
CoCoMARL Workshop @ RLC 2025
∣∣ Cover Page

ROTATE: Regret-driven Open-ended Training for Ad
Hoc Teamwork

Caroline Wang, Arrasy Rahman, Jiaxun Cui, Yoonchang Sung, Peter
Stone

Keywords: Ad Hoc Teamwork, Teammate Generation, Open-ended Learning.

Summary
Developing AI agents capable of collaborating with previously unseen partners is a funda-

mental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork (AHT).
Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed population of
teammates is generated with the idea that they should be representative of the teammates that
will be seen at deployment time, and second, an AHT agent is trained to collaborate well with
agents in the population. To date, the research community has focused on designing sepa-
rate algorithms for each stage. This separation has led to algorithms that generate teammates
with limited coverage of possible behaviors, and that ignore whether the generated teammates
are easy to learn from for the AHT agent. Furthermore, algorithms for training AHT agents
typically treat the set of training teammates as static, thus attempting to generalize to pre-
viously unseen partner agents without assuming any control over the distribution of training
teammates. This paper presents a unified framework for AHT by reformulating the problem
as an open-ended learning process between an ad hoc agent and an adversarial teammate gen-
erator. We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates
between improving the AHT agent and generating teammates that probe its deficiencies. Ex-
tensive experiments across diverse AHT environments demonstrate that ROTATE significantly
outperforms baselines at generalizing to an unseen set of evaluation teammates, thus establish-
ing a new standard for robust and generalizable teamwork.

Contribution(s)
1. Provide a novel perspective on the objective of the ad hoc teamwork (AHT) without know-

ing the set of teammates during evaluation. In this case, we frame the learning objective
of AHT as minimizing the worst-case cooperative regret that an ego agent incurs against a
broad class of possible teammate policies.
Context: While not using worst-case cooperative regret minimization as an AHT objective,
other variations of cooperative regret have been used to theoretically analyze the effective-
ness of algorithms at collaborating with unknown teammates (Chakraborty & Stone, 2010;
Loftin & Oliehoek, 2022).

2. Formulates the ROTATE algorithm, an open-ended learning algorithm that generates regret-
maximizing teammates with which the AHT agent interacts in each training iteration. By
conducting multiple iterations of teammate generation and AHT training, ROTATE progres-
sively decreases the AHT agent’s worst-case cooperative regret.
Context: Prior work (Lupu et al., 2021; Charakorn et al., 2023; Rahman et al., 2023)
primarily focuses on running a single iteration of teammate generation and AHT training.
Assuming access to a set of teammate policies to sample from, other works Erlebach &
Cook (2024); Chaudhary et al. (2025) improve AHT training by only sampling teammate
policies that induce high cooperative regret.

3. Empirically demonstrate that ROTATE significantly improves return against unseen team-
mates compared to representative baselines from AHT and open-ended learning.
Context: None

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

ROTATE: Regret-driven Open-ended Training for Ad
Hoc Teamwork

Caroline Wang1,†, Arrasy Rahman1,†, Jiaxun Cui1, Yoonchang Sung2, Peter
Stone1,3

{caroline.l.wang,cuijiaxun}@utexas.edu,
{arrasy,pstone}@cs.utexas.edu, yoonchang.sung@ntu.edu.sg

1Department of Computer Science, University of Texas at Austin
2College of Computing and Data Science, Nanyang Technological University
3Sony AI
† Equal contribution.

Abstract

Developing AI agents capable of collaborating with previously unseen partners is a fun-
damental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork
(AHT). Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed
population of teammates is generated with the idea that they should be representative
of the teammates that will be seen at deployment time, and second, an AHT agent is
trained to collaborate well with agents in the population. To date, the research com-
munity has focused on designing separate algorithms for each stage. This separation
has led to algorithms that generate teammates with limited coverage of possible behav-
iors, and that ignore whether the generated teammates are easy to learn from for the
AHT agent. Furthermore, algorithms for training AHT agents typically treat the set of
training teammates as static, thus attempting to generalize to previously unseen partner
agents without assuming any control over the distribution of training teammates. This
paper presents a unified framework for AHT by reformulating the problem as an open-
ended learning process between an ad hoc agent and an adversarial teammate generator.
We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates
between improving the AHT agent and generating teammates that probe its deficien-
cies. Extensive experiments across diverse AHT environments demonstrate that RO-
TATE significantly outperforms baselines at generalizing to an unseen set of evaluation
teammates, thus establishing a new standard for robust and generalizable teamwork.

1 Introduction

As we continue to deploy AI agents in diverse applications, it is increasingly crucial that they
can collaborate effectively with previously unseen humans and other AI agents. While methods
for training teams of agents have been explored in cooperative multi-agent reinforcement learning
(CMARL) (Foerster et al., 2018; Rashid et al., 2020), previous work (Vezhnevets et al., 2020; Rah-
man et al., 2021) highlights that CMARL-based agents fail to perform optimally when collaborating
with unfamiliar teammates. Rather than learning strategies that are only effective against jointly
trained teammates, dealing with previously unseen teammates requires adaptive AI agents that effi-
ciently approximate the optimal strategy for collaborating with diverse teammates. Methods to train
adaptive agents in the context of collaborative tasks have previously been explored within the liter-
ature of ad hoc teamwork (AHT) (Bowling & McCracken, 2005; Stone et al., 2010; Mirsky et al.,
2022) and zero-shot coordination (ZSC) (Hu et al., 2020; Cui et al., 2021; Lupu et al., 2021).

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Two-Stage AHT Open-Ended AHT

TeaTeammate
Generation

AHT Learning

Teammates Teammates

i=0 i=1 i=N

TeaTeammate
Generation

AHT Learning

Learning AHT
Agent

1. Teammate Generator
generates teammates for
training that the AHT
Agent is not yet able to
cooperate with

learning iterations

Tr
ain

 P
ar

tn
er

Tra
in Part

ner

2. Best Response
 cooperates with

the generated
teammate

Figure 1: ROTATE Overview. ROTATE is an open-ended ad hoc teamwork learning framework in which the
AHT agent learns as the set of training teammates expands. The core idea of ROTATE is to improve the AHT
agent and iteratively generate diverse teammates with whom the AHT agent struggles to collaborate, yet not so
adversarial that effective teamwork becomes impossible.

Prior work (Mirsky et al., 2022) has often decomposed AHT learning into two stages, consisting
of first creating a fixed set of teammates, and then training an AHT agent using reinforcement
learning (RL) approaches, based on interactions with teammates sampled from the set. Despite re-
lying on neural network policies, algorithms that train an AHT agent based on interaction with a
human-designed set of heuristic or pretrained agents (Papoudakis et al., 2021; Zintgraf et al., 2021;
Rahman et al., 2021) often struggle to handle novel behaviors outside the predefined set of team-
mates (Strouse et al., 2021; Carroll et al., 2019). Recent work (Lupu et al., 2021; Charakorn et al.,
2023; Rahman et al., 2023; 2024; Sarkar et al., 2023) strengthens the generalization capabilities
of previous methods by substituting the human-designed set of teammates with a set of teammate
policies that are trained to maximize different notions of diversity. One such diversity notion is ad-
versarial diversity (Rahman et al., 2023; Charakorn et al., 2023), which seeks to generate a set of
teams that cooperate well within the team, but not across teams. However, prior work (Cui et al.,
2023; Sarkar et al., 2023; Charakorn et al., 2024) empirically demonstrates that adversarial diversity
often leads to teammate policies that actively diminish returns when interacting with agents other
than their identified teammate, a phenomenon sometimes called self-sabotage.

This paper addresses two issues that cause existing AHT and ZSC methods to fail to learn policies
that effectively collaborate with some teammates. First, existing methods (Papoudakis et al., 2021;
Zintgraf et al., 2021; Rahman et al., 2021; 2023) learn from sampling teammates from a fixed set
containing few teammate policies. Compared to the vast space of strategies a teammate may adopt,
the AHT agent will only be trained to collaborate optimally with a small set of strategies, while
potentially performing poorly against others. Second, existing methods focus on designing diverse
and incompatible teammates (Charakorn et al., 2023; Rahman et al., 2023; Yuan et al., 2023), whose
return-diminishing tendencies make it challenging for a randomly initialized, RL-based AHT agent
to effectively learn to collaborate with.

In this paper, we present a fresh perspective on AHT, by observing that maximizing the return of
an AHT agent on an unknown set of teammates is equivalent to minimizing its cooperative regret:
the utility gap between the best response to a given teammate, and the AHT agent’s performance
with that teammate. Inspired by the success of regret for designing generally capable agents that
efficiently solve a broad range of tasks (Wang et al., 2020; Dennis et al., 2020; Jiang et al., 2021a;
Rutherford et al., 2024a), we then reformulate the AHT problem as a minimax game between the
AHT agent and a teammate generator. Our problem formulation suggests an open-ended framework
for AHT, that drives a teammate generator to continually discover new teammate policies, while
jointly improving the AHT agent. Building on this theoretical foundation, we propose a practical
algorithm, ROTATE (Fig. 1), which optimizes a regret-based minimax objective for both players,
while maintaining a population of all teammates explored. Key to the success of ROTATE is a novel
and practical per-state regret objective, designed to mitigate the self-sabotage problem that naturally
arises from cooperative regret type objectives. We demonstrate that ROTATE significantly improves

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

the robustness of AHT agents when faced with previously unseen teammates, compared to a range
of baselines on Level-Based Foraging and Overcooked tasks.

This paper makes three main contributions. First, it defines a novel problem formulation for AHT,
enabling open-ended AHT training that continually generates new teammates. Second, it introduces
a novel algorithm, ROTATE, that instantiates the proposed open-ended AHT framework. Third, it
provides empirical evaluations demonstrating that ROTATE significantly improves return against
unseen teammates compared to representative baselines from AHT and open-ended learning.

2 Related Work

Agent Training in AHT & ZSC. The training of adaptive ego agent policies that can near-optimally
collaborate with diverse previously unseen teammates has been explored in AHT (Stone et al., 2010)
& ZSC (Hu et al., 2020). Given access to a set of training teammate policies, AHT methods (Mirsky
et al., 2022) train ego agents to model teammates (Albrecht & Stone, 2018) by identifying impor-
tant characteristics of different teammates based on their observed behavior. These methods then
train a model estimating the best-response policy to the encountered teammate policies based on
their inferred characteristics. Recent AHT methods (Rahman et al., 2021; Papoudakis et al., 2021;
Zintgraf et al., 2021; Gu et al., 2022; Wang et al., 2024a) typically use neural networks trained using
reinforcement learning (Schulman et al., 2017; Mnih et al., 2016). To further improve AHT train-
ing, several approaches learn a distribution for sampling teammate policies during training based on
maximizing the worst-case returns (Villin et al., 2025) or regret (Erlebach & Cook, 2024; Chaud-
hary et al., 2025) of trained agents, while other approaches seek to improve the ability of an AHT
agent to adapt to unseen teammates at deployment time (Nekoei et al., 2021; 2023). As an alternative
to AHT, ZSC designs learning methods promoting near-optimal collaboration between agents that
have not interacted with each other as long as they learn using the same ZSC algorithm. ZSC meth-
ods (Hu et al., 2020; 2021; Cui et al., 2021) typically achieve this goal by encouraging the agents
to converge towards the same equilibrium despite being trained independently. These agent train-
ing algorithms are a crucial component of ROTATE, an iterative training procedure that uses AHT
training algorithms to improve an AHT policy based on an interaction with generated teammate
policies.

Teammate Generation for AHT & ZSC. Recent work improves existing AHT and ZSC agent
training algorithms by designing a diverse collection of training teammate policies. FCP (Strouse
et al., 2021) generates the pretrained teammate policies by running the same CMARL algorithm
across different seeds. Other work improved FCP by optimizing information-theoretic diversity
metrics based on Jensen-Shannon divergence (Lupu et al., 2021), mutual information (Lucas &
Allen, 2022), or entropy (Xing et al., 2021; Zhao et al., 2023), which encourages each teammate
to yield different trajectories or policies. Recent methods (Rahman et al., 2023; Charakorn et al.,
2023; Cui et al., 2023; Rahman et al., 2024; Sarkar et al., 2023) enable the trained AHT agent to
learn distinct strategies during training by generating teammate policies requiring distinct best re-
sponse policies through the maximization of adversarial diversity metrics, which strongly resembles
ROTATE’s notion of cooperative regret. However, instead of maximizing the regret of the trained
AHT agent like ROTATE, these methods maximize the regret from using a generated teammate
policy to interact with another generated teammate policy. Unlike ROTATE’s open-ended training
process, these methods also only generate a limited and fixed set of teammate policies once before
agent training. Notably, these methods maximize regret only on the initial state of a collaboration
trajectory, leading to sabotaging teammate policies (Cui et al., 2023; Sarkar et al., 2023) that execute
detrimental actions for cooperation in states that it will not visit in self-play. Learning to collaborate
with sabotaging teammates is difficult, leading to the proposal of heuristics to reduce sabotage in
previous work (Cui et al., 2023; Sarkar et al., 2023), and a more systematic objective in ROTATE.

