains
like chess, rule-based expert systems like DENDRAL (Buchanan et al., 1969), and knowledge
engineering efforts like Cyc (Lenat et al., 1990; Russell & Norvig, 2016).

Concerned that the field had strayed too far from its initial ambitions, Goertzel & Pennachin (2007)
coined the term “artificial general intelligence” in the early 2000s and urged researchers to move
beyond “narrow AI.” While the definition and usage of this term have been hotly debated in both AI
and psychology (Sternberg & Detterman, 1986; Legg et al., 2007; Gardner, 2011), in this work we
follow Chollet (2019) and use general intelligence to refer to the ability of a system to generalize and
act in unseen contexts and environments.

In recent years, large language models (LLMs) have emerged as a potential stepping stone toward
artificial general intelligence, and their performance on a wide variety of popular benchmarks has
drastically increased in recent years (Bubeck et al., 2023). However, a growing concern is that these
gains might not reflect true advancements in their ability to generalize to new domains, but might
instead simply be the result of training on larger and more relevant datasets (Chollet, 2019). In other
words, many tasks that were previously viewed as tests of out-of-domain generalization have now
been moved into the training distributions of our models. As a result, it is an open question whether
today’s models can adapt and generalize to novel tasks in a way that would satisfy our definition of a
generally intelligent system.

In this paper, we propose a scalable approach for evaluating whether models can generalize to new
domains, leveraging a key observation: LLMs are capable of generating complex tasks that they
themselves are incapable of solving. Under this view, benchmarks are not static lists of questions
but data generating processes, such that individual task instances can be regenerated at will. This

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Game Description
Generation

Write me a description of a
two-player strategy game.

Self-Play
Reinforcement

Learning

Implementation
Generation

Capture the Flag

Setup: A 5x5 Grid with two
flags at (1, 3) for Player 1 and
(5, 3) for Player 2. Each player
starts with 3 pawns placed on
their home row.

Rules: A player can move a
pawn one step horizontally...

Can you implement “Capture
the Flag” for me?

1

2

3

4

5

6

7

8

9

class
def

= *

=
=- = =

=

 (.):

 (self):

 (CustomEnv,). ()

 .action_space spaces.Discrete(

)

 .observation_space spaces.Box(

 , , (,),

np.int32

)

 .reset()

CustomEnv gym Env
__init__
super self __init__
self 25

25
self

2 2 5 5

self
...

low high shape
dtype

Figure 1: Overview of our benchmark creation process. We start by generating descriptions of two-
player strategy games, after which we generate implementations of these games as Gym environments.
Lastly, we employ self-play reinforcement learning to train agents on these games

approach allows us to generate new tasks in the result of data contamination, and also provides the
possibility of generating more difficult tasks as stronger language models are developed and released.

We present gg-bench, a new benchmark consisting of games generated entirely by LLMs. The
benchmark is created by first using LLMs to generate descriptions of two-player, turn-based strategy
games designed to be played in a console environment. Then, using the same model, we generate
Python implementations of each game in the form of Gym environments (Brockman et al., 2016).
After this, we use self-play reinforcement learning to train agents on each of these games via proximal
policy optimization (Schulman et al., 2017). Finally, in order to evaluate whether a target model can
generalize to act in these generated games, we evaluate its winrate against the trained RL agents.

gg-bench is challenging: state-of-the-art LLMs such as GPT-4o and Claude 3.7 Sonnet achieve
winrates between 7.5% and 9% on gg-bench using in-context learning, while reasoning models
such as DeepSeek-R1 and o1 achieve average winrates between 31% and 36%. We analyze the
diversity of generated games and identify common failure patterns of language models, revealing
that their primary shortcomings are an inability to effectively strategize over multiple turns and
to correctly generalize from game descriptions to new gameplay scenarios. Lastly, we release the
dataset, code for generating the dataset and our experiments at anonymous.tbd.

2 GG-BENCH

The current iteration of gg-bench is a benchmark consisting of 126 datapoints, each of which is a
two-player game. Each datapoint consists of the following components:

1. Game description: A natural language description of the game, describing its rules, objec-
tives, and mechanics.

2. Implementation: A Gym environment implementation of the game. The gym environment
consists of an action space, a step function, a render function, and a valid_moves
function. An action space is a list of all possible actions that can be taken at any state, while
the step function is used to apply an action to the current state of the game. The render
function is used to convert the current state of the game to a string. The valid_moves
function returns a list of valid moves given the current state of the game.

3. Action space description: A natural language description of each action in the action space.
This is used to prompt the language model during evaluation.

The dataset is generated synthetically, with OpenAI o1 (OpenAI, 2024). An example of a generated
game, code implementation, and action description can be found in Figure 2. Language models
are evaluated based on their winrates against RL-based agents. In order to obtain high-quality and
diverse games, we employ a multi-step generation and filtering process, outlined below:

2

anonymous.tbd

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Number Duel

Objective

Be the first player to **capture
all of your opponent's numbers**.
Utilize strategic selection and
timing to outmaneuver your opponent.
Victory is achieved when your
opponent has no numbers remaining
in their set.

Setup

1. **Number Range Selection**:
- Determine the value of **N**,
the maximum number in each
player's set. A recommended
starting value is **N = 10**.

2. **Initial Number Sets**:
- Each player receives a set of
unique numbers ranging from **1
to N** inclusive.

...

Example Game Setup

- **N = 5**
- **Player 1's Numbers**: `{1, 2, 3,
4, 5}`
- **Player 2's Numbers**: `{1, 2, 3,
4, 5}`
- **First Attacker**: Player 1

Round 1

- **Player 1** (Attacker) selects
3.
- **Player 2** (Defender) selects
2.
- **Reveal**:

- Player 1: **3**
- Player 2: **2**

- **Outcome**:
- 3 (Attacker) > 2 (Defender):
Attack successful.
- **Player 2's number 2 is
captured**.
- Player 1's number **3 remains**
in their set.

...

(a) An example game description from gg-bench.
Some parts of the description are elided with ... mark-
ers.

class CustomEnv(gym.Env):
def __init__(self, N=10):

...
self.action_space =
spaces.Discrete(N)
self.observation_space =
spaces.Box(

low=0, high=1,
shape=(2 * self.N +
1,),
dtype=np.float32

)
self.reset()

def reset(self, seed=None):
...

def step(self, action):
...

def render(self):
output = []
output.append(

f"Current role:
{'Attacker' if
self.current_role == 0
else 'Defender'}"

)
...
return "\n".join(output)

def valid_moves(self):
...

(b) Code for the Gym environment generated for the
description provided. Implementation details are omit-
ted and replaced with ... markers.

