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Abstract
Developing AI agents capable of collaborating with previously unseen partners is a fun-1
damental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork2
(AHT). Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed3
population of teammates is generated with the idea that they should be representative4
of the teammates that will be seen at deployment time, and second, an AHT agent is5
trained to collaborate well with agents in the population. To date, the research com-6
munity has focused on designing separate algorithms for each stage. This separation7
has led to algorithms that generate teammates with limited coverage of possible behav-8
iors, and that ignore whether the generated teammates are easy to learn from for the9
AHT agent. Furthermore, algorithms for training AHT agents typically treat the set of10
training teammates as static, thus attempting to generalize to previously unseen partner11
agents without assuming any control over the distribution of training teammates. This12
paper presents a unified framework for AHT by reformulating the problem as an open-13
ended learning process between an ad hoc agent and an adversarial teammate generator.14
We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates15
between improving the AHT agent and generating teammates that probe its deficien-16
cies. Extensive experiments across diverse AHT environments demonstrate that RO-17
TATE significantly outperforms baselines at generalizing to an unseen set of evaluation18
teammates, thus establishing a new standard for robust and generalizable teamwork.19

1 Introduction20

As the deployment of AI agents in diverse applications becomes more common, it is increasingly21
crucial that they can collaborate effectively with previously unseen humans and other AI agents.22
While methods for training teams of agents have been explored in cooperative multi-agent reinforce-23
ment learning (CMARL) [18, 45], previous work [55, 42] highlights that CMARL-based agents fail24
to perform optimally when collaborating with unfamiliar teammates. Rather than learning strategies25
that are only effective against jointly trained teammates, dealing with previously unseen teammates26
requires adaptive AI agents that efficiently approximate the optimal strategy for collaborating with27
diverse teammates. Methods to train adaptive agents in the context of collaborative tasks have pre-28
viously been explored within the literature of ad hoc teamwork (AHT) [6, 52, 34] and zero-shot29
coordination (ZSC) [21, 13, 33].30

Prior work [34] has often decomposed AHT learning into two stages, consisting of first creating31
a fixed set of teammates, and then training an AHT agent using reinforcement learning (RL) ap-32
proaches, based on interactions with teammates sampled from the set. Despite relying on neural33
network policies, algorithms that train an AHT agent based on interaction with a human-designed34
set of heuristic or pretrained agents [40, 66, 42] often struggle to handle novel behaviors outside the35
predefined set of teammates [53, 8]. Recent work [33, 9, 43, 44, 48] strengthens the generalization36
capabilities of previous methods by substituting the human-designed set of teammates with a set of37
teammate policies that are trained to maximize different notions of diversity. One such diversity no-38
tion is adversarial diversity [43, 9], which seeks to generate a set of teams that cooperate well within39
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Figure 1: ROTATE Overview. ROTATE is an open-ended ad hoc teamwork learning framework in which the
AHT agent learns as the set of training teammates expands. The core idea of ROTATE is to improve the AHT
agent and iteratively generate diverse teammates with whom the AHT agent struggles to collaborate, yet not so
adversarial that effective teamwork becomes impossible.

the team, but not across teams. However, prior work [14, 48, 10] empirically demonstrates that ad-40
versarial diversity often leads to teammate policies that actively diminish returns when interacting41
with agents other than their identified teammate, a phenomenon sometimes called self-sabotage.42

This paper addresses two issues that cause existing AHT and ZSC methods to fail to learn policies43
that effectively collaborate with some teammates. First, existing methods [40, 66, 42, 43] learn44
from sampling teammates from a fixed set containing few teammate policies. Compared to the45
vast space of strategies a teammate may adopt, the AHT agent will only be trained to collaborate46
optimally with a small set of strategies, while potentially performing poorly against others. Second,47
existing methods focus on designing diverse and incompatible teammates [9, 43, 64], whose return-48
diminishing tendencies make it challenging for a randomly initialized, RL-based AHT agent to49
effectively learn to collaborate with.50

In this paper, we present a fresh perspective on AHT, by observing that maximizing the return of51
an AHT agent on an unknown set of teammates is equivalent to minimizing its cooperative regret:52
the utility gap between the best response to a given teammate, and the AHT agent’s performance53
with that teammate. Inspired by the success of regret for designing generally capable agents that54
efficiently solve a broad range of tasks [58, 15, 24, 46], we then reformulate the AHT problem as55
a minimax game between the AHT agent and a teammate generator. Our problem formulation sug-56
gests an open-ended framework for AHT, that drives a teammate generator to continually discover57
new teammate policies, while jointly improving the AHT agent. Building on this theoretical founda-58
tion, we propose a practical algorithm, ROTATE (Fig. 1), which optimizes a regret-based minimax59
objective for both players, while maintaining a population of all teammates explored. Key to the60
success of ROTATE is a novel and practical per-state regret objective, designed to mitigate the self-61
sabotage problem that naturally arises from cooperative regret type objectives. We demonstrate that62
ROTATE significantly improves the robustness of AHT agents when faced with previously unseen63
teammates, compared to a range of baselines on Level-Based Foraging and Overcooked tasks.64

This paper makes three main contributions. First, it defines a novel problem formulation for AHT,65
enabling open-ended AHT training that continually generates new teammates. Second, it introduces66
a novel algorithm, ROTATE, that instantiates the proposed open-ended AHT framework. Third, it67
provides empirical evaluations demonstrating that ROTATE significantly improves return against68
unseen teammates compared to representative baselines from AHT and open-ended learning.69

2 Related Work70

This section provides an abridged overview of related work. The full discussion may be found in71
App. A. Training adaptive ego agents that may optimally coordinate with previously unseen team-72
mates has been previously explored in AHT [52] & ZSC [21]. In particular, teammate generation73
approaches seek to enable generalization to unseen teammates by designing a diverse set of training74
teammates [53, 33]. Recent teammate generation methods [9, 43, 48] propose generating teammate75
policies with diverse best responses, which strongly resembles the cooperative regret objective used76
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by ROTATE. Our proposed method is heavily influenced by teammate generation methods, as well77
as prior work in open-ended learning (OEL) [23, 4], which seeks to continually design novel tasks78
to create a generally capable agent [58, 15, 41, 25, 24, 46].79

3 Background80

The interaction between agents in an AHT setting may be modeled as a decentralized, partially81
observable Markov decision process (Dec-POMDP) [39]. A Dec-POMDP is characterized by a 9-82
tuple, ⟨N,S, {Ai}|N |

i=1, P, p0, R, {Ωi}
|N |
i=1, O, γ⟩, where N , S, and γ respectively denote the index83

set of agents within an interaction, the state space, and a discount rate in (0, 1). Each interaction84
between the AHT agent and its teammates begins from an initial state s0 sampled from an initial85
state distribution, p0(s). Denoting the set of all probability distributions over a set X as ∆(X) and86
the current timestep as t, a Dec-POMDP assumes that each agent may not perceive the current state,87
st. Each agent instead perceives an observation from its observation space, oit ∈ Ωi, sampled from88
the observation function, O : S 7→ ∆(Ω1 × · · · × Ω|N |). Each agent i ∈ N then chooses an action89
at time t from its action space, ait ∈ Ai, based on a policy, πi(Hi

t), conditioned on its observation-90
action history, Hi

t = {oi≤t, ai<t}. The actions selected by each agent are then collectively executed91

as the joint action, at = (a1t , . . . , a
|N |
t ). Each agent receives a common scalar reward, rt, based92

on the reward function, R : S × A1 × · · · × A|N | 7→ R. Finally, a new state st+1, is sampled93
according to the environment transition function, P : S × A1 × · · · × A|N | 7→ ∆(S). In this94
paper, the notation πego refers to a trained AHT agent policy, or ego agent, while π−i refers to the95
N − 1 policies of the AHT agent’s teammates. Importantly, we assume that teammates choose their96
actions only based on the current state. At the same time, the AHT agent selects its actions based on97
its state-action history, which is necessary to allow the AHT agent to distinguish between different98
types of teammates effectively.99

4 Ad Hoc Teamwork Problem Formulation100

Ad Hoc Teamwork (AHT) methods aim to train an adaptive AHT policy that an ego agent can101
follow to achieve maximal return when collaborating with an unknown set of evaluation teammates.102
Using the Dec-POMDP formulation to model the interaction between agents, this section formalizes103
the objective of AHT. While the most general AHT setting considers a possibly varying number of104
ego agents and teammates within an interaction [57, 42], this formalization addresses the more105
straightforward case where there is only a single ego agent within a team.106

Let π−i denote a joint teammate policy controlling the N − 1 non-ego agents during collaboration.107
Denote the returns of an ego agent following πego to collaborate with teammates controlled by π−i,108
starting from state s, as:109

V (s|π−i, πego) = E aego
t ∼πego,

a−i
t ∼π−i,P,O

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
. (1)

Let Πeval denote the unknown set of joint teammate policies encountered during evaluation, which110
is assumed to only contain competent and non-adversarial policies, as defined in the seminal work111
of Stone et al. [52]. Let ψeval(Πeval) denote the probability distribution over Πeval defining how112
teammates are sampled during evaluation. An ego agent policy, πego, is evaluated by its ability113
to maximize the expected returns when collaborating with joint teammate policies sampled from114
ψeval(Πeval), which is formalized as:115

max
πego

V (ψeval,Πeval, πego) = max
πego

Eπ−i∼ψeval(Πeval),s0∼p0
[
V (s0|π−i, πego)

]
. (2)

An optimal πego that maximizes Eq. 2 closely approximates the best response policy performance116
when collaborating with π−i ∈ Πeval. Given a teammate policy π−i, BR(π−i) is a best response117
policy to π−i if and only the team policy formed by π−i and BR(π−i) achieves maximal return:118

BR(π−i) := max
π

Es∼p0
[
V (s|π, π−i)

]
. (3)
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In some cases, an AHT algorithm can directly estimate this optimal policy by using Πeval to train an119
ego agent policy that maximizes V (ψeval,Πeval, πego) when Πeval is known.1 However, most AHT120
methods address the more challenging case where Πeval is unknown, which is the setting that this121
paper adopts as well. While our methods assume no knowledge of Πeval during training, we follow122
standard practice [40, 42, 66, 57] by manually designing a diverse Πeval for evaluation purposes, as123
we later describe in Section 7.124

When Πeval is unknown, AHT algorithms [34] either assume access to a training set of teammate125
policies, Πtrain, or generate such a set. An expert’s domain knowledge about the characteristics of126
Πeval may be leveraged to construct a Πtrain similar to Πeval. Once the set of training teammates has127
been formed, current AHT algorithms use reinforcement learning to discover an ego agent policy128
based on interactions with joint policies sampled from Πtrain. While the precise training objective129
varies with the AHT algorithm, a common objective is to maximize the expected return during130
interactions with joint policies sampled uniformly from Πtrain:131

