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ABSTRACT
Multi-Agent Systems (MAS) deployed in the Internet of Things (IoT)
face significant security challenges due to device heterogeneity and
dynamic environments. Traditional authentication mechanisms
often fail to address the various trade-offs that arise in resource-
constrained environments, which are critical for IoT systems. To
address this, we propose a trust-based, multi-objective optimization
framework for adaptive authentication factor selection in IoT. Our
approach leverages the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) to optimize the security, energy efficiency, and delay of
the authentication factors. Trust is integrated into the optimization
model as a guiding parameter to enable a more adaptive and context-
aware selection process, ensuring that requirements and resource
consumption are tailored to the specific context of each authentica-
tion instance. Simulation results demonstrate that our framework
enhances security while optimizing resource consumption.
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1 INTRODUCTION
The rapid expansion of the Internet of Things (IoT) has introduced
significant challenges in security, scalability, and decision-making.
IoT environments consist of a vast number of interconnected de-
vices, ranging from simple sensors to edge computing nodes, oper-
ating in highly dynamic and resource-constrained environments.
These constraints, such as limited processing power, energy, and
communication bandwidth, necessitate adaptive and efficient se-
curity mechanisms. However, conventional security solutions de-
signed for traditional networks are often not well suited for IoT, as
they impose excessive computational overhead and fail to adapt to
the heterogeneous and evolving nature of IoT systems. To address
these limitations, this paper proposes a framework that dynamically
optimizes authentication decisions in IoT by integrating trust-based
reasoning with multi-objective resource management.

A fundamental challenge in securing IoT environments lies in the
decision-making process governing authentication and trust man-
agement [32]. In distributed IoT networks, Multi-Agent Systems
(MAS) offer a promising approach to model interactions among au-
tonomous devices [10, 13]. Each agent can represent an IoT object
capable of making decisions, exchanging information, and collab-
orating with other agents to achieve specific goals. However, the
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decentralized nature of MAS introduces risks. For instance, agents
relying on peer-provided data or services must efficiently decide
before engaging in interactions: Can I trust this agent? Is it who it
claims to be? This makes trust a critical component in managing
security and cooperation in MAS. It enables agents to assess the
reliability of other agents based on past interactions, observed be-
havior, or shared reputations [29]. However, relying solely on trust
for decision-making is insufficient if malicious agents can exploit
trust by impersonating high-trust agents and compromising the
security of the system. To mitigate this risk, authentication mech-
anisms are required to validate the identity of agents, ensuring
that trust is assigned to legitimate agents and interactions remain
secure.

Traditional authentication schemes often rely on static meth-
ods that apply fixed security measures without considering the
dynamic and heterogeneous nature of IoT environments [8]. Such
static approaches are inefficient and fail to address the trade-offs
inherent in IoT systems, where authenticationmust balance conflict-
ing objectives, such as security, energy consumption and quality of
service [23]. These trade-offs are particularly significant in resource-
constrained environments, where unnecessary authentication over-
head can drain device resources or disrupt real-time applications.
The interdependence between trust and authentication has been
highlighted in [31], demonstrating how authentication strengthens
trust relationships while trust can guide authentication decisions.
By leveraging this feedback loop, adaptive authentication strategies
can be designed to dynamically select authentication factors based
on contextual trust values, optimizing security while minimizing
resource consumption.

This paper introduces a novel framework that integrates Multi-
Objective Optimization (MOO) with trust-based decision-making
to optimize authentication strategies in resource-constrained and
dynamic IoT environments. The proposed approach formulates au-
thentication as a multi-objective problem, where security, energy
consumption, and delay are optimized simultaneously. Using trust
as a guiding parameter, the framework dynamically selects authen-
tication factors, ensuring that authentication decisions adapt to
the heterogeneous and resource-constrained nature of IoT environ-
ments.

The main contributions of this work are as follows:

(1) Proposing a dynamic framework for multi-objective opti-
mization of authentication factor selection, balancing secu-
rity, energy consumption, and delay using the elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II).

(2) Integrating trust as a guiding parameter in decision-making
to dynamically select optimal authentication solutions.



The rest of this paper is organized as follows. Section 2 reviews
existing work on security in IoT, trust management, and multi-
objective optimization. Section 3 describes the optimization model
in details, including the optimization flow and the nature of authen-
tication factors before formalizing the problem. Section 4 presents
the simulation setup, results, and performance analysis. Finally, Sec-
tion 5 concludes with insights into the contributions and outlines
directions for future research.

