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Abstract

Safety is one of the crucial concerns for the real-world application of reinforcement
learning (RL). Previous works consider the safe exploration problem as Constrained
Markov Decision Process (CMDP), where the policies are being optimized under
constraints. However, when encountering any potential danger, human tends to
stop immediately and rarely learns to behave safely in danger. Moreover, the off-
policy learning nature of humans guarantees high learning efficiency in risky tasks.
Motivated by human learning, we introduce a Minimalist Off-Policy Approach
(MOPA) to address Safe-RL problem. We first define the Early Terminated MDP
(ET-MDP) as a special type of MDPs that has the same optimal value function
as its CMDP counterpart. An off-policy learning algorithm MOPA based on
recurrent models is then proposed to solve the ET-MDP, which thereby solves the
corresponding CMDP. Experiments on various Safe-RL tasks show a substantial
improvement over previous methods that directly solve CMDP, in terms of higher
asymptotic performance and better learning efficiency.

1 Introduction

While reinforcement learning (RL) achieves great successes in solving challenging decision making
problems, several critical issues remain to be addressed before its real-world applications. Safety
concern is one of those demanding issues [1]. As the learning paradigm of RL is composed of
exploration and exploitation with experiences from trial-and-error [2], the agents need to attempt a
wide range of states and actions to better estimate their values, some of which are not safe and may
lead to major damage.

To tackle the Safe-RL problem, Altman [3] defines the Constrained Markov Decision Processes
(CMDPs), where the policy optimization of standard RL algorithms should be executed in a con-
strained policy class. Many deep RL approaches for CMDPs are proposed after the rising of deep
neural network as the function approximators: those works mainly focus on the optimization of the
CMDP tasks, i.e., how to effectively convert a CMDP task into a solvable form. Achiam et al. [4]
extend the trust region methods [5] into the context of CMDPs and guarantees the monotonicity
of policy improvement; the Lagrangian methods, barrier (interior point) methods used in normal
constrained optimization tasks and Lyapunov methods are extended to solve the CMDPs based on
their MDP counterparts in [6–13]; another approach is based on safety-critic, where an additional
critic is learned beside the primal critic for rewards to predict the cost of possible behaviors [14–16].
Based on the CMDP formalism, almost all those previous works on are derived up on on-policy
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methods except in the work of Srinivasan et al. [16], an off-policy critic is explored to assist the
reward learning.

In general, there are two important open questions we are well-motivated to solve:

1. Can Safe-RL tasks be formulated under a framework that is suitable for off-policy learning?
2. Can the sample efficiency of Safe-RL tasks be improved with off-policy learning?

Tackling the first question opens up new possibilities of applying various off-policy algorithms in
solving Safe-RL problems, and tackling the second question leads to many potential benefits in many
real-world applications such as healthcare and finance where safety is one of the major concerns.

In this work, we address those challenges and give positive answers to both questions. To answer the
first question, our solution draws key insight from human learning that human tends to avoid danger
or cost in the learning process by immediately stopping their risky behaviors. Formally, we begin with
theoretical analysis on the problem formalism of Safe-RL, and show that those tasks—previously
solved under framework of CMDPs—can be equivalently solved through their early terminated
counterparts, which we term as ET-MDP in this work. The ET-MDP framework reveals the possibility
of solving the Safe-RL tasks with a minimalist approach: in principle, those tasks can be solved
by terminating episodes whenever the constraints are violated. To answer the second question, we
face the challenge of limited state visitation: under the proposed ET-MDP framework, a roll-out
episode will be terminated whenever an agent violates the constraints. Thereafter, the agent may be
potentially limited to a small state space, leading to the difficulty of effective learning [17]. We show
in our work that while conventional RL algorithms like TD3 [18] are not ideal choices in solving
those ET-MDP tasks, our proposed off-policy learning algorithm based on recurrent models can
properly circumvent the difficulty of limited state visitation during the learning.

We evaluate our method on a range of Safe-RL environments, including both the deterministic and the
stochastic environments with different types of constraints. MOPA shows a remarkable performance
in terms of both learning efficiency and asymptotic performance under constraints.

2 Preliminaries

Constrained Markov Decision Process. The standard formulation in solving Safe-RL tasks is
based on CMDP. We consider the typical setting of deterministic CMDP with a fixed horizon
H ∈ N+ denoted by a tuple (S,A, H, r, c, C, T ), where S and A are the state and action space;
r, c : S ×A → R denote the reward function and cost function; C ∈ R+ is the upper bound on the
permitted expected cumulative cost; T : S ×A 7→ S denotes the transition function.

We use Π to denote the stationary policy class, where Π = {π : S × A → [0, 1],
∑

a π(a|s) = 1}.
An algorithm for CMDP is to find π∗ ∈ Π as the result of the following optimization problem,

max
π∈Π

Eτ∼π,T [

H∑
t=1

rt], s.t. Eτ∼π,T [

H∑
t=1

ct] ≤ C, (1)

where the expectation is taken over the trajectory τ = (s1, a1, r1, . . . , sH , aH , rH) generated by
policy π under the environment T .