π∗,ego(Πtrain) = argmax
πego

Eπ−i∼U(Πtrain),s0∼p0
[
V (s0|π−i, πego)

]
. (4)

Naturally, even an optimal ego agent policy, π∗,ego(Πtrain), may not be optimal with respect to Πeval132
and ψeval, due to the potential distribution shift caused by differences between the training and133
evaluation objectives.134

5 An Open-Ended Learning Perspective on Ad Hoc Teamwork135

In this section, we outline the general components of our open-ended framework to train ego agents136
that are performant at collaborating with holdout teammate policies, despite not knowing Πeval and137
ψeval during training. We first argue for minimizing worst-case cooperative regret towards training138
ego agent policies that maximize Eq. 2 when Πeval is unknown. We then finish the section by139
introducing two necessary procedures in an iterative process to minimize worst-case regret.140

We define the cooperative regret of an ego agent policy πego when interacting with some joint team-141
mate policy π−i from a starting state s as:142

CR(πego, π−i, s) = V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego) . (5)

Any optimal AHT policy that maximizes Eq. 2 must also minimize the expected regret over joint143
teammate policies sampled based on ψeval(Πeval), which we formally express as:144

CR(ψeval,Πeval, πego) = Eπ−i∼ψeval(Πeval),s0∼p0
[
CR((πego, π−i, s0)

]
. (6)

This property is a consequence of V
(
s|π−i, BR(π−i)

)
being independent of πego for any π−i and145

s, leaving maximizing expected regret equivalent to minimizing the negative expected returns when146
collaborating with joint teammate policies sampled from ψeval(Πeval).147

Without knowing Πeval to optimize CR(ψeval,Πeval, πego), we instead take inspiration from ap-148
proaches in UED [58, 15], and propose optimizing πego to minimize the worst-case regret that could149
be induced by any teammate policy π−i:150

min
πego

max
π−i∈Π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
, (7)

where we re-emphasize that Π−i denotes the set of all competent and non-adversarial [52] joint151
teammate policies. Limiting the considered joint policies is important since teams that always per-152
form poorly against any good-faith πego are unlikely to be encountered in coordination scenarios and153
may induce unnecessary learning challenges for RL-based AHT learning algorithms.154

Finding πego that achieves zero worst-case regret is equivalent to finding an ego agent that achieves155
the best-response return with any joint teammate policy π−i. If such a πego exists, then this AHT156

1In the context of reinforcement-learning-based AHT algorithms, “known" means that an AHT algorithm has unlimited
sampling access to the teammate policies.
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agent would maximize Eq. 2 for any ψeval and Πeval—however, existence is not guaranteed [30]. In157
practice, we are content with minimizing the worst-case regret. While minimizing worst-case regret158
still applies to AHT problems with more than one teammate at a time, note that we limit our method159
for optimizing Eq. 7 and our experiments to two-player, fully observable AHT games.160

Algorithm 1 in the Appendix outlines a framework to train a πego that minimizes worst-case regret.161
The algorithm resembles coordinate ascent algorithms [16], which alternate between optimizing for162
π−i and πego for T iterations, while assuming the other is fixed. We call a phase where we fix πego163
and update π−i to maximize the ego agent’s regret, the teammate generation phase. Meanwhile,164
assuming that π−i is fixed, the ego agent update phase updates πego to minimize regret. This op-165
timization algorithm is an open-ended training method that continually generates novel teammate166
policies whose interaction with the ego agent provides the learning experience to improve πego.167
Next, we detail the learning process during these two phases.168

6 ROTATE: Regret-driven Open-ended Training for Ad hoc TEamwork169
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Figure 2: Per-trajectory regret vs per-state regret.

This section presents our regret-driven,170
open-ended AHT algorithm, ROTATE.171
We first describe the teammate genera-172
tion procedure in Section 6.1, particularly173
focusing on motivating the objective we174
used to generate teammate policies. Next,175
we provide details of the ego agent up-176
date method in Section 6.2. The Appendix177
provides ROTATE’s pseudocode and addi-178
tional implementation details.179

6.1 ROTATE Teammate Generator180

The teammate generator produces team-181
mate policies that maximize the regret of πego. By updating πego to minimize its regret against182
the regret-maximizing teammate policy, we aim to decrease the worst-case cooperative regret of183
πego (Eq. 7). Since measuring cooperative regret requires estimating the performance of a generated184
π−i when collaborating with BR(π−i), we jointly train policies for π−i and an approximation of185
BR(π−i) using the PPO algorithm [50].186

Before detailing our alternative objectives for training π−i, we first introduce the different interac-187
tions that provide the experience to train π−i. Let self-play (SP) refer to teammate and best response188
interactions, cross-play (XP) refer to teammate and ego agent interactions, and cross-play continued189
by self-play (SXP) refer to an interaction where the teammate is first interacting with the ego agent,190
but switches at a random timestep t to interacting with the best response. We train π−i based on191
states sampled from SP, XP, and SXP. Let d(π1, π2; p0) denote the state visitation distribution when192
π1 and π2 interact based on a starting state distribution p0. To denote the state visitation distributions193
for these interactions, we use the following shorthand:194

pSP := d
(
π−i,BR(π−i); p0

)
, pXP := d

(
π−i, πego; p0

)
, pSXP := d

(
π−i,BR(π−i); pXP

)
. (8)

This section considers two teammate policy generation objectives that differ in the data source used195
to optimize the objective, and are illustrated in Fig. 2.196

The first objective generates π−i based on maximizing per-trajectory regret of πego, which only197
maximizes regret of trajectories starting from the initial state distribution:198

max
π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
. (9)

From the definition of CR (Eq. 5), optimizing per-trajectory regret amounts to maximizing the ex-199
pected returns of SP interactions from the initial state distribution p0, Es∼p0

[
V (s|π−i,BR(π−i))

]
,200
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and minimizing the expected returns of XP interactions from p0, Es∼p0
[
V (s|π−i, πego)

]
. This201

objective resembles the adversarial diversity metric optimized in prior teammate generation202
work [9, 43, 14].203

While the per-trajectory regret is the same as the regret objective optimized in Eq. 7, optimizing it204
naively leads to generating teammates with undesirable self-sabotage behaviors. To minimize the205
expected returns from cross-play interaction, self-sabotaging policies choose actions leading to low206
returns in states outside the support of pSP [14], including the states visited during the collaboration207
between π−i and πego, s ∼ pXP. The lack of high reward signals makes it challenging for the ego208
agent to learn to collaborate with π−i using reinforcement learning.209

The second objective discourages the emergence of self-sabotaging policies by optimizing a per-210
state regret objective defined as:211

max
π−i

(Es∼pXP [CR(πego, π−i, s)] + Es∼pSXP [V (s|π−i,BR(π−i))] + Es∼pSP [V (s|π−i,BR(π−i))]).

(10)

The first term in Expr. 10 encourages discovering π−i for which the ego agent policy has a high212
room for improvement. Meanwhile, the second term trains π−i to act as if it interacts with its best213
response policy, even from starting states encountered during XP interactions. This encourages π−i214
to act in good faith by having at least a partner policy that can collaborate well with π−i when215
starting from states in pXP. Finally, the last term encourages π−i to cooperate with its best response.216
This enables consistently generating competent teammates during open-ended learning, which is217
essential as stated in Section 5.218

While obtaining states from pSP and pXP is straightforward, states from pSXP can be tricky to collect219
depending on the implementation of an AHT environment. If an environment supports resetting to220
arbitrary states, then states encountered during XP interaction can be stored and used as the initial221
state for SP interactions. Otherwise, we can use a data collection strategy that first samples a random222
timestep t, runs XP interaction until timestep t, and finally switches to SP interaction afterwards [48].223
Only data gathered after timestep t should be used to compute objectives based on pSXP.224

6.2 ROTATE Ego Agent Update225

At each iteration, ROTATE creates a teammate that attempts to discover cooperative weaknesses of226
the previous iteration’s ego agent, by maximizing its per-state regret. To allow the ROTATE ego227
agent to improve its robustness over time and reduce the possibility that it forgets how to cope with228
previously generated teammates, the ROTATE ego agent maintains a population buffer of generated229
teammates. During the ego agent update phase of each iteration, the ROTATE ego agent is trained230
using PPO [50] against teammates sampled uniformly from the population buffer. We find that for231
the ego agent to learn effectively against the nonstationary population buffer, it is important to define232
a lower entropy coefficient and learning rate than when training the teammate and BR agents (in the233
range of 1× 10−4 for the entropy coefficient and 1× 10−5 for the learning rate).234

7 Experimental Results235

This section presents the empirical evaluation of ROTATE compared to baseline methods, across236
six cooperative tasks. The main research questions are:237

• RQ1: Does ROTATE better generalize to unseen teammates, compared to baseline methods from238
the AHT and UED literature? (Yes)239

• RQ2: Does per-state regret improve over trajectory level regret and mixed-play regret? (Yes)240
• RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes)241
• RQ4: Is the ROTATE population useful for training an independent ego agent? (Yes)242

We first describe the experimental setting, including tasks, baselines, construction of the evaluation243
set, and the evaluation metric, followed by presenting results in Sec. 7.1.244
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Tasks ROTATE is evaluated on six tasks: Level-Based Foraging (LBF) [2], and five layouts from245
the Overcooked suite [8]: Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit246
(CC), Coordination Ring (CoR), and Forced Coordination (FC). All six tasks are fully cooperative247
with a variety of possible coordination conventions, and are commonly used within the AHT lit-248
erature [2, 12, 40]. In our LBF configuration, two agents must navigate to three apples that are249
randomly placed within a gridworld, and cooperate to pick up the apples. In all Overcooked tasks,250
two agents collaborate in a gridworld kitchen to cook and deliver onion soup, where the main differ-251
ence between tasks is the kitchen layout. All experiments were implemented with JAX [7], so we252
use JAX re-implementations of the LBF and Overcooked tasks [5, 47].253

Baselines As our method is most closely related to methods from unsupervised environment de-254
sign (UED) and teammate generation, we compare against two UED methods adapted for AHT255
(PAIRED [15], Minimax Return [36, 56]) and three teammate generation methods (Fictitious Co-256
Play [53], BRDiv [43], CoMeDi [48]). While curator-based methods such as PLR [24, 25] are pop-257
ular in UED, we do not compare against them as they are orthogonal to ROTATE [17, 56, 11].258
Similarly, we do not compare against AHT algorithms that propose techniques to improve ego259
learning [3]. Each baseline is described in App. C, along with implementation details. For fair260
comparison, all open-ended and UED methods were trained for a similar number of environment261
interactions, or until best performance on the evaluation set. All teammate generation approaches262
were ran using a similar number of environment interactions as their original implementations, as263
scaling them up to use a similar number of steps as the open-ended approaches proved challenging264
(see discussion in App. C). All results are reported with three trials.265