Open-Ended Learning (OEL). Our proposed method is heavily influenced by prior work in
OEL (Langdon, 2005; Taylor, 2019), which explores algorithms that continually design novel tasks
to create a generally capable agent (Hughes et al., 2024; Baker et al., 2019). Many OEL methods in

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

RL (Wang et al., 2020; Dennis et al., 2020; Parker-Holder et al., 2022; Jiang et al., 2021b;a; Ruther-
ford et al., 2024a) focus on the problem of unsupervised environment design (UED), which aims to
improve RL agent generalization across different tasks by designing and sampling novel environ-
ments with different transition and reward functions. Similar to our method, PAIRED (Dennis et al.,
2020) trains a neural network using reinforcement learning to output novel environment parameters
that induce high regret to the trained ego agent. Other methods assume access to a procedural en-
vironment generator, and focus on designing task curators that sample training environments based
on criteria such as the expected returns of different policies (Wang et al., 2020), TD-Error induced
during learning (Jiang et al., 2021b), regret (Jiang et al., 2021a), or learnability (Rutherford et al.,
2024a). In the context of competitive multi-agent RL, OEL methods seek to generate new oppo-
nents for competitive gameplay, often through self-play (Silver et al., 2016; Lin et al., 2023). For
AHT, Yuan et al. (2023) and Yan et al. (2023) also proposed open-ended methods that keep gen-
erating novel teammate policies for an AHT agent to learn from. Unlike ROTATE, their approach
to generating teammates either relies on evolutionary methods to generate new teammates or uses
random perturbations of the AHT agent’s policy as the new teammate, making it less efficient at
producing representative samples from the vast teammate policy set.

3 Background

The interaction between agents in an AHT setting may be modeled as a decentralized, partially
observable Markov decision process (Dec-POMDP) (Oliehoek & Amato, 2016). A Dec-POMDP
is characterized by a 9-tuple, ⟨N,S, {Ai}|N |

i=1, P, p0, R, {Ωi}
|N |
i=1, O, γ⟩, where N , S, and γ respec-

tively denote the index set of agents within an interaction, the state space, and a discount rate in
(0, 1). Each interaction between the AHT agent and its teammates begins from an initial state s0
sampled from an initial state distribution, p0(s). Denoting the set of all probability distributions over
a set X as ∆(X) and the current timestep as t, a Dec-POMDP assumes that each agent may not per-
ceive the current state, st. Each agent instead perceives an observation from its observation space,
oit ∈ Ωi, sampled from the observation function, O : S 7→ ∆(Ω1 × · · · × Ω|N |). Each agent i ∈ N
then chooses an action at time t from its action space, ait ∈ Ai, based on a policy, πi(Hi

t), condi-
tioned on its observation-action history, Hi

t = {oi≤t, ai<t}. The actions selected by each agent are

then collectively executed as the joint action, at = (a1t , . . . , a
|N |
t). Each agent receives a common

scalar reward, rt, based on the reward function, R : S ×A1× · · · ×A|N | 7→ R. Finally, a new state
st+1, is sampled according to the environment transition function, P : S×A1×· · ·×A|N | 7→ ∆(S).
In this paper, the notation πego refers to a trained AHT agent policy, or ego agent, while π−i refers
to theN−1 policies of the AHT agent’s teammates. Importantly, we assume that teammates choose
their actions only based on the current observation. At the same time, the AHT agent selects its
actions based on its state-action history, which is necessary to allow the AHT agent to distinguish
between different types of teammates effectively.

4 Ad Hoc Teamwork Problem Formulation

Ad Hoc Teamwork (AHT) methods aim to train an adaptive ego agent policy that achieves maximal
return when collaborating with an unknown set of evaluation teammates. Using the Dec-POMDP
formulation to model the interaction between agents, this section formalizes the objective of AHT.
While the most general AHT setting considers a possibly varying number of ego agents and team-
mates within an interaction (Wang et al., 2024a; Rahman et al., 2021), this formalization addresses
the more straightforward case where there is only a single ego agent within a team.

Let π−i denote a joint teammate policy controlling the N − 1 non-ego agents during collaboration.
Denote the returns of an ego agent following πego to collaborate with teammates controlled by π−i,
starting from state s, as:

V (s|π−i, πego) = E aego
t ∼πego,

a−i
t ∼π−i,P,O

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
. (1)

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Let Πeval denote the unknown set of joint teammate policies encountered during evaluation, which
is assumed to only contain competent and non-adversarial policies, as defined in the seminal work
of Stone et al. (2010). Let ψeval(Πeval) denote the probability distribution over Πeval defining how
teammates are sampled during evaluation. An ego agent policy, πego, is evaluated by its ability
to maximize the expected returns when collaborating with joint teammate policies sampled from
ψeval(Πeval), which is formalized as:

max
πego

V (ψeval,Πeval, πego) = max
πego

Eπ−i∼ψeval(Πeval),s0∼p0
[
V (s0|π−i, πego)

]
. (2)

An optimal πego that maximizes Eq. 2 closely approximates the best response policy performance
when collaborating with π−i ∈ Πeval. Given a teammate policy π−i, BR(π−i) is a best response
policy to π−i if and only the team policy formed by π−i and BR(π−i) achieves maximal return:

BR(π−i) := max
π

Es∼p0
[
V (s|π, π−i)

]
. (3)

In some cases, AHT algorithms can estimate this optimal policy by using Πeval to train an ego agent
policy that maximizes V (ψeval,Πeval, πego) when Πeval is known.1 However, most AHT methods
address the more challenging case where Πeval is unknown, which is the setting that this paper adopts
as well. While our methods assume no knowledge of Πeval during training, we follow standard
practice (Papoudakis et al., 2021; Rahman et al., 2021; Zintgraf et al., 2021; Wang et al., 2024a) by
manually designing a diverse Πeval for evaluation purposes, as we later describe in Section 7.

When Πeval is unknown, AHT algorithms (Mirsky et al., 2022) either assume access to a training
set of teammate policies, Πtrain, or generate such a set. An expert’s domain knowledge about the
characteristics of Πeval may be leveraged to construct a Πtrain similar to Πeval. Once the set of training
teammates has been formed, current AHT algorithms use reinforcement learning to discover an ego
agent policy based on interactions with joint policies sampled from Πtrain. While the precise training
objective varies with the AHT algorithm, a common objective is to maximize the expected return
during interactions with joint policies sampled uniformly from Πtrain:

π∗,ego(Πtrain) = argmax
πego

Eπ−i∼U(Πtrain),s0∼p0
[
V (s0|π−i, πego)

]
. (4)

Naturally, even an optimal ego agent policy, π∗,ego(Πtrain), may not be optimal with respect to Πeval

and ψeval, due to the potential distribution shift caused by differences between the training and
evaluation objectives.

5 An Open-Ended Learning Perspective on Ad Hoc Teamwork

In this section, we outline the general components of our open-ended framework to train ego agents
that are performant at collaborating with holdout teammate policies, despite not knowing Πeval and
ψeval during training. We first argue for minimizing worst-case cooperative regret towards training
ego agent policies that maximize Eq. 2 when Πeval is unknown. We then finish the section by
introducing two necessary procedures in an iterative process to minimize worst-case regret.

We define the cooperative regret of an ego agent policy πego when interacting with some joint team-
mate policy π−i from a starting state s as:

CR(πego, π−i, s) = V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego) . (5)

Any optimal AHT policy that maximizes Eq. 2 must also minimize the expected regret over joint
teammate policies sampled based on ψeval(Πeval), which we formally express as:

CR(ψeval,Πeval, πego) = Eπ−i∼ψeval(Πeval),s0∼p0
[
CR((πego, π−i, s0)

]
. (6)

1In the context of reinforcement-learning-based AHT algorithms, “known" means that an AHT algorithm has unlimited
sampling access to the teammate policies.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

This property is a consequence of V
(
s|π−i, BR(π−i)

)
being independent of πego for any π−i and

s, leaving maximizing expected regret equivalent to minimizing the negative expected returns when
collaborating with joint teammate policies sampled from ψeval(Πeval).

Without knowing Πeval to optimize CR(ψeval,Πeval, πego), we instead take inspiration from ap-
proaches in UED (Wang et al., 2020; Dennis et al., 2020), and propose optimizing πego to minimize
the worst-case regret that could be induced by any teammate policy π−i:

min
πego

max
π−i∈Π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
, (7)

where we re-emphasize that Π−i denotes the set of all competent and non-adversarial (Stone et al.,
2010) joint teammate policies. Limiting the considered joint policies is important since teams that
always perform poorly against any good-faith πego are unlikely to be encountered in coordination
scenarios and may induce unnecessary learning challenges for RL-based AHT learning algorithms.

Finding πego that achieves zero worst-case regret is equivalent to finding an ego agent that achieves
the best-response return with any joint teammate policy π−i. If such a πego exists, then this AHT
agent would maximize Eq. 2 for any ψeval and Πeval—however, existence is not guaranteed (Loftin
& Oliehoek, 2022). In practice, we are content with minimizing the worst-case regret. While mini-
mizing worst-case regret still applies to AHT problems with more than one teammate at a time, note
that we limit our method for optimizing Eq. 7 and our experiments to two-player, fully observable
AHT games.

Algorithm 1 in the Appendix outlines a framework to train a πego that minimizes worst-case regret.
The algorithm resembles coordinate ascent algorithms (d’Esopo, 1959), which alternate between
optimizing for π−i and πego for T iterations, while assuming the other is fixed. We call a phase
where we fix πego and update π−i to maximize the ego agent’s regret, the teammate generation
phase. Meanwhile, assuming that π−i is fixed, the ego agent update phase updates πego to minimize
regret. This optimization algorithm is an open-ended training method that continually generates
novel teammate policies whose interaction with the ego agent provides the learning experience to
improve πego. Next, we detail the learning process during these two phases.

6 ROTATE: Regret-driven Open-ended Training for Ad hoc TEamwork

XP

SP

Per-Trajectory Regret

XP state SP stateInitial State

Self Play (SP) Cross Play (XP) Self Play from Cross Play States (SXP)

Init. State Dist.

Per-State Regret

Objective = Regret()

XP

SP

SXP

V = Expected Return

maximize VSXP()

maximize Regret()

maximize VSP()

Objective = Regret() + VSP() + VSXP()

maximize VSP()

minimize VXP()

Figure 2: Per-trajectory regret vs per-state regret.

This section presents our regret-driven,
open-ended AHT algorithm, ROTATE.
We first describe the teammate genera-
tion procedure in Section 6.1, particularly
focusing on motivating the objective we
used to generate teammate policies. Next,
we provide details of the ego agent up-
date method in Section 6.2. The Appendix
provides ROTATE’s pseudocode and addi-
tional implementation details.

6.1 ROTATE Teammate Generator

The teammate generator produces team-
mate policies that maximize the regret of πego. By updating πego to minimize its regret against
the regret-maximizing teammate policy, we aim to decrease the worst-case cooperative regret of
πego (Eq. 7). Since measuring cooperative regret requires estimating the performance of a generated
π−i when collaborating with BR(π−i), we jointly train policies for π−i and an approximation of
BR(π−i) using the PPO algorithm (Schulman et al., 2017).

Before detailing our alternative objectives for training π−i, we first introduce the different interac-
tions that provide the experience to train π−i. Let self-play (SP) refer to teammate and best response
interactions, cross-play (XP) refer to teammate and ego agent interactions, and cross-play continued

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

by self-play (SXP) refer to an interaction where the teammate is first interacting with the ego agent,
but switches at a random timestep t to interacting with the best response. We train π−i based on
states sampled from SP, XP, and SXP. Let d(π1, π2; p0) denote the state visitation distribution when
π1 and π2 interact based on a starting state distribution p0. To denote the state visitation distributions
for these interactions, we use the following shorthand:

pSP := d
(
π−i,BR(π−i); p0

)
, pXP := d

(
π−i, πego; p0

)
, pSXP := d

(
π−i,BR(π−i); pXP

)
. (8)

This section considers two teammate policy generation objectives that differ in the data source used
to optimize the objective, and are illustrated in Fig. 2.

The first objective generates π−i based on maximizing per-trajectory regret of πego, which only
maximizes regret of trajectories starting from the initial state distribution:

max
π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
. (9)

From the definition of CR (Eq. 5), optimizing per-trajectory regret amounts to maximizing the ex-
pected returns of SP interactions from the initial state distribution p0, Es∼p0

[
V (s|π−i,BR(π−i))

]
,

and minimizing the expected returns of XP interactions from p0, Es∼p0
[
V (s|π−i, πego)

]
. This

objective resembles the adversarial diversity metric optimized in prior teammate generation
work (Charakorn et al., 2023; Rahman et al., 2023; Cui et al., 2023).

While the per-trajectory regret is the same as the regret objective optimized in Eq. 7, optimizing it
naively leads to generating teammates with undesirable self-sabotage behaviors. To minimize the
expected returns from cross-play interaction, self-sabotaging policies choose actions leading to low
returns in states outside the support of pSP (Cui et al., 2023), including the states visited during the
collaboration between π−i and πego, s ∼ pXP. The lack of high reward signals makes it challenging
for the ego agent to learn to collaborate with π−i using reinforcement learning.