Lagrangian Method. The Lagrangian method relaxes the problem Eqn.(1) to an unconstrained
optimization problem with a penalty term

π∗ = max
π∈Π

min
λ≥0

Eτ∼π,T [

H∑
t=1

rt − λct] + λC, (2)

where λ ≥ 0 is known as the Lagrangian multiplier. Suppose the policy π is parameterized by θ, i.e.,
π = πθ, the optimization over θ and λ can be conducted iteratively through policy gradient ascent
and stochastic gradient descent respectively according to Eqn.(2). Chow et al. [11] points out that
one of the possible defects of the Lagrangian methods is the violation of constraints during training,
which is successfully solved by our proposed method.

Constrained Policy Optimization. Achiam et al. [4] proposes the Constrained Policy Optimization
(CPO), an analytical way to solve CMDP through trust region optimization. Specifically, CPO
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Table 1: Comparison between MOPA and related work. MOPA is the only method satisfies all
the following desiderata: (1) off-policy learning for sample efficiency (2) capable of tackling the
non-Markovianity in Safe-RL (3) early termination to minimize training cost.

Method Class Example w/o Human Intervention Off-Policy Backbone Marikovian Tasks Non-Markovian Tasks Model

Solve CMDP [4, 11] CPO ✓ - TRPO ✓ - CMDP

Safety-Critic [15, 24] WCSAC ✓ ✓ SAC ✓ - CMDP

Human-in-the-loop [25–27] HIRL - ✓ DQN/A3C ✓ ✓ MDP

MOPA (Ours) ✓ ✓ Recurrent Model ✓ ✓ ET-MDP

develops an approximation of Eqn.(1) by replacing the objective and constraints with surrogate
functions [4, 5] and provides theoretical analysis on the worst case performance and constraint
violation. In CPO, the policy is updated as:

πk+1 = argmax
π∈Π

E[Aπk
r,1(s, a)], s.t.J̃c(πk) ≤ C, D̄KL(π||πk) ≤ δ, (3)

wherein J̃c(πk) = Eτ∼πk,T [
∑H

t=1 ct] + Es,a[A
πk
c,1(s, a)], k = 0, 1, ...,K. Here Aπk

r,i(s, a) and
Aπk

c,i(s, a) denote the advantage functions of reward and cost at step i respectively. CPO is closely-
connected to the θ-projection approach of Chow et al. [11]. The close relationship between CPO and
the family of trust region algorithms makes it difficult to implement and extend to the existing RL
algorithms. By contrast, our proposed approach is highly flexible and easy to implement on many
algorithms in nature.

Generalization and Recurrent Models in RL. Among different approaches that address the
generalization issues in RL [19–21], Meta-RL is one of the predominant approaches that aims to learn
a good inductive bias of policy that can be quickly generalized to previously unseen tasks [22, 23].
In the meta-training phase, several tasks Dtrain = {D(k)}Kk=1 are sampled from a task distribution
Dmeta. In the meta-testing phase,Dtest = {D(k)}Nk=K+1 are sampled from the same task distribution.
Although the meta-optimization approaches [28, 29] have been successfully applied to various
image classification tasks, their performance is relatively limited in RL tasks [30]. The context
approach [31] learns a latent representation of the task and construct a context model through
recurrent networks [32, 33]. In this work, we follow Fakoor et al. [30] to use the simplest form of
meta-training, i.e., the multi-task objective: θ̂meta = argmaxθ

1
n

∑n
k=1 E[ℓ(k)(θ)], where ℓ(k)(θ)

denotes the objective evaluated on the k-th task D(k). Besides the pursuance of generalization,
recurrent models are widely used in solving partial-observable MDPs [34] or applied as memory
mechanism [35, 36]. Differently, our work introduces recurrent models to solve safe RL tasks in an
off-policy approach.

3 Related Work

Learning RL policy under safety constraints [37–39] becomes an important topic in RL community
due to the safety concerns of RL in real-world applications. For example, Richter et al. [40] applies
RL to the simulated surgical robot. Kendall et al. [41] implements RL in the autonomous driving
scenario. In those applications, the safety of the learned policy is critical and the policy should be
optimized under some safety constraints. The common practice for this problem is to involve human
interventions [25, 26] or correction of the output action [27, 42] .

Most of previous works are based on on-policy RL: CPO proposed by Achiam et al. [4] provides an
analytical solution to solve CMDP through trust region optimizations [5] yet this dependence makes
it difficult to implement and extend to other existing RL algorithms. Our approach based on ET-MDP,
on the contrary, is highly flexible and can be implemented on top of various algorithms. Another
straightforward approach to the soft constraint problem is the Lagrangian method, which relaxes the
hard-constrained optimization problem to an unconstrained one with an auxiliary penalty term. It
was found in Ray et al. [39] that the approximation errors in CPO prevent it from fully satisfying the
constraint, and Lagrangian method can find constraint-satisfying policies that attain limited returns.

There exist several works that apply off-policy learning to Safe-RL: Yang et al. [24] extended
the Lagrangian method on top of SAC and further improved over it through worse-case analysis;
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Bharadhwaj et al. [15] equips SAC with a safety-aware critic; Urpí et al. [43] focus on the safety
learning in offline settings. Yet all of those methods do not taken the non-Markovian nature of Safe-
RL problems into consideration. Note that while previous works have discussed the effectiveness of
applying early termination [44] and absorbing state [45] in constrained RL to further improve the
performance of their proposed methods [46], we show in our work such an early-termination can be
formulated in a more principled way, and work in isolation as an minimalist alternative approach for
Safe-RL. Table 1 summarizes the differences between MOPA and related works.