Construction of Πeval We wish to evaluate all methods on as diverse a set of evaluation teammates266
as practically feasible, while ensuring that each teammate acts in “good faith". To achieve this goal,267
for each task, we construct 9 to 13 evaluation teammates using three methods: IPPO with varied268
seeds and reward shaping, BRDiv, and manually programmed heuristic agents. Full descriptions of269
the teammate generation procedure and all teammates in Πeval are provided in App. H.270

Evaluation Metric Ego agent policies are evaluated with each teammate in Πeval for 64 evaluation271
episodes, where the return is computed for each episode, and normalized using a lower return bound272
of zero and an estimated best response return as the upper bound for each teammate. Performance273
of a method on Πeval is reported as the normalized mean return with bootstrapped 95% confidence274
intervals, computed via the rliable library [1]. Details about the normalization procedure and275
specific bounds for each teammate are reported in App. H.276

7.1 Results277

This section presents empirical analysis addressing RQ1 and RQ2, while analysis addressing RQ3278
and RQ4 are provided in App. D. Supplemental analysis considering alternative regret-based objec-279
tives, breaking down performance by evaluation teammate type, and learning curves for all variants280
of ROTATE are provided in App. E.281

RQ1: Does ROTATE better generalize to unseen teammates compared to baselines? (Yes)282
To evaluate the generalization capabilities of ROTATE, we compare its performance against base-283
lines on Πeval. Fig. 3a compares the normalized mean returns for ROTATE and all baseline methods284
across the six tasks, showing that ROTATE significantly outperforms all baselines on 5/6 tasks.285

Among the baseline methods, the next best performing baselines are CoMeDi and FCP. We attribute286
CoMeDi’s strong performance to the resemblance of its mixed-play objective to our per-state regret287
objective, which we discuss in App. E.1. FCP’s performance may be attributed to the large number288
of partners that FCP was trained with (approximately 100 teammates per task). We found that FCP289
tends to perform especially well with the IPPO policies in Πeval, likely because the IPPO evaluation290
teammates are in-distribution for the distribution of teammates constructed by FCP. We also observe291
that Minimax Return performs surprisingly well in AA, which we hypothesize is due to AA’s par-292
ticular characteristics. In AA, agents operate in separated kitchen halves, possessing all necessary293
resources for individual task completion, with shared access to pots on the dividing counter being294
the only shared resource. Consequently, a fully adversarial partner has limited methods to sabotage295
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Figure 3: (Left) ROTATE outperforms all baseline methods across all tasks in evaluation return. (Right)
ROTATE with per-state regret (ours) outperforms ROTATE with per-trajectory regret in 5/6 tasks. 95%
bootstrapped CI’s are shown, computed across all evaluation teammates and trials.

the ego agent.2 However, on LBF and FC, where coordination is crucial to obtain positive return on296
the tasks, Minimax Return is the worst performing baseline.297

BRDiv and PAIRED exhibit comparatively poor performance, which may be partially attributed298
to their teammate generation objectives that resemble per-trajectory regret. As we find for RQ2,299
per-state regret outperforms per-trajectory regret within the ROTATE framework. Furthermore,300
PAIRED’s update structure involves a lockstep training process for the teammate generator, best301
response, and ego agent. This synchronized training may hinder the natural emergence of robust302
conventions that are crucial for effective AHT.303

RQ2: Does per-state regret improve over trajectory regret? (Yes) As discussed in Section304
6, we propose that teammates should maximize per-state regret rather than per-trajectory regret to305
mitigate the emergence of self-sabotage behaviors. Here, we compare ROTATE where the teammate306
maximizes per-state regret (ours) to ROTATE where the teammate maximizes per-trajectory regret.307
All configurations other than the teammate’s policy objective are kept identical, including the data308
used to train the teammate value functions. Fig. 3b shows that ROTATE with per-state regret309
outperforms ROTATE with per-trajectory regret on all tasks except AA, confirming the superiority310
of per-state regret. As discussed in RQ1, we observe that AA is a layout where an ego agent is311
less susceptible to sabotage, due to the separated kitchen layout. App. E.2 presents additional312
experiments testing ROTATE with CoMeDi-style mixed-play rollouts, and alternative methods to313
compute per-state regret—ultimately finding that ROTATE outperforms all variations.314

8 Conclusion315

This paper reformulates the AHT problem as an open-ended learning problem and introduces RO-316
TATE, a regret-driven algorithm. ROTATE iteratively alternates between improving an AHT agent317
and generating challenging yet cooperative teammates by optimizing a per-state regret objective318
designed to discover teammates that exploit cooperative vulnerabilities without encouraging self-319
sabotage. Empirical evaluations across six AHT tasks demonstrate that ROTATE significantly en-320
hances the generalization capabilities of AHT agents when faced with previously unseen teammates,321
outperforming a range of baselines from both AHT and UED. The current work has several limi-322
tations that future work may address. First, the paper only studies ROTATE on two-agent, fully323
observable, and fully cooperative scenarios. Second, this work has focused on the teammate gener-324
ation phase of open-ended AHT. Future work might explore ego agent training methods that better325
handle the nonstationarity induced by open-ended teammate generation.326

2Agent teams may still achieve higher returns through effective coordination on AA due to layout asymmetry. In the
“left" kitchen, the delivery zone is adjacent to the pots while the onions are farther, while in the “right" kitchen, the opposite
is true. An efficient team has the “left" agent delivering finished soup, and the “right" agent placing onions in the pots.
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Appendix580

Please find an anonymized version of the code for this paper at https://anonymous.4open.581
science/r/rotate/.582

A Related Work (Full)583

Agent Training in AHT & ZSC. The training of adaptive ego agent policies that can near-584
optimally collaborate with diverse previously unseen teammates has been explored in AHT [52]585
& ZSC [21]. Given access to a set of training teammate policies, AHT methods [34] train ego586
agents to model teammates [3] by identifying important characteristics of different teammates based587
on their observed behavior. These methods then train a model estimating the best-response policy588
to the encountered teammate policies based on their inferred characteristics. Recent AHT meth-589
ods [42, 40, 66, 20, 57] typically use neural networks trained using reinforcement learning [50, 35].590
To further improve AHT training, several approaches learn a distribution for sampling teammate591
policies during training based on maximizing the worst-case returns [56] or regret [17, 11] of592
trained agents, while other approaches seek to improve the ability of an AHT agent to adapt to593
unseen teammates at deployment time [37, 38]. As an alternative to AHT, ZSC designs learning594
methods promoting near-optimal collaboration between agents that have not interacted with each595
other as long as they learn using the same ZSC algorithm. ZSC methods [21, 22, 13] typically596
achieve this goal by encouraging the agents to converge towards the same equilibrium despite being597
trained independently. These agent training algorithms are a crucial component of ROTATE, an598
iterative training procedure that uses AHT training algorithms to improve an AHT policy based on599
an interaction with generated teammate policies.600

Teammate Generation for AHT & ZSC. Recent work improves existing AHT and ZSC agent601
training algorithms by designing a diverse collection of training teammate policies. FCP [53] gen-602
erates the pretrained teammate policies by running the same CMARL algorithm across different603
seeds. Other work improved FCP by optimizing information-theoretic diversity metrics based on604
Jensen-Shannon divergence [33], mutual information [32], or entropy [61, 65], which encourages605
each teammate to yield different trajectories or policies. Recent methods [43, 9, 14, 44, 48] enable606
the trained AHT agent to learn distinct strategies during training by generating teammate policies607
requiring distinct best response policies through the maximization of adversarial diversity metrics,608
which strongly resembles ROTATE’s notion of cooperative regret. However, instead of maximizing609
the regret of the trained AHT agent like ROTATE, these methods maximize the regret from using a610
generated teammate policy to interact with another generated teammate policy. Unlike ROTATE’s611
open-ended training process, these methods also only generate a limited and fixed set of teammate612
policies once before agent training. Notably, these methods maximize regret only on the initial state613
of a collaboration trajectory, leading to sabotaging teammate policies [14, 48] that execute detri-614
mental actions for cooperation in states that it will not visit in self-play. Learning to collaborate615
with sabotaging teammates is difficult, leading to the proposal of heuristics to reduce sabotage in616
previous work [14, 48], and a more systematic objective in ROTATE.617

Open-Ended Learning (OEL). Our proposed method is heavily influenced by prior work in618
OEL [28, 54], which explores algorithms that continually design novel tasks to create a generally619
capable agent [23, 4]. Many OEL methods in RL [58, 15, 41, 25, 24, 46] focus on the problem620
of unsupervised environment design (UED), which aims to improve RL agent generalization across621
different tasks by designing and sampling novel environments with different transition and reward622
functions. Similar to our method, PAIRED [15] trains a neural network using reinforcement learn-623
ing to output novel environment parameters that induce high regret to the trained ego agent. Other624
methods assume access to a procedural environment generator, and focus on designing task curators625
that sample training environments based on criteria such as the expected returns of different poli-626
cies [58], TD-Error induced during learning [25], regret [24], or learnability [46]. In the context of627
competitive multi-agent RL, OEL methods seek to generate new opponents for competitive game-628
play, often through self-play [51, 29]. For AHT, Yuan et al. [64] and Yan et al. [62] also proposed629
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open-ended methods that keep generating novel teammate policies for an AHT agent to learn from.630
Unlike ROTATE, their approach to generating teammates either relies on evolutionary methods to631
generate new teammates or uses random perturbations of the AHT agent’s policy as the new team-632
mate, making it less efficient at producing representative samples from the vast teammate policy633
set.634

B Algorithms635

Algorithm 1 Open-Ended Ad Hoc Teamwork

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ)
4: θego ← EgoUpdate(Env, θego, Bnew

π )
5: Bπ ← Bnew

π

6: end for
7: Return θego

B.1 Framework for Open Ended Ad Hoc Teamwork636

Section 5 described an open-ended training framework for training an ego agent that can effectively637
collaborate with previously unseen teammates. We further detail this general open-ended framework638
in Algorithm 1. In Line 3, a TeammateGenerator function determines a buffer of teammate policy639
parameters, Bnew

π . The teammate generator function considers the ego agent’s current policy pa-640
rameters, θego, and the previous buffer of teammate policy parameters, Bnew. Ideally, the teammate641
generation function generates and samples teammates that induce learning challenges to πego. In642
Line 4, an EgoUpdate function specifies a procedure that updates the ego agent’s policy parameters643
based on the Bnew