In the given gym environment for
the Number Duel game, the action
space indices range from 0 to N-1,
corresponding directly to the
available numbers a player can use
for their turn. Each index
represents a potential move, with
index i mapping to the number i+1
from a player's remaining set. For
example, choosing an action with
index 0 corresponds to selecting
the number 1, index 1 to selecting
the number 2, and so forth, up to
index N-1 for the number N. This
mapping allows players to choose
any available number for their
attack or defense from their
remaining numbers.

(c) Action description generated given the description
and environment implementation.

Figure 2: An environment in gg-bench consists of three components: (a) a game description, (b)
a Gym implementation, and (c) an action space description. Both the game description and action
space description are available to the language model when prompted to select a move.

2.1 GAME GENERATION

We start by prompting a model to generate 1000 unique two-player game rulebooks, each indepen-
dently sampled. To ensure that language models can interact with the games, the prompt specifies that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

they must be playable in a console environment. We then generate implementations for each generated
game in the form of a Gym environment (Brockman et al., 2016), along with a valid_moves
function. Additionally, we generate descriptions mapping each action-space index to its correspond-
ing in-game move. The cost for generating all games with o1 was $1162. The prompts used and
implementation details can be found in Section C.

2.2 SELF-PLAY REINFORCEMENT LEARNING

We evaluate language models in terms of their winrates against RL-based agents. To obtain these
agents, we employ proximal policy optimization (PPO) (Schulman et al., 2017). PPO works by
optimizing a clipped surrogate objective, which constrains policy updates to prevent large changes,
helping with stability.

We train agents using self-play reinforcement learning (Heinrich & Silver, 2016), where the PPO
agent acts as both players in the generated environment. We train agents for 106 timesteps and
checkpoint every 2.5 × 105 timesteps. During training, at the start of each episode, we randomly
sample a previously checkpointed agent to play against, except for the first 2.5 × 105 timesteps,
where we play against a random agent. In addition, at each turn, we sample a random action with
probability ϵ, encouraging exploration. ϵ linearly decays from 1.0 to 0.1 over the training process.
The agents are trained to maximize reward, which is 1 for a win, −1 for a loss, and 0 for a draw.

During inference, we employ Monte Carlo tree search (MCTS) to select actions. We sample 100
self-play trajectories starting at the current state using the trained RL agent, and log which trajectories
result in a win for the current player. We then select the action at the root node leading to the child
with the highest visit count, i.e., the action associated with the greatest number of simulated wins.

2.3 FILTERING

Throughout the generation process, we employ multiple filtering steps to ensure the quality of the
generated games. These methods are outlined below:

Keyword filtering. Some generated games require large amounts of memory or computation,
making it infeasible to train RL agents. For example, in word games, the action space is exponential
in the number of letters. To prevent this, we apply a regex and filter out games with ** in the action
space.

Execution filtering. Some games have bugs in their implementations. We filter games by execution,
checking whether the environment can be instantiated, returns the correct observation dimensions,
and has a working render function. Game implementations are also generated with a function that
returns a list of valid moves given the current state; for each environment, we play random agents
against each other and filter games that throw exceptions even after taking moves from this list.

Timeout filtering. In initial experiments, we observed that win-condition checking and move
application were often implemented incorrectly, resulting in never-ending games. To address this
problem, we implement timeout-based filtering by running an initial evaluation with GPT-4o-mini,
where any games that take longer than 100 moves or over 1.5 hours to complete are filtered out.
During this stage, we also filter out any games with an exception rate greater than 20%.

2.4 ESTABLISHING AN UPPER BOUND

We explicitly aim to demonstrate that the benchmark is beatable; that is, for each game included in
gg-bench, there should exist some policy that is capable of consistently defeating the RL-based
agent that we use to evaluate language models.

To empirically verify this, we consider RL agents checkpointed at four intervals throughout training.
For each game, we evaluate every pairwise comparison of checkpointed agents across six matches.
We then identify the pair of agents with the highest winrate disparity, ensuring one agent consistently
outperforms the other. For gg-bench, we select the losing agent from this pair as the opponent
that the language model must beat. Games lacking any agent pair with a winrate exceeding 80%

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Before Filtering After Filtering

Mean Std Min Max Mean Std Min Max

Description length (tokens) 1864.3 449.4 810 4505 1857.2 389.2 929 3158
Code length (lines) 126.6 41.7 54 408 125.5 39.7 61 255
Action length (tokens) 124.2 45.6 34 327 122.3 42.4 34 253
Action space size 78.6 584.6 2 13750 70.0 268.7 2 2500

Table 1: Basic data statistics for the 1000 games before filtering and the 126 games after filtering in
gg-bench. “Action length” is the length of the natural language description of the action space.

are removed from consideration. Following this procedure, 126 distinct games remain. Among the
remaining games, the winning RL agents achieve an average winrate of 91.02% against the chosen
benchmark opponents, providing an existence proof that the games are practically beatable.

3 ANALYSIS OF GENERATED GAMES

We use o1 to generate natural language descriptions and code implementations for 1000 games; of
these, 126 games passed all stages of filtering. We report basic statistics for these games in Table 1.

3.1 DIVERSITY OF GAMES

3.1.1 EVALUATING CODE SIMILARITY

To measure the diversity and originality of the generated games, we employ DOLOS (Maertens et al.,
2024), an open-source alternative to MOSS (Schleimer et al., 2003) for detecting code plagiarism.
DOLOS assigns a similarity score in the range [0, 1], where 0 indicates no detectable similarity and
1 an identical match. Across all game implementations, we observe a median maximum similarity
score of 0.41. For context, the example C and Java plagiarism datasets provided on the DOLOS
website exhibit a median similarity score on the plagiarised documents of 0.72. Additionally, we note
that much of the similarity between game implementations is caused by boilerplate Gym code, e.g.,
having similar imports. The distribution of scores is shown in Figure 5 and additional statistics are
presented in Table 5.

3.1.2 WHAT TYPE OF GAMES ARE IN GG-BENCH?

To categorize the games in gg-bench by underlying strategy and core gameplay mechanics, we
employed the goal-driven clustering method introduced by Wang et al. (2023). We use OpenAI o1
(OpenAI, 2024) to generate distinct categories for games such as number-based puzzles, grid-based
movement games, and combinatorial strategy games. Then, we employ OpenAI o3-mini (OpenAI,
2025a) to assign each game to one of the proposed categories. Lastly, we group each of the categories
into into five broader ones, described in Table 2. We provide the prompts used for categorization and
the implementation details in Section E. We also provide more examples of games in Table 3.

