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Abstract

We propose a new method for non-linear modeling of latent variables and factors via random
Fourier features for high-dimensional data. Essentially, we apply a basis function expansion
of a factor analysis model to approximate a Gaussian process mapping of the latent variable
and the latent factors to the observed data space. This paper demonstrates the effectiveness
of our proposed model with experiments on real datasets in comparison with competing
latent variable models. In particular, we show that our proposed model is effective for
missing data imputation, especially when the percentage of missing data is high.

1 Introduction

Latent variable models (LVMs) are a commonly used statistical method which models the observed data with
a lower dimensional representation. Many popular LVMs model the observed data as a linear combination
of the latent variables, which are the lower dimensional representation of the data, and the latent factors,
which are the lower dimensional representation of the observed features. Linear models are popular because
they are often convenient to fit from a computational perspective. However, they are limited in terms of
their expressivity as a consequence of the linear assumption.

The Gaussian process latent variable model (GPLVM) has been extensively used in all sorts of machine
learning tasks such as classification, image recognition and recommendation systems (Lawrence, 2004; Li
& Chen, 2016). Gaussian processes (GP) are stochastic processes over functions with a continuous domain
(Williams & Rasmussen, 2006). In particular, they offer a Bayesian nonparametric framework for modeling
nonlinear latent variable models from observed data when used as a prior over non-linear functions. GPLVMs
can be viewed as a multiple-output GP regression model where only the output data are given and the
inputs are unobserved and treated as latent variables. The GPLVM assumes that the functional variables
are generated by GP from some low-dimensional latent variables that need to be inferred from data. In
model inference, we can learn the latent variables by integrating out the functional variables and maximizing
the log-marginal likelihood.

Approximate inference techniques in the GPLVM are typically computationally tractable when the observed
data likelihood is assumed to be a Gaussian distribution. In this setting, we can obtain closed-form ap-
proximations to the log marginal likelihood. However, outside this setting we must rely on some further
approximations to this model. One approach is to use a random Fourier feature approximation of the kernel
function. To solve the statistical problem with GPLVM in non-Gaussian settings, a recent method random
feature latent variable model (RFLVM) is developed by (Gundersen et al., 2021; Zhang et al., 2023). This
method uses a random Fourier feature approximation in representation of the GP-distributed function ap-
proximation, enabling a computationally feasible inference procedure. It produces closed-form gradients of
the posterior regardless of the choice of likelihood which thereby facilitates a Markov chain Monte Carlo
sampling procedure for exact Bayesian inference. Moreover, this method applies for various types of obser-
vations, such as binomial, multinomial, and negative binomial, which allow us to uncover the latent manifold
structure of count data.

In this work, we introduce a novel methodology for leveraging low-dimensional embeddings through a dual
latent factor analysis framework.
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We extend the idea of random feature latent variable modeling by incorporating a non-linear combination
of the latent factors in the data generating process. In particular, we utilize one latent variable to model the
manifold of observations and a separate latent variable for the manifold of features. This approach allows us
to capture and analyze the complex relationships present in the data more effectively. We call our method
the “random feature latent factors analysis” (RFLFA). Our approach here for posterior inference relies on
using the elliptical slice sampler (Murray et al., 2010), which is a Markov chain Monte Carlo algorithm for
performing posterior inference in parameters with multivariate Gaussian priors and (typically) non-conjugate
likelihoods.

Our primary application will focus on the problem of missing data imputation, which arise in almost all
applied statistical analysis. One common approach to deal with missingness is to simply discard the obser-
vations with missing data. However, it will lead to estimates with larger standard errors due to reduced
sample size in most realistic settings (Gelman & Hill, 2006). In addition, one can impute missing values based
on the observed data (mean for example) or fill in the last value carried forward, but it can be advantageous
for bias (Gelman & Hill, 2006). Our model can produce results comparable with other competing imputation
methods in terms of the prediction error on a diverse range of data types, including movie ratings, images,
and RNA-sequencing data.

This paper is structured as follows. Section 2 provides the notation and backgrounds. In Section 3 we describe
the setting of our model and then introduce the sampling steps. In Section 4, experiments with different
missing percentages and latent dimensions are carried out on simulated data and several real datasets. And
we also explore its application. In the end, we conclude in Section 5.

2 Background Work

In a typical latent variable model, we have some observed data Y ∈ RN×J where N is the number of
observations and J is the dimension of the observed features. Each observation is associated with a latent
variable, X ∈ RN×D, such that the latent dimensionality is D ≪ J . A typical assumption in an LVM is that
the relationship between the observed data and the latent variables is linear:

yi = xi ·Q + ϵi, (1)

given a projection matrix (sometimes called a factor loading), Q ∈ RD×J , and a noise term, ϵi. This
formulation of the LVM unifies similar concepts, like factor analysis, collaborative filtering, principal com-
ponent analysis and matrix factorization (Roweis & Ghahramani, 1999). Principal component analysis can
be viewed as an LVM under a noiseless assumption, where the latent variables are an orthogonal projection
of the data into lower dimensions Pearson (1901). Spearman (1904) first introduced the concept of a factor
analysis model in a social scientific setting, where psychologists are interested in measuring traits, such as
intelligence, that are not directly observable from the data. Later, Bayesian variants of factor analysis and
matrix factorization have been introduced, which assume Gaussian priors on latent variables and factor
loadings (Mnih & Salakhutdinov, 2007; Press & Shigemasu, 1989). Using our notation, the data generating
process for these linear factor models is:

xi ∼ ND(0, σ2
XI), qd ∼ NJ(0, σ2

QI), yi ∼ NJ(xi ·Q, σ2I). (2)

Posterior inference for this type of model is not difficult to implement, due to the linear combination of the
latent variable and the projection matrix as well as the conjugate relationship between the priors and the
likelihood (Roweis, 1997; Tipping & Bishop, 1999; Bishop, 1999). However, the linear assumption becomes
overly restrictive if we believe the data generating process is something more complicated than a linear
model.
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2.1 Gaussian Process Latent Variable Models

To depart from the basic linear assumption in Equation 1, we may instead model the data generating
process from the latent space to the observed data using a non-linear function. Specifically, we will assume
the mapping function from X to Y is generated from a Gaussian process–thereby leading to the GPLVM
(Lawrence, 2004). The primary task in modeling data using GPLVMs is to learn the lower dimensional
representation, X, of the data, Y. The data generating process is:

yi ∼ NJ(f(xi), σ2I), f ∼ GP(µ, Σθ),

where f is GP distributed function with mean function µ and covariance function Σθ with hyperparameters
θ. Typically, the mean function is assumed to be zero. If Y has a Gaussian likelihood, then we can obtain the
marginal likelihood of p(Y|X, θ) by analytically integrating out f in closed form. Although we cannot obtain
the posterior of X directly, we can resort to numerous approximate inference techniques to infer the posterior
of X, such as Laplace approximations, Hamiltonian Monte Carlo methods, and variational methods.