π designed by the teammate generator. Pseudocode for ROTATE, which follows644
the open-ended framework specified by Algorithm 1, is presented in the following section.645

B.2 ROTATE Algorithm646

ROTATE’s teammate generation algorithm is detailed in Algorithm 2. As described in Section 6.1,647
this teammate generation algorithm jointly trains the parameters of a teammate policy and an es-648
timate of its best response (BR) policy, based on a provided ego agent policy. The parameters of649
the teammate and BR policies, θ−i and θBR, are initialized in Line 1. The parameters of the BR650
critic network, σBR, are initialized in Line 2, while those for the teammate, σ−i,BR and σ−i,ego, are651
initialized in Line 3. Note that the teammate maintains two critics, for separately estimating returns652
when interacting with the BR and ego agent policies.653

The training of the teammate and BR policies is based on the SP, XP, and SXP interaction data654
gathered in Lines 5 to 7, which we previously motivated and described in Section 6.1. Recall that an655
SXP interaction require resetting an environment to start from an available XP state. Since resetting656
from all available XP states for SXP interaction is impractical, ROTATE samples from XP states to657
obtain start states for SXP interactions. Experiences from SP, XP, and SXP interaction are stored in658
buffers DSP, DXP, DSXP in the form of a collection of tuples, D = ⟨(sk, ak, rk, s′k)⟩

|D|
k=1. Lines 11 to659

21 of Algorithm 2 then highlight how we use the stored experiences to compute loss functions that660
the trained models optimize.661
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Algorithm 2 ROTATE TeammateGenerator Function

Require:
Environment, Env.
Ego agent policy, πθego .
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs.

1: θ−i, θBR ← RandomInit(π), RandomInit(π)
2: σBR ← RandomInit(V )

3: σ−i,BR, σ−i,ego ← RandomInit(V ), RandomInit(V ) ▷ Init teammate and BR parameters
4: for tupdate = 1, 2, . . . , Nupdates do
5: DSP, DXP ← Interact(πθBR , πθ−i , pEnv

0 ), Interact(πθego , πθ−i , pEnv
0 )

6: sXP ← SampleStates(DXP) ▷ Sample XP states
7: DSXP ← Interact(πθBR , πθ−i ,U(sXP)) ▷ Gather SP, XP, and SXP data
8: θBR

old , θ
−i
old ← θBR, θ−i

9: σBR
old , σ

−i,BR
old , σ−i,ego

old ← σBR, σ−i,BR, σ−i,ego ▷ Store old model parameters.
10: for kupdate = 1, 2, . . . , Nepochs do
11: Lppo-clip(θ

BR)← POL_LOSS_ADV_TARG
(
θBRθBR

old , σ
BR
old , DSP ∪DSXP, ϵ

)
12: Lppo-clip(θ

−i)← POL_LOSS_ADV_TARG
(
θ−i, θ−iold , σ

−i,BR
old , DSP ∪DSXP, ϵ

)
13: Lreg(θ

−i)← POL_LOSS_REG_TARG
(
θ−i, θ−iold , σ

−i,BR
old , σ−i,ego

old , DXP, ϵ
)

14: LV (σ
BR)← VAL_LOSS(σBR, σBR

old , DSP ∪DSXP)

15: LV (σ
−i,BR)← VAL_LOSS

(
σ−i,BR, σ−i,BR

old , DSP ∪DSXP

)
16: LV (σ

−i,ego)← VAL_LOSS
(
σ−i,ego, σ−i,ego

old , DXP

)
17: θBR ← GradDesc(θBR,∇θBRLppo-clip(θ

BR))

18: θ−i ← GradDesc
(
θ−i,∇θ−i

(
Lppo-clip(θ

−i) + Lreg(θ
−i)

))
▷ Update policies

19: σBR ← GradDesc(σBR,∇σBRLV (σ
BR))

20: σ−i,BR ← GradDesc(σ−i,BR,∇σ−i,BRLV (σ
−i,BR))

21: σ−i,ego ← GradDesc(σ−i,ego,∇σ−i,egoLV (σ
−i,ego)) ▷ Update critics.

22: end for
23: end for
24: Bπ ← Bπ ∪ ⟨θ−i⟩ ▷ Add generated teammate policy parameter
25: Return Bπ
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Lines 11 and 12 describe how the teammate and BR policies are trained to mutually maximize662
returns when interacting with each other during SP and SXP interactions. Both lines call the663
POL_LOSS_ADV_TARG function, which receives (θ, θold, σold, D, ϵ) as input to evaluate the fol-664
lowing, standard PPO-clip loss function that encourages return maximization and sufficient explo-665
ration:666

E
(s,a,r,s′)∈D

−min
(
πθ(a|s)
πθold(a|s)

A, clip
(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A

)
︸ ︷︷ ︸

PPO Clip Loss

+πθ(a|s)log (πθ(a|s))︸ ︷︷ ︸
Entropy Loss

 ,
where A denotes the advantage function. Our implementation of ROTATE uses an estimate of667
the advantage function obtained via the Generalized Advantage Estimation (GAE) algorithm [49],668
AGAE
σold

. Meanwhile, Line 13 shows how the teammate policy is trained to maximize the ego agent’s669
regret based on experiences from XP interaction. The POL_LOSS_REG_TARG function that670
computes a loss function that encourages the maximization of regret is generally the same as the671
POL_LOSS_ADV_TARG function except for its replacement of the advantage function, A, with a672
regret-based target function defined below:673

Areg = Vσ−i,BR
old

(s)︸ ︷︷ ︸
≈V (s|π−i, BR(π−i))

− (r + γVσ−i,ego
old

(s′))︸ ︷︷ ︸
≈V (s|π−i,πego)

. (11)

Rather than optimizing a regret function that requires explicitly computing the return-to-go for SP674
and XP interaction starting from state s, POL_LOSS_REG_TARG estimates the XP return via a675
1-step bootstrapped return using the teammate critic parameterized by σ−i,BR. Similarly, the SP676
return is estimated using the teammate critic network parameterized by σ−i,ego. This results in a677
regret optimization method that uses the log-derivative trick to optimize objective functions [60, 19].678
The ROTATE regret estimation method and alternative approaches to maximize regret are further679
discussed in App. E.2.680

Lines 14 to 16 then detail how we train critic networks that measure returns from the interaction681
between the generated teammate policy and its best response or ego agent policy. We specifically call682
the VAL_LOSS function that receives (σ, σold, D) to compute the standard mean squared Bellman683
error (MSBE) loss, defined as:684

E
(s,a,r′,s′)∈D

[(
Vσ(s)− V targ

σold
(s)

)2]
, (12)

where V targ
σold (s) := AGAE

σold
− Vσold(s) is the target value estimate.685

The previously defined loss functions can be minimized using any gradient descent-based optimiza-686
tion technique, as we indicate in Lines 17 to 21. In practice, our implementation uses the ADAM op-687
timization technique [26]. At the end of this teammate generation process, Lines 24 and 25 indicate688
how the generated teammate policy parameter is added to a storage buffer, which is subsequently689
uniformly sampled to provide teammate policies for ego agent training.690

The ego agent policy’s training process proceeds according to Algorithm 3. Line 3 illustrates how691
ROTATE creates different teammate policies by uniformly sampling model parameters from the692
Bπ resulting from the teammate generation process. Using the experience collaborating with the693
sampled policies outlined in Line 4, the ego agent’s policy parameters are updated to maximize694
its returns via PPO in Line 7. The only difference between the EGO_POL_LOSS function and695
POL_LOSS_ADV_TARG function in Algorithm 2 is the input used to compute the loss function.696
Unlike in the EGO_POL_LOSS function, we assume that the input dataset, D, stores the historical697
sequence of observed states and executed actions, h, rather than states. Likewise, we assume that698
the only difference between the VAL_LOSS and EGO_VAL_LOSS function is that the latter stores699
the observation-action history rather than states (Line 8). Like recent AHT learning algorithms [66,700
42, 40], πego and V ego are conditioned on the ego agent’s observation-action history to facilitate an701
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Algorithm 3 ROTATE EgoUpdate Function

Require:
Environment, Env.
Ego agent policy parameters, θego.
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs

1: σego ← Init(V ) ▷ Init params of the critic networks of πego

2: for tupdate = 1, 2, . . . , Nupdates do
3: θ−i ∼ U(Bπ) ▷ Sample teammate parameters uniformly
4: D ← Interact(πθ−i , πθego , pEnv

0 )

5: θego
old , σ

ego
old ← θego, σego

6: for kupdate ∈ {1, 2, . . . , Nepochs} do
7: Lπ(θ

ego)← EGO_POL_LOSS
(
θego, θego

old , σ
ego
old , D, ϵ

)
▷ Compute policy loss

8: LV (σ
ego)← EGO_VAL_LOSS

(
σego, σego

old , D, ϵ
)

▷ Compute critic loss
9: θego ← GradDesc(θego,∇θegoLπ(θ

ego)) ▷ Update policy
10: σego ← GradDesc(σego,∇σegoLV (σ

ego)) ▷ Update critic
11: end for
12: end for
13: Return θego

adaptive πego through an improved characterization of teammates’ policies. The history-conditioned702
ego architecture and other practical implementation details are described in App. G. Finally, the ego703
agent update function returns the updated ego agent policy parameters, which are provided as part704
of the inputs for the next call to ROTATE’s teammate generation function.705

C Baselines Overview706

The main paper compares ROTATE to five baselines: PAIRED, Minimax Return, FCP, BRDiv, and707
CoMeDi. Each baseline is briefly described below, followed by a discussion of the computational708
complexity of teammate generation baselines compared to ROTATE, and a discussion of the rela-709
tionship of Mixed Play (MP) with per-state and per-trajectory regret. A discussion of implementation710
details can be found in App. G.711

PAIRED [15]: A UED algorithm where a regret-maximizing“adversary" agent proposes environ-712
ment variations that an allied antagonist achieves high returns on, but a protagonist agent receives713
low returns on. The algorithm is directly applicable to AHT by defining a teammate generator for the714
role of the adversary, a best response agent to the generated teammate for the role of the antagonist,715
and an ego agent for the role of the protagonist.716

Minimax Return [36, 56]: A common baseline in the UED literature, with origins in robust re-717
inforcement learning, where the objective is minimax return. Prior works in AHT have proposed718
generating a curriculum of teammates according to this objective. Translated to our open-ended719
learning setting, the teammate generator creates teammates that minimize the ego agent’s return,720
while the ego agent maximizes return.721