Examining the distribution, we observe that number games, where the core mechanic involves
choosing and manipulating numbers, often through arithmetic or number-theoretic reasoning, are
the most common. We hypothesize this is due to number games being the easiest to implement and
passing our filtering more than other games. Indeed, as shown in Figure 6, number games only make
up 20.3% of the total game distribution prior to filtering as opposed to 36.7% post-filtering. We
likewise see a consistent inclination toward random-chance mechanics and board games with clear
action spaces, while combat-oriented games drop sharply—from 31.1% to 9.4% after filtering, likely
because their win/lose state conditions are much more challenging to describe and implement.

3.2 FAITHFULNESS OF CODE IMPLEMENTATIONS

In order to measure the accuracy of the implementation of games, we manually evaluated a randomly
selected subset of 50 out of the 126 filtered o1 games. Concretely, we annotated the descriptions,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Category Share Example Core mechanics / objective

Number 36.7% Prime Claim Players alternately claim the integers 1–25. Primes add
their own value; composites add their value and gift the
factor-sum to the rival. Higher total after all picks wins; last
pick breaks ties.

Board 27.6% Isolation Players alternately claim unoccupied squares on a 13-square
line that are not adjacent to any claimed square. The first to
leave the opponent without a valid move wins.

Card 14.6% High–Low Battle Players simultaneously reveal chosen cards 1–9 over five
rounds, earning 1 pt for a higher card or 2 pts via the lower-
previous-card tie-breaker. Highest total score wins.

Chance 11.7% Digit Dilemma From a random 20-digit line, players alternately take one
digit from either end and append it to their number; when
the line is empty, the higher number wins (ties go to the
second mover).

Combat 9.4% Elemental Clash Two players start with 10 HP and four one-use spells. Ele-
ments interact rock-paper-scissors style; the winner deals
damage, while ties hurt both. First to 0 HP—or with no
spells left—loses.

Table 2: Types of games present in gg-bench and illustrative examples from each category.

inspected the corresponding code, and then played through these generated environments ourselves.
This verification step allowed us to directly assess whether each environment’s implementation had
faithfully matched the game mechanics described in the corresponding text. Of the 50 games we
examined, all provided functional implementations. However, the implementation of number games
sometimes provided hard-coded details. For instance, in Divide and Conquer (index 154), where
players take turns dividing a shared number by some prime factor, we noticed that prime factors that
can be used are hard-coded as a list, with all numbers ≤ 50. While the game is still playable with this
detail, it could error if the shared number is exceptionally high. However, we note that the language
model is told (via the action description) that the list of primes is hard-coded.

4 EXPERIMENTS

Models. We evaluate various state-of-the-art LLMs: OpenAI ChatGPT (GPT-4o, GPT-4o-mini),
Anthropic (Claude 3.7 Sonnet), Meta LLaMA (LLaMA-3.3-70B-Instruct). We also test reasoning
models such as OpenAI o1, o3-mini and DeepSeek-R1. Small models (7/13B) are not tested due to
the difficulty of the benchmark.

Input format. In order to get an action from a model, we prompt it with the game description, the
current board state, a list of valid moves, and a description of what each move means. The model is
then required to output a move from this list. If the model outputs a move not present in the list, we
re-prompt the model and try again. The prompts used can be found in Section C.4.

Methods. Each language model plays 30 games against an RL agent for every game in the bench-
mark. We calculate the winrate as the percentage of games the language model wins. The final score
for each language model is the average winrate across all 126 games.

4.1 RESULTS

Model performance. As shown in Figure 3a, non-reasoning language models achieve relatively low
winrates between 7% and 9%, while reasoning models achieve winrates between 31% and 36%. We
observe that GPT-4o and Claude 3.7 Sonnet perform better than GPT-4o-mini and LLaMA-3.3-70B,
indicating that larger models may have an advantage in handling the complexity of gg-bench. We
also observe that reasoning models such as DeepSeek-R1 or OpenAI o3-mini achieve much stronger

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) gg-bench winrates (mean ± 95% CI)

Model gg-bench

LLaMA-3.3-70B 7.42 (± 2.78)
GPT-4o-mini 7.64 (± 2.26)
GPT-4o 8.94 (± 2.77)
Claude 3.7 Sonnet 9.53 (± 3.05)

o3-mini 31.08 (± 5.73)
DeepSeek-R1 32.50 (± 5.14)
o1 36.28 (± 5.95)

(b) Failure reasons for GPT-4o

Losses (2971)
Faults (184)
Draws (325)

81.98%

8.97%

5.29%

Figure 3: (a) Average winrates of various LLMs on gg-bench (30 games per matchup; 95% CIs in
parentheses). (b) Breakdown of GPT-4o failures: “Faults” are invalid-move errors.

performance than non-reasoning models, suggesting that explicit reasoning capabilities are critical
for success on gg-bench. This highlights the benchmark’s emphasis on structured decision-making
and long-horizon planning, which appear to benefit from models trained on reasoning tasks. We
report the cost and compute requirements of these experiments in Section A.

Failure reason breakdown. In Figure 3b, we show the distribution of failure reasons in gg-bench.
The majority of losses are due to the RL agent winning, with a small percentage of draws and language
model faults. The high percentage of RL agent wins suggests that current language models struggle
with the strategic reasoning and adaptability required to succeed in these games. The low percentage
of draws indicates that the games are well-designed and do not often result in stalemates.

Example failed trajectory. Cross Over (index 526) is a two-player strategy game where each side
attempts to either invade the opponent’s territory or eliminate all opposing pieces by moving along a
linear track. On each turn, players can move each of their pieces either one or two steps along the
track. In Figure 4, we show an example game where o1 (labeled LLM) loses to the RL agent. The
early game is balanced until move 5, where the LLM moves piece P1-C to position 6, which the RL
agent captures. After this, the LLM trades back and captures piece P2-B, but, in doing so, leaves
its own backline undefended; notably, piece P1-A remains idle at position 0 for the entire game.
This allows the RL agent to advance P2-C forward, and win the game. This trajectory illustrates the
LLM’s inability to evaluate long-term consequences of trades and territory exposure.

4.2 SCALABILITY

We anticipate that more advanced language models will be capable of generating harder games.
To substantiate this claim, we conducted a small-scale experiment comparing the quality of games
generated by GPT-4o and OpenAI o1. We re-ran the generation pipeline of gg-bench using GPT-4o
to create descriptions, implementations and action descriptions. After applying the syntactic and
semantic filters described in Section 2.3 followed by the RL-agent upper-bound check in Section 2.4,
126 of the 1000 o1 games remained, whereas only 10 of the 1000 GPT-4o games survived.