The GPLVM has proven to be a useful non-linear latent variable model in a wide variety of applications, like
modeling single-cell RNA-seq data, or 3D poses of human figures (Ahmed et al., 2018; Verma & Engelhardt,
2020; Ek et al., 2007). However, the basic GPLVM only models a lower dimensional representation of the
observations. In some scenarios, we may also want a latent representation of the observed J features. We
can naturally obtain these latent representations of the observed features in linear models. For example,
the parameter Q from the model in Equation 1 can also represent the embedding of the features into D
dimensional space. In a model like latent Dirichlet allocation (LDA), this feature embedding represents the
distribution of words in a topic and can be interpreted as the content of a particular topic. The feature
embedding parameter is particularly desirable in collaborative filtering problems where we have N users and
J items, and we may want to suggest new items for a user to consume, given observed ratings other users
have given to the items.

Lawrence & Urtasun (2009) first introduced the relationship between non-linear matrix factorization and
GPLVMs by showing the relationship between Bayesian matrix factorization models with probabilistic Prin-
cipal Component Analysis (PPCA) (Tipping & Bishop, 1999) and then showing the fact that PPCA is a
special case of the GPLVM, where the kernel function is the linear kernel, K(X, X′) = XXT . However,
they do not explicitly model a feature embedding parameter in this matrix factorization method using GPs.
Adams et al. (2010) introduced a GP-based model for collaborative filtering that models user and item
embeddings and performs posterior inference using MCMC. However, they do not use any scalable approx-
imations for the GP-distributed mapping functions. Therefore, inference is very slow in most practical
applications of collaborative filtering. Kim et al. (2016) approximates the previous model using a Tucker
decomposition (Tucker, 1966) and perform posterior inference using the MAP estimate. Moreover, each of
the aforementioned methods are only applicable for Gaussian likelihoods. However, many applications of
non-linear factor analysis involve count data where the Gaussian assumption is inappropriate.

2.2 Random Feature Latent Variable Models

To generalize GPLVMs to non-Gaussian likelihoods, we approximate the GP-distributed maps in GPLVMs
using the random Fourier feature (RFF) approximation of the kernel function (Rahimi & Recht, 2008). The
RFF approximation relies on two theorems: Mercer’s theorem and Bochner’s theorem. Mercer’s theorem
states that we can equivalently represent a positive definite kernel function as an inner product of a feature
mapping (Mercer, 1909): K(x, x′) = ⟨φ(x), φ(x′)⟩ where x, x′ ∈ RD. Bochner’s theorem states that any
continuous shift-invariant kernel K(x, x′) = K(x − x′) on RD is positive definite if and only if it is the
Fourier transform of a non-negative measure p(w), which is guaranteed to be a density with a properly
scaled kernel (Bochner, 1959). Let φ(x) = exp(iwT x) and φ(x)∗ denote its complex conjugate. We can see
that:
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K(x− x′) =
∫
RD

p(w) exp(iwT (x− x′))dw = Ep(w)φ(x)φ(x′)∗]. (3)

Then we can use Monte Carlo integration to approximate the kernel function:

K(x, x′) ≈ φ(x)φ(x′)∗. (4)

For M Monte Carlo samples, and we drop the imaginary part for real-valued kernels of φ(x), we have

φW(x) =
√

2
M


sin(wT

1 x)
cos(wT

1 x)
...

sin(wT
M/2x)

cos(wT
M/2x)

 , wm
i.i.d.∼ p(w).

We draw M/2 samples from p(w) and then equivalently represent a kernel method as a linear model with
respect to the basis function projection, φ(x)β by Mercer’s theorem. Using this random projection, we can
approximate a GP-distributed function f(x) as

f(x) = φW(x)βX . (5)

The randomized approximation of this inner product lets us replace expensive calculations involving the
kernel with an M-dimensional inner product, which reduce the computational costs of fitting GP regression
models from O(N3) to O(NM2) (Hensman et al., 2017).

Gundersen et al. (2021) and Zhang et al. (2023) introduced the “Random Feature Latent Variable Model”
(RFLVM) which is a RFF-based approximation of a GPLVM. The data generating process of the RFLVM
is:

Yj ∼L(g(φW(X)βj), θ), θ ∼ p(θ),
xi ∼ND(0, I), wm ∼ ND(µzm

, Σzm
),

zm ∼CRP(α), α ∼ Ga(aα, bα),
(µk, Σk) ∼NIW (µ0, ν0, λ0, Ψ0).

(6)

L here represents the likelihood function, g is an invertible link function that maps φW(X)βj to the support
of the likelihood, and θ are other likelihood-specific parameters, if they exist (for example, the noise parameter
in a Gaussian distribution). As p(w) is a Dirichlet process mixture of Gaussians (DP-GMM, Ferguson (1973);
Antoniak (1974)). We assign each wm in W = [w1, . . . , wM/2] to a mixture component with the variable
zm, which is distributed according to a Chinese restaurant process (CRP,Aldous (1985)) with concentration
parameter α. The Dirichlet process is commonly used as a prior for infinite mixture models, where it is
assumed that the data comes from a mixture of an infinite number of subpopulations or clusters. In this
context, α controls the effective number of clusters by determining the degree of concentration or dispersion
in the distribution. This prior introduces additional random variables: the mixture means µk, and the
mixture covariance matrices Σk where K is the number of clusters in the current Gibbs sampling iteration.