4 Method

In this work, we propose to handle constraints in safe RL tasks with a minimalist approach: an
early termination is triggered whenever the learning policy violates the constraints. Such an early
termination is previously used as a trick to improve the sample efficiency of solving regular MDPs [47]:
terminating bad trajectories accelerates the learning process since the policy space to search is reduced
and the time horizon is shortened. Moreover, we do not need to learn to proceed or recover after
violations—an ideal policy should never break the constraints.

We first introduce two types of constraints in CMDPs in Section 4.1. We will show that the early-
termination trick used in locomotion tasks is indeed an intuitive approach for solving CMDP with,
what we call, loose constraints. In Section 4.2, we define ET-MDP as the foundation of our proposed
method. ET-MDP enables the algorithms previously designed for MDP to solve CMDP tasks. We
provide discussion on some practical issues and introduce our algorithm to solve ET-MDP efficiently
in Section 4.3.

4.1 Constraint Types

To show the relationship between normal MDPs and CMDPs as well as better illustrate the inspiration
that links CMDPs with early termination, we first unify CMDP and MDP formulation in the loose-
constrained cases: MDPs can be regarded as loose-constrained CMDPs when the constraints do not
change their optimal solution. Thus those CMDPs can be solved by the same policy trained from its
early termination counterparts. We then extend similar idea to the other case where the constraints
are tight. We start with the definition of the learning objective. If we denote a policy set satisfying
the constraints C as

Πc = {any policy π :

H∑
t=1

c(st, π(st)) ≤ C}, (4)

then the learning objective of Eqn.(1) becomes maxπ∈Πc Eτ∼π,T [
∑H

t=1 rt]. The two types of
constraints differ in whether the optimal policy lies in the constrained policy class (Eqn.(4)) or not.

Loose Constraints In model-free RL, early termination is often used as a default environment
setting to accelerate learning [48, 47]. In such problems, early termination is usually applied when
the agent reaches some undesired state, e.g., the center of mass get lower than some certain threshold.
We call this kind of constraints loose ones, because the solution of the CMDP is the same as the MDP
without constraints: π∗ = argmaxπ∈Π Eτ∼π,T [

∑H
t=1 rt] ∈ Πc.

In such CMDPs, considering the constraints or not won’t change the final policy as the optimal
solution will learn to not break the constraints automatically. Those loose constraints are shown to be
able to accelerate learning in [49].

Tight Constraints In other cases such as navigation in a space with barriers or lava, the barriers or
lava can be regarded as constraints and will clearly change the optimal solution to navigate to the
goal point compared with the environment of an empty space where there is no constraint applied:
π∗ = argmaxπ∈Π Eτ∼π,T [

∑H
t=1 rt] /∈ Πc.

In such CMDPs, learning to solve the MDP without the constraints can not lead to a satisfying policy
for the CMDP as feasible behaviors of the agent must take the constraints into consideration.

Based on such insights, we investigate the approach to solve the CMDPs with their early-termination
(ET) counterparts, namely the ET-MDPs. We show the major challenge may come from the limited
state visitation problem, which will be further illustrated in detail in Section 4.3.
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4.2 Early Terminated MDP (ET-MDP)

For any CMDP (S,A, H, r, c, C, T ), its ET-MDP is defined as a new unconstrained MDP (S ∪
{se},A, H, r′, T ′), where se is the absorbing state after termination. Generally speaking, ET-MDP
has a history-dependent transition dynamic. In order to have a regular MDP, one can introduce an
extra dimension to state space recording the cumulative costs denoted by bt =

∑t
τ=1 cτ . Though

bt takes values from a large set, the transition dynamic that involves in bt is known to the agent:
T ′(s, b, a) = T (s, a)1(b ≤ C) + 1(s = se, b > C). The reward function becomes r′(s, b, a) =
r(s, a)1(b ≤ C) + re1(b > C) for some re ∈ R. Since we are searching for a policy for the original
CMDP, we still consider policies that are stationary with respect to b, i.e. π(s, b) ≡ π(s).
Proposition 4.1. For sufficient small re, the optimal policy of ET-MDP coincidences with π∗ of the
original CMDP. (Proof is given by Appendix)

Proposition 4.1 indicates that CMDP can be solved with their ET-MDP correspondence as long as the
termination reward re is small enough, which can be easily implemented in practice. Intuitively, as
an early-terminated episode is shorter than the original one, one should be able to save samples by
solving ET-MDP. In the following part, we show the benefits of solving CMDP through its ET-MDP.
Now that we consider a special case, where c(s, a) = 1(T (s, a) ∈ Sc) for some Sc ⊂ S. Here the
violation is caused by the entrance to some invalid states. We also assume that Sc is an absorbing class.
This is an important case we consider in our experiments, as exploring invalid space is unnecessary
and early termination can save samples.