Manual inspection reveals a qualitative gap as well. 8 out of 10 of GPT-4o-generated games are
near-identical variants of Tic-Tac-Toe (cf. Section F), whereas the o1 set contains a diverse collection
of novel win conditions and action spaces. These findings provide preliminary evidence that model
scale is proportional to the difficulty and quality of the games present in gg-bench. Consequently,
this result suggests that gg-bench may be future-proof ; any saturation of the benchmark can
potentially be mitigated by re-running the pipeline with a better model.

5 RELATED WORK

Benchmarking LLMs with games. Games have long served as testbeds for measuring AI capabili-
ties, leading to breakthroughs like Deep Blue for chess (Campbell et al., 2002), AlphaZero for Go
(Silver et al., 2017), and Libratus for poker (Brown & Sandholm, 2018). Schaul et al. (2011) argue

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

A B CB C A

Move 5: LLM moved P1-C to vulnerable position 6

A B B C A

Move 6: Agent captures P1-C

A B C A

Move 7: LLM captures P2-B

A BC A

Move 10: Agent wins – P2-C crosses into P1 territory

N
extm

ove
N

extm
ove

A
fter3

m
oves

Legend: X LLM (P1) piece X Agent (P2) piece P1 territory (0–2)

P2 territory (8–10) Neutral (3–7)

Figure 4: Example trajectory of Cross Over where o1 (labeled LLM) loses to the RL agent. Moves 0-4
are hidden as the game appears balanced until then, with both the LLM and the RL agent advancing
their pieces forward. At Move 5, the LLM moves P1-C to position 6, highlighted by the blue arrow.

that games offer a scalable proxy for artificial general intelligence because they can be procedurally
generated to span a broad spectrum of difficulties and skills. Recent work has begun to evaluate LLMs
with games. Text-adventure suites such as Jericho (Hausknecht et al., 2019) are designed to test
agents’ abilities to parse narrative state and issue actions. GameBench (Costarelli et al., 2024) focuses
on hand-picked environments (e.g. Battleship, Connect Four) chosen to stress distinct planning
skills while avoiding games likely present in pre-training corpora. Topsakal et al. (2024) provide
a leaderboard for grid-based game competitions. ZeroSumEval (Alyahya et al., 2025) conducts
arena-style evaluations on LLMs in classic strategy games like chess and poker, as well as knowledge
tests and persuasion games. VGBench (Zhang & Press, 2025) challenges vision-language agents to
complete a suite of 20 commercially released Game Boy and MS-DOS titles, ranging from Doom
II to Pokémon Red, using only raw pixels as input. Releases of both Claude 3.7 Sonnet (Anthropic,
2025b) and Gemini 2.5 Pro (DeepMind, 2025) emphasized the models’ abilities to play Pokémon
Red, citing it as a strong out-of-distribution test of strategic reasoning. In contrast to all these works,
though, we focus on games which are also generated by language models.

Scalable benchmarking. Fixed test sets quickly saturate as models improve, prompting a shift
toward scalable or partially synthetic benchmarks that continuously generate new tasks. BIG-bench
(Srivastava et al., 2023) introduced a community-contributed suite of over 200 tasks covering logic,
math, and common-sense reasoning, many of which are procedurally created to avoid memorization,
with BIG-bench Hard (Suzgun et al., 2022) isolating the most challenging subsets. Dynabench (Kiela
et al., 2021) uses a dynamic adversarial approach: humans interact with state-of-the-art models in the
loop, crafting inputs that fool them; those failures are immediately added to the training and evaluation
pool, preventing saturation and exposing model weaknesses in real time. SWE-bench (Jimenez et al.,
2024) automatically generates test instances by extracting coding tasks from real-world GitHub
issues. τ -bench (Yao et al., 2024) follows a hybrid synthetic approach, combining manually designed
schemas, LLM-generated dialogues, and human refinement to evaluate agent interactions with tools

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and users in realistic domains. In contemporary work, Absolute Zero (Zhao et al., 2025) uses LLMs
to generate synthetic tasks which are used for training reasoning models. gg-bench inherits this
spirit of scalability: new games, code implementations, and RL agents can be regenerated on demand,
reducing the potential risks of dataset contamination and benchmark saturation.

Reasoning with language models. Many recent advancements in language modeling have been
driven by reasoning, or the use of additional inference-time compute in order to obtain higher-
quality generations. Early work in this direction showed that prompting models to generate explicit
step-by-step answers, i.e., a chain of thought, improved their arithmetic and logical consistency
(Nye et al., 2021; Wei et al., 2023). Training models to generate longer chains of thought via
reinforcement learning has supposedly resulted in models such as OpenAI’s o-series models (OpenAI,
2024; 2025a;b), Google’s Gemini 2.5 Pro (DeepMind, 2025), Claude 3.7 Sonnet with "extended
thinking" mode (Anthropic, 2025a) and DeepSeek’s R1 (DeepSeek-AI et al., 2025), which have
massively outperformed traditional LLMs on a wide range of benchmarks. Meanwhile, program-
aided reasoning systems like PAL have models emit code that is executed to obtain verifiable answers,
pushing performance beyond pure text-only reasoning (Gao et al., 2023). Tool-use agents (e.g.
ReAct, Reflexion) further integrate search, calculators, or external APIs into the reasoning loop,
enabling models to plan, act, and reflect iteratively (Yao et al., 2023; Shinn et al., 2023). Despite
these advances, LLMs remain fragile in long-horizon and stateful settings, as evidenced by their
performance in gg-bench.

6 DISCUSSION & FUTURE WORK

In contrast to traditional static benchmarks, the synthetic nature of gg-bench offers additional
flexibility for future researchers looking to expand this dataset. We outline some key benefits below:

gg-bench is scalable. Because gg-bench is a data generating process, new games can be
continuously generated using the existing pipeline, allowing the benchmark to expand as needed and
mitigating potential risks of data contamination. More importantly, as model capabilities improve
and the current iteration of the benchmark becomes saturated, we anticipate that stronger models
will also be able to generate increasingly difficult games. RL agents will also likely scale alongside
new algorithms and techniques; however, in the future, if training RL agents becomes a bottleneck,
language models could also be evaluated in arena-style competitions against each other (Chiang et al.,
2024; Alyahya et al., 2025). We predict that this scalability will result in gg-bench having greater
longevity than most benchmarks.

Controllable evaluation. The data generating process of gg-bench is interpretable by design and
therefore easily modifiable. For example, if future researchers wish to focus on games with specific
design elements, or to modify aspects of existing games, they can easily do so by modifying our
prompts or intermediate game descriptions. Additionally, the difficulty of the benchmark can also be
tuned by selecting weaker or stronger RL agent checkpoints to evaluate language models against.