3 Random Feature Latent Factor Analysis

In our random feature latent factor analysis model, we now model the data with a non-linear mapping of
both the latent variables and latent factors:
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yij ∼L(g(φW(xi) · β · φW(qj)T ), θ), θ ∼ p(θ)
Xi ∼ND(0, I), Qj ∼ ND(0, I),
β =βT

XβQ, where βX , βQ ∼ N (0, Σ0),
wm ∼ND(µzm , Σzm),
zm ∼CRP(α), α ∼ Ga(aα, bα),

(µk, Σk) ∼NIW (µ0, ν0, λ0, Ψ0).

(7)

In essence, we model a lower-dimensional embedding of the observations using one GP and model another
lower-dimensional embedding of the features using another GP.

3.1 Posterior Inference

The posterior distribution of the model is intractable to obtain in closed form. Thus, we must resort
to a Markov Chain Monte Carlo (MCMC) sampling algorithm to draw samples from the posterior dis-
tribution. The initial step involves estimating the posterior of the covariance kernel parameters, denoted
as {wm, µk, Σk, zm}. The covariance kernel is approximated with the RFF, where we assume an infinite
Gaussian-inverse Wishart mixture for the frequencies, wm. To explore the posterior of this Dirichlet pro-
cess mixture, we first sample the latent indicators, zm, which indicate the latent mixture from which each
frequency is generated. For this process, we follow Algorithm 8 from Neal (2000), a standard sampling
algorithm for DPMMs. Posterior sampling µ and Σk relies on established conjugacy results in the context
of Gaussian-inverse Wishart mixtures. Next, we apply the Metropolis–Hastings (MH) algorithm, as outlined
in Oliva et al. (2016), to sample Wm, where the prior distribution on Wm serves as the proposal distribution.
Additionally, we sample the concentration parameter α through a variable augmentation scheme to ensure
that α remains conditionally conjugate (Escobar & West, 1995).

In this paper, we utilizze the elliptical slice sampler (ESS) to take posterior samples of the latent variables,
X, and the factor loadings, Q (Murray & Adams, 2010), where the detailed algorithm is presented in
Algorithm 2. We opt to use this algorithm for posterior inference because empirical observations suggest
that the ESS is more effective for posterior sampling compared to other general MCMC samplers, such as
Hamiltonian Monte Carlo or Langevin dynamics MCMC. Murray & Adams (2010) and Gadd et al. (2021)
further demonstrate that slice sampling and elliptical slice sampling, respectively, are effective for latent GP
models. The linear coefficients β are also sampled using ESS, if the associated likelihood does not allow for a
closed-form Gibbs sampler. Derivations for the Gibbs sampling step for β for the special cases of Gaussian,
Poisson and Binomial likelihoods are available in Appendix A.

In our notation, the variables subscripted with zero denote fixed hyperparameters of the model. We initialize
all parameters by drawing from the prior distribution, with the exception of X and Q, which are initialized
using PPCA. This sampling framework facilitates the estimation of the posterior distribution for the latent
variables and hyperparameters, enabling robust inference and prediction within the RFLFA. The complete
pseudo-code for the posterior inference of our model can be found in Algorithm 1.

4 Experiments

Our primary focus in our experimental section is on missing data imputation. In particular, we will demon-
strate that our model still attains accurate imputation under a high percentage of missing data compared
to standard latent variable models. In these experiments, we calculated the test mean squared error (MSE)
by comparing the test set observations, Y , with predicted observations Ŷ where Ŷ is approximated by
φw(X̂)βφw(Q)T . X̂ and Q̂ are the final posterior sample of X and Q. We held out 20, 40, 60 and 80 percent
of the observations for the test set and run each trial three times.
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Algorithm 1 Sampling procedure
1: Initialization:
2: a. Initialize X as the latent variable from PPCA model and Q as the weight matrix
3: b. Initialize other parameters {W , µk, Σk, Z} from the prior
4: c. Initialize hyperparameters to be zero
5: Estimate the posterior of the covariance kernel which involve parameters {wm, µk, Σk, zm}:
6: a. Sample zm following algorithm from Neal (2000):

p(zm = k|µ, Σ, W , α) =
{

n−m
k

M−1+αN (wm|µk, Σk) n−m
k > 0

α
M−1+α

∫
N (wm|µ, Σ)NIW(µ, Σ)dµdΣ n−m

k = 0

7: b. Sample µk and Σk:
Σk ∼ W−1(Φk, vk), µk ∼ N (mk,

1
λk

Σk)

where
Φk = Φ0 +

∑
(wm − w̄(k))(wm − w̄(k))T + λ0nk

λ0nk
(wm − µ0)(wm − µ0)T ,

w̄(k) = 1
nk

∑M
m:zm=k wm, vk = v0 + nk, m(k) =

λ0µ0+nkw̄(k)
λ0+nk

, λk = λ0 + nk

8: c. Sample wm by Metropolis–Hastings (MH) sampler:

w⋆
m ∼ q(W ) ≜ p(W |z, µ, Σ), ρMH = min

{
1,

p(Y |X, w⋆
m, θ)

p(Y |X, wmθ)

}

9: d. Sample α by augmenting a variable η to make α conditionally conjugate:

η ∼ Beta(α + 1, M), πη

1− πη
= aα + K − 1

M(bα − log(η)) , K = |k : nk > 0|

α ∼ πηGa(aα + K, bα − log η) + (1− πη)Ga(aα + K − 1, bα − log η)

10: Estimate latent variable X and Q iteratively by Elliptical Slice Sampler (refer to algorithm 2).
11: Estimate linear coefficients β also by ESS.
12: Gibbs sampling data likelihood-specific parameters from specific distribution.
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4.1 Ovarian Cancer Data

We first investigate the ovarian cancer dataset from Martoglio et al. (2002). This dataset contains 17 tissue
samples from 162 genes. We first standardize the data to have zero mean and unit variance. The table below
gives the testing MSE of our prediction and the true values. The preceding numbers represent the average
values of the three trials, while the numbers in parentheses represent the standard deviation of the three
trials.