2 BACKGROUND AND RELATEDWORK
This section outlines the security challenges in IoT, emphasizing
the need for adaptive authentication mechanisms. We review trust
management systems as a foundation for context-aware security
decisions and explore multi-objective optimization techniques to
address conflicting objectives. Table 1 groups and summarizes the
main lines of related research in IoT security, trust management,
and multi-objective optimization, highlighting their collective ap-
proaches and contributions.

2.1 Security in IoT
Security in IoT is inherently a multi-objective problem, requiring a
trade-off between security, efficiency, and usability [23]. Among the
various security mechanisms, authentication plays a crucial role in
ensuring that interactions occur between legitimate entities while
minimizing overhead on resource-constrained IoT devices [19].
Unlike traditional computing environments, IoT devices operate
under strict energy, processing, and latency constraints, making
static authentication approaches impractical [8].

Extensive research has explored these security challenges and
proposed protective measures to mitigate threats [4, 12, 14, 19].
A widely studied approach is Multi-Factor Authentication (MFA),
which strengthens security by combining two or more independent
authentication factors. These factors are generally categorized into
knowledge-based (e.g., passwords), possession-based (e.g., security
tokens), and inherent characteristics (e.g. biometric verification)
[21].

To further enhance security while maintaining efficiency, recent
MFA advancements have focused on adaptive and context-aware
authentication [3, 20, 21]. Adaptive MFA dynamically adjusts au-
thentication requirements based on the assessed risk level of an
access attempt, reducing unnecessary overhead while maintaining
security. Similarly, context-aware models incorporate additional
information such as user behavior, time, location, and interaction
history to refine authentication decisions [2, 16, 28]. Moreover, the
potential of IoT in enabling opportunistic authentication factors
based on available sensors and contextual data was highlighted
in [30]. This underscores the need for adaptive techniques capa-
ble of dynamically selecting the most appropriate authentication
mechanisms.

2.2 Trust Management in IoT for Security
Trust management plays a critical role in securing IoT systems,
where agents interact while facing constraints in computational
and energy resources. In a trust relationship, there are two roles: the
truster, who relies on information or service provided by another
agent, and the trustee, the agent who provides the service or action

to the truster [29]. Trust can be evaluated using direct or indirect
feedback derived from interactions. Direct trust refers to the trust
that a truster places in a trustee based on their own interactions,
while indirect trust is formed through feedback the truster receives
from third parties about the trustee [26].

The literature demonstrates increasing attention to trust manage-
ment as a key element of IoT security. Studies [17, 27, 32] emphasize
the crucial role of trust in addressing the complexities and vulnera-
bilities present in IoT networks. These works underline the need to
move away from static security models and adopt more adaptive,
context-aware frameworks that can respond dynamically to evolv-
ing threats and conditions. Adaptive trust management systems,
for example, can adjust trust assessments in real-time, enhancing
security flexibility and resilience [25]. Similarly, authors in [9] in-
tegrate trust and reputation mechanisms into their authentication
scheme for the Internet of Vehicles, stressing the importance of
these factors in ensuring secure and reliable communication.

2.3 Multi-Objective Optimization for Security
MOO has emerged as a powerful tool for addressing the conflicting
requirements of IoT systems, such as balancing security, resource
consumption and quality of service. Given the resource constraints
in IoT environments, optimizing these trade-offs is crucial for main-
taining efficiency and robustness [23]. Unlike single-objective opti-
mization, which yields a single optimal solution, MOO produces a
set of Pareto-optimal solutions, each representing a unique trade-
off between the objectives. A solution is said to be Pareto-optimal
if no objective can be improved without worsening at least one
other objective. The set of all Pareto-optimal solutions forms the
Pareto front that represents the set of non-dominated solutions in
the objective space. By examining the Pareto front, decision-makers
can select a solution that best aligns with system constraints and
priorities.

Traditional methods for solving MOO problems, such as the
weighted sum method, aggregate multiple objectives into a single
weighted function [18]. While this method is computationally effi-
cient, it requires precise weight tuning and may struggle to capture
the full spectrum of trade-offs, especially in dynamic and uncertain
IoT environments. This approach also necessitates a predefined
trade-off, which may not generalize well across different scenarios.

In contrast, evolutionary algorithms, such as Genetic Algorithms
(GA) and Particle SwarmOptimization (PSO), have beenwidely used
to solve multi-objective problems in IoT [1, 5, 11]. These algorithms
generate a set of Pareto-optimal solutions without requiring explicit
weight assignments, enabling decision-makers to select the most
appropriate trade-off. Several comparative studies of different multi-
objective optimization methods [24, 33] have demonstrated that
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [6]
outperforms other methods by maintaining a well-distributed set
of trade-off solutions and achieving better convergence towards
the true Pareto front.