To fairly show the benefits, we introduce a performance measure called regret, the difference between
the total rewards of the optimal policy and the rewards received by the running algorithm L:

RT (L) =
⌊T/H⌋∑
k=1

(V c
π∗ − V c

πk
),

where V c
π is the expected value function under policy π and πk is the policy chosen for episode k.

Regrets for deterministic MDPs can be lower and upper bounded.
Theorem 4.2 (Theorem 3 in [50]). Any reinforcement learning algorithmL that takes a state space, an
action space, a horizon as inputs there exists an MDP, such that the regret supT RT (L) ≥ 2H|S||A|.
There exists an algorithm L, such that for any MDP, the regret supT RT (L) ≤ 2H|S||A|.

The above lower bound applies to the CMDP as one can construct an MDP with a extreme loose
constraint such that all the policies are valid. The above upper bound applies to our ET-MDP since in
this special case, c(s, a) is either 0 or 1 and the termination happens whenever a cost of 1 is received,
which makes it unnecessary to record the cumulative cost and our ET-MDP is a regular MDP with
state space (S \ Sc) ∪ {se}.
Corollary 4.3. There exists a algorithm LET for ET-MDP such that for any algorithm Lc for the
original CMDP, the ratio

supT RT (Lc)

supT RT (LET )
≥ |S|
|S| − |Sc|+ 1

.

Remark 4.4 (ET-MDPs reduce sample complexity). The above analysis ignored the fact that ET-
MDP does not have to finish the whole H steps for each episode, which means that when an algorithm
is actually running, the above dependence on H can be also decreased depending on the actual
cutoffs.

Corollary 4.3 shows that for tasks with a large invalid space, solving ET-MDP is more efficient. It
provides the insight to apply similar methods to more complicated tasks like CMDPs for continuous
control. Resembling the key insight where early termination trick is applied to the loose constrained
tasks such as the MuJoCo locomotion suite [47], we don’t need to collect samples from infeasible
regions. Therefore, we are motivated to further investigate whether solving the ET-MDP can be a
practically effective way to solve CMDPs.

4.3 Solving ET-MDP with Context Models

In the previous section, we have shown CMDPs can be solved with their ET-MDP counterparts. The
next step is to build-up suitable solvers for those ET-MDP tasks. As the framework of ET-MDP is
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covered by normal MDPs as there are no constraints that should be taken into consideration, any
off-the-shelf algorithm can be applied as an ET-MDP solver, including on-policy methods [5, 51],
off-policy methods [18, 52], and Evolution approaches [53].

However, there are also two desiderata a solver should have to be more capable of solving ET-MDP:
(1) Non-Markovianity: some budget tasks are Non-Markovian by nature. (2) Generalization challenge:
solving ET-MDP requires better generalization.

Markovian Binary Tasks In general, there are two different empirical settings in CMDP. The
first is the case where the safety is considered to be extremely important that the constraints should
never be broken in the deployment time of a learned policy. We call this kind of setting the binary
CMDPs, where the binary indicates classifying a trajectory as safe or not safe. This is the relatively
simple case and the constraints in Eqn.(1) can be simplified as

∑∞
t=0 ct ≤ 0, where ct = c > 0 if the

constraints are broken and ct = 0 otherwise. Besides, no more effort is needed to ensure the decision
making process Markovian.

For example, navigation in a grid-world with lava belongs to such a setting. Another example is
the MuJoCo locomotion tasks, where a hopper, walker or humanoid simulator is required to move
forward as fast as possible, and through the whole time the agent should never fall down. In summary,
this setting can be applied as long as the task can be accomplished without stepping into any state
with a cost.

Non-Markovian Budget Tasks On the other hand, there are cases where there is a budget of
behavior costs. Behaviors with some cost is not preferable but is permitted to some extent. Henceforth,
to satisfy the constraints in Eqn.(1), the historical information of cumulative cost should be taken
into consideration in making every-step decision. To achieve this, the primal state space S should be
extended to Sext = S ⊕ Sbudget ⊕ Stime, where Sbudget indicates the budget left in the episode, and
Stime provides information on the number of time steps left in the episode [54].

Previous works fall in this setting include the Safety-Gym [39] and the PointGather [4], where the
budget is a fixed positive integer that indicates how many times the agent is permitted to be at states
with costs during an episode.
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Figure 1: The difference in state visitation frequency
of MDPs and ET-MDPs in a diagnostic 2-D naviga-
tion environment. Left: the environment, an agent
starts from the central red point in each episode and
yellow lines denote lava, i.e., danger zone; Middle:
the state visitation frequency of a random agent in a
MDP by ignoring the lava; Right: the state visitation
frequency of a random agent with lava in a ET-MDP.
The limited state visitation in ET-MDP is one of the
major challenges for off-the-shelf MDP solvers.

Generalization Challenge Since ET-MDP
is a special kind of MDP where lots of termi-
nation states Send are introduced, algorithms
designed for normal MDP tasks are easy to
get trapped in limited states due to early-
terminations. Similar results has been shown
in Agarwal et al. [17] that learning under lim-
ited state visitation will hinder the learning
efficiency.