The second objective discourages the emergence of self-sabotaging policies by optimizing a per-
state regret objective defined as:

max
π−i

(Es∼pXP [CR(πego, π−i, s)] + Es∼pSXP [V (s|π−i,BR(π−i))] + Es∼pSP [V (s|π−i,BR(π−i))]).

(10)

The first term in Expr. 10 encourages discovering π−i for which the ego agent policy has a high
room for improvement. Meanwhile, the second term trains π−i to act as if it interacts with its best
response policy, even from starting states encountered during XP interactions. This encourages π−i

to act in good faith by having at least a partner policy that can collaborate well with π−i when
starting from states in pXP. Finally, the last term encourages π−i to cooperate with its best response.
This enables consistently generating competent teammates during open-ended learning, which is
essential as stated in Section 5.

While obtaining states from pSP and pXP is straightforward, states from pSXP can be tricky to collect
depending on the implementation of an AHT environment. If an environment supports resetting
to arbitrary states, then states encountered during XP interaction can be stored and used as the
initial state for SP interactions. Otherwise, we can use a data collection strategy that first samples
a random timestep t, runs XP interaction until timestep t, and finally switches to SP interaction
afterwards (Sarkar et al., 2023). Only data gathered after timestep t should be used to compute
objectives based on pSXP.

6.2 ROTATE Ego Agent Update

At each iteration, ROTATE creates a teammate that maximizes the previous iteration’s ego agent per-
state regret, highlighting its cooperative weaknesses. To allow the ROTATE ego agent to improve its
robustness over time and reduce the possibility that it forgets how to cope with previously generated
teammates, the ROTATE ego agent maintains a population buffer of generated teammates. During

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

the ego agent update phase of each iteration, the ROTATE ego agent is trained using PPO (Schulman
et al., 2017) against teammates sampled uniformly from the population buffer. We find that for the
ego agent to learn effectively against the nonstationary population buffer, it is important to define a
lower entropy coefficient and learning rate than when training the teammate and BR agents (in the
range of 1× 10−4 for the entropy coefficient and 1× 10−5 for the learning rate).

7 Experimental Results

This section presents the empirical evaluation of ROTATE compared to baseline methods, across
six cooperative tasks. The main research questions are:

• RQ1: Does ROTATE better generalize to unseen teammates, compared to baseline methods from
the AHT and UED literature? (Yes)

• RQ2: Does per-state regret improve over trajectory level regret and mixed-play regret? (Yes)
• RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes)
• RQ4: Is the ROTATE population useful for training an independent ego agent? (Yes)

We first describe the experimental setting, including tasks, baselines, construction of the evaluation
set, and the evaluation metric, followed by presenting results in Sec. 7.1.

Tasks ROTATE is evaluated on six tasks: Level-Based Foraging (LBF) (Albrecht & Ramamoor-
thy, 2013), and five layouts from the Overcooked suite (Carroll et al., 2019): Cramped Room (CR),
Asymmetric Advantages (AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced Coordi-
nation (FC). All six tasks are fully cooperative with a variety of possible coordination conventions,
and are commonly used within the AHT literature (Albrecht & Ramamoorthy, 2013; Christianos
et al., 2020; Papoudakis et al., 2021). In our LBF configuration, two agents must navigate to three
apples that are randomly placed within a gridworld, and cooperate to pick up the apples. In all
Overcooked tasks, two agents collaborate in a gridworld kitchen to cook and deliver onion soup,
where the main difference between tasks is the kitchen layout. All experiments were implemented
with JAX (Bradbury et al., 2018), so we use JAX re-implementations of the LBF and Overcooked
tasks (Bonnet et al., 2023; Rutherford et al., 2024b).

Baselines As our method is most closely related to methods from unsupervised environment de-
sign (UED) and teammate generation, we compare against two UED methods adapted for AHT
(PAIRED (Dennis et al., 2020), Minimax Return (Morimoto & Doya, 2005; Villin et al., 2025))
and three teammate generation methods (Fictitious Co-Play (Strouse et al., 2021), BRDiv (Rah-
man et al., 2023), CoMeDi (Sarkar et al., 2023)). While curator-based methods such as PLR (Jiang
et al., 2021a;b) are popular in UED, we do not compare against them as they are orthogonal to
ROTATE (Erlebach & Cook, 2024; Villin et al., 2025; Chaudhary et al., 2025). Similarly, we do
not compare against AHT algorithms that propose techniques to improve ego learning (Albrecht &
Stone, 2018). Each baseline is described in App. B, along with implementation details. For fair
comparison, all open-ended and UED methods were trained for a similar number of environment
interactions, or until best performance on the evaluation set. All teammate generation approaches
were ran using a similar number of environment interactions as their original implementations, as
scaling them up to use a similar number of steps as the open-ended approaches proved challenging
(see discussion in App. B). All results are reported with three trials.

Construction of Πeval We wish to evaluate all methods on as diverse a set of evaluation teammates
as practically feasible, while ensuring that each teammate acts in “good faith". To achieve this goal,
for each task, we construct 9 to 13 evaluation teammates using three methods: IPPO with varied
seeds and reward shaping, BRDiv, and manually programmed heuristic agents. Full descriptions of
the teammate generation procedure and all teammates in Πeval are provided in App. G.

Evaluation Metric Ego agent policies are evaluated with each teammate in Πeval for 64 evaluation
episodes, where the return is computed for each episode, and normalized using a lower return bound
of zero and an estimated best response return as the upper bound for each teammate. Performance
of a method on Πeval is reported as the normalized mean return with bootstrapped 95% confidence

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE
Minimax
PAIRED

FCP
BRDiv
CoMeDi

(a) ROTATE vs baselines.

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE (per-state)
ROTATE (per-traj)

(b) ROTATE with per-state regret (ours)
vs ROTATE with per-trajectory regret.

Figure 3: (Left) ROTATE outperforms all baseline methods across all tasks in evaluation return. (Right)
ROTATE with per-state regret (ours) outperforms ROTATE with per-trajectory regret in 5/6 tasks. 95%
bootstrapped CI’s are shown, computed across all evaluation teammates and trials.

intervals, computed via the rliable library (Agarwal et al., 2021). Details about the normalization
procedure and specific bounds for each teammate are reported in App. G.

7.1 Results

This section presents empirical analysis addressing RQ1 and RQ2, while analysis addressing RQ3
and RQ4 are provided in App. C. Supplemental analysis considering alternative regret-based objec-
tives, breaking down performance by evaluation teammate type, and learning curves for all variants
of ROTATE are provided in App. D.

RQ1: Does ROTATE better generalize to unseen teammates compared to baselines? (Yes)
To evaluate the generalization capabilities of ROTATE, we compare its performance against base-
lines on Πeval. Fig. 3a compares the normalized mean returns for ROTATE and all baseline methods
across the six tasks, showing that ROTATE significantly outperforms all baselines on 5/6 tasks.

Among the baseline methods, the next best performing baselines are CoMeDi and FCP. We attribute
CoMeDi’s strong performance to the resemblance of its mixed-play objective to our per-state regret
objective, which we discuss in App. D.1. FCP’s performance may be attributed to the large number
of partners that FCP was trained with (approximately 100 teammates per task). We found that FCP
tends to perform especially well with the IPPO policies in Πeval, likely because the IPPO evaluation
teammates are in-distribution for the distribution of teammates constructed by FCP. We also observe
that Minimax Return performs surprisingly well in AA, which we hypothesize is due to AA’s par-
ticular characteristics. In AA, agents operate in separated kitchen halves, possessing all necessary
resources for individual task completion, with shared access to pots on the dividing counter being
the only shared resource. Consequently, a fully adversarial partner has limited methods to sabotage
the ego agent.2 However, on LBF and FC, where coordination is crucial to obtain positive return on
the tasks, Minimax Return is the worst performing baseline.

BRDiv and PAIRED exhibit comparatively poor performance, which may be partially attributed
to their teammate generation objectives that resemble per-trajectory regret. As we find for RQ2,
per-state regret outperforms per-trajectory regret within the ROTATE framework. Furthermore,
PAIRED’s update structure involves a lockstep training process for the teammate generator, best
response, and ego agent. This synchronized training may hinder the natural emergence of robust
conventions that are crucial for effective AHT.

RQ2: Does per-state regret improve over trajectory regret? (Yes) As discussed in Section
6, we propose that teammates should maximize per-state regret rather than per-trajectory regret to
mitigate the emergence of self-sabotage behaviors. Here, we compare ROTATE where the teammate

2Agent teams may still achieve higher returns through effective coordination on AA due to layout asymmetry. In the
“left" kitchen, the delivery zone is adjacent to the pots while the onions are farther, while in the “right" kitchen, the opposite
is true. An efficient team has the “left" agent delivering finished soup, and the “right" agent placing onions in the pots.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

maximizes per-state regret (ours) to ROTATE where the teammate maximizes per-trajectory regret.
All configurations other than the teammate’s policy objective are kept identical, including the data
used to train the teammate value functions. Fig. 3b shows that ROTATE with per-state regret
outperforms ROTATE with per-trajectory regret on all tasks except AA, confirming the superiority
of per-state regret. As discussed in RQ1, we observe that AA is a layout where an ego agent is
less susceptible to sabotage, due to the separated kitchen layout. App. D.2 presents additional
experiments testing ROTATE with CoMeDi-style mixed-play rollouts, and alternative methods to
compute per-state regret—ultimately finding that ROTATE outperforms all variations.

8 Conclusion

This paper reformulates the AHT problem as an open-ended learning problem and introduces RO-
TATE, a regret-driven algorithm. ROTATE iteratively alternates between improving an AHT agent
and generating challenging yet cooperative teammates by optimizing a per-state regret objective
designed to discover teammates that exploit cooperative vulnerabilities without encouraging self-
sabotage. Empirical evaluations across six AHT tasks demonstrate that ROTATE significantly en-
hances the generalization capabilities of AHT agents when faced with previously unseen teammates,
outperforming a range of baselines from both AHT and UED. The current work has several limi-
tations that future work may address. First, the paper only studies ROTATE on two-agent, fully
observable, and fully cooperative scenarios. Second, this work has focused on the teammate gener-
ation phase of open-ended AHT. Future work might explore ego agent training methods that better
handle the nonstationarity induced by open-ended teammate generation.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in
Neural Information Processing Systems, volume 34, pp. 29304–29320. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/f514cec81cb148559cf475e7426eed5e-Abstract.html.

Stefano V. Albrecht and Subramanian Ramamoorthy. A game-theoretic model and best-response
learning method for ad hoc coordination in multiagent systems. In Proceedings of the 2013
international conference on Autonomous agents and multi-agent systems, AAMAS ’13, pp. 1155–
1156, Richland, SC, May 2013. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 978-1-4503-1993-5.

Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018. ISSN 0004-3702. DOI:
https://doi.org/10.1016/j.artint.2018.01.002. URL https://www.sciencedirect.com/
science/article/pii/S0004370218300249.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent Tool Use From Multi-Agent Autocurricula. In International Conference
on Learning Representations, September 2019. URL https://openreview.net/forum?
id=SkxpxJBKwS.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duck-
worth, Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma
Mahjoub, Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cem-
lyn Neil Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock,
Siddarth Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Ju-
manji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX. In The
Twelfth International Conference on Learning Representations, October 2023. URL https:
//openreview.net/forum?id=C4CxQmp9wc.

https://proceedings.neurips.cc/paper_files/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=C4CxQmp9wc
https://openreview.net/forum?id=C4CxQmp9wc

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Michael Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In AAAI,
volume 5, pp. 53–58, 2005.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and
Anca Dragan. On the Utility of Learning about Humans for Human-AI Coordination. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html.

Doran Chakraborty and Peter Stone. Convergence, targeted optimality, and safety in multiagent
learning. In Proceedings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, pp. 191–198, Madison, WI, USA, June 2010. Omnipress. ISBN
978-1-60558-907-7.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coopera-
tive agents by learning incompatible policies. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=UkU05GOH7_
6.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Diversity is not all
you need: Training a robust cooperative agent needs specialist partners. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 56401–56423. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/66b35d2e8d524706f39cc21f5337b002-Paper-Conference.pdf.

Paresh Chaudhary, Yancheng Liang, Daphne Chen, Simon S. Du, and Natasha Jaques. Improving
human-ai coordination through adversarial training and generative models, 2025. URL https:
//arxiv.org/abs/2504.15457.

Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot
coordination in hanabi. Advances in Neural Information Processing Systems, 34:8215–8228,
2021.

Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus Fo-
erster. Adversarial diversity in hanabi. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=uLE3WF3-H_5.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design. In Advances in Neural Information Processing Systems, volume 33, pp. 13049–13061.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html.

DA d’Esopo. A convex programming procedure. Naval Research Logistics Quarterly, 6(1):33–42,
1959.

Hannah Erlebach and Jonathan Cook. RACCOON: Regret-based adaptive curricula for cooperation.
In Coordination and Cooperation for Multi-Agent Reinforcement Learning Methods Workshop,
2024. URL https://openreview.net/forum?id=jAH5JNY3Qd.