3 SYSTEM MODEL
The core problem addressed in this work is the challenge of se-
lecting appropriate authentication factors in IoT environments
while balancing conflicting requirements. In such environments,



Table 1: Grouped summary of related work in IoT security, trust management, and multi-objective optimization

Focus Area / Group Representative Works Approach/Method Key Contributions/Insights

IoT Authentication & Se-
curity

[4, 8, 12, 14, 19] Surveys and analysis of IoT au-
thentication mechanisms

Overview of authentication chal-
lenges and solutions for resource-
constrained IoT devices

Multi-Factor & Context-
Aware Authentication

[2, 3, 16, 20, 21, 28, 30] Adaptive/context-aware MFA,
opportunistic authentication

Adaptive models leveraging context
(user behavior, location, sensors) for
enhanced security and usability

Trust Management in IoT [9, 17, 25–27, 29, 32] Trust modeling, adaptive trust
management, reputation sys-
tems

Trust frameworks and adaptive
mechanisms to improve security
and reliability in IoT interactions

Multi-Objective Opti-
mization

[1, 5, 6, 11, 18, 24, 33] Weighted sum, evolutionary al-
gorithms (GA, PSO, NSGA-II)

Application of MOO techniques to
balance security, efficiency, and re-
source use in IoT environments

Optimization algorithm

Trust-Based Decision Making

Available factors
changed ?

Ignore message &
authentication

Apply selected factors for authentication

Trust Evaluation
(Trust(ID) > 

min_threshold?)

No No

Yes
Yes

Trust Model

Update trust level after
successful authentication

Incoming message Claimed ID Available Authentication Factors

Previously optimized
solutions

New optimized
solutions

Selected authentication factors

DelayEnergySecurity

1

2 3

4

5
6

Figure 1: Optimization model workflow

devices exhibit diverse capabilities, and excessive authentication
costs can degrade performance or even exhaust the resources of
low-power devices. Conversely, choosing weak or minimal authen-
tication undermines security. This creates the need for adaptive
decision-making that considers both security requirements and
resource constraints.

We consider a heterogeneous set of agents representing IoT ob-
jects, ranging from low-power sensors to more complex devices.
Each agent is assigned a unique identifier (ID) and is capable of
sending and receiving messages. For simplicity, we assume that re-
ceived messages follow the format (claimed_ID, content). The
focus of the authentication process is on verifying the claimed iden-
tity within the message. Agents maintain and update trust values
assigned to other agents through a trust management system, re-
flecting past interactions and the quality of exchanged information.
Each agent independently evaluates trust levels, assesses authenti-
cation requests, and makes decisions based on its local knowledge
and the optimization framework. While the specific choice of trust
management system is beyond the scope of this paper, it remains
an important design consideration when deploying the proposed
framework.

3.1 Authentication Factors Attributes
The selection of authentication factors plays a critical role in balanc-
ing security, energy consumption, and delay. Each authentication
factor impacts these objectives differently, and its selection is influ-
enced by system constraints as well as the dynamic trust levels of
agents.

We consider a diverse set of authentication factors, each charac-
terized by three key attributes:

• Security Level (𝑆𝐿): Represents the robustness of the au-
thentication factor against potential attacks. Higher values
indicate stronger security.

• Energy Cost (𝐸): Measures the total energy consumed when
employing the authentication factor.

• Authentication Delay (𝐷): Reflects the time required to com-
plete the authentication process using the factor.

3.2 Authentication Process Workflow
The goal of the proposed optimization model is to dynamically
select the most suitable authentication factors for each authen-
tication while balancing multiple conflicting objectives: security,
energy consumption and latency. Our framework leverages MOO
to identify the different optimal trade-offs among possible authen-
tication solutions, while trust-based decision-making determines
both which agents should be authenticated and which trade-off
to select. This aims to ensure that authentication resources are
allocated efficiently, maintaining strong security while minimizing
unnecessary overhead.