Figure 1 illustrates the difference in state
visitation frequency of normal MDP (mid-
dle) and ET-MDP (right) under random ex-
ploration in a 2-D navigation environment,
where the central red point denotes the start-
ing point and the constraints are shown as
yellow boundaries in the left figure. As all
of the constraint-violation states will lead to
termination in ET-MDP, the generalization ability of the learned policy becomes extremely important.
Intuitively, learning algorithms that can generalize better to previously unseen states will be more
competent in such tasks.

To solve the non-Markovianity, a natural choice is to build policies based on recurrent models, whereas
the solution to the generalization challenge also lies in recurrent models—namely the context models
developed in Meta-RL literature [30]. Our key insight can be introduced through the Syllogism
below:

Syllogism 4.5 (Context Models Improve Generalization). Major premise: Given task distribution
M, m training tasksMtrain = {M1, ...,Mm}, Context models improve learning efficiency for gen-
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eralization on held-out test tasksM = {Mm+1, ...}. Minor premise: A single multiple-state MDP
task M1 = (S,A, H, r) can be decomposed as multiple sub-tasks according to state decomposition
S = ∩ni=1Si, such that M1 ≡ (∩ni=1Si,A, H, r) = {M1,i|i = 1, ..., n}. Conclusion: Context
model improves generalization over states, henceforth improves learning efficiency.

In a nutshell, context models in Meta-RL are shown to learn generalizable representations between
a series of similar tasks. Thus we regard solving the ET-MDP task (e.g., avoid getting terminated
and collect as many reward as possible) with different states as different tasks in the same task
distribution, the context models should be able to learn transferable representations over different
states, and generalize learned policies to previously unseen states to avoid being terminated.

We use the Gated Recurrent Units [33] to model context variables as generalizable representations
to solve ET-MDPs and build the context model based on TD3 [18]. We adopt separated context
networks for training stability, i.e., we use Cwa

for actor and Cwc
for critic, such that both the actor π

and critic Q take an additional context variable as input:

π = π(s, za), Q = Q(s, a, zc), (5)

where za = Cwa(Z ′
L), zc = Cwc(Z ′

L) and Z ′
L is the previous L step historical transitions: Z ′

L =
{st−L, at−L, rt−L, ..., st−1, at−1, rt−1}. If t− L ≤ 0, we use zero state 0s, zero action 0a and zero
reward 0r instead.

The context models (Cwa
, Cwc

) are optimized through the gradient chain rule in the optimization of
actor and critic networks, with the gradient of

∇waCwa = ∇aQw1(s, a, zc)|a=πθ(s,za) · ∇zaπθ(s, za)|za=Cwa (Z′
L)∇waCwa(Z ′

L),

∇wc
Cwc

= ∇wc
TD(Q(s, a, Cwc

(Z ′
L)))

(6)

separately, where TD denotes the temporal difference error. Details of the proposed algorithm are
provided in Algorithm 1 in Appendix B. We term our method as MOPA, acronym of “a Minimalist
Off-Policy Approach (to safe RL)”. In the next section we will demonstrate the superiority of MOPA
in solving a variety of ET-MDPs.

5 Experiments

We evaluate the proposed method on a diverse set of environments, including (1) loose constrained
tasks of Hopper-Not-Fall, Walker-Not-Fall, Humanoid-Not-Fall; (2) constrained navigation tasks
of DangerZone with different degrees of difficulty; (3) stochastic navigation tasks of PointGoal1-v0,
CarGoal1-v0, and PointGather. The first two sets of environments are binary tasks while the last
three tasks are budget tasks. Examples of environments are shown in Figure 5 in Appendix D.

We validate the following claims in our experiments:

1. CMDPs can be solved by solving their ET-MDP counterparts. MOPA improves learning
efficiency and asymptotic performance on all tightly-constrained experiments (Section 5.1).

2. While directly applying the standard RL algorithms like TD3 faces the problem of gen-
eralization, the context model mitigates the problem and improves the sample efficiency
(Section 5.3).

3. ET is crucial for efficient learning in loose-constrained tasks. MOPA is able to further
improve the performance on those tasks (Section 5.2).

more empirical studies are provided in Appendix F including hyper-parameter stress-testing, network
structure selection and ablation studies. 2

5.1 Tight Constraints

In this section, we evaluate MOPA in a variety of environments where constraints change the optimal
solution. As termed in the previous section, those are tight constrained problems.

2Code: https://github.com/holarissun/MOPA
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Figure 2: Results on the three budget tasks. The first three columns show the rewards and the
costs of different methods on the three environments respectively, while the last column shows the
performance comparison between learning with extended state space and tightened approximation.
Results are over 10 repeated runs. Shaded areas in figures indicate the 25%-75% quantile values of
the results.

Table 2: Success rate of different meth-
ods on the DangerZone environment.

Success Rate Easy Medium Hard

TD3 2/10 4/10 2/10
CPO 4/10 3/10 0/10
PPO-Lag 3/10 3/10 1/10
SAC-Lag 10/10 0/10 0/10
MOPA 10/10 9/10 8/10

Binary Tasks We first experiment on the DangerZone
task where an agent needs to navigate in a maze for a goal
point without stepping into the lava. The input of the agent
is the coordinate of current state, and permitted action is
limited to [−1, 1]. We generate four different level of tasks.
In all experiments the size of the maze is set to be 16× 16,
and episodic length is set to be 32, which is two times of
the side length. In each episode, the agent is initialized in the center of the maze. Stepping into the
target position will result in a +30 reward, and stay in the position will continuously gain that reward.
A tiny punishment of −0.1 is applied for every timestep, otherwise. More details of the environments
can be found at Appendix D.