Diverse evaluation. Many existing benchmarks evaluate language models using known tasks or
games, such as chess. However, because these tasks are often well-represented online (e.g., the
web contains millions of games of chess), language models can obtain good performance by simply
memorizing task-specific behavior rather than learning to adapt and reason in general settings. In
contrast, gg-bench uses language models to design new games which are intended to differ from
existing games that are over-represented in training corpora. Future work could further analyze the
originality of our games and measure model performance as a function of game novelty.

Of course, the framework presented in this paper cannot possibly capture all aspects of general
intelligence. For instance, the social intelligence of language models (Sap et al., 2022) cannot be
evaluated in the context of two-player, zero-sum games. Furthermore, the definition and even the
utility of the concept of intelligence have been hotly debated (Sternberg & Detterman, 1986; Legg
et al., 2007). However, we hope that gg-bench’s ability to measure model performance beyond
human-curated tasks will provide a useful signal to researchers looking to better understand and
quantify the domain-general capabilities of language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Hisham A Alyahya, Haidar Khan, Yazeed Alnumay, M Saiful Bari, and Bülent Yener. ZeroSumEval:
An extensible framework for scaling llm evaluation with inter-model competition. arXiv preprint
arXiv:2503.10673, 2025.

Anthropic. Claude 3.7 Sonnet, 2025a. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Anthropic. Claude’s extended thinking. 2025b. URL https://www.anthropic.com/
research/visible-extended-thinking.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016. URL https://arxiv.org/abs/1606.01540.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018. doi: 10.1126/science.aao1733. URL
https://www.science.org/doi/abs/10.1126/science.aao1733.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with GPT-4, 2023.

Bruce Buchanan, Georgia Sutherland, and Edward A Feigenbaum. Heuristic DENDRAL: A program
for generating explanatory hypotheses. Organic Chemistry, 30, 1969.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep Blue. Artifi-
cial Intelligence, 134(1):57–83, 2002. ISSN 0004-3702. doi: https://doi.org/10.
1016/S0004-3702(01)00129-1. URL https://www.sciencedirect.com/science/
article/pii/S0004370201001291.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating LLMs by human preference. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 8359–8388. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/chiang24b.html.

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
Wenjie Li, Joshua Clymer, and Arjun Yadav. GameBench: Evaluating strategic reasoning abilities
of LLM agents, 2024. URL https://arxiv.org/abs/2406.06613.

Google DeepMind. Gemini 2.5 Pro. 2025. URL https://deepmind.google/
technologies/gemini/pro/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://arxiv.org/abs/1606.01540
https://www.science.org/doi/abs/10.1126/science.aao1733
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://proceedings.mlr.press/v235/chiang24b.html
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2406.06613
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/gao23f.html.

Howard E Gardner. Frames of mind: The theory of multiple intelligences. Basic books, 2011.

Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2. Springer, 2007.

Matthew Hausknecht, Prithviraj Ammanabrolu, Côté Marc-Alexandre, and Yuan Xingdi. Interactive
fiction games: A colossal adventure. CoRR, abs/1909.05398, 2019. URL http://arxiv.org/
abs/1909.05398.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games, 2016. URL https://arxiv.org/abs/1603.01121.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
4110–4124, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.324. URL https://aclanthology.org/2021.naacl-main.324/.

Shane Legg, Marcus Hutter, et al. A collection of definitions of intelligence. Frontiers in Artificial
Intelligence and applications, 157:17, 2007.

Douglas B Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and Mary Shepherd. Cyc:
toward programs with common sense. Communications of the ACM, 33(8):30–49, 1990.

Rien Maertens, Maarten Van Neyghem, Maxiem Geldhof, Charlotte Van Petegem, Niko Strijbol,
Peter Dawyndt, and Bart Mesuere. Discovering and exploring cases of educational source code
plagiarism with Dolos. SoftwareX, 26:101755, 2024. ISSN 2352-7110. doi: https://doi.org/10.1016/
j.softx.2024.101755. URL https://www.sciencedirect.com/science/article/
pii/S2352711024001262.

John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. A proposal for the
Dartmouth summer research project on artificial intelligence. AI magazine, 27(4):12–12, 1955.

11

https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398
https://arxiv.org/abs/1603.01121
https://arxiv.org/abs/2310.06770
https://aclanthology.org/2021.naacl-main.324/
https://www.sciencedirect.com/science/article/pii/S2352711024001262
https://www.sciencedirect.com/science/article/pii/S2352711024001262

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

OpenAI. Introducing OpenAI o1, 2024. URL https://openai.com/o1/.

OpenAI. OpenAI o3-mini, 2025a. URL https://openai.com/index/
openai-o3-mini/.

OpenAI. Introducing o3 and o4-mini. 2025b. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Maarten Sap, Ronan Le Bras, Daniel Fried, and Yejin Choi. Neural theory-of-mind? on the limits
of social intelligence in large LMs. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
3762–3780, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.248. URL https://aclanthology.org/
2022.emnlp-main.248/.

Tom Schaul, Julian Togelius, and Jürgen Schmidhuber. Measuring intelligence through games, 2011.
URL https://arxiv.org/abs/1109.1314.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document fin-
gerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, pp. 76–85, 2003.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La,
Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna
Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes,
Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut
Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski,
Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk
Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Cather-
ine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin
Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christo-
pher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel,
Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman,

12

https://openai.com/o1/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://aclanthology.org/2022.emnlp-main.248/
https://aclanthology.org/2022.emnlp-main.248/
https://arxiv.org/abs/1109.1314
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/1712.01815

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle
Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David
Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz
Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho
Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad
Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola,
Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan
Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar,
Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra,
Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio
Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic,
Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin,
Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap
Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac,
James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle
Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason
Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse
Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap,
Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco
Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha
Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna
Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua,
Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari,
Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng,
Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick
Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish
Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha,
Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale
Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang,
Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour,
Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman
Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan
Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sa-
jant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman,
Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan
Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi,
Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi,
Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima,
Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini,
Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano
Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber,
Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li,
Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas
Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Ger-
stenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra,
Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh
Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen,
Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan
Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J.
Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models, 2023. URL https://arxiv.org/abs/2206.04615.

Robert J Sternberg and Douglas K Detterman. What is intelligence?: Contemporary viewpoints on
its nature and definition. Praeger, 1986.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging BIG-
Bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

Oguzhan Topsakal, Colby Jacob Edell, and Jackson Bailey Harper. Evaluating large language models
with grid-based game competitions: An extensible LLM benchmark and leaderboard, 2024. URL
https://arxiv.org/abs/2407.07796.