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://openreview.net/forum?id=UkU05GOH7_6
https://openreview.net/forum?id=UkU05GOH7_6
https://proceedings.neurips.cc/paper_files/paper/2024/file/66b35d2e8d524706f39cc21f5337b002-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/66b35d2e8d524706f39cc21f5337b002-Paper-Conference.pdf
https://arxiv.org/abs/2504.15457
https://arxiv.org/abs/2504.15457
https://openreview.net/forum?id=uLE3WF3-H_5
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://openreview.net/forum?id=jAH5JNY3Qd

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the
ACM, 33(10):75–84, 1990.

Pengjie Gu, Mengchen Zhao, Jianye Hao, and Bo An. Online ad hoc teamwork under partial ob-
servability. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=18Ys0-PzyPI.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief
learning. In International Conference on Machine Learning, pp. 4369–4379. PMLR, 2021.

Edward Hughes, Michael D. Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar,
Yuge Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-Endedness is Essential for Ar-
tificial Superhuman Intelligence. In Proceedings of the 41st International Conference on Ma-
chine Learning, pp. 20597–20616. PMLR, July 2024. URL https://proceedings.mlr.
press/v235/hughes24a.html.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021b.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd Inter-
national Conference for Learning Representations, San Diego, CA, 2015. DOI: 10.48550/arXiv.
1412.6980. URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, March
2017. DOI: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/10.1073/
pnas.1611835114. Publisher: Proceedings of the National Academy of Sciences.

WB Langdon. Pfeiffer–a distributed open-ended evolutionary system. In AISB, volume 5, pp. 7–13.
Citeseer, 2005.

Fanqi Lin, Shiyu Huang, Tim Pearce, Wenze Chen, and Wei-Wei Tu. TiZero: Mastering Multi-
Agent Football with Curriculum Learning and Self-Play. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23, pp. 67–76, Richland,
SC, May 2023. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
978-1-4503-9432-1.

Robert Loftin and Frans A Oliehoek. On the impossibility of learning to cooperate with adaptive
partner strategies in repeated games. In International Conference on Machine Learning, pp.
14197–14209. PMLR, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Nicolaus Foerster, Satinder Singh,
and Feryal Behbahani. Structured State Space Models for In-Context Reinforcement Learning.
In Thirty-seventh Conference on Neural Information Processing Systems, November 2023. URL
https://openreview.net/forum?id=4W9FVg1j6I¬eId=38Anv4M4TW.

https://openreview.net/forum?id=18Ys0-PzyPI
https://openreview.net/forum?id=18Ys0-PzyPI
https://proceedings.mlr.press/v235/hughes24a.html
https://proceedings.mlr.press/v235/hughes24a.html
http://arxiv.org/abs/1412.6980
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://openreview.net/forum?id=4W9FVg1j6I¬eId=38Anv4M4TW

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
pp. 853–861, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International conference on machine learning, pp. 7204–7213. PMLR, 2021.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In European
conference on multi-agent systems, pp. 275–293. Springer, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Jun Morimoto and Kenji Doya. Robust Reinforcement Learning. Neural Comput., 17(2):335–359,
February 2005. ISSN 0899-7667. DOI: 10.1162/0899766053011528. URL https://doi.
org/10.1162/0899766053011528.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous Co-
ordination As a Realistic Scenario for Lifelong Learning. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 8016–8024. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/nekoei21a.html. ISSN: 2640-3498.

Hadi Nekoei, Xutong Zhao, Janarthanan Rajendran, Miao Liu, and Sarath Chandar. Towards Few-
shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi. In Pro-
ceedings of The 2nd Conference on Lifelong Learning Agents, pp. 861–877. PMLR, Novem-
ber 2023. URL https://proceedings.mlr.press/v232/nekoei23b.html. ISSN:
2640-3498.

Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319289276.

Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. Agent modelling under partial
observability for deep reinforcement learning. In Advances in Neural Information Processing
Systems, 2021.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pp. 17473–17498. PMLR, 2022.

Arrasy Rahman, Niklas Höpner, Filippos Christianos, and Stefano V. Albrecht. Towards Open Ad
Hoc Teamwork Using Graph-based Policy Learning. In Proceedings of the 38 th International
Conference on Machine Learning, volume 139. PMLR, June 2021.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Generating teammates
for training robust ad hoc teamwork agents via best-response diversity. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=l5BzfQhROl.

Muhammad Rahman, Jiaxun Cui, and Peter Stone. Minimum coverage sets for training robust ad hoc
teamwork agents. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 17523–17530, 2024.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21:1–51, 2020.

https://doi.org/10.1162/0899766053011528
https://doi.org/10.1162/0899766053011528
https://proceedings.mlr.press/v139/nekoei21a.html
https://proceedings.mlr.press/v139/nekoei21a.html
https://proceedings.mlr.press/v232/nekoei23b.html
https://openreview.net/forum?id=l5BzfQhROl
https://openreview.net/forum?id=l5BzfQhROl

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and
Jakob Nicolaus Foerster. No regrets: Investigating and improving regret approximations for cur-
riculum discovery. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=iEeiZlTbts.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar
Ingvarsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian S. de Witt, Alexan-
dra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Lange,
Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and Jakob
Foerster. JaxMARL: Multi-Agent RL Environments and Algorithms in JAX. In Ad-
vances in Neural Information Processing Systems, volume 37, pp. 50925–50951, December
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/5aee125f052c90e326dcf6f380df94f6-Abstract-Datasets_and_
Benchmarks_Track.html.

Bidipta Sarkar, Andy Shih, and Dorsa Sadigh. Diverse conventions for human-AI collaboration.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=MljeRycu9s.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015. URL
https://api.semanticscholar.org/CorpusID:3075448.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad Hoc Autonomous Agent
Teams: Collaboration without Pre-Coordination. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 24, pp. 1504–1509, July 2010. DOI: 10.1609/aaai.v24i1.7529.
URL https://ojs.aaai.org/index.php/AAAI/article/view/7529.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with Humans without Human Data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14502–14515, 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf.

Tim Taylor. Evolutionary innovations and where to find them: Routes to open-ended evolution in
natural and artificial systems. Artificial life, 25(2):207–224, 2019.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as
responses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 9733–9742. PMLR, 2020.

Victor Villin, Thomas Kleine Buening, and Christos Dimitrakakis. A minimax approach to ad hoc
teamwork, 2025. URL https://arxiv.org/abs/2502.02377.

Caroline Wang, Arrasy Rahman, Ishan Durugkar, Elad Liebman, and Peter Stone. N-agent ad hoc
teamwork. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024a. URL https://openreview.net/forum?id=q7TxGUWlhD.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning

https://openreview.net/forum?id=iEeiZlTbts
https://proceedings.neurips.cc/paper_files/paper/2024/hash/5aee125f052c90e326dcf6f380df94f6-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/5aee125f052c90e326dcf6f380df94f6-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/5aee125f052c90e326dcf6f380df94f6-Abstract-Datasets_and_Benchmarks_Track.html
https://openreview.net/forum?id=MljeRycu9s
https://openreview.net/forum?id=MljeRycu9s
https://api.semanticscholar.org/CorpusID:3075448
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://proceedings.neurips.cc/paper_files/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://arxiv.org/abs/2502.02377
https://openreview.net/forum?id=q7TxGUWlhD

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

challenges and their solutions. In International conference on machine learning, pp. 9940–9951.
PMLR, 2020.

Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan
Zhang. ZSC-Eval: An Evaluation Toolkit and Benchmark for Multi-agent Zero-shot Coordi-
nation. In The Thirty-eight Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, November 2024b. URL https://openreview.net/forum?id=
9aXjIBLwKc#discussion.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Dong Xing, Qianhui Liu, Qian Zheng, and Gang Pan. Learning with generated teammates to
achieve type-free ad-hoc teamwork. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-21, pp. 472–478. International Joint
Conferences on Artificial Intelligence Organization, 8 2021. DOI: 10.24963/ijcai.2021/66. URL
https://doi.org/10.24963/ijcai.2021/66. Main Track.

Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
to-end training approach for zero-shot human-AI coordination. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=6ePsuwXUwf.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and
Yi Wu. The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24611–24624, December
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_
Benchmarks.html.

Lei Yuan, Lihe Li, Ziqian Zhang, Feng Chen, Tianyi Zhang, Cong Guan, Yang Yu, and Zhi-Hua
Zhou. Learning to coordinate with anyone. In Proceedings of the Fifth International Conference
on Distributed Artificial Intelligence, pp. 1–9, 2023.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6145–6153, 2023.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
bayesian reinforcement learning via meta-learning. arXiv preprint arXiv:2101.03864, 2021.

https://openreview.net/forum?id=9aXjIBLwKc#discussion
https://openreview.net/forum?id=9aXjIBLwKc#discussion
https://doi.org/10.24963/ijcai.2021/66
https://openreview.net/forum?id=6ePsuwXUwf
https://openreview.net/forum?id=6ePsuwXUwf
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

Appendix

Please find an anonymized version of the code for this paper at https://anonymous.4open.
science/r/rotate/.

A Algorithms

Algorithm 1 Open-Ended Ad Hoc Teamwork

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ)
4: θego ← EgoUpdate(Env, θego, Bnew

π)
5: Bπ ← Bnew

π

6: end for
7: Return θego

A.1 Framework for Open Ended Ad Hoc Teamwork

Section 5 described an open-ended training framework for training an ego agent that can effectively
collaborate with previously unseen teammates. We further detail this general open-ended framework
in Algorithm 1. In Line 3, a TeammateGenerator function determines a buffer of teammate policy
parameters, Bnew

π . The teammate generator function considers the ego agent’s current policy pa-
rameters, θego, and the previous buffer of teammate policy parameters, Bnew. Ideally, the teammate
generation function generates and samples teammates that induce learning challenges to πego. In
Line 4, an EgoUpdate function specifies a procedure that updates the ego agent’s policy parameters
based on the Bnew

π designed by the teammate generator. Pseudocode for ROTATE, which follows
the open-ended framework specified by Algorithm 1, is presented in the following section.

A.2 ROTATE Algorithm

ROTATE’s teammate generation algorithm is detailed in Algorithm 2. As described in Section 6.1,
this teammate generation algorithm jointly trains the parameters of a teammate policy and an es-
timate of its best response (BR) policy, based on a provided ego agent policy. The parameters of
the teammate and BR policies, θ−i and θBR, are initialized in Line 1. The parameters of the BR
critic network, σBR, are initialized in Line 2, while those for the teammate, σ−i,BR and σ−i,ego, are
initialized in Line 3. Note that the teammate maintains two critics, for separately estimating returns
when interacting with the BR and ego agent policies.

The training of the teammate and BR policies is based on the SP, XP, and SXP interaction data
gathered in Lines 5 to 7, which we previously motivated and described in Section 6.1. Recall that an
SXP interaction require resetting an environment to start from an available XP state. Since resetting
from all available XP states for SXP interaction is impractical, ROTATE samples from XP states to
obtain start states for SXP interactions. Experiences from SP, XP, and SXP interaction are stored in
buffers DSP, DXP, DSXP in the form of a collection of tuples, D = ⟨(sk, ak, rk, s′k)⟩

|D|
k=1. Lines 11 to

https://anonymous.4open.science/r/rotate/
https://anonymous.4open.science/r/rotate/

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Algorithm 2 ROTATE TeammateGenerator Function

Require:
Environment, Env.
Ego agent policy, πθego .
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs.

1: θ−i, θBR ← RandomInit(π), RandomInit(π)
2: σBR ← RandomInit(V)

3: σ−i,BR, σ−i,ego ← RandomInit(V), RandomInit(V) ▷ Init teammate and BR parameters
4: for tupdate = 1, 2, . . . , Nupdates do
5: DSP, DXP ← Interact(πθBR , πθ−i , pEnv

0), Interact(πθego , πθ−i , pEnv
0)

6: sXP ← SampleStates(DXP) ▷ Sample XP states
7: DSXP ← Interact(πθBR , πθ−i ,U(sXP)) ▷ Gather SP, XP, and SXP data
8: θBR

old , θ
−i
old ← θBR, θ−i

9: σBR
old , σ

−i,BR
old , σ−i,ego

old ← σBR, σ−i,BR, σ−i,ego ▷ Store old model parameters.
10: for kupdate = 1, 2, . . . , Nepochs do
11: Lppo-clip(θ

BR)← POL_LOSS_ADV_TARG
(
θBRθBR

old , σ
BR
old , DSP ∪DSXP, ϵ

)
12: Lppo-clip(θ

−i)← POL_LOSS_ADV_TARG
(
θ−i, θ−iold , σ

−i,BR
old , DSP ∪DSXP, ϵ

)
13: Lreg(θ

−i)← POL_LOSS_REG_TARG
(
θ−i, θ−iold , σ

−i,BR
old , σ−i,ego

old , DXP, ϵ
)

14: LV (σ
BR)← VAL_LOSS(σBR, σBR

old , DSP ∪DSXP)

15: LV (σ
−i,BR)← VAL_LOSS

(
σ−i,BR, σ−i,BR

old , DSP ∪DSXP

)
16: LV (σ

−i,ego)← VAL_LOSS
(
σ−i,ego, σ−i,ego

old , DXP

)
17: θBR ← GradDesc(θBR,∇θBRLppo-clip(θ

BR))

18: θ−i ← GradDesc
(
θ−i,∇θ−i

(
Lppo-clip(θ

−i) + Lreg(θ
−i)

))
▷ Update policies

19: σBR ← GradDesc(σBR,∇σBRLV (σ
BR))

20: σ−i,BR ← GradDesc(σ−i,BR,∇σ−i,BRLV (σ
−i,BR))

21: σ−i,ego ← GradDesc(σ−i,ego,∇σ−i,egoLV (σ
−i,ego)) ▷ Update critics.