Missing Percentage Latent Dimension Gaussian RFLVM Gaussian RFLFA (ours) GPLVM PPCA

20%

2 0.906 (0.0561) 0.627 (0.0732) 0.838 (0.3167) 0.681 (0.2625)
3 0.939 (0.0241) 0.727 (0.0427) 0.896 (0.2554) 0.744 (0.2294)
5 0.988 (0.0404) 0.705 (0.0647) 1.038 (0.2766) 0.834 (0.2491)
7 0.980 (0.0641) 0.682 (0.0140) 1.038 (0.2766) 0.864 (0.2558)
9 1.003 (0.0353) 0.645 (0.0300) 1.038 (0.2766) 0.833 (0.2575)

40%

2 0.881 (0.0207) 0.601 (0.0342) 0.932 (0.1768) 0.709 (0.1794)
3 0.949 (0.0078) 0.585 (0.0152) 0.703 (0.0349) 0.754 (0.1608)
5 1.003 (0.0195) 0.506 (0.0029) 0.932 (0.1768) 0.793 (0.1664)
7 1.019 (0.0184) 0.539 (0.0198) 0.932 (0.1768) 0.831 (0.1722)
9 0.968 (0.0409) 0.531 (0.0045) 0.932 (0.1768) 0.845 (0.1716)

60%

2 0.953 (0.0221) 0.463 (0.0545) 0.922 (0.0989) 0.916 (0.1109)
3 0.941 (0.0328) 0.404 (0.0255) 1.044 (0.1140) 0.939 (0.1099)
5 0.960 (0.0378) 0.416 (0.0209) 1.044 (0.1140) 0.967 (0.1096)
7 1.005 (0.0361) 0.422 (0.0335) 1.044 (0.1140) 0.983 (0.1104)
9 1.018 (0.0276) 0.406 (0.0169) 1.044 (0.1140) 0.991 (0.1094)

80%

2 0.965 (0.0140) 0.561 (0.0212) 0.924 (0.1434) 0.951 (0.0666)
3 1.022 (0.0102) 0.562 (0.0234) 0.992 (0.0657) 0.960 (0.0612)
5 1.048 (0.0040) 0.576 (0.0679) 0.992 (0.0657) 0.962 (0.0645)
7 1.077 (0.0406) 0.495 (0.0422) 0.992 (0.0657) 0.968 (0.0626)
9 1.111 (0.0196) 0.469 (0.0262) 0.992 (0.0657) 0.971 (0.0636)

Table 1: Test set MSE with different models on ovarian cancer dataset for four missing percentages. Bold
values represent the best results.

Over an array of different missing percentages and latent dimensions, our RFLFA model exhibits the lowest
MSE compared to the RFLVM, GPLVM and PPCA. As the missing percentage increases, our model main-
tains MSE at the same level while the other two models tend to make worse predictions. And our model
performs best at 60%, indicating its ability to perform well on sparse data. Furthermore, for each missing
percentage, as the latent dimension increases, our model’s MSE decreases, whereas the other competing
models have a larger MSE.

4.2 Wisconsin Breast Cancer Data

The Wisconsin breast cancer data set1 is another famous cancer data set, which contains 569 instances and 30
features. We also evaluate the performance of our model by comparing predictions with those of other models
across various missing data percentages. The Gaussian RFLFA consistently demonstrates lower error rates
across almost all missing data scenarios compared to other models, including Gaussian RFLVM, GPLVM,
and PPCA. The results suggest that the RFLFA model is particularly robust against varying degrees of
missing data. As the percentage of missing values increases (to 40%, 60%, and 80%), RFLFA maintains
competitive performance, while other models show a notable increase in error.

1The data is available at https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.
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Missing Percentage Latent Dimension Gaussian RFLVM Gaussian RFLFA (ours) GPLVM PPCA

20%

2 0.5890 (0.0387) 0.4547 (0.0330) 1.0200 (0.0598) 0.4913 (0.0436)
3 0.6139 (0.0280) 0.4413 (0.0299) 1.0200 (0.0598) 0.4383 (0.0384)
5 0.6743 (0.0493) 0.4287 (0.0133) 0.7847 (0.3923) 0.3743 (0.0384)
7 0.7728 (0.0356) 0.4677 (0.0500) 1.0200 (0.0598) 0.3567 (0.0386)
9 0.8064 (0.0340) 0.4803 (0.0255) 1.0200 (0.0598) 0.3747 (0.0401)

40%

2 0.6922 (0.0301) 0.4607 (0.0205) 1.0047 (0.0437) 0.5720 (0.0348)
3 0.7399 (0.0372) 0.4573 (0.0258) 1.0047 (0.0437) 0.5343 (0.0345)
5 0.7905 (0.0307) 0.4539 (0.0131) 1.0047 (0.0437) 0.4963 (0.0351)
7 0.8418 (0.0226) 0.4893 (0.0052) 1.0047 (0.0437) 0.4953 (0.0380)
9 0.9241 (0.0553) 0.4850 (0.0332) 1.0047 (0.0437) 0.5110 (0.0380)

60%

2 0.8442 (0.0303) 0.4897 (0.0184) 0.9970 (0.0290) 0.7030 (0.0260)
3 0.8826 (0.0285) 0.4727 (0.0156) 0.9970 (0.0290) 0.6797 (0.0251)
5 0.9522 (0.0294) 0.5000 (0.0112) 0.7933 (0.3138) 0.6643 (0.0249)
7 1.0021 (0.0276) 0.5190 (0.0099) 0.9970 (0.0290) 0.6663 (0.0290)
9 1.0460 (0.0356) 0.5437 (0.0103) 0.9970 (0.0290) 0.6783 (0.0266)

80%

2 1.0056 (0.0109) 0.6363 (0.0161) 0.9950 (0.0150) 0.8693 (0.0129)
3 1.0467 (0.0143) 0.6707 (0.0205) 0.9950 (0.0150) 0.8600 (0.0173)
5 1.0942 (0.0167) 0.6910 (0.0226) 0.9950 (0.0150) 0.8593 (0.0189)
7 1.1141 (0.0141) 0.7323 (0.0251) 0.9950 (0.0150) 0.8610 (0.0164)
9 1.1441 (0.0166) 0.7173 (0.0087) 0.9950 (0.0150) 0.8643 (0.0158)

Table 2: Test set MSE with different models on breast cancer dataset for four missing percentages. Bold
values represent the best results.

4.3 Spam Data

Next, we wish to demonstrate the performance of our model on a count data set by first analyzing the spam
dataset2 from which we randomly subsampled 2000 observations, set the minimum document frequency of
word inclusion in the document-term matrix to a threshold of 1% of documents, and set the maximum
threshold of inclusion to 99% of documents leading to 215 words included in the data set.