Figure 1 illustrates the workflow of the proposed optimization
model, outlining the sequence of operations for adaptively selecting
authentication factors. In the context of trust management, two
agent roles are distinguished: the truster (who evaluates trust and
makes authentication decisions) and the trustee (who provides a
service and must be authenticated), as defined in Section 2. The
optimization is performed from the truster’s perspective, who must
decide whether to authenticate a potential trustee and, if so, which
combination of authentication factors to adopt. The optimization
model has 3 inputs: (1.) the claimed identity to authenticate, (2.)
the trust level associated with the claimed ID from the truster’s
perspective (retrieved from the trust model), and (3.) the set of



available authentication factors that can be used. The output of the
optimization algorithm is the Pareto front of authentication solu-
tions, where each solution represents a combination of a predefined
number of authentication factors (MFA). The final decision-making
step involves selecting one solution from the Pareto front, guided
by trust, to authenticate the claimed ID. The key steps of the process
are as follows:

1. Incoming Message: The optimization and decision-making pro-
cess is triggered when an agent (truster) receives a message from
another agent (potential trustee). The primary objective of authen-
tication is to verify whether the 𝑐𝑙𝑎𝑖𝑚𝑒𝑑_𝐼𝐷 accurately represents
the sender’s true identity. Upon receiving the message, the truster
extracts the claimed identity and proceeds to assess whether au-
thentication is necessary in the subsequent step.

2. Trust Evaluation: The truster evaluates the trustworthiness of
the sender’s claimed_ID based on the trust model. If the assigned
trust value is below a predefined threshold Θ𝑚𝑖𝑛 , the message is
discarded, as interactions with untrustworthy entities are deemed
unnecessary. Otherwise, authentication is initiated to verify the
sender’s identity before further processing the message.

3. Authentication Factor Availability Check: The truster verifies
the set of available authentication factors. Since the optimization
model derives a set of optimal solutions based on these factors,
any change requires re-optimization. In dynamic IoT environments,
factors may become unavailable due to power constraints (e.g.,
a biometric sensor) or new factors may emerge following device
upgrades. If the set of available factors is unchanged, previously
computed optimal trade-offs remain valid, allowing the process to
proceed directly to trust-based decision-making. Conversely, any
modification—such as a factor becoming unavailable, a new factor
being introduced, or an update to an existing factor—triggers re-
execution of the optimization process to generate an updated set of
trade-offs.

4. Optimization Algorithm Execution: If the optimization algo-
rithm must be executed—either during the initial run or due to
changes in authentication factor availability—it takes as input the
characteristics of the available authentication factors: (i) security
level, (ii) energy consumption, and (iii) delay. The algorithm ex-
plores the trade-offs among these metrics, producing a Pareto front
of optimal authentication solutions. Each solution represents a com-
bination of two or three factors from the available set, enabling
adaptive selection that aligns with system constraints while opti-
mizing security, energy consumption, and latency.

5. Trust-Guided Decision Making: Based on the set of optimal au-
thentication solutions generated by the optimization algorithm, the
truster selects the most appropriate solution according to the trust
value associatedwith the claimed_ID. High-trust claimed identities
trigger the selection of stricter authentication solutions, prioritizing
security to prevent potential trust exploitation through identity
spoofing. This precaution is necessary to protect trust-dependent
operations, ensuring that the claimed identity corresponds to the
true sender. Conversely, lower-trust identities may justify selecting
more lightweight, energy-efficient solutions, as the reliance on their
information is already limited. The specific details of this selection
process are further explained in subsection 3.4

6. Authentication Execution: Once the authentication solution is
selected, the truster verifies whether the potential trustee satisfies

the requirements of the chosen authentication factors. If the au-
thentication is successful, the claimed_ID is accepted as authentic,
and the message content is processed, contributing to future trust
evaluations and updates. If authentication fails, the claimed_ID is
considered unverified, and the message is discarded. This ensures
that only authenticated agents can influence subsequent decisions
and trust assessments within the system.

3.3 Problem Formulation
Wemodel the selection of authentication factors as amulti-objective
optimization problem aimed at balancing three competing objec-
tives: maximizing security, minimizing energy consumption, and
reducing authentication delay. Let Favail = {𝑓1, 𝑓2, . . . , 𝑓𝑛} denote
the set of available authentication factors, where each factor 𝑓𝑖 is
characterized by: 𝑆𝐿𝑖 (Security level of factor 𝑓𝑖 ), 𝐸𝑖 (Energy con-
sumption of factor 𝑓𝑖 ), 𝐷𝑖 (Authentication delay associated with
factor 𝑓𝑖 ).

The optimization problem is formulated as follows: given a set of
available authentication factors 𝐹avail, we aim to select a subset𝐴 ⊆
𝐹avail that forms an MFA scheme while optimizing the following
objectives:

Maximize 𝑆𝐿(𝐴) =
∑︁
𝑓𝑖 ∈𝐴

𝑆𝐿𝑖 (1)

Minimize 𝐸 (𝐴) =
∑︁
𝑓𝑖 ∈𝐴

𝐸𝑖 (2)

Minimize 𝐷 (𝐴) =
∑︁
𝑓𝑖 ∈𝐴

𝐷𝑖 (3)

Subject to the constraints:
• 𝐴 must contain at least one authentication factor: |𝐴| ≥ 1.
• The number of selected factors is constrained by system
resources: 1 ≤ |𝐴| ≤ 𝑘max, where 𝑘max is the upper limit on
the number of factors an agent can handle simultaneously.