22: end for
23: end for
24: Bπ ← Bπ ∪ ⟨θ−i⟩ ▷ Add generated teammate policy parameter
25: Return Bπ

21 of Algorithm 2 then highlight how we use the stored experiences to compute loss functions that
the trained models optimize.

Lines 11 and 12 describe how the teammate and BR policies are trained to mutually maximize
returns when interacting with each other during SP and SXP interactions. Both lines call the
POL_LOSS_ADV_TARG function, which receives (θ, θold, σold, D, ϵ) as input to evaluate the fol-
lowing, standard PPO-clip loss function that encourages return maximization and sufficient explo-
ration:

E
(s,a,r,s′)∈D

−min
(
πθ(a|s)
πθold(a|s)

A, clip
(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A

)
︸ ︷︷ ︸

PPO Clip Loss

+πθ(a|s)log (πθ(a|s))︸ ︷︷ ︸
Entropy Loss

 ,

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

where A denotes the advantage function. Our implementation of ROTATE uses an estimate of the
advantage function obtained via the Generalized Advantage Estimation (GAE) algorithm (Schulman
et al., 2015), AGAE

σold
. Meanwhile, Line 13 shows how the teammate policy is trained to maximize the

ego agent’s regret based on experiences from XP interaction. The POL_LOSS_REG_TARG func-
tion that computes a loss function that encourages the maximization of regret is generally the same
as the POL_LOSS_ADV_TARG function except for its replacement of the advantage function, A,
with a regret-based target function defined below:

Areg = Vσ−i,BR
old

(s)︸ ︷︷ ︸
≈V (s|π−i, BR(π−i))

− (r + γVσ−i,ego
old

(s′))︸ ︷︷ ︸
≈V (s|π−i,πego)

. (11)

Rather than optimizing a regret function that requires explicitly computing the return-to-go for SP
and XP interaction starting from state s, POL_LOSS_REG_TARG estimates the XP return via a 1-
step bootstrapped return using the teammate critic parameterized by σ−i,BR. Similarly, the SP return
is estimated using the teammate critic network parameterized by σ−i,ego. This results in a regret op-
timization method that uses the log-derivative trick to optimize objective functions (Williams, 1992;
Glynn, 1990). The ROTATE regret estimation method and alternative approaches to maximize
regret are further discussed in App. D.2.

Lines 14 to 16 then detail how we train critic networks that measure returns from the interaction
between the generated teammate policy and its best response or ego agent policy. We specifically call
the VAL_LOSS function that receives (σ, σold, D) to compute the standard mean squared Bellman
error (MSBE) loss, defined as:

E
(s,a,r′,s′)∈D

[(
Vσ(s)− V targ

σold
(s)

)2]
, (12)

where V targ
σold (s) := AGAE

σold
− Vσold(s) is the target value estimate.

The previously defined loss functions can be minimized using any gradient descent-based optimiza-
tion technique, as we indicate in Lines 17 to 21. In practice, our implementation uses the ADAM
optimization technique (Kingma & Ba, 2015). At the end of this teammate generation process,
Lines 24 and 25 indicate how the generated teammate policy parameter is added to a storage buffer,
which is subsequently uniformly sampled to provide teammate policies for ego agent training.

The ego agent policy’s training process proceeds according to Algorithm 3. Line 3 illustrates how
ROTATE creates different teammate policies by uniformly sampling model parameters from the
Bπ resulting from the teammate generation process. Using the experience collaborating with the
sampled policies outlined in Line 4, the ego agent’s policy parameters are updated to maximize
its returns via PPO in Line 7. The only difference between the EGO_POL_LOSS function and
POL_LOSS_ADV_TARG function in Algorithm 2 is the input used to compute the loss function.
Unlike in the EGO_POL_LOSS function, we assume that the input dataset, D, stores the historical
sequence of observed states and executed actions, h, rather than states. Likewise, we assume that the
only difference between the VAL_LOSS and EGO_VAL_LOSS function is that the latter stores the
observation-action history rather than states (Line 8). Like recent AHT learning algorithms (Zintgraf
et al., 2021; Rahman et al., 2021; Papoudakis et al., 2021), πego and V ego are conditioned on the ego
agent’s observation-action history to facilitate an adaptive πego through an improved characterization
of teammates’ policies. The history-conditioned ego architecture and other practical implementation
details are described in App. F. Finally, the ego agent update function returns the updated ego agent
policy parameters, which are provided as part of the inputs for the next call to ROTATE’s teammate
generation function.

B Baselines Overview

The main paper compares ROTATE to five baselines: PAIRED, Minimax Return, FCP, BRDiv, and
CoMeDi. Each baseline is briefly described below, followed by a discussion of the computational

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Algorithm 3 ROTATE EgoUpdate Function

Require:
Environment, Env.
Ego agent policy parameters, θego.
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs

1: σego ← Init(V) ▷ Init params of the critic networks of πego

2: for tupdate = 1, 2, . . . , Nupdates do
3: θ−i ∼ U(Bπ) ▷ Sample teammate parameters uniformly
4: D ← Interact(πθ−i , πθego , pEnv

0)

5: θego
old , σ

ego
old ← θego, σego

6: for kupdate ∈ {1, 2, . . . , Nepochs} do
7: Lπ(θ

ego)← EGO_POL_LOSS
(
θego, θego

old , σ
ego
old , D, ϵ

)
▷ Compute policy loss

8: LV (σ
ego)← EGO_VAL_LOSS

(
σego, σego

old , D, ϵ
)

▷ Compute critic loss
9: θego ← GradDesc(θego,∇θegoLπ(θ

ego)) ▷ Update policy
10: σego ← GradDesc(σego,∇σegoLV (σ

ego)) ▷ Update critic
11: end for
12: end for
13: Return θego

complexity of teammate generation baselines compared to ROTATE, and a discussion of the rela-
tionship of Mixed Play (MP) with per-state and per-trajectory regret. A discussion of implementation
details can be found in App. F.

PAIRED (Dennis et al., 2020): A UED algorithm where a regret-maximizing“adversary" agent
proposes environment variations that an allied antagonist achieves high returns on, but a protagonist
agent receives low returns on. The algorithm is directly applicable to AHT by defining a teammate
generator for the role of the adversary, a best response agent to the generated teammate for the role
of the antagonist, and an ego agent for the role of the protagonist.

Minimax Return (Morimoto & Doya, 2005; Villin et al., 2025): A common baseline in the
UED literature, with origins in robust reinforcement learning, where the objective is minimax re-
turn. Prior works in AHT have proposed generating a curriculum of teammates according to this
objective. Translated to our open-ended learning setting, the teammate generator creates teammates
that minimize the ego agent’s return, while the ego agent maximizes return.

Fictitious Co-Play (Strouse et al., 2021): A two-stage AHT algorithm where a pool of teammates
is generated by running IPPO (Yu et al., 2022) with varying seeds, and saving multiple checkpoints
to the pool. The ego agent is an IPPO agent that is trained against the pool.

BRDiv (Rahman et al., 2023): A two-stage AHT algorithm where a population of “confederate"
and best-response agent pairs is generated, and an ego agent is trained against the confederates.
BRDiv maintains a cross-play matrix containing the returns for all confederate and best-response
pairs. The diagonal returns (self-play) are maximized, while the off-diagonal returns (cross-play)
are minimized. BRDiv and LIPO (Charakorn et al., 2023) share a similar objective, where the main
differences are: (1) If xp_weight denotes the weight on the XP return, then BRDiv requires that
the coefficient on the SP return is always 1+2∗xp_weight, and (2) LIPO introduces a secondary
diversity metric based on mutual information, and (3) LIPO assumes that agents within a team (i.e.,
a confederate-BR pair) share parameters.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

CoMeDi (Sarkar et al., 2023): CoMeDi is a two-stage AHT algorithm. In the first stage, a popula-
tion of teammates is generated, and in the second stage, an ego agent is trained against the teammate
population. The teammate generation stage trains teammate policies one at a time, where the nth
teammate policy is trained to maximize its SP return, minimize its XP return with the previously
generated teammate (i.e. from among teammates 1, · · · , n − 1) that it best collaborates with, and
maximizes its “mixed-play" (MP) return. The relationship between the regret objectives described
in Section 6 and MP is further discussed in App. D.1.

B.1 Computational Complexity of ROTATE versus Teammate Generation Baselines

The computational complexity of ROTATE is compared with that of the teammate generation base-
lines, in terms of the population size and the number of objective updates. In the following, n
denotes the population size, while T indicates the number of updates needed to train an individual
population member. The precise meaning of n and T might vary with the algorithm, but is made
clear in each description.

FCP: Let T denote the number of RL updates needed to train each IPPO team and let n denote
the number of teams trained by FCP. Then, the computational complexity of FCP is O(nT).

BRDiV/LIPO: Both BRDiv (Rahman et al., 2023) and LIPO (Charakorn et al., 2023) require
sampling trajectories from each pair of agents in the population, for each update. Thus, if the total
number of updates is T and the population size is n, then the algorithm’s time complexity isO(n2T).
Due to the quadratic complexity in n, BRDiv and LIPO are typically run with smaller population
sizes, with n < 10 for all non-matrix game tasks in both original papers.

CoMeDi: Recall that CoMeDi trains population members one at a time, such that each agent is
distinct from the previously discovered teammates in the population. This necessitates performing
evaluation rollouts of the currently trained agent against all previously generated teammates at each
RL update step. Let T be the number of RL updates required to train the ith agent to convergence,
and let n denote the population size. Then CoMeDi’s time complexity is O(n2T)—making it scale
quadratically in n, similar to BRDiv and LIPO.

ROTATE: In ROTATE, a new teammate is trained to convergence for each iteration of open-
ended learning. Thus, the number of open-ended learning iterations is equal to the population size
n, where within each iteration, there are O(T) RL updates performed. Therefore, the complexity of
ROTATE is O(nT), meaning that our method scales linearly in the population size n.

C Experimental Results: RQ3 and RQ4

This section presents the results and analysis for RQ3 and RQ4 from Section 7.

RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes) We hypothesize
that collecting all previously generated teammates in a population buffer helps the ROTATE agent
improve in robustness against all previously discovered conventions. On the other hand, if there is no
population buffer, then it becomes possible for the ROTATE ego agent to forget how to collaborate
with teammate seen at earlier iterations of open-ended learning (Kirkpatrick et al., 2017), which
creates the possibility that the ego agent and teammate generator oscillates between conventions. As
shown in Fig. 6, ROTATE without the population buffer attains lower evaluation returns than the
full ROTATE method on all tasks except for AA, thus supporting the hypothesis that the population
buffer improves ego agent learning. As discussed in RQ1, AA is a unique layout where agents
can complete the task independently, even in the presence of an adversarial partner. As a corollary,
there are few meaningful cooperative conventions that can be discovered, and no scenarios where
convention mismatch leads to zero return (unlike LBF and FC).

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE
PPO on ROTATE pop
ROTATE w/o population

Figure 4: ROTATE compared to an independently trained ego agent on ROTATE’s population, and
an ablation of ROTATE without the population. The mean normalized return and 95% bootstrapped
CI’s are shown.

RQ4: Is the population generated by ROTATE useful for training an independent ego agent?
(Yes) Two-stage AHT algorithms first generate a population of teammates, and next train an ego
agent against the population. Although ROTATE’s teammate generation mechanism relies on the
learning process of a particular ego agent, here, we investigate whether the population generated
by ROTATE is useful for training independently generated ego agents. Fig. 4 (presented in the
Appendix) compares the mean evaluation returns of the ROTATE ego agent against the mean eval-
uation returns of an independently trained ego agent that was trained using the same configuration
as ROTATE. In 3/6 tasks, the ROTATE ego agent outperforms the independently trained ego agent,
while in two tasks, the two ego agents perform similarly (LBF and FC). Thus, the experiment sug-
gests that the ROTATE population is a useful population of teammates even independent of the
particular ego agent generated. The strong performance of the independently trained ego agent is
unsurprising given that it has two advantages over the ROTATE ego agent. First, the independently
trained ego agent faces a stationary distribution of training teammates compared to ROTATE, which
faces a nonstationary distribution caused by the population growing over learning iterations. Sec-
ond, the independently trained ego agent interacts with all teammates uniformly throughout training,
while the ROTATE ego agent only trains against earlier teammates for more iterations than later
teammates.