We compare of RFLFA model with binomial and Poisson likelihoods against PPCA, Poisson factor analysis
(PFA) and RFLVM with binomial and Poisson likelihoods. As the missing percentages increase for this
particular data set, the binomial RFLFA model performs best in terms of the MSE of the imputed missing
data, as seen in Table 3. We can see that almost all the models perform better than the baseline result of
predicting all missing values as zero. In addition, we also calculate the test set perplexity on the imputed
missing data and further observe that either the Poisson RFLFA or the Binomial RFLFA perform the best.

Missing Percentage Latent Dimension Poisson RFLVM Poisson RFLFA (ours) Binomial RFLVM Binomial RFLFA (ours) PPCA PFA LDA Baseline

20%

2 0.0503 (0.0012) 0.0493 (0.0017) 0.0517 (0.0029) 0.0460 (0.0008) 0.0463 (0.0009) 0.0473 (0.0017) 0.0503 (0.0009)
3 0.0493 (0.0005) 0.0480 (0.0008) 0.0567 (0.0025) 0.0463 (0.0009) 0.0473 (0.0009) 0.0717 (0.0132) 0.0503 (0.0009)
5 0.0497 (0.0005) 0.0520 (0.0008) 0.0757 (0.0024) 0.0467 (0.0005) 0.0473 (0.0009) 0.0637 (0.0087) 0.0497 (0.0009) 0.0510
7 0.0500 (0.0008) 0.0477 (0.0005) 0.0887 (0.0031) 0.0470 (0.0008) 0.0477 (0.0005) 0.2463 (0.2062) 0.0503 (0.0009)
9 0.0507 (0.0005) 0.0483 (0.0012) 0.1017 (0.0012) 0.0470 (0.0014) 0.0480 (0.0008) 0.1537 (0.0477) 0.0513 (0.0005)

40%

2 0.0513 (0.0012) 0.0490 (0.0008) 0.0560 (0.0016) 0.0470(0.0008) 0.0480 (0.0008) 0.0480 (0.0008) 0.0510 (0.0008)
3 0.0513 (0.0012) 0.0480 (0) 0.0623 (0.0039) 0.0473 (0.0005) 0.0483 (0.0005) 0.0617 (0.0052) 0.0510 (0.0008)
5 0.0503 (0.0005) 0.0607 (0.0084) 0.0890 (0.0022) 0.0473 (0.0005) 0.0487 (0.0005) 0.0623 (0.0046) 0.0510 (0.0008) 0.0520
7 0.0527 (0.0019) 0.0513 (0.0033) 0.1080 (0.0071) 0.0473(0.0005) 0.0490 (0.0008) 0.1513 (0.0882) 0.0510 (0.0008)
9 0.0530 (0.0014) 0.0500 (0) 0.1190 (0.0033) 0.0473 (0.0005) 0.0490 (0.0008) 0.1186 (0.0264) 0.0510 (0.0008)

60%

2 0.0497 (0.0005) 0.0497 (0.0005) 0.0587 (0.0024) 0.0477(0.0005) 0.0497 (0.0005) 0.0480 (0) 0.0513 (0.0005)
3 0.0503 (0.0005) 0.0480 (0.0008) 0.0697 (0.0012) 0.0480 (0) 0.0493 (0.0005) 0.0606 (0.0034) 0.0513 (0.0005)
5 0.0507 (0.0005) 0.0487 (0.0005) 0.1023 (0.0049) 0.0483 (0.0005) 0.0497 (0.0005) 0.0593 (0.0041) 0.0513 (0.0005) 0.0510
7 0.0530 (0.0008) 0.0493 (0.0012) 0.1273 (0.0031) 0.0480 (0) 0.0500 (0.0008) 0.0820 (0.0042) 0.0513 (0.0005)
9 0.0577 (0.0033) 0.0487 (0.0009) 0.1460 (0.0065) 0.0480 (0.0008) 0.0500 (0) 0.0927 (0.0068) 0.0513 (0.0005)

80%

2 0.0567 (0.0017) 0.0533 (0.0017) 0.0690 (0.0008) 0.0493(0.0005) 0.0510 (0) 0.0493 (0.0005) 0.0513 (0.0005)
3 0.0567 (0.0017) 0.0533 (0.0026) 0.0837 (0.0031) 0.0487 (0.0005) 0.0507 (0.0005) 0.0547 (0.0017) 0.0513 (0.0005)
5 0.0577 (0.0025) 0.0530 (0.0008) 0.1277 (0.0031) 0.0500 (0) 0.0507 (0.0005) 0.0563 (0.0037) 0.0513 (0.0005) 0.0510
7 0.0597 (0.0012) 0.0900 (0.0545) 0.1563 (0.0031) 0.0497 (0.0005) 0.0510 (0) 0.0643 (0.0033) 0.0513 (0.0005)
9 0.0660 (0.0024) 0.0587 (0.0080) 0.1727 (0.0147) 0.0503 (0.0009) 0.0510 (0) 0.0737 (0.0037) 0.0513 (0.0005)

Table 3: Test set MSE with different models on spam dataset for four missing percentages. Bold values
represent the best results.

2The spam data set is available here:https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset.
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Missing Percentage One poisson model Two poisson model One binomial model Two binomial model PFA LDA
20% 205.26 (11.032) 154.51 (2.929) 187.71 (5.564) 147.38 (3.856) 189.49 (1.752) 213.44 (1.437)
40% 199.02 (7.143) 153.87 (3.016) 232.58 (5.404) 159.30 (5.278) 190.44 (2.333) 219.08 (0.437)
60% 197.25 (7.640) 156.45 (2.600) 314.27 (3.187) 149.22 (3.561) 206.75 (6.784) 220.84 (0.268)
80% 208.31 (6.997) 168.53 (9.491) 549.1 (12.972) 153.31 (4.256) 275.40 (39.145) 217.36 (0.327)

Table 4: Test set perplexity with different models on spam dataset for four missing percentages over 3
trials. Bold values represent the best results. One standard error is reported in parentheses.