Fictitious Co-Play [53]: A two-stage AHT algorithm where a pool of teammates is generated by722
running IPPO [63] with varying seeds, and saving multiple checkpoints to the pool. The ego agent723
is an IPPO agent that is trained against the pool.724
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BRDiv [43]: A two-stage AHT algorithm where a population of “confederate" and best-response725
agent pairs is generated, and an ego agent is trained against the confederates. BRDiv maintains a726
cross-play matrix containing the returns for all confederate and best-response pairs. The diagonal727
returns (self-play) are maximized, while the off-diagonal returns (cross-play) are minimized. BRDiv728
and LIPO [9] share a similar objective, where the main differences are: (1) If xp_weight denotes729
the weight on the XP return, then BRDiv requires that the coefficient on the SP return is always 1 +730
2∗xp_weight, and (2) LIPO introduces a secondary diversity metric based on mutual information,731
and (3) LIPO assumes that agents within a team (i.e., a confederate-BR pair) share parameters.732

CoMeDi [48]: CoMeDi is a two-stage AHT algorithm. In the first stage, a population of team-733
mates is generated, and in the second stage, an ego agent is trained against the teammate population.734
The teammate generation stage trains teammate policies one at a time, where the nth teammate735
policy is trained to maximize its SP return, minimize its XP return with the previously generated736
teammate (i.e. from among teammates 1, · · · , n − 1) that it best collaborates with, and maximizes737
its “mixed-play" (MP) return. The relationship between the regret objectives described in Section 6738
and MP is further discussed in App. E.1.739

C.1 Computational Complexity of ROTATE versus Teammate Generation Baselines740

The computational complexity of ROTATE is compared with that of the teammate generation base-741
lines, in terms of the population size and the number of objective updates. In the following, n742
denotes the population size, while T indicates the number of updates needed to train an individual743
population member. The precise meaning of n and T might vary with the algorithm, but is made744
clear in each description.745

FCP: Let T denote the number of RL updates needed to train each IPPO team and let n denote746
the number of teams trained by FCP. Then, the computational complexity of FCP is O(nT ).747

BRDiV/LIPO: Both BRDiv [43] and LIPO [9] require sampling trajectories from each pair of748
agents in the population, for each update. Thus, if the total number of updates is T and the population749
size is n, then the algorithm’s time complexity is O(n2T ). Due to the quadratic complexity in n,750
BRDiv and LIPO are typically run with smaller population sizes, with n < 10 for all non-matrix751
game tasks in both original papers.752

CoMeDi: Recall that CoMeDi trains population members one at a time, such that each agent is753
distinct from the previously discovered teammates in the population. This necessitates performing754
evaluation rollouts of the currently trained agent against all previously generated teammates at each755
RL update step. Let T be the number of RL updates required to train the ith agent to convergence,756
and let n denote the population size. Then CoMeDi’s time complexity is O(n2T )—making it scale757
quadratically in n, similar to BRDiv and LIPO.758

ROTATE: In ROTATE, a new teammate is trained to convergence for each iteration of open-759
ended learning. Thus, the number of open-ended learning iterations is equal to the population size760
n, where within each iteration, there are O(T ) RL updates performed. Therefore, the complexity of761
ROTATE is O(nT ), meaning that our method scales linearly in the population size n.762

D Experimental Results: RQ3 and RQ4763

This section presents the results and analysis for RQ3 and RQ4 from Section 7.764

RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes) We hypothesize765
that collecting all previously generated teammates in a population buffer helps the ROTATE agent766
improve in robustness against all previously discovered conventions. On the other hand, if there is no767
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Figure 4: ROTATE compared to an independently trained ego agent on ROTATE’s population, and
an ablation of ROTATE without the population. The mean normalized return and 95% bootstrapped
CI’s are shown.

population buffer, then it becomes possible for the ROTATE ego agent to forget how to collaborate768
with teammate seen at earlier iterations of open-ended learning [27], which creates the possibility769
that the ego agent and teammate generator oscillates between conventions. As shown in Fig. 6, RO-770
TATE without the population buffer attains lower evaluation returns than the full ROTATE method771
on all tasks except for AA, thus supporting the hypothesis that the population buffer improves ego772
agent learning. As discussed in RQ1, AA is a unique layout where agents can complete the task in-773
dependently, even in the presence of an adversarial partner. As a corollary, there are few meaningful774
cooperative conventions that can be discovered, and no scenarios where convention mismatch leads775
to zero return (unlike LBF and FC).776

RQ4: Is the population generated by ROTATE useful for training an independent ego agent?777
(Yes) Two-stage AHT algorithms first generate a population of teammates, and next train an ego778
agent against the population. Although ROTATE’s teammate generation mechanism relies on the779
learning process of a particular ego agent, here, we investigate whether the population generated780
by ROTATE is useful for training independently generated ego agents. Fig. 4 (presented in the781
Appendix) compares the mean evaluation returns of the ROTATE ego agent against the mean eval-782
uation returns of an independently trained ego agent that was trained using the same configuration783
as ROTATE. In 3/6 tasks, the ROTATE ego agent outperforms the independently trained ego agent,784
while in two tasks, the two ego agents perform similarly (LBF and FC). Thus, the experiment sug-785
gests that the ROTATE population is a useful population of teammates even independent of the786
particular ego agent generated. The strong performance of the independently trained ego agent is787
unsurprising given that it has two advantages over the ROTATE ego agent. First, the independently788
trained ego agent faces a stationary distribution of training teammates compared to ROTATE, which789
faces a nonstationary distribution caused by the population growing over learning iterations. Sec-790
ond, the independently trained ego agent interacts with all teammates uniformly throughout training,791
while the ROTATE ego agent only trains against earlier teammates for more iterations than later792
teammates.793

E Supplemental Results794

This section presents various supplemental results. First, we describe CoMeDi’s mixed-play mech-795
anism in the context of ROTATE’s per-state regret. Second, we discuss alternative estimators for796
ROTATE per-state regret. Third, we present experiments comparing ROTATE to a variant with797
CoMeDi-style mixed-play return maximization, and a variant using the alternative regret estimation798
strategy. Next, we present and describe radar charts breaking down the performance of ROTATE799
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on all six tasks presented in the main paper. Finally, we present the learning curves for all variants800
of ROTATE that are tested in this paper.801

E.1 Discussion of CoMeDi and Mixed Play802

As previously described in App. C, CoMeDi [48] is a two-stage teammate generation AHT algo-803
rithm, whose teammate generation process trains one teammate per iteration, with an objective that804
encourages the new teammates to be distinct from previously discovered teammates.805

CoMeDi adds trained teammates policies to a teammate policy buffer, Πtrain. Each iteration begins806
by identifying the teammate policy that is most compatible with the currently trained teammate π−i,807
out of all previously generated policies:808

πcomp = argmax
π−j∈Πtrain

Es∼p0 [V (s|π−i, π−j)]. (13)

The new teammate policy π−i is trained with an objective that improves the per-trajectory regret809
objective (Eq. 9) by adding a term that maximizes the returns from states gathered in mixed-play,810
which we describe below.811

Let mixed-play starting states be sampled from states visited when π−i interacts with the mixed812
policy, that uniformly samples actions from πcomp and BR(π−i) at each timestep:813

pMSTART := d

(
π−i,

1

2
πcomp +

1

2
BR(π−i); p0

)
. (14)

From these starting states, CoMeDi then gathers mixed-play interaction data, where π−i interacts814
with BR(π−i). The resulting mixed-play state visitation is then expressed as:815

pMP := d
(
π−i,BR(π−i); pMSTART

)
. (15)

The complete objective that Sarkar et al. [48] optimizes to train a collection of diverse teammates is816
then defined as:817

max
π

(Es0∼p0
[
CR(πcomp, π−i, s0)

]
+ Es∼pMP [V (s|π,BR(π))]︸ ︷︷ ︸

mixed-play return maximization

). (16)

CoMeDi [48] optimizes this objective to discourage π−i from learning poor actions for collabora-818
tions outside of pSP. This is because π−i is now also trained to maximize returns in states visited819
during mixed-play, which resembles some states encountered while cooperating with πcomp. Dis-820
cerning whether a state is likely encountered while interacting with πcomp and consequently choosing821
to sabotage collaboration will no longer be an optimal policy to maximize Expr. 16.822

Despite the importance of using pMSTART as a starting state for data collection being questionable,823
we take inspiration from CoMeDi’s maximization of V (s|π,BR(π)) outside of states from pSP. We824
argue that maximizing V (s|π−i,BR(π−i)) is a key component towards making π−i act in good faith825
by always choosing actions yielding optimal collective returns assuming BR(π−i) is substituted826
as the partner policy. Unlike CoMeDi, ROTATE maximizes V (s|π−i,BR(π−i)) on trajectories827
gathered from a starting state from pXP instead of pMSTART, which results in the second term of828
Expr. 10. We formulate this objective to encourage π−i to act in good faith in states sampled from829
pXP, which is visited while π−i interacts with πego. Since π−i is not sabotaging πego by selecting830
actions that make collaboration impossible in pXP, the ego policy learning process becomes less831
challenging. We conjecture that this leads to πego with better performances as indicated in Figure 3.832

While Figure 3 compares ROTATE with CoMeDi, Figure 6 compares ROTATE with a modified833
CoMeDi approach that now follows the open-ended training framework described in Algorithm 1.834
In this modified version of CoMeDi, we train a newly generated teammate policy to maximize Eq. 16835
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Initial State Distribution

State after Mixed Play (MP)

V = Return

Figure 5: CoMeDi-style mixed-play objective for teammate generation, in the context of open-ended AHT.

while substituting πcomp with the trained πego. Rather than promoting meaningful differences with836
previously generated teammate policies, this creates a teammate policy that maximizes the ego agent837
policy’s per-trajectory regret while mitigating self-sabotage. This version of CoMeDi’s teammate838
generation objective within the ROTATE open-ended framework is visualized in Figure 5.839

E.2 Alternatives Estimators for Per-State Regret840

This section discusses the approach employed by ROTATE in Algorithm 2 to estimate the per-state841
regret objective under a specific distribution, as well as an alternative estimation method. Experi-842
ments comparing the two approaches are also presented and discussed.843

Recall that the per-state regret under states sampled from a distribution D is defined as:844

Es∼D[CR(πego, π−i, s)] = Es∼D
[
V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego)] (17)

= Es∼D
[
V
(
s|π−i, BR(π−i)

)]︸ ︷︷ ︸
SP return

−Es∼D
[
V
(
s|π−i, πego)]︸ ︷︷ ︸

XP return

. (18)

In practice, we can use the policy gradient method to maximize regret by estimating the self-play845
returns and cross-play returns in Eq. 18 using the n-step return, Monte Carlo-based return-to-go846
estimate, or generally any variant of the advantage function estimator. The choice of return esti-847
mates affects the result of our teammate generation process through the bias-variance tradeoff when848
estimating regret. Combined with the potentially different choices of D, we can design different849
variants of ROTATE based on how regret is estimated.850