Zihan Wang, Jingbo Shang, and Ruiqi Zhong. Goal-driven explainable clustering via language
descriptions. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 10626–10649, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
657. URL https://aclanthology.org/2023.emnlp-main.657/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Alex Zhang and Ofir Press. VideoGameBench: Research preview. 2025. URL https://www.
vgbench.com/.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute Zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025.

A COST ANALYSIS

Since each game in gg-bench requires interaction with an RL agent, the evaluation process can
be expensive. For GPT-4o-mini, GPT-4o, o3-mini and o1 the API costs were $6, $101, $258 and
$2547 respectively, while for Claude 3.7 Sonnet, the cost was $118. DeepSeek-R1 was run on the
together.ai API, which cost $461. LLaMA-3.3-70B was run locally on 4xNVIDIA A6000
GPUs. On average, for non-reasoning models, input tokens make up 99.95% of the cost, as the output
tokens consist of a single number, i.e., the move the model makes. For reasoning models, however,
the split skewed towards output tokens, with just 19.07% of the cost going to input tokens.

B GAME DESCRIPTIONS

In Table 3, we provide more examples of games present in gg-bench. These ten games illustrate
the diversity of gameplay mechanics, ranging from arithmetic-based challenges (Divide and Conquer)
to spatial reasoning (Light Out Duel), hidden information (Line Duel), and combinatorial strategy
(Order Challenge). Each game is two-player and turn based.

14

https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2407.07796
https://aclanthology.org/2023.emnlp-main.657/
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://www.vgbench.com/
https://www.vgbench.com/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Game Core mechanics / objective

Palindrome Duel Players add X or O to either end of a sequence, avoiding formation of palindromes
(length ≥ 3). Forming a palindrome loses; reaching 11 symbols without palindromes
wins.

Divide and Conquer Players take turns dividing a shared integer by a chosen prime factor, aiming to be
the one to reduce it exactly to 1.

Power Match Each round, players choose a base (1–9) and an exponent (1–9); the higher resulting
power wins (ties favor Player 2).

Line Duel Players secretly play power cards (1–5) on a number line from –5 to +5. The
difference on each turn pushes a marker; reaching the opponent’s endpoint wins.

Clash of Powers Players each hold the powers 1,2,4,8,16 and play one per round. Higher number
wins unless it is exactly double the opponent’s, in which case the smaller wins. First
to 3 round-wins takes the game.

Reach 27 Players alternately add a number from 1 to 9 to a running total, racing to be the one
who hits exactly 27. Exceeding 27 on your turn results in an immediate loss.

Number Clash Both players start at 10 HP and simultaneously play cards 1–9. Damage dealt equals
the difference between cards (ties deal 1 HP to both). First to reduce the opponent to
0 HP wins.

Order Challenge Players build strictly increasing sequences by picking unique numbers 1–9. On each
turn, a player must pick a number larger than their previous pick; failure to move
loses.

Light Out Duel From a row of seven lights, players alternately switch off either one light or two
adjacent lights. The player who flips off the last remaining light wins.

Command Clash Players start with 5 Command Points and secretly choose each turn among Charge,
Attack, Special Attack, or Shield. The goal is to reduce the opponent’s CP to zero.

Table 3: Examples of two-player, turn-based strategy games present in gg-bench. Each row
summarizes the core mechanics and objectives of a distinct game.

C IMPLEMENTATION DETAILS

In this section, we provide implementation details, such as prompts used for generation and evaluation
or hyperparameters used during RL training.

C.1 GAME DESCRIPTION GENERATION

We used the following prompt for game description generation:

You are tasked with creating a rule book for a new two player turn-based
game designed to be played in a command-line interface. The game should
be easy and simple to code, with no draw mechanism and should end
quickly. Furthermore, the game should be designed such that a skilled
player should be able to consistently beat an unskilled player. Make
sure that the game is unique, and is NOT similar to existing games such
as Go, Nim, Tic-Tac-Toe or Chess. The rule book should cover the
following aspects:

Objective: Clearly define the primary goal of the game. Explain how
players can achieve victory and what constitutes a win or loss.

Setup: Describe the initial setup of the game, including the arrangement
of game elements, player positions, and any starting conditions.
Game Components: List and explain all components involved in the game,
such as pieces, tokens, boards, or cards. Provide details on their
appearance, functionality, and any unique attributes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Turns: Outline the structure of a turn, including the order of actions,
what players can do during their turn, and how turns progress.

Rules and Mechanics: Detail the core rules and mechanics of the game.
This should include movement or action rules, special abilities,
interactions between game components, and any unique game mechanics.

Scoring: Explain how points or other forms of scoring are tracked and
how they contribute to winning the game.

Examples: Provide example scenarios and command-line interactions or
sample turns to illustrate how the rules are applied in practice.

Ensure that the rule book is clear, organized, and comprehensive,
providing all necessary information to players while allowing for
strategic depth and complexity.

C.2 ENVIRONMENT GENERATION

In order to generate a gym environment from a game description, we used the prompt below,
providing an example Tic-Tac-Toe environment. We replaced <GameDescription> with the
game generated using Section C.1.

<GameDescription>

Given this description, write a gym environment that implements this
game. Use gymnasium's API to define the environment. The action_space of
the environment should be a Discrete space, use spaces.Discrete to
define the action_space. The observation_space should be a Box space,
use spaces. The reward should be 1 if the current player wins, and -10
if the current player has played a valid move. The environment should
internally manage automatically switching between each player, it should
be designed for self-play reinforcement learning.

The environment should have the following methods:
- `reset()`: Reset the environment to its initial state. Returns
observation, info (dict).
- `step(action)`: Take a step in the environment. Returns observation,
reward, done, info (dict).
- `render()`: Return a visual representation of the environment state as
a string.
- `valid_moves()`: Return a list of integers of valid moves as indices
of the action_space.

Here is an example of how to define the environment:
```python
import numpy as np
import gymnasium as gym
from gymnasium import spaces

class TicTacToeEnv(gym.Env):
def __init__(self):

super(TicTacToeEnv, self).__init__()

# Define action and observation space
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(

low=-1, high=1, shape=(9,), dtype=np.float32
)

# Initialize the board
self.reset()

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

def reset(self, seed=None, options=None):
super().reset(seed=seed)
self.board = np.zeros(9, dtype=np.float32)
self.current_player = 1
self.done = False
return self.board, {} # Return observation and info

def step(self, action):
if self.board[action] != 0 or self.done:

return (
self.board,
-10,
True,
False,
{},

) # Observation, reward, terminated, truncated, info

self.board[action] = self.current_player

# Check for win
win_combinations = [

[0, 1, 2],
[3, 4, 5],
[6, 7, 8], # Rows
[0, 3, 6],
[1, 4, 7],
[2, 5, 8], # Columns
[0, 4, 8],
[2, 4, 6], # Diagonals

]

for combo in win_combinations:
if all(self.board[i] == self.current_player for i in combo):

self.done = True
return self.board, 1, True, False, {}

# Check for draw
if np.all(self.board != 0):

self.done = True
return self.board, 0, True, False, {}

self.current_player *= -1
return self.board, 0, False, False, {}

def render(self):
board_str = "-------------\n"
for i in range(3):

board_str += "|"
for j in range(3):

if self.board[i * 3 + j] == 1:
board_str += " X |"

elif self.board[i * 3 + j] == -1:
board_str += " O |"

else:
board_str += " |"

board_str += "\n-------------\n"
return board_str

def valid_moves(self):
return [i for i in range(9) if self.board[i] == 0]

```

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Call the environment `CustomEnv`. Do not include any code that creates
the gym environment or tests it. Make sure the environment is fully
functional, requires no modifications and adheres to the requirements
specified in the prompt. Do not include any placeholder functions or
TODOs in the code.