4.4 CIFAR-10 Data

Next, we looked at the ability for our model to impute missing data in a complicated image data set like
CIFAR-103. In our implementation, we first converted the data set to grayscale. PPCA and LDA showed
notably higher error rates across all configurations, indicating that traditional statistical methods are less
effective in handling the complexities of the CIFAR-10 dataset, particularly in the presence of missing data.
Across all missing data scenarios, the Poisson RFLFA consistently achieved lower error rates relative to
Poisson RFLVM. For Binomial RFLVM, although the MSE will decrease with increasing latent dimensions,
but it behaves badly when the missing percentage is 80%, suggesting potential overfitting. RFLFA models
maintained competitive performance even as the missing percentage increased (40%, 60%, 80%).

Missing Percentage Latent Dimension Poisson RFLVM Poisson RFLFA (ours) Binomial RFLVM Binomial RFLFA (ours) PPCA LDA

20%

2 13093.66 (19.928) 2641.96 (379.106) 1193.78 (59.140) 2053.21 (46.468) 2747.49 (6.979)
3 13305.28 (154.020) 3440.57 (412.548) 966.40 (19.612) 2208.56 (37.523) 2537.85 (7.180)
5 13390.498 (142.486) 3974.97 (756.260) 815.37 (18.013) 2428.29 (88.365) 2382.47 (7.413) 18441.689
7 13375.62 (81.231) 7680.92 (272.061) 742.63 (2.413) 2804.93 (332.86) 2295.24 (7.801)
9 13670.64 (81.225) 6085.41 (2326.622) 665.82 (3.960) 4040.83 (757.064) 2242.53 (8.234)

40%

2 13343.34 (123.364) 2579.89 (398.233) 84540.16 (48599.053) 2110.37 (46.124) 5206.64 (17.141)
3 13175.83 (25.168) 2888.80 (83.026) 18641.61 (13262.994) 2381.71 (127.903) 5092.22 (17.860)
5 13311.38 (112.316) 5669.18 (1498.271) 1281.14 (120.756) 2924.93 (591.204) 5048.52 (18.593) 18444.238
7 13481.74 (78.169) 6006.57 (1411.916) 1008.523 (5.414) 3148.33 (402.080) 5044.866 (19.457)
9 13867.18 (227.063) 9874.49 (4622.049) 928.196 (8.848) 3312.97 (640.410) 5045.22 (19.457)

60%

2 13269.91 (118.619) 2482.00 (22.779) 86513.38 (65126.258) 2077.31 (88.920) 8788.27 (21.387)
3 13323.46 (26.211) 2825.22 (210.683) 19083.79 (15930.015) 2458.88 (53.635) 8750.89 (22.311)
5 13274.53 (210.450) 2907.32 (376.063) 1596.96 (259.295) 2572.20 (284.466) 8751.25 (22.311) 18380.378
7 13862.35 (248.903) 3837.06 (1008.812) 1291.66 (87.744) 2583.99 (191.566) 8751.60 (22.312)
9 14432.50 (213.760) 4755.24 (853.355) 1087.49 (7.996) 2687.15 (179.692) 8751.96 (22.312)

80%

2 13262.62 (89.987) 2352.38 (178.327) 44650.24 (13534.74) 2154.71 (36.653) 13286.88 (19.499)
3 13607.64 (227.756) 2260.62 (70.652) 18620.22 (6382.26) 2250.60 (27.693) 13283.64 (19.437)
5 13938.33 (11.492) 2353.02 (86.284) 11267.91 (3323.75) 2365.03 (121.409) 13284.01 (19.438) 18397.003
7 14798.38 (183.244) 2800.82 (257.421) 5822.23 (452.787) 2639.30 (12.382) 13284.37 (19.439)
9 15202.25 (204.392) 2933.53 (514.430) 5432.85 (738.851) 2429.91 (129.332) 13284.73 (19.440)

Table 5: Test set MSE with different models on cifar-10 dataset for four missing percentages. Bold values
represent the best results.

4.5 MovieLens Data

Next, we will look at the application of our model on very sparse data sets, like MovieLens 100k, in order
to impute a predicted value for the rating a particular user will give a movie. The data set contains 100,000
ratings from 943 users on 1,682 movies. Even for sparse datasets like MovieLens 100K, we observe that
our RFLFA model (and particularly the Binomial RFLFA model) performs the best in terms of imputed
MSE, especially over high missing data percentages over all latent dimension sizes. The results show that
the proposed method outperforms the original latent variable methods in terms of computational efficiency
and accuracy.

3The CIFAR-10 data is available here: https://www.cs.toronto.edu/ kriz/cifar.html
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Missing Percentage Latent Dimension Poisson RFLVM Poisson RFLFA Binomial RFLVM Binomial RFLFA PPCA

20%

2 3.550 (0.4455) 1.075 (0.0110) 1.333 (0.0095) 0.983 (0.0003) 8.063 (0.0102)
3 4.775 (1.5585) 1.143 (0.0662) 1.379 (0.0713) 0.980 (0.0045) 7.640 (0.0086)
5 6.614 (2.7289) 1.415 (0.0612) 1.555 (0.1709) 1.008 (0.0061) 7.255 (0.0060)
7 20.587 (4.4440) 1.602 (0.0588) 1.616 (0.1791) 1.041 (0.0125) 7.014 (0.0071)
9 31.480 (3.9281) 1.799 (0.0593) 1.615 (0.1278) 1.055 (0.0224) 6.895 (0.0070)

40%

2 3.502 (0.4393) 1.075 (0.0103) 1.352 (0.0136) 0.991 (0.0119) 9.197 (0.0062)
3 4.672 (0.5791) 1.149 (0.0594) 1.407 (0.0565) 0.984 (0.0071) 8.847 (0.0074)
5 9.133 (1.7232) 1.406 (0.0163) 1.578 (0.1722) 1.021 (0.0108) 8.554 (0.0075)
7 25.787 (1.2056) 1.511 (0.1093) 1.626 (0.1932) 1.040 (0.0122) 8.383 (0.0070)
9 28.889 (2.1377) 1.643 (0.1604) 1.645 (0.1519) 1.071 (0.0179) 8.316 (0.0099)