ROTATE Per-State Regret: Line 13 in Algorithm 2 and Eq. 11 outline how ROTATE maximizes851
per-state regret in states visited during XP interaction (denoted by pXP), where SP and XP returns852
are estimated via a trained critic and a 1-step return estimate, respectively. As a reminder, ROTATE853
employs the following target function to train the regret-maximizing teammate policy:854

Es∼pXP

 Vσ−i,BR(s)︸ ︷︷ ︸
SP return estimate

− (r + γVσ−i,ego(s′))︸ ︷︷ ︸
XP return estimate

 . (19)

We maximize regret in states sampled from pXP to encourage the design of teammate policies that855
provide a learning challenge while also acting in good faith, thereby maximizing cooperative returns856
assuming interactions with its best-response policy, while interacting with the ego agent’s policy.857
Despite potentially providing biased estimates, training a value function to estimate self-play returns858
can reduce the variance caused by environment stochasticity, compared to a Monte Carlo return-to-859
go estimate.860
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The critic network estimating teammate-BR returns, Vσ−i,BR(s), is trained on interactions initialized861
from states sampled from pXP (SXP interactions), as shown in Line 15 of Algorithm 2. This enables862
the teammate-BR critic network to accurately estimate SP returns from pXP states. Meanwhile,863
a 1-step estimate of XP returns is made possible by storage of rewards experienced during XP864
interactions (Line 5 of Algorithm 2) and the training of a value function to estimate XP returns865
(Line 16 of Algorithm 2). Utilizing a 1-step estimate produces lower variance than using a Monte866
Carlo-based return-to-go estimate, while also yielding less bias than predicting returns solely based867
on the trained critic network’s value.868

Estimating Per-State Regret via Monte Carlo Returns: An alternative approach for estimating is869
to use a Monte Carlo-based return-to-go estimate for both SP and XP return estimates. Assuming870
that both interaction starts from states encountered during XP interaction, the policy updates under871
this alternative approach maximize the following target function:872

Est∼pXP

Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
l=0

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
XP return estimate

 . (20)

We refer to this as the Monte Carlo per-state regret. However, starting both SP and XP interactions873
from all states visited in XP can be computationally prohibitive. More importantly, the Monte874
Carlo-based return-to-go estimates of SP and XP returns have high variance, especially when the875
environment transition function and the trained policies are highly stochastic.876

Estimating Per-State Regret via Generalized Advantage Estimators: A final approach for es-877
timating Eq. 17 is to substitute both return-to-go estimates in Expr. 20 with a generalized advantage878
estimator [49] based on SP and XP interactions. This results in the maximization of the following879
target function during the teammate policy updates:880

Est∼pXP


Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,BR
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,ego
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
XP return estimate


,

(21)
where we define δ−i,BR

t and δ−i,ego
t as:881

δ−i,BR
t = rt + γVσ−i,BR(st+1)− Vσ−i,BR(st),

δ−i,ego
t = rt + γVσ−i,ego(st+1)− Vσ−i,ego(st).

We refer to an instance of the ROTATE algorithm that maximizes regret using this target function882
as ROTATE with GAE per-state regret. In practice, we collect data for SP GAE maximization and883
XP GAE minimization by first independently sampling two collections of states from DSXP and884
DXP respectively. Next, the states sampled from DSXP are used to maximize the GAE from SXP885
interactions, while states sampled fromDXP are utilized to minimize the GAE from XP interactions.886
The γ and λ parameters used during the computation of the generalized advantage estimator are887
mechanisms to regulate the bias and variance of the regret estimation [49], effectively providing a888
different bias-variance tradeoff compared to the previously mentioned methods.889

E.3 Experimental Comparisons of ROTATE Teammate Generation Objectives890

Figure 6 compares the version of ROTATE presented in the main paper and Algorithm 2, to RO-891
TATE with GAE per-state regret, and a version of ROTATE where expected returns are maxi-892
mized in states sampled from pMP rather than pSXP, which resembles the mixed-play objective of893
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Figure 6: ROTATE vs ROTATE with CoMeDi’s mixed-play (MP) objective and ROTATE with
GAE regret.

CoMeDi [48]. We do not implement the Monte Carlo per-state regret estimation approach described894
above, as it is impractical and unlikely to yield better results than using value functions to estimate895
regret. ROTATE and ROTATE with GAE regret yield mixed results as neither approach consis-896
tently beats the other in all environments. We suspect this is caused by the policy gradient’s different897
bias and variance levels when estimating regret using these two methods. Meanwhile, ROTATE’s898
maximization of returns in states from pSXP leads to higher normalized returns than maximizing899
CoMeDi’s mixed-play objective in all environments except for Overcooked’s Asymmetric Advan-900
tages (AA) setting. Following the difference in starting states of trajectories for which these two901
maximize self-play returns, we conjecture that this is because ROTATE empirically teammate poli-902
cies with good faith in states from pXP while the CoMeDi-like approach imposes the same thing in903
states from pMSTART. Imposing good faith within policies in pXP is likely more important for training904
an ego agent that initially interacts with π−i during training by visiting states from pXP.905

E.4 ROTATE vs Baselines—Radar Charts906

We break down the performance of ROTATE and all baseline methods by individual evaluation907
teammate policies as radar charts in Fig. 7. The radar charts show that ROTATE achieves higher908
performance across a larger number and variety of evaluation teammates than baselines. The best909
baseline, CoMeDi, achieves unusually high returns with the heuristic-based evaluation teammates910
on LBF, CR, and CC. We hypothesize that this trend occurs because CoMeDi explicitly optimizes911
for novel conventions that do not match existing conventions. However, on these tasks, CoMeDi912
does not perform as well as BRDiv teammates, which are trained to maximize the adversarial diver-913
sity objective. The radar charts also show that the second-best baseline, FCP, is strong specifically914
against IPPO teammates and relatively weaker on heuristics and BRDiv teammates, especially in915
CR and CC. As mentioned in the main paper, we attribute FCP’s relative strength on IPPO evalua-916
tion teammates to the fact that the IPPO evaluation teammates are closer to the training teammate917
distribution constructed by FCP. While FCP is not especially strong against the “IPPO pass" agents918
in CC, these agents were trained via reward shaping to solve the task by passing onions across the919
counter rather than navigating around the counter, which is the policy found by IPPO without reward920
shaping (denoted as “IPPO CC" in the figures).921

E.5 Learning Curves922

Figure 8 shows learning curves for ROTATE and all ROTATE variations tested in this paper, where923
the x-axis is the open-ended learning iteration, and the y-axis corresponds to the mean evaluation924
return. On 4/6 tasks (LBF, CR, CC, and FC), ROTATE has better sample efficiency than variants.925
On 3/6 tasks (LBF, CR, and FC), ROTATE dominates variants at almost all points in learning.926
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Figure 7: Normalized mean returns of ROTATE and all baselines across all tasks, broken down by
evaluation teammate in Πeval. Legend shown for LBF applies for all plots.

F Experimental Tasks927

Experiments in the main paper are conducted on Jax re-implementations of Level-Based Foraging928
(LBF) [2, 5], and five tasks from the Overcooked suite—Cramped Room (CR), Asymmetric Advan-929
tages (AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced Coordination (FC) [8, 47].930
Each task is described below.931

Level-Based Foraging (LBF) Originally introduced by Albrecht & Ramamoorthy [2], Level-932
Based Foraging is a mixed cooperative-competitive logistics problem where N players interact933
within a rectangular grid world to obtain k foods. All players and foods have a positive integer934
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(b) Asymmetric Advantages.
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(c) Cramped Room.
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(d) Counter Circuit.
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(e) Forced Coordination.
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Figure 8: Learning curves of ROTATE and all variations of ROTATE considered in this paper.
Normalized mean returns and bootstrapped 95% confidence intervals on Πeval are shown.

level, where groups of one to four players may only load (collect) a food if the sum of player levels935
is greater than the food’s level. A food’s level is configured so that it is always possible to load it.936

We use the Jax re-implementation of LBF by Bonnet et al. [5], which was based on the implementa-937
tion by Christianos et al. [12]. The implementation permits the user to specify the number of players,938
number of foods, grid world size, level of observability, and whether to set the food level equal to939
the sum to player levels in order to force players to coordinate to load each food.940

The experiments in this paper configured the LBF environment to a 7 × 7 grid, where two players941
interact to collect three foods. Our LBF configuration is shown in Fig. 9. Each player observes the942
full environment state, allowing each player to observe the locations of other agents and all foods943
and the number of time steps elapsed in the current episode. Each player has six discrete actions:944
up, down, left, right, no-op, and load, where the last action is the special food collection action. A945
food may only be collected if the sum of player levels is greater than the level of the food. Since this946
paper focuses on fully cooperative scenarios, we set the food level equal to the level of both players,947
so all foods require cooperation in order to be collected. When a food is collected, both players948
receive an identical reward, which is normalized such that the maximum return in an episode is 0.5.949
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An episode terminates if an invalid action is taken, players collide, or when 100 time steps have950
passed. Player and food locations are randomized for each episode.951

Figure 9: Level-based foraging
environment. The apple icons de-
note food. The number on the
icon indicates each player’s and
food’s level. The AHT player is
indicated by the red box.

Overcooked Introduced by Carroll et al. [8], the Overcooked952
suite is a set of two-player collaborative cooking tasks, based on953
the commercially successful Overcooked video game. Designed to954
study human-AI collaboration, the original Overcooked suite con-955
sists of five simple environment layouts, where two agents collab-956
orate within a grid world kitchen to cook and deliver onion soups.957
While Carroll et al. [8] introduced Overcooked to study human-958
AI coordination, Overcooked has become popularized for AHT re-959
search as well [9, 48, 17].960

We use the Jax re-implementation of the Overcooked suite961
by Rutherford et al. [47], which is based on the original imple-962
mentation by Carroll et al. [8]. Later versions of Overcooked in-963
clude features such as multiple dish types, order lists, and alterna-964
tive layouts, but this paper considers only the five original Over-965
cooked layouts: Cramped Room (CR), Asymmetric Advantages966
(AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced967
Coordination (FC).968

The objective for all five tasks is to deliver as many onion soups as969
possible, where the only difference between the tasks is the envi-970
ronment layout, as shown in Fig. 10. To deliver an onion soup, players must place three onions in a971
pot to cook, use a plate to pick up the cooked soup, and send the plated soup to the delivery location.972
Each player observes the state and location of all environment features (counters, pots, delivery,973
onions, and plates), the position and orientation of both players, and an urgency indicator, which974
is 1 if there are 40 or fewer remaining time steps, and 0 otherwise. Each player has six discrete975
actions, consisting of the four movement actions, interact, and no-op. The reward function awards976
both agents +20 upon successfully delivering a dish, which is the return reported in the experimental977
results. To improve sample efficiency, all algorithms are trained using a shaped reward function that978
provides each agent an additional reward of 0.1 for picking up an onion, 0.5 for placing an onion979
in the pot, 0.1 for picking up a plate, and 1.0 for picking up a soup from the pot with a plate. An980
episode terminates after 400 time steps. Player locations are randomized in each episode. In divided981
layouts such as AA and FC, we ensure that a player is spawned on each half of the layout.982

(a) Cramped
Room.