D Supplemental Results

This section presents various supplemental results. First, we describe CoMeDi’s mixed-play mech-
anism in the context of ROTATE’s per-state regret. Second, we discuss alternative estimators for
ROTATE per-state regret. Third, we present experiments comparing ROTATE to a variant with
CoMeDi-style mixed-play return maximization, and a variant using the alternative regret estimation
strategy. Next, we present and describe radar charts breaking down the performance of ROTATE
on all six tasks presented in the main paper. Finally, we present the learning curves for all variants
of ROTATE that are tested in this paper.

D.1 Discussion of CoMeDi and Mixed Play

As previously described in App. B, CoMeDi (Sarkar et al., 2023) is a two-stage teammate generation
AHT algorithm, whose teammate generation process trains one teammate per iteration, with an
objective that encourages the new teammates to be distinct from previously discovered teammates.

CoMeDi adds trained teammates policies to a teammate policy buffer, Πtrain. Each iteration begins
by identifying the teammate policy that is most compatible with the currently trained teammate π−i,

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

out of all previously generated policies:

πcomp = argmax
π−j∈Πtrain

Es∼p0 [V (s|π−i, π−j)]. (13)

The new teammate policy π−i is trained with an objective that improves the per-trajectory regret
objective (Eq. 9) by adding a term that maximizes the returns from states gathered in mixed-play,
which we describe below.

Let mixed-play starting states be sampled from states visited when π−i interacts with the mixed
policy, that uniformly samples actions from πcomp and BR(π−i) at each timestep:

pMSTART := d

(
π−i,

1

2
πcomp +

1

2
BR(π−i); p0

)
. (14)

From these starting states, CoMeDi then gathers mixed-play interaction data, where π−i interacts
with BR(π−i). The resulting mixed-play state visitation is then expressed as:

pMP := d
(
π−i,BR(π−i); pMSTART

)
. (15)

The complete objective that Sarkar et al. (2023) optimizes to train a collection of diverse teammates
is then defined as:

max
π

(Es0∼p0
[
CR(πcomp, π−i, s0)

]
+ Es∼pMP [V (s|π,BR(π))]︸ ︷︷ ︸

mixed-play return maximization

). (16)

CoMeDi (Sarkar et al., 2023) optimizes this objective to discourage π−i from learning poor ac-
tions for collaborations outside of pSP. This is because π−i is now also trained to maximize returns
in states visited during mixed-play, which resembles some states encountered while cooperating
with πcomp. Discerning whether a state is likely encountered while interacting with πcomp and conse-
quently choosing to sabotage collaboration will no longer be an optimal policy to maximize Expr. 16.

Despite the importance of using pMSTART as a starting state for data collection being questionable,
we take inspiration from CoMeDi’s maximization of V (s|π,BR(π)) outside of states from pSP. We
argue that maximizing V (s|π−i,BR(π−i)) is a key component towards making π−i act in good faith
by always choosing actions yielding optimal collective returns assuming BR(π−i) is substituted
as the partner policy. Unlike CoMeDi, ROTATE maximizes V (s|π−i,BR(π−i)) on trajectories
gathered from a starting state from pXP instead of pMSTART, which results in the second term of
Expr. 10. We formulate this objective to encourage π−i to act in good faith in states sampled from
pXP, which is visited while π−i interacts with πego. Since π−i is not sabotaging πego by selecting
actions that make collaboration impossible in pXP, the ego policy learning process becomes less
challenging. We conjecture that this leads to πego with better performances as indicated in Figure 3.

While Figure 3 compares ROTATE with CoMeDi, Figure 6 compares ROTATE with a modified
CoMeDi approach that now follows the open-ended training framework described in Algorithm 1.
In this modified version of CoMeDi, we train a newly generated teammate policy to maximize Eq. 16
while substituting πcomp with the trained πego. Rather than promoting meaningful differences with
previously generated teammate policies, this creates a teammate policy that maximizes the ego agent
policy’s per-trajectory regret while mitigating self-sabotage. This version of CoMeDi’s teammate
generation objective within the ROTATE open-ended framework is visualized in Figure 5.

D.2 Alternatives Estimators for Per-State Regret

This section discusses the approach employed by ROTATE in Algorithm 2 to estimate the per-state
regret objective under a specific distribution, as well as an alternative estimation method. Experi-
ments comparing the two approaches are also presented and discussed.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Mixed Play

XP

SP

MP

until random t

minimize VXP

maximize VMP

maximize VSP

Objective = VSP - 𝛼VXP + 𝛽VMP

BR actionEgo action

Initial State

Self Play (SP) Cross Play (XP)

Initial State Distribution

State after Mixed Play (MP)

V = Return

Figure 5: CoMeDi-style mixed-play objective for teammate generation, in the context of open-ended AHT.

Recall that the per-state regret under states sampled from a distribution D is defined as:

Es∼D[CR(πego, π−i, s)] = Es∼D
[
V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego)] (17)

= Es∼D
[
V
(
s|π−i, BR(π−i)

)]︸ ︷︷ ︸
SP return

−Es∼D
[
V
(
s|π−i, πego)]︸ ︷︷ ︸

XP return

. (18)

In practice, we can use the policy gradient method to maximize regret by estimating the self-play
returns and cross-play returns in Eq. 18 using the n-step return, Monte Carlo-based return-to-go
estimate, or generally any variant of the advantage function estimator. The choice of return esti-
mates affects the result of our teammate generation process through the bias-variance tradeoff when
estimating regret. Combined with the potentially different choices of D, we can design different
variants of ROTATE based on how regret is estimated.

ROTATE Per-State Regret: Line 13 in Algorithm 2 and Eq. 11 outline how ROTATE maximizes
per-state regret in states visited during XP interaction (denoted by pXP), where SP and XP returns
are estimated via a trained critic and a 1-step return estimate, respectively. As a reminder, ROTATE
employs the following target function to train the regret-maximizing teammate policy:

Es∼pXP

 Vσ−i,BR(s)︸ ︷︷ ︸
SP return estimate

− (r + γVσ−i,ego(s′))︸ ︷︷ ︸
XP return estimate

 . (19)

We maximize regret in states sampled from pXP to encourage the design of teammate policies that
provide a learning challenge while also acting in good faith, thereby maximizing cooperative returns
assuming interactions with its best-response policy, while interacting with the ego agent’s policy.
Despite potentially providing biased estimates, training a value function to estimate self-play returns
can reduce the variance caused by environment stochasticity, compared to a Monte Carlo return-to-
go estimate.

The critic network estimating teammate-BR returns, Vσ−i,BR(s), is trained on interactions initialized
from states sampled from pXP (SXP interactions), as shown in Line 15 of Algorithm 2. This enables
the teammate-BR critic network to accurately estimate SP returns from pXP states. Meanwhile,
a 1-step estimate of XP returns is made possible by storage of rewards experienced during XP
interactions (Line 5 of Algorithm 2) and the training of a value function to estimate XP returns
(Line 16 of Algorithm 2). Utilizing a 1-step estimate produces lower variance than using a Monte
Carlo-based return-to-go estimate, while also yielding less bias than predicting returns solely based
on the trained critic network’s value.

Estimating Per-State Regret via Monte Carlo Returns: An alternative approach for estimating is
to use a Monte Carlo-based return-to-go estimate for both SP and XP return estimates. Assuming

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

that both interaction starts from states encountered during XP interaction, the policy updates under
this alternative approach maximize the following target function:

Est∼pXP

Eat′∼[BR(π−i),π−i],P

[∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[∞∑
l=0

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
XP return estimate

 . (20)

We refer to this as the Monte Carlo per-state regret. However, starting both SP and XP interactions
from all states visited in XP can be computationally prohibitive. More importantly, the Monte
Carlo-based return-to-go estimates of SP and XP returns have high variance, especially when the
environment transition function and the trained policies are highly stochastic.

Estimating Per-State Regret via Generalized Advantage Estimators: A final approach for es-
timating Eq. 17 is to substitute both return-to-go estimates in Expr. 20 with a generalized advantage
estimator (Schulman et al., 2015) based on SP and XP interactions. This results in the maximization
of the following target function during the teammate policy updates:

Est∼pXP


Eat′∼[BR(π−i),π−i],P

[∞∑
t′=t

(γλ)t
′
δ−i,BR
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[∞∑
t′=t

(γλ)t
′
δ−i,ego
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
XP return estimate


,

(21)
where we define δ−i,BR

t and δ−i,ego
t as:

δ−i,BR
t = rt + γVσ−i,BR(st+1)− Vσ−i,BR(st),

δ−i,ego
t = rt + γVσ−i,ego(st+1)− Vσ−i,ego(st).

We refer to an instance of the ROTATE algorithm that maximizes regret using this target function
as ROTATE with GAE per-state regret. In practice, we collect data for SP GAE maximization and
XP GAE minimization by first independently sampling two collections of states fromDSXP andDXP
respectively. Next, the states sampled from DSXP are used to maximize the GAE from SXP interac-
tions, while states sampled from DXP are utilized to minimize the GAE from XP interactions. The
γ and λ parameters used during the computation of the generalized advantage estimator are mecha-
nisms to regulate the bias and variance of the regret estimation (Schulman et al., 2015), effectively
providing a different bias-variance tradeoff compared to the previously mentioned methods.

D.3 Experimental Comparisons of ROTATE Teammate Generation Objectives

Figure 6 compares the version of ROTATE presented in the main paper and Algorithm 2, to RO-
TATE with GAE per-state regret, and a version of ROTATE where expected returns are maxi-
mized in states sampled from pMP rather than pSXP, which resembles the mixed-play objective of
CoMeDi (Sarkar et al., 2023). We do not implement the Monte Carlo per-state regret estimation
approach described above, as it is impractical and unlikely to yield better results than using value
functions to estimate regret. ROTATE and ROTATE with GAE regret yield mixed results as nei-
ther approach consistently beats the other in all environments. We suspect this is caused by the
policy gradient’s different bias and variance levels when estimating regret using these two methods.
Meanwhile, ROTATE’s maximization of returns in states from pSXP leads to higher normalized re-
turns than maximizing CoMeDi’s mixed-play objective in all environments except for Overcooked’s
Asymmetric Advantages (AA) setting. Following the difference in starting states of trajectories for
which these two maximize self-play returns, we conjecture that this is because ROTATE empiri-
cally teammate policies with good faith in states from pXP while the CoMeDi-like approach imposes

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE
ROTATE+CoMeDi MP
ROTATE (GAE regret)

Figure 6: ROTATE vs ROTATE with CoMeDi’s mixed-play (MP) objective and ROTATE with
GAE regret.

the same thing in states from pMSTART. Imposing good faith within policies in pXP is likely more
important for training an ego agent that initially interacts with π−i during training by visiting states
from pXP.

D.4 ROTATE vs Baselines—Radar Charts

We break down the performance of ROTATE and all baseline methods by individual evaluation
teammate policies as radar charts in Fig. 7. The radar charts show that ROTATE achieves higher
performance across a larger number and variety of evaluation teammates than baselines. The best
baseline, CoMeDi, achieves unusually high returns with the heuristic-based evaluation teammates
on LBF, CR, and CC. We hypothesize that this trend occurs because CoMeDi explicitly optimizes
for novel conventions that do not match existing conventions. However, on these tasks, CoMeDi
does not perform as well as BRDiv teammates, which are trained to maximize the adversarial diver-
sity objective. The radar charts also show that the second-best baseline, FCP, is strong specifically
against IPPO teammates and relatively weaker on heuristics and BRDiv teammates, especially in
CR and CC. As mentioned in the main paper, we attribute FCP’s relative strength on IPPO evalua-
tion teammates to the fact that the IPPO evaluation teammates are closer to the training teammate
distribution constructed by FCP. While FCP is not especially strong against the “IPPO pass" agents
in CC, these agents were trained via reward shaping to solve the task by passing onions across the
counter rather than navigating around the counter, which is the policy found by IPPO without reward
shaping (denoted as “IPPO CC" in the figures).

D.5 Learning Curves

Figure 8 shows learning curves for ROTATE and all ROTATE variations tested in this paper, where
the x-axis is the open-ended learning iteration, and the y-axis corresponds to the mean evaluation
return. On 4/6 tasks (LBF, CR, CC, and FC), ROTATE has better sample efficiency than variants.
On 3/6 tasks (LBF, CR, and FC), ROTATE dominates variants at almost all points in learning.