60%

2 4.323 (0.7443) 1.135 (0.0225) 1.371 (0.0151) 1.011 (0.0128) 10.526 (0.0052)
3 5.587 (0.2389) 1.172 (0.0318) 1.447 (0.0268) 1.008 (0.0118) 10.281 (0.0043)
5 25.489 (3.5483) 1.454 (0.0872) 1.560 (0.1222) 1.051 (0.0082) 10.117 (0.0076)
7 27.782 (0.3972) 1.512 (0.0645) 1.636 (0.1624) 1.074 (0.0302) 10.039 (0.0069)
9 30.181 (1.6024) 1.660 (0.0827) 1.673 (0.1288) 1.094 (0.0104) 10.059 (0.0150)

80%

2 8.789 (1.1021) 1.189 (0.0039) 1.467 (0.0131) 1.066 (0.0073) 12.064 (0.0203)
3 18.347 (0.4822) 1.296 (0.0232) 1.509 (0.0364) 1.084 (0.0063) 11.954 (0.0222)
5 25.905 (1.9542) 1.490 (0.0293) 1.597 (0.1183) 1.128 (0.0078) 11.991 (0.0318)
7 31.524 (2.1413) 1.620 (0.0169) 1.679 (0.1397) 1.175 (0.0216) 12.006 (0.0150)
9 32.482 (4.5758) 1.639 (0.0861) 1.683 (0.1106) 1.167 (0.0186) 12.032 (0.0186)

Table 6: Test set MSE with different models on MovieLens 100K dataset for four missing percentages. Bold
values represent the best results.

Now, we may further examine some downstream analyses of the results obtained on the MovieLens dataset
to demonstrate the utility of our model in a recommendation application. In the first application, we wish
to explore the clustering properties of the data with the missing values imputed using RFLFA. Here we use
only a subset of the MovieLens 100K data, with users who have ranked more than 100 movies and movies
that have been watched by 100 users. Now, the data will have dimensions 267× 243. The cluster analysis,
conducted by evaluating the number of clusters ranging from 2 to half the total number of users, indicated
that a configuration of 2 clusters yielded the best metric values across all models.

Here, we considered three different metrics to measure the clustering performances without labels–the Sil-
houette coefficient, Calinski-Harabaz score, and Davies-Bouldin index. The silhouette coefficient measures
the relation between the mean intra-cluster distance and the mean nearest-cluster distance. The Calinski-
Harabaz score measures how well the ratio of the sum of the between-cluster dispersion and of within-cluster
dispersion, thus the larger, the better. The Davies-Bouldin index is also an internal evaluation scheme, with
lower values indicating better clustering (Mirkin, 2005). In Table 7 we see that our model yields the best
results compared to some simple baseline measures in terms of the clustering metric. Following this, we
validated the results of the clustered data by considering the two clustered groups as partitions with distinct
behavioral preferences. Here, we treat all the movies they have rated as features to predict the partition that
they belong to. The larger absolute value of the coefficient reflects the strength of the feature’s influence on
the prediction, and therefore we have selected the top fifteen movies modeled by this regression model. It
can be seen that our model selects movies that not only overlap with the popular ones but also encompass
highly rated and well-known ones.

Metrics Mean imputation Multiple imputation KNN Imputation Our model Based on X Based on Q
Silhouette Coefficient 0.0608 0.0881 0.1212 0.4385 0.3844 0.3581

Calinski-Harabaz Score 17.5694 26.7484 37.8887 269.0194 200.3592 155.4608
Davies-Bouldin Index 3.6245 2.9560 2.4269 0.845 0.9848 1.0951

Table 7: Evaluation on three clustering metrics with different models on a subset of 100K movielense dataset.
Bold values represent the best results.
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Methods Top fifteen movies (in descending order)
Star Wars Raiders of the Lost Ark Return of the Jedi (Star wars3) Back to the Future Empire Strikes Back (Star wars2)

Most viewed movies Silence of the Lambs Pulp Fiction Forrest Gump Independence Day Fargo
Fugitive Indiana Jones and the Last Crusade E.T. Toy Story Monty Python and the Holy Grail

Citizen Kane(8.3) Cinderella(7.3) Home Alone(7.7) Dead Man Walking(7.5) Lost World: Jurassic Park(6.5)
Mean imputation Godfather: Part II(9.0) Leaving Las Vegas(7.5) Sabrina(6.3) Big Night(7.3) Saint(6.2)

Reservoir Dogs(8.3) Grumpier Old Men(6.6) To Kill a Mockingbird(8.3) Maltese Falcon(8.0) Mask(6.9)
Grease(7.2) True Lies(7.3) Batman Returns(7.1) Hudsucker Proxy(7.2) Apocalypse Now(8.4)

Multiple imputation Willy Wonka and the Chocolate Factory(7.8) Jurassic Park(8.2) Highlander(7.9) Tin Cup(6.4) Terminator 2: Judgment Day(8.6)
Star Trek: Generations(6.6) Apollo 13(7.7) Searching for Bobby Fischer(7.4) Sleepless in Seattle(6.8) Emma(6.6)

Devil’s Own(6.2) Heathers(7.2) Evita(6.3) Grumpier Old Men(6.6) Mighty Aphrodite(7.0)
Knn imputation Blade Runner(8.1) Casablanca(8.5) Titanic(7.9) Sense and Sensibility(7.7) Lawrence of Arabia(8.3)

Beavis and Butt-head Do America(6.8) Contact(7.5) Scream(7.4) Like Water For Chocolate (7.1) Net(6.0)
Godfather(9.2) Schindler’s List(9.0) Usual Suspects(8.5) Sling Blade(8.0) Citizen Kane(8.3)

Our model Raiders of the Lost Ark(8.4) To Kill a Mockingbird(8.3) Star Wars(8.6) Shawshank Redemption(9.3) Pulp Fiction(8.9)
Princess Bride(8.0) Fargo(8.9) Godfather: Part II(9.0) Braveheart(8.3) Monty Python and the Holy Grail(8.2)

Table 8: Movie selection with different methods on a subset of 100K movielense dataset. Bold values
represent repeated occured results.

5 Conclusion

In this paper, we introduced a non-linear factor analysis model where we push the latent variables and factor
loadings through a random Fourier feature basis function–thereby approximating a Gaussian process latent
variable model with a lower dimensional projection of both the observed variables and observed features.
By using the RFF approximation, we enable a tractable MCMC sampling algorithm to perform posterior
inference.