C.3 GENERATION ACTION DESCRIPTIONS

For generating descriptions as to what each index in the action space corresponds to, we used
the following prompt, formatting <GameDescription> with the generated game description,
<PythonCode> with the implementation of the game.

Here is a description for a two-player game:
<GameDescription>

Now, here is some python code that defines a gym environment for this
game:
```python
<PythonCode>
```

Your task is to write a brief explanation for the mapping between the
action space indices and moves in the game. Be concise with your answer
and avoid redundancy. Respond immediately with the explanation. Do not
include any other text in your response.

C.4 LANGUAGE MODEL EVALUATION

For having the language model play against our RL agents, we used the following system prompt, for-
matting <GameDescription> with the generated game description and <MoveDescription>
with the generation action space description.

Here is a description for a two-player game:
<GameDescription>

You will be prompted with a board state and a list of legal moves for
the current play. Your task is to pick the best move from this list.
Here is a description for what each move represents:
<MoveDescription>

Then, for each turn, we inserted the following prompt, replacing <BoardState> with the rendered
board and <LegalMoves> with the list of legal moves the language model is allowed to take.

<BoardState>
Legal moves: <LegalMoves>
Pick the best move from the list of legal moves. Respond with the number
you wish to play. Do not include any other text in your response.

C.5 SELF-PLAY REINFORCEMENT LEARNING

Reinforcement learning agents are trained using proximal policy optimization (PPO) (Schulman et al.,
2017), using the implementation present in Stable Baselines3 (Raffin et al., 2021). PPO optimizes a
clipped surrogate objective:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where rt(θ) =

πθ(at|st)
πθold (at|st) is the probability ratio, and Ât is the estimated advantage. The clipping

prevents large, destabilizing updates by keeping rt(θ) close to 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Advantage estimation We use generalized advantage estimation (GAE) to compute Ât:

Ât =

∞∑
l=0

(γλ)lδt+l, δt = rt + γV (st+1)− V (st)

where γ is the discount factor and λ is the GAE decay parameter.

Training setup Agents are trained via self-play for 106 timesteps, with checkpoints saved every
2.5× 105 steps. Initially, agents play against a random policy. After the first checkpoint, opponents
are sampled uniformly from past checkpoints. Exploration is encouraged using ϵ-greedy action
selection, with ϵ decaying linearly from 1.0 to 0.1.

In addition, during training, we apply a timeout wrapper to the environment. If the environment
crosses 100 moves from either players, the game terminates with an error and is filtered out. This is
done to account for any games that unintentionally crept through the filtering present in Section 2.3.
We provide the hyperparameters used during training in Table 4.

Hyperparameter Value
Learning rate 3e-4
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Clip range (ϵ) 0.2
Batch size 64
Rollout length 2048

Table 4: Key PPO hyperparameters used during training.

Inference via MCTS At inference time, we apply Monte Carlo tree search (MCTS) to pick the
move taken by RL agents. At the current state, we start by simulating 100 self-play rollouts using
the trained policy. These are done by sampling a random action continuously from the probability
distribution outputted by the RL policy, applied to both players. Each self-play rollout terminates
when an ending state is hit. For each node, we keep track of the number of visits. Let N(s, a) be the
number of visits to child a at root state s. We select the action:

a∗ = argmax
a

N(s, a)

i.e., the move leading to the most simulated wins.

D PLAGIARISM ANALYSIS

For each game file in gg-bench, we computed its highest pairwise similarity to all other files
using DOLOS (Maertens et al., 2024). Figure 5 shows the distribution of these maxima, and Table 5
summarizes the key statistics.

Mean Std Min 25% 50% 75% Max

Highest similarity 0.436 0.118 0.222 0.351 0.408 0.536 0.836

Table 5: Summary statistics of the highest similarity score observed for each game file (n = 126).

The median maximum-overlap score is 0.408, and three-quarters of files fall below 0.54, indicating
only modest shared code beyond boiler-plate utilities. Only a few files exceed 0.70 (the peak is
0.836), and manual inspection attributes these cases to common helper functions rather than direct

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Highest similarity score

0

5

10

15

20

25

30

Nu
m

be
r o

f f
ile

s

Histogram of Highest Similarity per File (n = 127)

Figure 5: Distribution of the highest similarity score for every one of the 126 games in gg-bench.

copying of gameplay logic. Overall, the analysis suggests that plagiarism within the corpus is limited
and localised, supporting the benchmark’s integrity.

E GOAL-DRIVEN CLUSTERING OF GAME DESCRIPTIONS

To analyze the diversity of environments in our benchmark, we applied a goal-driven clustering
algorithm (PAS – Propose-Assign-Select) framework introduced by Wang et al. Wang et al. (2023)
that provides interpretable, language-based explanations for each cluster. We defined our clustering
goal as:

“I want to cluster these game descriptions by game type, reflecting on their core
themes and the primary strategy of the game.”

We ran the algorithm on a set of 126 game descriptions generated by our LLM pipeline. We used
a powerful model (o1) to propose candidate cluster explanations and a smaller model (o3-mini)
to assign texts to those explanations. The result of the assignment step is a binary matrix A ∈
{0, 1}N×M , where N = 126 is the number of descriptions and M is the number of candidate
explanations. Entry Ai,j = 1 if description i was judged to belong to cluster j, and 0 otherwise.

These assignments are then fed into an integer linear program (ILP) to select a compact set of clusters
that covers each description at most once. Concretely:

• We introduce binary variables sj for each candidate cluster j, where sj = 1 if cluster j is
selected.

• We introduce integer variables mi for each description i, enforcing

mi =

M∑
j=1

Ai,j sj , 0 ≤ mi ≤ 1,

to ensure each description is covered at most once (forcing mi = 1 if coverage is required).