E Experimental Tasks

Experiments in the main paper are conducted on Jax re-implementations of Level-Based Foraging
(LBF) (Albrecht & Ramamoorthy, 2013; Bonnet et al., 2023), and five tasks from the Overcooked
suite—Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit (CC), Coordination
Ring (CoR), and Forced Coordination (FC) (Carroll et al., 2019; Rutherford et al., 2024b). Each
task is described below.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

ippo_mlp (0)

ippo_mlp_s2c0 (2, 0)

brdiv-conf1 (0)

brdiv-conf1 (1)brdiv-conf1 (2)

brdiv-conf2 (0)

brdiv-conf2 (1)

seq_agent_lexi

seq_agent_rlexi

seq_agent_col seq_agent_rcol
seq_agent_nearest

seq_agent_farthest

0 0.2
0.4
0.6
0.8
1

ROTATE
Minimax
PAIRED
FCP
BRDiv
CoMeDi

(a) LBF.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf (0)

brdiv-conf (1)

independent_agent_0.4

independent_agent_0
onion_agent_0.1

plate_agent_0.1

0 0.2
0.4
0.6
0.8
1

(b) Cramped Room.

ippo_mlp_cc (0)

ippo_mlp_cc (1)

ippo_mlp_cc (2)
ippo_mlp_pass (0)

ippo_mlp_pass (1)

ippo_mlp_pass (2)

independent_agent_0

onion_agent_0

plate_agent_0
onion_agent_0.9

plate_agent_0.9

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) Counter Circuit.

ippo_mlp (1)

ippo_mlp (2)

ippo_mlp (3)
brdiv-conf1 (1)

brdiv-conf1 (2)

brdiv-conf2 (0)

independent_agent_0
onion_agent_0

plate_agent_0

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) Coordination Ring.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf1 (0)

brdiv-conf1 (2)

brdiv-conf2 (1)

brdiv-conf3 (0)
brdiv-conf3 (2)

independent_agent_0.

0 0.2 0.4 0.6 0.8 1

(e) Forced Coordination.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf (0)

brdiv-conf (1)

brdiv-conf (2)

independent_agent_0
onion_agent_0

plate_agent_0

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(f) Asymmetric Advantages.

Figure 7: Normalized mean returns of ROTATE and all baselines across all tasks, broken down by
evaluation teammate in Πeval. Legend shown for LBF applies for all plots.

Level-Based Foraging (LBF) Originally introduced by Albrecht & Ramamoorthy (2013), Level-
Based Foraging is a mixed cooperative-competitive logistics problem where N players interact
within a rectangular grid world to obtain k foods. All players and foods have a positive integer
level, where groups of one to four players may only load (collect) a food if the sum of player levels
is greater than the food’s level. A food’s level is configured so that it is always possible to load it.

We use the Jax re-implementation of LBF by Bonnet et al. (2023), which was based on the imple-
mentation by Christianos et al. (2020). The implementation permits the user to specify the number
of players, number of foods, grid world size, level of observability, and whether to set the food level
equal to the sum to player levels in order to force players to coordinate to load each food.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

0 5 10 15 20 25 30
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Pe

rc
en

t E
at

en
 (N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(a) LBF.

0 5 10 15 20 25 30
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(b) Asymmetric Advantages.

0 5 10 15 20 25 30
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(c) Cramped Room.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(d) Counter Circuit.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(e) Forced Coordination.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(f) Coordination Ring.

Figure 8: Learning curves of ROTATE and all variations of ROTATE considered in this paper.
Normalized mean returns and bootstrapped 95% confidence intervals on Πeval are shown.

The experiments in this paper configured the LBF environment to a 7 × 7 grid, where two players
interact to collect three foods. Our LBF configuration is shown in Fig. 9. Each player observes the
full environment state, allowing each player to observe the locations of other agents and all foods
and the number of time steps elapsed in the current episode. Each player has six discrete actions:
up, down, left, right, no-op, and load, where the last action is the special food collection action. A
food may only be collected if the sum of player levels is greater than the level of the food. Since this
paper focuses on fully cooperative scenarios, we set the food level equal to the level of both players,
so all foods require cooperation in order to be collected. When a food is collected, both players
receive an identical reward, which is normalized such that the maximum return in an episode is 0.5.
An episode terminates if an invalid action is taken, players collide, or when 100 time steps have
passed. Player and food locations are randomized for each episode.

Figure 9: Level-based foraging
environment. The apple icons de-
note food. The number on the
icon indicates each player’s and
food’s level. The AHT player is
indicated by the red box.

Overcooked Introduced by Carroll et al. (2019), the Overcooked
suite is a set of two-player collaborative cooking tasks, based on
the commercially successful Overcooked video game. Designed to
study human-AI collaboration, the original Overcooked suite con-

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

sists of five simple environment layouts, where two agents collab-
orate within a grid world kitchen to cook and deliver onion soups.
While Carroll et al. (2019) introduced Overcooked to study human-
AI coordination, Overcooked has become popularized for AHT re-
search as well (Charakorn et al., 2023; Sarkar et al., 2023; Erlebach
& Cook, 2024).

We use the Jax re-implementation of the Overcooked suite
by Rutherford et al. (2024b), which is based on the original imple-
mentation by Carroll et al. (2019). Later versions of Overcooked
include features such as multiple dish types, order lists, and alterna-
tive layouts, but this paper considers only the five original Over-
cooked layouts: Cramped Room (CR), Asymmetric Advantages
(AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced
Coordination (FC).

The objective for all five tasks is to deliver as many onion soups
as possible, where the only difference between the tasks is the environment layout, as shown in
Fig. 10. To deliver an onion soup, players must place three onions in a pot to cook, use a plate to
pick up the cooked soup, and send the plated soup to the delivery location. Each player observes
the state and location of all environment features (counters, pots, delivery, onions, and plates), the
position and orientation of both players, and an urgency indicator, which is 1 if there are 40 or
fewer remaining time steps, and 0 otherwise. Each player has six discrete actions, consisting of
the four movement actions, interact, and no-op. The reward function awards both agents +20 upon
successfully delivering a dish, which is the return reported in the experimental results. To improve
sample efficiency, all algorithms are trained using a shaped reward function that provides each agent
an additional reward of 0.1 for picking up an onion, 0.5 for placing an onion in the pot, 0.1 for
picking up a plate, and 1.0 for picking up a soup from the pot with a plate. An episode terminates
after 400 time steps. Player locations are randomized in each episode. In divided layouts such as
AA and FC, we ensure that a player is spawned on each half of the layout.

(a) Cramped
Room.

(b) Coord.
Ring.

(c) Forced Co-
ord.

(d) Asymmetric Advantages. (e) Counter Circuit.

Figure 10: The five classic Overcooked layouts. Each yellow circle is an onion, while white circles are plates.
Grid spaces with multiple yellow (resp. white) circles are onion (resp. plate) piles, which agents must visit to
pick up an onion (or plate). The green square is the delivery location, where finished dishes must be sent to
receive a reward. Black squares denote free space, while adjacent gray spaces are empty counters. A black pot
icon indicates pots, while agents are shown as red and blue pointers. The AHT agent is highlighted.

F Implementation Details

As implementations of prior methods use PyTorch, but this project uses Jax, we re-implemented
all methods in this paper, using PPO (Schulman et al., 2017) with Generalized Advantage Esti-
mation (GAE) (Schulman et al., 2015) as a base RL algorithm and Adam (Kingma & Ba, 2015)
as the default optimizer. An anonymized version of the code is released for reproducibility at
https://anonymous.4open.science/r/rotate/, and we recommend consulting it for
a full understanding of method implementations. Pseudocode for ROTATE is provided in App. A.
This section discusses implementation details such as training time choices, agent architectures, and
key hyperparameters for ROTATE and all baselines.

https://anonymous.4open.science/r/rotate/

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

F.1 Training Compute

For fair comparison, all open-ended methods (ROTATE and all variations, PAIRED, Minimax Re-
turn) were trained for the same number of open-ended learning iterations and a similar number of
environment interactions. For two-stage teammate generation approaches (FCP, BRDiv, CoMeDi),
the teammate generation stage is run using a similar amount of compute as the original implemen-
tations, while the ego agent training stage is run for a sufficiently large number of steps to allow
convergence. We describe the amount of compute used for the teammate generation stage of each
baseline below.

In particular, the FCP population is generated by training 22-23 seeds of IPPO with 5 checkpoints
per seed for a population of approximately 110 agents—similar to Strouse et al. (2021), who trained
32 seeds of IPPO with 3 checkpoints per seed for a population size of 96 agents. On the other hand,
BRDiv was trained with a population size of 3-4 agents, until we observed that each agent’s learn-
ing converged. While we attempted training BRDiv with a larger population size, the algorithm was
prone to discovering degenerate solutions where only 2-3 agents in the population could discover so-
lutions with high SP returns, and all other agents in the population would have zero returns. Finally,
CoMeDi was trained with a population size of 10 agents, until each agent’s learning converged.
We attempted to train CoMeDi with a larger population size, but due to the algorithm’s quadratic
complexity in the population size, its runtime surpassed the available time budget. Nevertheless, the
population size of 10 forms a reasonable comparison to ROTATE because (1) the original paper
used a population size of 8 for all Overcooked tasks, and (2) the configuration of CoMeDi in this
paper runs for a similar wall-clock time as ROTATE.

F.2 Agent Architectures

For all methods considered in this paper, agents are implemented using neural networks and an
actor-critic architecture, as is standard for PPO-based RL algorithms. All AHT methods implement
policies without parameter sharing (Christianos et al., 2020), to enable greater behavioral diversity.
Specifics for ego agents, teammates, and best response agents are described below.

As mentioned in the main paper, ego agents are history-conditioned. Thus, ego agents are imple-
mented with the S5 actor-critic architecture, a recently introduced recurrent architecture shown to
have stronger long-term memory than prior types of recurrent architectures. Another advantage
of the S5 architecture over typical recurrent architectures (e.g., LSTMs) is that it is parallelizable
during training, allowing significant speedups in Jax (Lu et al., 2023).

On the other hand, teammates and best response agents are state-based. Best response agents are
implemented with fully connected neural networks. Teammates are also based on fully connected
neural networks, but the precise architecture varies based on the algorithm. For methods where
the teammate only interacts with itself (FCP) or with the ego agent (Minimax Return), a standard
actor-critic architecture is used. However, for open-ended learning methods that optimize regret
(ROTATE and PAIRED), or for teammate generation methods that optimize adversarial diversity
(ComeDi and BRDiv), teammates must estimate returns when interacting with multiple agents.
Thus, for these methods, the teammate architecture includes a critic for each type of interaction.

In particular, for ROTATE and PAIRED, the teammate must estimate returns when interacting with
the ego agent and its best response, and so it maintains a critic network for each partner type. For
CoMeDi and BRDiv, given a population with n agents, each teammate must estimate the return
when interacting with the other n − 1 agents in the population. As it would be impractical to
maintain n − 1 critics for each teammate, the teammate instead uses a critic that conditions on
the agent ID of a candidate partner agent—in effect, implementing the n − 1 critics via parameter
sharing (Christianos et al., 2020).

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Task LBF CR AA CC CoR FC

Timesteps 3e5, 1e6 1e6 1e6 1e6, 3e6 3e6 1e6, 3e6,
1e7

Number
envs

8, 16 8, 16 8 8, 16 8 8

Epochs 7, 15 15 15 15, 30 15 15

Minibatches 4, 8 4, 8, 16,
32

16 16 16 16

Clip-Eps 0.03, 0.05 0.03, 0.05,
0.10, 0.15,
0.2, 0.3

0.2, 0.3 0.1, 0.2 0.1, 0.2,
0.3

0.1, 0.2

Ent-Coef 5e-3, 0.01,
0.03, 0.05

5e-3, 0.01,
0.03, 0.05

0.01, 0.02 0.01, 0.03,
0.05

0.001,
0.01, 0.05

0.01, 0.05

LR 1e-4 1e-4 1e-4, 1e-3 1e-4, 1e-3 1e-4, 5e-4,
1e-3

1e-4, 5e-4,
1e-3

Anneal
LR

true, false true, false true true, false true true

Table 1: Hyperparameters for IPPO.

LBF CR AA CC CoR FC

Timesteps 4.5e7 4.5e7 4.5e7 9e7 9e7 9e7

XP Coefficient 0.1, 0.75, 1, 10 1, 10 10 0.01, 10 0.01, 10 0.01, 0.1, 0.5, 1, 10

Population size 3, 4, 5, 10 2, 3, 4, 5 3, 4 3, 4 3, 4 3, 4

Num Envs 8, 32 8, 32 8, 32 8, 32 8, 32 8, 32
LR 1e-4, 5e-4 1e-4 1e-4 1e-3 1e-3, 5e-4 1e-3, 5e-4
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Clip-Eps 0.03, 0.05 0.05, 0.2 0.3 0.01, 0.1 0.05, 0.1 0.05, 0.1

Table 2: Hyperparameters for the teammate generation stage of BRDiv.

F.3 Hyperparameters

This section presents the hyperparameters for ROTATE (Table 3), baseline methods (Tables 2 and 4
to 8), and training evaluation teammates with IPPO (Table 1). Note that hyperparameters for the two-
stage teammate generation methods are presented in separate tables, where those corresponding to
the shared ego agent training stage are presented in Table 4. All experiments in the paper were
performed with a discount factor of γ = 0.99 and λGAE = 0.95.