DangerZone Easy DangerZone Medium DangerZone Hard
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Figure 3: Experiment Results on the
DangerZone environment. MOPA is
the only method that is able to solve
all levels of tasks.

In those tasks, the constraints are binary as the agent is not
permitted to step into dangerous regions during navigation to
the target point. Results shown in Figure 3 show the superior
performance of MOPA in solving all level of DangerZone
tasks. Table 2 provides the success rate of each method in
reaching the target point in our repeated experiments. Detailed
learning curves can be found at Appendix E.

Budget Tasks For the budget tasks, we experiment on
PointGoal1-v0, CarGoal1-v0, and PointGather to show the
performance of our proposed method. In PointGoal1-v0, a
mass point navigates in a 2-D maze to collect reward while
avoiding dangerous regions, which will lead to a +1 cost. The
budget for the cost is +25 in the experiments [39]. In CarGoal1-v0, a car replaces the mass point
in the previous environment to attain the same objective and the budget is increased to +50 as the
task is more challenging [55, 15]. In PointGather, a mass point collects apples while avoiding bombs
which will lead to a +1 cost, and the cost budget is set to 0.1 [4], i.e., the agent is permitted to run
into a bomb every ten games on average.

As we have shown in Section 4.3, the previous information of cost should be taken as an additional
input for policies to satisfy the Markov property in those environments. By contrast, MOPA equipped
with recurrent models is able to address this issue without further modifications.

Figure 2 shows our experiment results with the binary approximation. In all experiments, MOPA is
able to reach the best asymptotic performance in terms of both high reward and low cost. We also
experiment with the car navigation environment to compare the performance of the primal CMDP
with extended state space Sext = S ⊕ Sbudget ⊕ Stime and with the MOPA. The last column of
Figure 2 shows the experimental results we get: MOPA outperforms the approximation by achieving
better constraints-satisfaction, while being able to collect higher reward.
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Figure 4: The first three figures show learning curves of TD3 and Context TD3 with/without early
termination trick in three locomotion tasks; The last figure shows that context model can remarkably
improve learning efficiency when the state visitation is limited. Results are over 10 repeated runs.
Shaded areas in figures indicate standard deviation of the results.

5.2 Loose Constraints

We evaluate our method on the MuJoCo locomotion benchmarks where early termination (ET) is
previous applied as a default setting to benefit learning. This experiment shows that loose constraints
like center of mass higher than a certain threshold are crucial for sample-efficient learning as they
greatly reduce the state space.

In this set of experiments, we remove the alive bonus term in the reward during training, otherwise
this term will be always the same (i.e., 1000 for Hopper, Walker and 5000 for Humanoid) and the
rewards between environments with ET and without ET can not be compared fairly. In evaluation,
the alive bonus term is kept as default settings so that the asymptotic performances can be compared
to previous agents trained in the vanilla environments to get a basic sense of what our policies have
learned. Results are shown in Figure 4: while both MOPA and TD3 are able to learn locomotion
skills when ET is applied, neither of those methods get success without ET. As expected, MOPA
outperforms TD3 in terms of learning efficiency in all three environments.

5.3 Diagnostic Study of MOPA on Generalization

We show the superiority of MOPA over vanilla TD3 in the DangerZone environment to demonstrate
its ability in generalization (i.e., higher learning efficiency). In DangerZone, the tasks is no doubt an
MDP, i.e., the decision of the agent should be made only based on its present state and has no relevance
to the historical information. Henceforth, there is no need to maintain a memory mechanism to gain
performance improvement. We hence attribute the improvement of MOPA to better generalization
ability rather than the memory mechanism proposed in previous works that also leverage recurrent
networks in RL.

In this set of experiments, two different environments are generated to compare MOPA and TD3. In
the Random-Init environment, the initial position of the agent is uniformly distributed in the map
while in the Fix-Init environment the initial position is fixed at the center of the map, which leads to a
limited state visitation. The last column of Figure 4 shows our results: MOPA performs much better
than vanilla TD3 in the Fix-Init environment, showing the experiences collected in limited region can
be better generalized to unseen states when context models are introduced.

We further verify our key insight of Syllogism 4.5 with extensive empirical studies (16 tasks from the
DeepMind-Control suite) in Appendix F.2.