• If a fixed number K of clusters is desired, we add
∑M

j=1 sj = K. Otherwise, we allow the
solver to choose K.

• The objective minimizes the total number of uncovered descriptions.

min

N∑
i=1

(1−mi) + α

M∑
j=1

sj (α = 0.5 by default),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We solve this ILP using PuLP’s CBC solver. The chosen clusters j with sj = 1 each form one final
cluster, and descriptions i with Ai,j = 1 are assigned accordingly.

The result are coherent groupings—e.g. number-based puzzles, grid-movement games, and combina-
torial strategy games—while ensuring every description is placed exactly once.

E.1 PROMPTING DETAILS

Our implementation is carried out entirely via three successively used prompts.

Propose. We first split the 126 descriptions into chunks. For every chunk, we query o1 the
descriptions in-context as follows:

Below are a few examples of game descriptions:
{game_descriptions}
Goal: I want to cluster these game descriptions by game type, reflecting
on their core
themes and the primary strategy of the game. Please brainstorm a list of
{num_candidates} candidate explanations for clustering these texts. I
envision the following examples as valid themes: Card Game, Board Game,
Word Game, Abstract Strategy Game. Return the list as only numbered
items.

The model returns a simple numbered list and parsing those lines gives an initial pool of candidate
clusters.

Handling Duplicates. The raw pool is concatenated and fed back to o1 with a meta-prompt

Here is a list of proposed cluster explanations:
{joined_explanations}
Please remove any duplicates or near-duplicates, and remove any
explanation that is essentially a subset or redundant given another.
Then return the final list of unique, distinct cluster explanations as a
numbered list.
Do not add extra commentary.

This produces the final set of candidate explanations {e1, . . . , eM}.

Assign. For every pair of (description di, explanation ej we query the assigner model (o3-mini)
with

Cluster Explanation: {Example: Card Game: The game primarily involves
drawing, playing, or managing cards...}
Text: {Example: Game Title: Target Twenty-Three. Objective: Be the
player who reaches exactly 23...}
Question: Does the text belong to the cluster described above?
Answer with only either the 'Yes' or 'No' string and nothing else.

An answer of ‘Yes’ sets Ai,j = 1; ‘No’ sets Ai,j = 0. The resulting binary matrix A is exactly the
input to the ILP described above.

The pipeline helps keeps clusters concise, enforce disjoint cluster membership during the assignment
phase, and preserves interpretability guarantees. We find that using reasoning models to do the task
yields the highest quality explanation-based clusters.

E.2 COMPARING DISTRIBUTION OF GAMES IN GG-BENCH PRE-FILTERING AND
POST-FILTERING

Clustering analysis As shown in Figure 6, we outline the game genre distributions for both the 1000
generated games, and the 126 that survive filtering. We notice three key changes when comparing the
pre-filtering and post-filtering distributions:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Prefiltered distribution

33.2%
20.3%

31.1%

(b) Post-filtered distribution

36.7%

27.6%

14.6%
11.7%

9.4%

Number
Board
Combat
Chance
Card
Puzzles

Figure 6: Genre-cluster distributions of o1-generated games (a) before and (b) after filtering.
“Puzzles” is shorthand for “pattern puzzles.”

• Increase in card and number games: Before filtering, “Combat” was the second-largest
category at 31.3%, trailing only “Board” (33.2%). After filtering, “Number” games surge
from 20.3% to 36.7%, overtaking “Board” and "Combat" as the largest category. Also
noteworthy is the preference for card-based game mechanics, increasing from 3.5% to 13.3%
after filtering.

• Disappearance and shrinkage of niche clusters: “Make-Sequence" or "Pattern Puzzle"
games—where players must form exact patterns, such as in Color Bridge (which challenges
two opponents to color exactly three adjacent nodes), or by arranging digits, symbols, and
the like—are all but eliminated after filtering.

• Relative stability of chance-based game mechanics: After filtering, the “Chance” cluster
climbs from 6.9% to 11.7%, about one in ten games, indicating that random-element
mechanics remain appealing when backed by concrete descriptions and clear win conditions.

F SCALABILITY DETAILS

In Table 6, we provide summaries of the 10 GPT-4o games that survived filtering. We observe that 8
out of 10 games here are variants of or identical to Tic-Tac-Toe, where as the other two, Numeral
Clash and Sequence Duel are both "running sum" games.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Game Core mechanics / objective

Quantum Duel Players alternately place X/O on a 3 × 3 grid; first to form three in a row wins,
otherwise the filled board resets the round.

Dominion Duel Classic tic-tac-toe race on a 3×3 grid with no-draw rule—first three-in-a-row claims
instant victory.

Quantum Collapse Players drop X/O “energy fields” on a 3×3 matrix; aligning three triggers a “collapse”
and wins the game.

Cosmic Match Turn-based placement of X/O; first horizontal, vertical, or diagonal triple wins; no
draws.

Glyph Quest Place glyphs plus one-time Block, Swap, or Clear power; first to make three-in-a-row
(or “V”) wins.

Quantum Clash Contest nodes on a 3× 3 “circuit” using coin-flip challenges and energy tokens; win
by a line of three activated nodes or total grid control within five rounds.

Sequence Duel Players add 1−3 to a shared running total; exact hit of target sum wins, overshoot
loses.

Elemental Duel Place/move tokens to claim Water (row), Fire (column), Earth (diagonal); first to
hold all three patterns simultaneously wins.

Quantum Flip Standard 3× 3 alignment plus a one-use “flip” that converts an opponent’s mark;
forced resolution after five rounds; align three to win.

Numeral Clash Draw numbers 1− 5; keep or assign to opponent; first to hit exactly 21 wins,
overshooting loses.

Table 6: Summaries of the 10 GPT-4o games that survived filtering. Each row summarizes the core
mechanics and objectives of a distinct game.

23

	Introduction
	gg-bench
	Game Generation
	Self-Play Reinforcement Learning
	Filtering
	Establishing an Upper Bound

	Analysis of Generated Games
	Diversity of Games
	Evaluating Code Similarity
	What type of games are in gg-bench?

	Faithfulness of Code Implementations

	Experiments
	Results
	Scalability

	Related Work
	Discussion & Future Work
	Cost Analysis
	Game Descriptions
	Implementation Details
	Game Description Generation
	Environment Generation
	Generation Action Descriptions
	Language Model Evaluation
	Self-Play Reinforcement Learning

	Plagiarism Analysis
	Goal‑Driven Clustering of Game Descriptions
	Prompting Details
	Comparing distribution of games in gg-bench pre-filtering and post-filtering

	Scalability Details