Hyperparameters were searched for IPPO, BRDiv, and ROTATE, in that order, with the search for
earlier methods informing initial hyperparameter values for later methods. Based on prior experience
with PPO, we primarily searched the number of environments, epochs, minibatches, learning rate,
entropy coefficient, the epsilon used for clipping the PPO objective, and whether to anneal the
learning rate. For each hyperparameter, the searched values are listed in the tables, and selected
values are bolded. We performed the search manually, typically varying one parameter over the
listed range while holding others fixed, and varying parameters jointly only when varying one at a
time did not yield desired results.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

LBF CR AA CC CoR FC

OEL Iterations 30 30 30 20 20 20

Num Envs 16 16 16 16 16 16

Regret-SP
Weight

1, 2 1, 3 1, 2 1, 2 1, 2 1, 2

Minibatches 4, 8 8 8 8 8 8

Timesteps per
Iter (Ego)

2e6 2e6 2e6 6e6 6e6 6e6

Epochs (Ego) 5, 10, 20 10, 15 10 10 10 5, 10

Ent-Coef (Ego) 1e-4, 1e-3,
0.01, 0.05

1e-4, 1e-3,
1e-2

1e-3, 0.01 1e-3, 0.05 1e-3, 0.05 1e-4, 1e-3,
1e-2

LR (Ego) 5e-5, 1e-4,
1e-3

1e-5, 3e-5,
5e-5, 1e-4

1e-5, 3e-5,
5e-5, 1e-4

3e-5, 5e-5,
1e-3

1e-5, 3e-5,
5e-5, 1e-3

8e-6, 1e-5,
3e-5, 5e-5,
1e-4

Eps-Clip (Ego) 0.05, 0.1 0.1, 0.2 0.1, 0.3 0.1 0.1 0.1

Anneal LR (Ego) true, false true, false true, false true, false true, false true, false
Timesteps per
Iter (T)

1e7 6e6 6e6 1.6e7 1.6e7 1.6e7

Epochs (T) 20 20 20 20 20 20

Ent-Coef (T) 0.05, 0.01 0.01 0.01 0.05 0.05 0.01, 0.05
LR (T) 1e-4, 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3, 1e-4

Clip-Eps (T) 0.1 0.1, 0.2 0.3 0.1 0.1 0.1, 0.2

Anneal LR (T) true, false true, false false false false true, false

Table 3: Hyperparameters for ROTATE. Hyperparameters specific to the teammate training process
are marked by "(T)".

LBF CR AA CC CoR FC

Total Timesteps 3e7 3e7 3e7 6e7 6e7 6e7

Num Envs 8 8 8 8 8 8

LR 5e-5 5e-5 5e-5 5e-5 3e-5 1e-5

Epochs 10 10 10 10 10 5

Minibatches 4 4 4 4 4 4

Ent-Coef 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4

Clip-Eps 0.1 0.1 0.1 0.1 0.1 0.1

Anneal LR false false true true true true

Table 4: Hyperparameters for PPO ego agent for all teammate generation methods.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

LBF CR AA CC CoR FC

Timesteps Per Agent 2e6 2e6 2e6 4e6 4e6 4e6

Num Seeds 23 23 23 22 22 22

Num Checkpoints 5 5 5 5 5 5

Num Envs 8 8 8 8 8 8

LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 16 16 16 16 16

Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1

Anneal LR true true true true true true

Table 5: Hyperparameters for teammate generation stage of FCP.

LBF CR AA CC CoR FC

Timesteps Per Iteration 6e6 6e6 6e6 1e7 1e7 1e7

Population Size 10 10 10 10 10 10

Num Envs 16 16 16 16 16 16

LR 5e-4 1e-4 1e-4 1e-3 5e-4 5e-4

Epochs 15 15 15 15 15 15

Minibatches 8 8 8 8 8 8

Ent-Coef 1e-3 0.01 0.01 0.05 0.1 0.01

Eps-Clip 0.05 0.05 0.3 0.01 0.05 0.05

Anneal LR false false false false false false

α 0.2 1.0 1.0 1.0 1.0 1.0

β 0.4 0.5 0.5 0.5 0.5 0.5

Table 6: Hyperparameters for the teammate generation stage of CoMeDi.

LBF CR AA CC CoR FC

Timesteps 7.5e7 7.5e7 7.5e7 1.5e8 1.5e8 1.5e8

Num Seeds 5 5 5 5 5 5

Num Checkpoints 10 10 10 10 10 10

Num Envs 16 16 16 16 16 16

LR 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 8 8 8 8 8

Ent-Coef 0.05 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.1 0.2 0.3 0.1 0.1 0.1

Anneal LR false false false false false false

Table 7: Hyperparameters for PAIRED.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

LBF CR AA CC CoR FC

OEL Iterations 30 30 30 20 20 20

Num Envs 16 16 16 16 16 16

Timesteps Per Iter (Ego) 1e6 1e6 1e6 3e6 3e6 3e6

Timesteps Per Iter (T) 1e6 1e6 1e6 3e6 3e6 3e6

LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3

Epochs 15 15 15 15 15 15

Minibatches 4 8 8 8 8 8

Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05

Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1

Anneal LR false false false false false false

Table 8: Hyperparameters for Minimax Return. Hyperparameters specific to the teammate training
process are marked by "(T)".

Due to compute constraints, hyperparameters for FCP, CoMeDi, PAIRED, and Minimax Return
were set based on knowledge of appropriate ranges gained from doing the hyperparameter searches
over IPPO, BRDiv, and ROTATE.

G Evaluation Teammate Details

As described in Section 7 of the main paper, evaluation teammates were constructed using three
strategies: training IPPO teammates in self-play using varied seeds and reward shaping, training
teammates with BRDiv, and manually programming heuristic agents. Note that the evaluation team-
mates trained using IPPO and BRDiv were trained using different seeds than those used for training
ROTATE and baseline methods.

The teammate construction procedure results in distinct teammate archetypes. Generally, IPPO
agents execute straightforward, return-maximizing strategies. On the other hand, since BRDiv
agents are trained to maximize self-play returns with their best response partner and to minimize
cross-play returns with all other best response policies in the population, the generated teammates
display more adversarial behavior compared to IPPO and heuristics. Coefficients on the SP and XP
returns were carefully tuned to ensure that the behavior was not too adversarial, which we opera-
tionalized as teammates where the SP returns were high, but the XP returns were near zero.

Finally, the manually programmed heuristic agents have a large range of skills and levels of deter-
minism. The LBF heuristics are planning-based agents that deterministically attempt to collect the
apples in a specific order. Given a best response partner, the LBF heuristics can achieve the opti-
mal task return in LBF. The Overcooked heuristics execute pre-programmed roles that are agnostic
to the layout and some basic collision-avoidance logic. The "onion" heuristic collects onions and
places them in non-full pots. The "plate" heuristic plates soups that are ready, and delivers them.
The "independent" heuristic attempts to fulfill both roles by itself. All three heuristic types have a
user-specified parameter that defines the probability that the agent places whatever it is holding on
a nearby counter. The feature serves two purposes: first, it creates a larger space of behaviors, and
second, it allows the heuristics to work for the FC task, where the agent in the left half of the kitchen
must pass onions and plates to the right, while the agent in the right half must pick up resources
from the dividing counter, cook soup, and deliver.

Descriptions of the evaluation teammates for each task and estimated best response returns are pro-
vided in Tables 9 to 14.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Name Description Est. BR Return

brdiv_conf1(0) Teammate trained by BRDiv. 97.396

brdiv_conf1(1) - 100.0

brdiv_conf1(2) - 89.583

brdiv_conf2(0) - 100.0

brdiv_conf2(1) - 62.5

ippo_mlp(0) Teammate trained by IPPO to maximize return. 100.0

ippo_mlp_s2c0(2,0) An intermediate checkpoint of a teammate trained
by IPPO to maximize return.

96.354

seq_agent_col Planning agent that collects food in column-major
order (left to right, top to bottom).

100.0

seq_agent_rcol Planning agent that collects food in reverse
column-major order (right to left, bottom to top).

100.0

seq_agent_lexi Planning agent that collects food in lexicographic
order (top to bottom, left to right).

100.0

seq_agent_rlexi Planning agent that collects food in reverse lexi-
cographic order (bottom to top, right to left).

100.0

seq_agent_nearest Planning agent that collects food in nearest to far-
thest order, based on the Manhattan distance from
the agent’s initial position.

100.0

seq_agent_farthest Planning agent that collects food in farthest to
nearest order, based on the Manhattan distance
from the agent’s initial position.

100.0

Table 9: Evaluation teammates for LBF and estimated best response returns (percent eaten). Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

brdiv_conf(0) Teammate trained by BRDiv. 214.063

brdiv_conf(1) - 240.940

ippo_mlp(0) Teammate trained by IPPO to maximize return. 256.875

ippo_mlp(1) - 253.750

ippo_mlp(2) - 249.686

independent_agent_0.4 Agent programmed to cook and deliver soups. If
holding item, 40% chance of placing item on the
counter.

197.188

independent_agent_0 Agent programmed to cook and deliver soups. 132.50

onion_agent_0.1 Agent programmed to place onions in non-full
pots. If holding item, 10% chance of placing item
on counter.

146.875

plate_agent_0.1 Agent programmed to plate finished soups and de-
liver. If holding item, 10% chance of placing item
on counter.

191.250

Table 10: Evaluation teammates for Cramped Room and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Name Description Est. BR Return

brdiv_conf(0) Teammate trained by BRDiv. 286.875

brdiv_conf(1) - 335.625

brdiv_conf(2) - 333.750

ippo_mlp(0) Teammate trained by IPPO to maximize return. 382.50

ippo_mlp(1) - 369.375

ippo_mlp(2) - 312.50

independent_agent_0 Agent programmed to cook and deliver soups. 308.125

onion_agent_0 Agent programmed to place onions in non-full pots. 301.250

plate_agent_0 Agent programmed to place onions in non-full pots. 285.0

Table 11: Evaluation teammates for Asymmetric Advantages and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

ippo_mlp_cc(0) Teammate trained by IPPO to maximize return. Nav-
igates counterclockwise around counter.

200.625

ippo_mlp_cc(1) - 198.120

ippo_mlp_cc(2) - 194.375

ippo_mlp_pass(0) Teammate trained by IPPO+reward shaping to pass
onions across the counter.

137.813

ippo_mlp_pass(1) - 103.125

ippo_mlp_pass(2) - 170.0

independent_agent_0 Agent programmed to cook and deliver soups. 77.189

onion_agent_0.9 Agent programmed to place onions in non-full pots. If
holding item, 90% chance of placing item on counter.

80.0

onion_agent_0 Agent programmed to place onions in non-full pots. 81.563

plate_agent_0.9 Agent programmed to plate finished soups and de-
liver. If holding item, 90% chance of placing item
on counter.

97.189

plate_agent_0 Agent programmed to place onions in non-full pots. 76.875

Table 12: Evaluation teammates for Counter Circuit and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

Name Description Est. BR Return

brdiv_conf1(1) Teammate trained by BRDiv. 161.250

brdiv_conf1(2) - 183.440

brdiv_conf2(0) - 142.810

ippo_mlp(1) Teammate trained by IPPO to maximize return. 249.688

ippo_mlp(2) - 246.560

ippo_mlp(3) - 246.560

independent_agent_0 Agent programmed to cook and deliver soups. 136.250

onion_agent_0 Agent programmed to place onions in non-full pots. 72.50

plate_agent_0 Agent programmed to place onions in non-full pots. 110.938

Table 13: Evaluation teammates for Coordination Ring and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return

brdiv_conf1(0) Teammate trained by BRDiv. 131.560

brdiv_conf1(2) - 184.690

brdiv_conf2(1) - 143.750

brdiv_conf3(0) - 71.250

brdiv_conf3(2) - 174.690

ippo_mlp(0) Teammate trained by IPPO to maximize return. 220.0

ippo_mlp(1) - 214.380

ippo_mlp(2) - 225.620

independent_agent_0.6 Agent programmed to cook and deliver soups. If
holding item, 60% chance of placing item on the
counter.

81.250

Table 14: Evaluation teammates for Forced Coordination and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork

Evaluation Return Normalization Details. The lower return bound is set to zero since a poor
teammate could always cause a zero return in all tasks considered. Ideally, the upper return bounds
would be the returns achieved with the theoretically optimal best response teammate for each evalu-
ation teammate. To approximate this, we instead set the upper bound equal to the maximum average
return achieved by any method, for each evaluation teammate.

As described in Section 7, our normalized return metric is similar to the BRProx metric recom-
mended by Wang et al. (2024b). The main difference is that we aggregate results using the mean
rather than the interquartile mean (IQM), due to challenges around determining appropriate upper
bounds for return normalization. In particular, during method development, we used looser BR re-
turn estimates to perform return normalization, leading to normalized returns often surpassing 1.0
for certain teammates. Under such conditions, aggregating results using the IQM led to entirely
dropping results corresponding to particular teammates.

H Compute infrastructure

Experiments were performed on two servers, each with the following specifications:

• CPUs: two Intel(R) Xeon(R) Gold 6342 CPUs, each with 24 cores and two threads per core.

• GPUs: four NVIDIA A100 GPUs, each with 81920 MiB VRAM.

The experiments in this paper were implemented in Jax and parallelized across seeds. On the servers
above, each method took approximately 4-6 hours of wall-clock time to run.