6 Conclusion

In this work, we address the Safe-RL tasks in a minimalist approach: different from the previous
CMDP formulations where the constraints require ad-hoc algorithm design, we propose an equivalent
formulation, namely Early-Terminated MDP, of those Safe-RL tasks that both on-policy methods
and off-policy methods are applicable. We show in our work that solving ET-MDP lead to identical
optimal value function as well as optimal policy to the previous CMDP formulation. To better exploit
the potential benefit of solving Safe-RL tasks with ET-MDP, we introduce the MOPA based on
recurrent models to mitigate the efficiency issues. Experiments conducted in a variety of experiments
demonstrates the superiority of our proposed framework and the method.
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Limitation and Future Work of this work is mainly on the heuristic choices of re. Although in
general, it should be hard to have a single choice for all environments that have various reward
scales, in our work we find using a uniform choice re = −1 for all environments works fairly well.
Moreover, our empirical studies in Appendix F.1.3 show the performance of MOPA under different
values of re are stable. In the future work, a more automated way of adjusting the value of such a
punishment term can be developed.
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A Proof for Proposition1

Proof. The value function of CMDP is defined in the feasible region Πc = {π ∈ Πc :∑H
t=1 c(st, at) ≤ C, at = π(st), st+1 = T (st, at)}, where π ∈ Πc and

V π
c (s) =

H∑
t=1

r(st, at), where at = π(st), st+1 = T (st, at) (7)

The learning objective is to find π ∈ Πc such that

V ∗
c (s) = max

π∈Πc
V π
c (s). (8)

The value function for ET-MDP is defined similarly as normal MDP by

V π
ET (s) =

H∑
t=1

r′(st, bt, at), where at = π(st), st+1 = T ′(st, bt, at), bt+1 = bt + ct. (9)

For any π ∈ Πc, the trajectories are the same in the ET-MDP and its counterpart. We have
r′(st, bt, at) = r(st, at) for all t ≤ H . Therefore, we have V π

c = V π
ET for π ∈ Πc.

The optimal value function of ET-MDP is defined over its optimal policy

V ∗
ET (s) = max{max

π∈Πc
V π
c (s),max

π ̸∈Πc

hπ≤H∑
t=1

r(st, at) + re}, (10)

where hπ is the step at which the constraint is violated. Therefore, V ∗
ET (s) = V ∗

c (s) for sufficiently
small re and the optimal state values are achieved for the same optimal policy π∗ ∈ Πc

B Detailed Pseudo-Code of the Proposed Method

Algorithm 1 MOPA for ET-MDP
1: Initialize critic networks Qw1 , Qw2 , actor network πθ

2: Initialize context models Cwa , Cwc for the actor and critic networks separately with recurrent
networks.

3: Initialize target networks w′
1 ← w1, w′

2 ← w2, θ′ ← θ
4: Initialize replay buffer B = {}
5: Initialize a context queueZL with length L byZL = [0s,0a,0r]×L, maintain a copyZ ′

L ← ZL

6: for t = 1, 2, ... do
7: Interact with environment and get transition tuple (s, a, r, c, s′), r ← r + re if c > 0.
8: Update context queue with ZL, append (s, a, r), and store (s, a, r, s′,Z ′

L,ZL) in B, update
Z ′

L ← ZL

9: Sample a batch of transitions {(s, a, r, s′,Z ′
L,ZL)} from B

10: Calculate context variable for actor and critic with za = Cwa(Z ′
L), zc = Cwc(Z ′

L), and context
variable for calculating the next action and next value z′a = Cwa(ZL), z

′
c = Cwc(ZL)

11: Calculate perturbed next action by ã← πθ′(s′, z′a) + ϵ, ϵ is sampled from a clipped Gaussian.
12: Calculate target critic value y and update critic networks:

y ← r + γmini=1,2 Qw′
i
(s′, ã, z′c)

wi ← argminwi MSE(y,Qwi(s, a, zc))
13: Update wc, the context model for critic through

wc ← argminwc
MSE(y,Qwi

(s, a, Cwc
(Z ′

L)))
14: Update θ by the deterministic policy gradient, with learning rate η:

θ ← θ − η∇aQw1
(s, a, zc)|a=πθ(s,za)∇θπθ(s, za)

15: Update wa, the context model for actor according to Eqn.(6)
16: Update target networks, with τ ∈ (0, 1):

w′
i ← τwi + (1− τ)w′

i; θ
′ ← τθ + (1− τ)θ′

17: Break this episode if constraint is broken.
18: end for
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C Reproduction Checklist

Network Structure Our implementation of Context TD3 is mainly based on the code of [18]. The
hyper-parameters of TD3 are the same as the authors recommend in the paper. In our Context TD3,
we also use 3-layer MLPs for both actor and critic networks (with 256 hidden units).

We find in our experiments using separated context networks that trained through gradients of actor
and critic will benefit learning. Details of ablation study on the network structure are provided in
Appendix F.3

Value of re In our analysis, the value of re can be selected as any sufficiently small number.
However selecting too small value may lead to over-conservative behavior. In our experiments
reported in the main text, we find in experiments that re = −1 works fairly well. Ablation studies on
the selection re are provided in Appendix F.1.3.

Batch Size In our experiments we follow Fujimoto et al. [18] to use a mini-batch size of 256. In
PPO, CPO and PPO-Largrangian, we use a batch size of 1000 and mini-batch size of 256 for the
short-horizon games (e.g., Maze, PointGather, both with T ≤ 32), so that there are around 1000
episodes in training. For the long-horizon games where T ∼ 1000, we collect 10 trajectories for each
episode for better training stability [5, 56].