(b) Coord.
Ring.

(c) Forced Co-
ord.

(d) Asymmetric Advantages. (e) Counter Circuit.

Figure 10: The five classic Overcooked layouts. Each yellow circle is an onion, while white circles are plates.
Grid spaces with multiple yellow (resp. white) circles are onion (resp. plate) piles, which agents must visit to
pick up an onion (or plate). The green square is the delivery location, where finished dishes must be sent to
receive a reward. Black squares denote free space, while adjacent gray spaces are empty counters. A black pot
icon indicates pots, while agents are shown as red and blue pointers. The AHT agent is highlighted.

G Implementation Details983

As implementations of prior methods use PyTorch, but this project uses Jax, we re-implemented984
all methods in this paper, using PPO [50] with Generalized Advantage Estimation (GAE) [49] as985
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a base RL algorithm and Adam [26] as the default optimizer. An anonymized version of the code986
is released for reproducibility at https://anonymous.4open.science/r/rotate/, and987
we recommend consulting it for a full understanding of method implementations. Pseudocode for988
ROTATE is provided in App. B. This section discusses implementation details such as training time989
choices, agent architectures, and key hyperparameters for ROTATE and all baselines.990

G.1 Training Compute991

For fair comparison, all open-ended methods (ROTATE and all variations, PAIRED, Minimax Re-992
turn) were trained for the same number of open-ended learning iterations and a similar number of993
environment interactions. For two-stage teammate generation approaches (FCP, BRDiv, CoMeDi),994
the teammate generation stage is run using a similar amount of compute as the original implemen-995
tations, while the ego agent training stage is run for a sufficiently large number of steps to allow996
convergence. We describe the amount of compute used for the teammate generation stage of each997
baseline below.998

In particular, the FCP population is generated by training 22-23 seeds of IPPO with 5 checkpoints999
per seed for a population of approximately 110 agents—similar to Strouse et al. [53], who trained1000
32 seeds of IPPO with 3 checkpoints per seed for a population size of 96 agents. On the other hand,1001
BRDiv was trained with a population size of 3-4 agents, until we observed that each agent’s learn-1002
ing converged. While we attempted training BRDiv with a larger population size, the algorithm was1003
prone to discovering degenerate solutions where only 2-3 agents in the population could discover so-1004
lutions with high SP returns, and all other agents in the population would have zero returns. Finally,1005
CoMeDi was trained with a population size of 10 agents, until each agent’s learning converged.1006
We attempted to train CoMeDi with a larger population size, but due to the algorithm’s quadratic1007
complexity in the population size, its runtime surpassed the available time budget. Nevertheless, the1008
population size of 10 forms a reasonable comparison to ROTATE because (1) the original paper1009
used a population size of 8 for all Overcooked tasks, and (2) the configuration of CoMeDi in this1010
paper runs for a similar wall-clock time as ROTATE.1011

G.2 Agent Architectures1012

For all methods considered in this paper, agents are implemented using neural networks and an1013
actor-critic architecture, as is standard for PPO-based RL algorithms. All AHT methods implement1014
policies without parameter sharing [12], to enable greater behavioral diversity. Specifics for ego1015
agents, teammates, and best response agents are described below.1016

As mentioned in the main paper, ego agents are history-conditioned. Thus, ego agents are imple-1017
mented with the S5 actor-critic architecture, a recently introduced recurrent architecture shown to1018
have stronger long-term memory than prior types of recurrent architectures. Another advantage1019
of the S5 architecture over typical recurrent architectures (e.g., LSTMs) is that it is parallelizable1020
during training, allowing significant speedups in Jax [31].1021

On the other hand, teammates and best response agents are state-based. Best response agents are1022
implemented with fully connected neural networks. Teammates are also based on fully connected1023
neural networks, but the precise architecture varies based on the algorithm. For methods where1024
the teammate only interacts with itself (FCP) or with the ego agent (Minimax Return), a standard1025
actor-critic architecture is used. However, for open-ended learning methods that optimize regret1026
(ROTATE and PAIRED), or for teammate generation methods that optimize adversarial diversity1027
(ComeDi and BRDiv), teammates must estimate returns when interacting with multiple agents.1028
Thus, for these methods, the teammate architecture includes a critic for each type of interaction.1029

In particular, for ROTATE and PAIRED, the teammate must estimate returns when interacting with1030
the ego agent and its best response, and so it maintains a critic network for each partner type. For1031
CoMeDi and BRDiv, given a population with n agents, each teammate must estimate the return when1032
interacting with the other n − 1 agents in the population. As it would be impractical to maintain1033
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n − 1 critics for each teammate, the teammate instead uses a critic that conditions on the agent ID1034
of a candidate partner agent—in effect, implementing the n− 1 critics via parameter sharing [12].1035

Task LBF CR AA CC CoR FC

Timesteps 3e5, 1e6 1e6 1e6 1e6, 3e6 3e6 1e6, 3e6,
1e7

Number
envs

8, 16 8, 16 8 8, 16 8 8

Epochs 7, 15 15 15 15, 30 15 15

Minibatches 4, 8 4, 8, 16,
32

16 16 16 16

Clip-Eps 0.03, 0.05 0.03, 0.05,
0.10, 0.15,
0.2, 0.3

0.2, 0.3 0.1, 0.2 0.1, 0.2,
0.3

0.1, 0.2

Ent-Coef 5e-3, 0.01,
0.03, 0.05

5e-3, 0.01,
0.03, 0.05

0.01, 0.02 0.01, 0.03,
0.05

0.001,
0.01, 0.05

0.01, 0.05

LR 1e-4 1e-4 1e-4, 1e-3 1e-4, 1e-3 1e-4, 5e-4,
1e-3

1e-4, 5e-4,
1e-3

Anneal
LR

true, false true, false true true, false true true

Table 1: Hyperparameters for IPPO.

LBF CR AA CC CoR FC

Timesteps 4.5e7 4.5e7 4.5e7 9e7 9e7 9e7

XP Coefficient 0.1, 0.75, 1, 10 1, 10 10 0.01, 10 0.01, 10 0.01, 0.1, 0.5, 1, 10

Population size 3, 4, 5, 10 2, 3, 4, 5 3, 4 3, 4 3, 4 3, 4

Num Envs 8, 32 8, 32 8, 32 8, 32 8, 32 8, 32
LR 1e-4, 5e-4 1e-4 1e-4 1e-3 1e-3, 5e-4 1e-3, 5e-4
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Clip-Eps 0.03, 0.05 0.05, 0.2 0.3 0.01, 0.1 0.05, 0.1 0.05, 0.1

Table 2: Hyperparameters for the teammate generation stage of BRDiv.

G.3 Hyperparameters1036

This section presents the hyperparameters for ROTATE (Table 3), baseline methods (Tables 2 and 41037
to 8), and training evaluation teammates with IPPO (Table 1). Note that hyperparameters for the two-1038
stage teammate generation methods are presented in separate tables, where those corresponding to1039
the shared ego agent training stage are presented in Table 4. All experiments in the paper were1040
performed with a discount factor of γ = 0.99 and λGAE = 0.95.1041

Hyperparameters were searched for IPPO, BRDiv, and ROTATE, in that order, with the search for1042
earlier methods informing initial hyperparameter values for later methods. Based on prior experience1043
with PPO, we primarily searched the number of environments, epochs, minibatches, learning rate,1044
entropy coefficient, the epsilon used for clipping the PPO objective, and whether to anneal the1045
learning rate. For each hyperparameter, the searched values are listed in the tables, and selected1046
values are bolded. We performed the search manually, typically varying one parameter over the1047
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LBF CR AA CC CoR FC

OEL Iterations 30 30 30 20 20 20

Num Envs 16 16 16 16 16 16

Regret-SP
Weight

1, 2 1, 3 1, 2 1, 2 1, 2 1, 2

Minibatches 4, 8 8 8 8 8 8

Timesteps per
Iter (Ego)

2e6 2e6 2e6 6e6 6e6 6e6

Epochs (Ego) 5, 10, 20 10, 15 10 10 10 5, 10

Ent-Coef (Ego) 1e-4, 1e-3,
0.01, 0.05

1e-4, 1e-3,
1e-2

1e-3, 0.01 1e-3, 0.05 1e-3, 0.05 1e-4, 1e-3,
1e-2

LR (Ego) 5e-5, 1e-4,
1e-3

1e-5, 3e-5,
5e-5, 1e-4

1e-5, 3e-5,
5e-5, 1e-4

3e-5, 5e-5,
1e-3

1e-5, 3e-5,
5e-5, 1e-3

8e-6, 1e-5,
3e-5, 5e-5,
1e-4

Eps-Clip (Ego) 0.05, 0.1 0.1, 0.2 0.1, 0.3 0.1 0.1 0.1

Anneal LR (Ego) true, false true, false true, false true, false true, false true, false
Timesteps per
Iter (T)

1e7 6e6 6e6 1.6e7 1.6e7 1.6e7

Epochs (T) 20 20 20 20 20 20

Ent-Coef (T) 0.05, 0.01 0.01 0.01 0.05 0.05 0.01, 0.05
LR (T) 1e-4, 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3, 1e-4

Clip-Eps (T) 0.1 0.1, 0.2 0.3 0.1 0.1 0.1, 0.2

Anneal LR (T) true, false true, false false false false true, false

Table 3: Hyperparameters for ROTATE. Hyperparameters specific to the teammate training process
are marked by "(T)".

LBF CR AA CC CoR FC

Total Timesteps 3e7 3e7 3e7 6e7 6e7 6e7

Num Envs 8 8 8 8 8 8

LR 5e-5 5e-5 5e-5 5e-5 3e-5 1e-5

Epochs 10 10 10 10 10 5

Minibatches 4 4 4 4 4 4

Ent-Coef 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4

Clip-Eps 0.1 0.1 0.1 0.1 0.1 0.1

Anneal LR false false true true true true

Table 4: Hyperparameters for PPO ego agent for all teammate generation methods.
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LBF CR AA CC CoR FC

Timesteps Per Agent 2e6 2e6 2e6 4e6 4e6 4e6

Num Seeds 23 23 23 22 22 22

Num Checkpoints 5 5 5 5 5 5

Num Envs 8 8 8 8 8 8

LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 16 16 16 16 16

Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1

Anneal LR true true true true true true

Table 5: Hyperparameters for teammate generation stage of FCP.