We applied our model for the problem of missing data imputation, and we see in the experimental section
that the proposed method can be applied to a wide range of real-world datasets, including image and
text processing, as well as natural language understanding. In particular, we see that we obtain the best
performance with competing methods when the missing percentage is fairly high. We then looked for a further
application in recommendation systems where we typically observe high percentages of missing values. Based
on the imputed values in the MovieLens data set, we can carry out some further analyses to identify the
most relevant movies to distinguish different clusters of users.

In future work, we are considering extending our proposed method to generalized tensor factorization, like a
non-linear Tucker decomposition for example. We believe this will further enhance the expressive capability
of GP-based latent variable models to capture higher order non-linear interactions which will further enhance
the latent representation of high-dimensional, complex data.
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A Derivations for Posterior Sampling

A.1 Gaussian distribution

If the data likelihood is Gaussian, the model setting is as follows:

Yi ∼Nj(g(φW(X)βφW(Q)T ), ΣY), ΣY ∼ Inv-Wishart(ν0, Ψ0)),
Xi ∼ND(0, I), Qj ∼ ND(0, I),
β =βT

XβQ, where βX , βQ ∼ N (0, Σ0),
wm ∼ND(µzm

, Σzm
),

(µk, Σk) ∼NIW (µ0, ν0, λ0, Ψ0), zm ∼ CRP(α), α ∼ Ga(aα, bα).

The dimension of Y is N × J , dim of X is N ×D, dim of Q is J ×D. So the dim of φW(X) is N × (M + 1),
dim of φW(Q) is J × (M + 1) and dim of β is (M + 1)× (M + 1). We can choose the dimension of βX and
βQ to be M × (M + 1). The latent variable X and Q share the same set for W .

We have

p(y|φW(X), φW(Q), β, ΣY) =(2π)− J
2 |ΣY|−

1
2 exp(−1

2(y − φW(X)βT
X(φW(Q)βT

Q)T )T Σ−1
Y

· (y − φW(X)βT
X(φW(Q)βT

Q)T )),

p(βX) =(2π|Σ0|)− J
2 exp(−1

2βT
XΣ−1

0 βX),

p(βQ) =(2π|Σ0|)− J
2 exp(−1

2βT
QΣ−1

0 βQ),

p(ΣY) = Ψν0
0

2ν0p/2Γp( ν0
2 )
|ΣY|−(ν0+p+1)/2e− 1

2 tr(Ψ0Σ−1
Y ). (8)
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The posterior may not be a familiar distribution, so we cannot marginalize them out. As the latent variable
has Gaussian priors, we can use the elliptical slice sampler to sample them. Similarly, we use elliptical slice
sampler to sample βX , βQ. And we use Gibbs sampling to sample the likelihood-specific parameter ΣY.

This is the case that works for real-valued data.

A.2 Poisson distribution

If the data likelihood is Poisson, the model setting is as follows:

Yi ∼Poisson(exp(φW(X)βφW(Q)T )),
β =βT

XβQ, where βX , βQ ∼ N (0, Σ0),
Xi ∼ND(0, I), Qj ∼ ND(0, I),

L(yj |φW(X), φW(Q), β) =
N∏

i=1

1
yij !

exp(φW(X)βφW(Q)T )yij

eexp(φW(X)βφW(Q)T ) . (9)

Similarly, the dimensions for the data and latent variables remain the same. The product of the two latent
variables will substitute as the parameter λ for the distribution of poisson. Still, we use the elliptical slice
sampler to sample X, Q, βX , βQ from the above likelihood, since their priors are still Gaussian.

This is the case that works for integer-valued data.

A.3 Bernoulli distribution

If the data likelihood is Bernoulli, the model setting is as follows:

Yi ∼Bernoulli(logistic(φW(X)βφW(Q)T )),
β =βT

XβQ, where βX , βQ ∼ N (0, Σ0),
Xi ∼ND(0, I), Qj ∼ ND(0, I),

L(yj |φW(X), φW(Q), β) =
N∏

i=1
( exp(φW(X)βφW(Q)T ))
1 + exp(φW(X)βφW(Q)T ) )yij (1− exp(φW(X)βφW(Q)T ))

1 + exp(φW(X)βφW(Q)T ) )(1−yij)

=
N∏

i=1

(exp(φW(X)βφW(Q)T )))ynj

1 + exp(φW(X)βφW(Q)T ) . (10)

We use the elliptical slice sampler with above likelihood to sample X, Q, βX , βQ again.
This is the case that works for 0-1 data.

A.4 Count data distributions

For the binomial, negative binomial distributions, the augmented likelihood has a similar form:

L(φW(X), φW(Q), β, a(Yi), b(Yi), c(Yi))

=
N∏

i=1
c(yij) (exp(φW(X)βφW(Q)T ))a(yij)

(1 + exp(φW(X)βφW(Q)T ))b(yij) . (11)
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The binomial likelihood has the follows:

Yi ∼Binomial(φW(X), φW(Q), β, n),
β =βT

XβQ, where βX , βQ ∼ N (0, Σ0),
Xi ∼ND(0, I), Qj ∼ ND(0, I),

L(yj |φW(X), φW(Q), β) =
N∏

i=1
Cn

yij
( exp(φW(X)βφW(Q)T )
1 + exp(φW(X)βφW(Q)T ) )yij

·(1− exp(φW(X)βφW(Q)T )
1 + exp(φW(X)βφW(Q)T ) )(n−yij)

=
N∏

i=1
Cn

yij

(exp(φW(X)βφW(Q)T ))yij

(1 + exp(φW(X)βφW(Q)T ))n
. (12)

B Pseudo-code for ESS

Algorithm 2 Elliptical Slice Sampler (Murray et al., 2010)
1: Choose an ellipse: v ∼ ND(0, Σ)
2: Calculate log-likelihood threshold: u ∼ Uniform[0, 1]

log y ← log L(x) + log u
3: Draw an initial angle: θ ∼ Uniform[0, 2π]

also defining a bracket: [θmin, θmax]← [θ − 2π, θ].
4: Calculate a new point, x′ = x cos(θ) + v sin(θ).
5: if L(x′) > log y then
6: accept the new point x′;
7: else
8: If θ < 0 set θmin ← θ otherwise θmax ← θ
9: Draw θ ∼ Uniform[θmin, θmax] and go back to steps 4.

10: end if
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