Hardware and Training Time We experiment on a server with 8 TITAN X GPUs and 32 Intel(R)
E5-2640 CPUs. Experiments take 0.5 (the maze environment with 0.1M interactions) to 10 hours
(the safety-gym with 1M interactions) to run. The training of Context TD3 will introduce higher
computation expense as additional context models need to be trained.

D Environments Details

Figure 5: Examples of the tested environments: The first three figures show the DangerZone tasks
with different level (different mazes); the following three figures show the budget tasks where agents
control a point or a car to collect reward without hitting cost regions too many times; the last three
figures show loose-constrained tasks where agents need to learn to move forward without falling.

D.1 DangerZone Environment

In the DangerZone environment, an agent needs to navigate in a maze for a goal point without
stepping into the lava. The input of the agent is the coordinate of current state, and permitted action
is limited to [−1, 1]. We generate four different level of tasks. In all experiments the size of the maze
is set to be 16× 16, and episodic length is set to be 32, which is two times of the side length. In each
episode, the agent is initialized in the center of the maze. Stepping into the target position will result
in a +30 reward, and stay in the position will continuously gain that reward. A tiny punishment of
−0.1 is applied for every timestep, otherwise.
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Figure 6: The four DangerZone environments with different levels in our experiments. From left
to right: Maze-Level-1 (DangerZone Easy), Maze-Level-2 (DangerZone Medium), Maze-Level-3,
Maze-level-4 (DangerZone Hard). The regions with orange color are dangerous region where the
agent should not step into. For each game, the agent is initialized at center of the map, therefore
the difficulty of finding a solution without violating the constraints becomes harder and harder from
Level-1 to Level-4.
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Figure 7: Learning curves of the Maze environments. As the constraints are binary, any reward gained
when the constraints are violated is not taken into consideration. Thereafter, only episodic return
curves are shown in the figures. i.e., All of those rewards are gained without breaking any constraint.

F Additional Empirical Studies

F.1 Sensitivity to Hyper-Parameter

F.1.1 Value of Historical Horizon

We experiment on the DangerZone environments to show how the proposed method work with
different length of historical horizon in the context model. Results are shown in Figure 8. Context 1
means we only include the past state, action, reward in the computation of context variables, while
Context 7 indicates the past 7 steps of transitions are leveraged in generating the context variables.
We find the context model with historical horizon 3 achieve fairly well performance in all levels of
environments.
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Figure 8: Ablation studies on the selection of different length of historical horizon. All corresponding
costs are zero and omitted under our ET-MDP settings.
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F.1.2 Number of Hidden Units in GRUs

We experiment on the selection of different number of hidden units used in GRUs. We compare
the results with 30 hidden units (reported in the main text, denoted as MOPA in Figure 9) with the
results with 120 hidden units (denoted as MOPA-Large in Figure 9)). We find using 30 hidden units
is enough to achieve improved performance, and in the same time balance the computational cost.
And using too much hidden units may lead to reduction on learning efficiency (in the Humanoid-Not-
Fall-v0 environment).
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Figure 9: Ablation studies on the number of hidden units used in GRU, and comparison on different
selection of network structure: shared v.s. separated context model.

F.1.3 Value of re

We show experimental results on the selection of different value of the ending reward re in this
section. Figure 10 shows the results on the CarGoal, PointGoal and PointGather environments. In
both TD3 and Context TD3 working in ETMDP, smaller re’s result in more conservative policies that
achieve lower cost and lower primal task reward.
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Figure 10: Ablation studies on the selection of re, the value of absorbing reward. The first line shows
the episodic return curves of each methods in different environments while the second line shows the
corresponding episodic costs. Using smaller re will lead to more conservative behavior, i.e., slightly
lower return and lower cost.

F.2 More Experiments

F.2.1 Validation of Syllogism 4.5 on Other Benchmarks

In this section we show our experiments on various MuJoCo and DeepMind Control benchmarks to
show the superiority of the Context TD3 over the vanilla TD3 in sample-efficient learning in MDP
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tasks. Figure 11 shows the experiment results. In most environments, Context TD3 achieves better
asymptotic performance while being able to converge faster. We use the same hyper-parameter of
historical horizon = 7 in all experiments. Elaborated searching for hyper-parameters may result in
even better performance.
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Figure 11: Experiment results on the DeepMind Control Suite. In all 16 benchmark environments
we experimented on, context models outperforms normal TD3 in most environments (13 out of 16),
showing the superiority of context models in improving learning efficiency.
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F.3 Model Structure

F.3.1 GRU v.s. Transformer

In this section we provide ablation studies on the choice of context models: we compare the results
of Context models based on GRUs and based on recent advances of self-attention based models [57].
The results are shown in Figure 12, where we find leveraging the transformer models can not result in
better performance.
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Figure 12: Ablation studies on the selection of context models.

F.3.2 Shared v.s. Separated Context Variables

In the work of [30], the context model is trained only through the learning of critic networks.
Differently, in our experiments we find training context models separately for the actor and critic can
result in better performance. MOPA-Shared in Figure 9 denotes the results when the context model
is shared by actor and critic as recommended in the Meta-RL literature [30].

G Qualitative Results

We also include demo videos in the supplemental materials. Where the performance of agents trained
with different algorithms in the PointGoal1-v0 and CarGoal1-v0 safe-navigation tasks are shown
qualitatively.
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