LBF CR AA CC CoR FC

Timesteps Per Iteration 6e6 6e6 6e6 1e7 1e7 1e7

Population Size 10 10 10 10 10 10

Num Envs 16 16 16 16 16 16

LR 5e-4 1e-4 1e-4 1e-3 5e-4 5e-4

Epochs 15 15 15 15 15 15

Minibatches 8 8 8 8 8 8

Ent-Coef 1e-3 0.01 0.01 0.05 0.1 0.01

Eps-Clip 0.05 0.05 0.3 0.01 0.05 0.05

Anneal LR false false false false false false

α 0.2 1.0 1.0 1.0 1.0 1.0

β 0.4 0.5 0.5 0.5 0.5 0.5

Table 6: Hyperparameters for the teammate generation stage of CoMeDi.

LBF CR AA CC CoR FC

Timesteps 7.5e7 7.5e7 7.5e7 1.5e8 1.5e8 1.5e8

Num Seeds 5 5 5 5 5 5

Num Checkpoints 10 10 10 10 10 10

Num Envs 16 16 16 16 16 16

LR 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 8 8 8 8 8

Ent-Coef 0.05 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.1 0.2 0.3 0.1 0.1 0.1

Anneal LR false false false false false false

Table 7: Hyperparameters for PAIRED.
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LBF CR AA CC CoR FC

OEL Iterations 30 30 30 20 20 20

Num Envs 16 16 16 16 16 16

Timesteps Per Iter (Ego) 1e6 1e6 1e6 3e6 3e6 3e6

Timesteps Per Iter (T) 1e6 1e6 1e6 3e6 3e6 3e6

LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 8 8 8 8 8

Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1

Anneal LR false false false false false false

Table 8: Hyperparameters for Minimax Return. Hyperparameters specific to the teammate training
process are marked by "(T)".

listed range while holding others fixed, and varying parameters jointly only when varying one at a1048
time did not yield desired results.1049

Due to compute constraints, hyperparameters for FCP, CoMeDi, PAIRED, and Minimax Return1050
were set based on knowledge of appropriate ranges gained from doing the hyperparameter searches1051
over IPPO, BRDiv, and ROTATE.1052

H Evaluation Teammate Details1053

As described in Section 7 of the main paper, evaluation teammates were constructed using three1054
strategies: training IPPO teammates in self-play using varied seeds and reward shaping, training1055
teammates with BRDiv, and manually programming heuristic agents. Note that the evaluation team-1056
mates trained using IPPO and BRDiv were trained using different seeds than those used for training1057
ROTATE and baseline methods.1058

The teammate construction procedure results in distinct teammate archetypes. Generally, IPPO1059
agents execute straightforward, return-maximizing strategies. On the other hand, since BRDiv1060
agents are trained to maximize self-play returns with their best response partner and to minimize1061
cross-play returns with all other best response policies in the population, the generated teammates1062
display more adversarial behavior compared to IPPO and heuristics. Coefficients on the SP and XP1063
returns were carefully tuned to ensure that the behavior was not too adversarial, which we opera-1064
tionalized as teammates where the SP returns were high, but the XP returns were near zero.1065

Finally, the manually programmed heuristic agents have a large range of skills and levels of deter-1066
minism. The LBF heuristics are planning-based agents that deterministically attempt to collect the1067
apples in a specific order. Given a best response partner, the LBF heuristics can achieve the opti-1068
mal task return in LBF. The Overcooked heuristics execute pre-programmed roles that are agnostic1069
to the layout and some basic collision-avoidance logic. The "onion" heuristic collects onions and1070
places them in non-full pots. The "plate" heuristic plates soups that are ready, and delivers them.1071
The "independent" heuristic attempts to fulfill both roles by itself. All three heuristic types have a1072
user-specified parameter that defines the probability that the agent places whatever it is holding on1073
a nearby counter. The feature serves two purposes: first, it creates a larger space of behaviors, and1074
second, it allows the heuristics to work for the FC task, where the agent in the left half of the kitchen1075
must pass onions and plates to the right, while the agent in the right half must pick up resources1076
from the dividing counter, cook soup, and deliver.1077
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Name Description Est. BR Return

brdiv_conf1(0) Teammate trained by BRDiv. 97.396

brdiv_conf1(1) - 100.0

brdiv_conf1(2) - 89.583

brdiv_conf2(0) - 100.0

brdiv_conf2(1) - 62.5

ippo_mlp(0) Teammate trained by IPPO to maximize return. 100.0

ippo_mlp_s2c0(2,0) An intermediate checkpoint of a teammate trained
by IPPO to maximize return.

96.354

seq_agent_col Planning agent that collects food in column-major
order (left to right, top to bottom).

100.0

seq_agent_rcol Planning agent that collects food in reverse
column-major order (right to left, bottom to top).

100.0

seq_agent_lexi Planning agent that collects food in lexicographic
order (top to bottom, left to right).

100.0

seq_agent_rlexi Planning agent that collects food in reverse lexi-
cographic order (bottom to top, right to left).

100.0

seq_agent_nearest Planning agent that collects food in nearest to far-
thest order, based on the Manhattan distance from
the agent’s initial position.

100.0

seq_agent_farthest Planning agent that collects food in farthest to
nearest order, based on the Manhattan distance
from the agent’s initial position.

100.0

Table 9: Evaluation teammates for LBF and estimated best response returns (percent eaten). Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

brdiv_conf(0) Teammate trained by BRDiv. 214.063

brdiv_conf(1) - 240.940

ippo_mlp(0) Teammate trained by IPPO to maximize return. 256.875

ippo_mlp(1) - 253.750

ippo_mlp(2) - 249.686

independent_agent_0.4 Agent programmed to cook and deliver soups. If
holding item, 40% chance of placing item on the
counter.

197.188

independent_agent_0 Agent programmed to cook and deliver soups. 132.50

onion_agent_0.1 Agent programmed to place onions in non-full
pots. If holding item, 10% chance of placing item
on counter.

146.875

plate_agent_0.1 Agent programmed to plate finished soups and de-
liver. If holding item, 10% chance of placing item
on counter.

191.250

Table 10: Evaluation teammates for Cramped Room and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return

brdiv_conf(0) Teammate trained by BRDiv. 286.875

brdiv_conf(1) - 335.625

brdiv_conf(2) - 333.750

ippo_mlp(0) Teammate trained by IPPO to maximize return. 382.50

ippo_mlp(1) - 369.375

ippo_mlp(2) - 312.50

independent_agent_0 Agent programmed to cook and deliver soups. 308.125

onion_agent_0 Agent programmed to place onions in non-full pots. 301.250

plate_agent_0 Agent programmed to place onions in non-full pots. 285.0

Table 11: Evaluation teammates for Asymmetric Advantages and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

ippo_mlp_cc(0) Teammate trained by IPPO to maximize return. Nav-
igates counterclockwise around counter.

200.625

ippo_mlp_cc(1) - 198.120

ippo_mlp_cc(2) - 194.375

ippo_mlp_pass(0) Teammate trained by IPPO+reward shaping to pass
onions across the counter.

137.813

ippo_mlp_pass(1) - 103.125

ippo_mlp_pass(2) - 170.0

independent_agent_0 Agent programmed to cook and deliver soups. 77.189

onion_agent_0.9 Agent programmed to place onions in non-full pots. If
holding item, 90% chance of placing item on counter.

80.0

onion_agent_0 Agent programmed to place onions in non-full pots. 81.563

plate_agent_0.9 Agent programmed to plate finished soups and de-
liver. If holding item, 90% chance of placing item
on counter.

97.189

plate_agent_0 Agent programmed to place onions in non-full pots. 76.875

Table 12: Evaluation teammates for Counter Circuit and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return

brdiv_conf1(1) Teammate trained by BRDiv. 161.250

brdiv_conf1(2) - 183.440

brdiv_conf2(0) - 142.810

ippo_mlp(1) Teammate trained by IPPO to maximize return. 249.688

ippo_mlp(2) - 246.560

ippo_mlp(3) - 246.560

independent_agent_0 Agent programmed to cook and deliver soups. 136.250

onion_agent_0 Agent programmed to place onions in non-full pots. 72.50

plate_agent_0 Agent programmed to place onions in non-full pots. 110.938

Table 13: Evaluation teammates for Coordination Ring and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

brdiv_conf1(0) Teammate trained by BRDiv. 131.560

brdiv_conf1(2) - 184.690

brdiv_conf2(1) - 143.750

brdiv_conf3(0) - 71.250

brdiv_conf3(2) - 174.690

ippo_mlp(0) Teammate trained by IPPO to maximize return. 220.0

ippo_mlp(1) - 214.380

ippo_mlp(2) - 225.620

independent_agent_0.6 Agent programmed to cook and deliver soups. If
holding item, 60% chance of placing item on the
counter.

81.250

Table 14: Evaluation teammates for Forced Coordination and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.
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Descriptions of the evaluation teammates for each task and estimated best response returns are pro-1078
vided in Tables 9 to 14.1079

Evaluation Return Normalization Details. The lower return bound is set to zero since a poor1080
teammate could always cause a zero return in all tasks considered. Ideally, the upper return bounds1081
would be the returns achieved with the theoretically optimal best response teammate for each evalu-1082
ation teammate. To approximate this, we instead set the upper bound equal to the maximum average1083
return achieved by any method, for each evaluation teammate.1084

As described in Section 7, our normalized return metric is similar to the BRProx metric recom-1085
mended by Wang et al. [59]. The main difference is that we aggregate results using the mean rather1086
than the interquartile mean (IQM), due to challenges around determining appropriate upper bounds1087
for return normalization. In particular, during method development, we used looser BR return esti-1088
mates to perform return normalization, leading to normalized returns often surpassing 1.0 for certain1089
teammates. Under such conditions, aggregating results using the IQM led to entirely dropping re-1090
sults corresponding to particular teammates.1091

I Compute infrastructure1092

Experiments were performed on two servers, each with the following specifications:1093

• CPUs: two Intel(R) Xeon(R) Gold 6342 CPUs, each with 24 cores and two threads per core.1094

• GPUs: four NVIDIA A100 GPUs, each with 81920 MiB VRAM.1095

The experiments in this paper were implemented in Jax and parallelized across seeds. On the servers1096
above, each method took approximately 4-6 hours of wall-clock time to run.1097
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