• Each selected factor must be available in the current context:
𝐴 ⊆ Favail, where Favail can change dynamically depending
on environmental conditions and device capabilities.

• Each authentication factor can be used at most once in a
single authentication solution:
𝐴 is a set, meaning ∀𝑓𝑖 , 𝑓𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 ⇒ 𝑓𝑖 ≠ 𝑓𝑗 .

In a MOO problem, it is generally impossible to find a single
solution that optimizes all objectives simultaneously. Instead, the
solution space consists of a set of Pareto-optimal solutions, where
improving one objective often comes at the cost of another. To
navigate these trade-offs, the final decision-making process will
be guided by a trust-based approach, ensuring that the selected
solution aligns with contextual priorities and dynamically balances
the competing factors. NSGA-II is well-suited for the authentication
factor selection problem formulated in the previous subsection due
to three key characteristics: (i) fast non-dominated sorting, which
efficiently ranks solutions based on dominance relations, (ii) elitism
preservation, ensuring high-quality solutions are retained across
generations, and (iii) crowding-distance-based diversity maintenance,
which prevents premature convergence by promoting diversity in
the Pareto front. Figure 2 illustrates the NSGA-II procedure. In the
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context of authentication factor selection, an individual in NSGA-
II represents a specific combination of factors from Favail. Each
individual is encoded as a subset 𝐴 ⊆ 𝐹avail, where the size of 𝐴
corresponds to the chosen authentication scheme (e.g., two-factor
or three-factor authentication). The optimization process starts
with a diverse population of such subsets, and each solution is
evaluated based on the three objectives: security, energy consump-
tion, and delay, as defined in equations (1), (2), and (3). Through
iterative selection, crossover, and mutation, NSGA-II refines these
combinations, favoring non-dominated solutions while maintaining
diversity using crowding distance. Constraints are incorporated by
ensuring only feasible solutions are generated during initialization,
crossover, and mutation. The process continues until a termination
criterion is met, such as a fixed number of generations or conver-
gence of the Pareto front. This enables the algorithm to efficiently
explore the trade-offs between authentication factors’ characteris-
tics, ultimately generating a Pareto front of optimal authentication
schemes. Once the Pareto front is obtained, trust values guide the
final solution selection, as explained in the following subsection.

3.4 Trust-Based Decision Making on the Pareto
Front

Given a set of non-dominated authentication solutions obtained
through NSGA-II: S = {𝑆1, 𝑆2, ..., 𝑆𝑛}, the decision process involves
selecting the appropriate solution 𝑆∗ for a given claimed_ID. Let
𝑇 (ID) represent the trust score assigned to the claimed identity,
where 𝑇 : ID → [0, 1].

The selection function F𝑠𝑒𝑙 is defined as:

𝑆∗ = F𝑠𝑒𝑙 (S,𝑇 (ID)) (4)

where F𝑠𝑒𝑙 determines the most appropriate solution 𝑆∗ based on
trust and the available set of non-dominated solutions S.

High-trust claimed identities trigger the use of stricter authenti-
cation factors to prevent potential exploitation of high-trust identi-
ties by malicious actors through identity spoofing, thereby protect-
ing trust-dependent operations. Conversely, for low-trust identities,
the truster may opt for less resource-intensive authentication meth-
ods or outright rejection of the interaction to minimize risk and
resource expenditure:

F𝑠𝑒𝑙 (S,𝑇 (ID)) = argmax
𝑠∈S

(𝛼 · SL(𝑠) − 𝛽 · E(𝑠) − 𝛾 · D(𝑠)) (5)

where:
• SL(𝑠) is the security level of authentication solution 𝑠 .
• E(𝑠) represents the energy consumption of 𝑠 .
• D(𝑠) represents the delay introduced by 𝑠 .
• SL(𝑠), E(𝑠), and D(𝑠) are normalized to ensure a balanced
contribution to the overall evaluation.

• 𝛼 , 𝛽 ,𝛾 are weight coefficients that vary based on trust:

𝛼 = 𝜆 · 1
1 + 𝑒 (−𝑘 · (𝑇 (ID)−0.5) ) (6)

𝛽 = (1 − 𝛼) · 𝜙 (7)
𝛾 = (1 − 𝛼) · (1 − 𝜙) (8)

where 𝛼 is determined by a sigmoid function that depends on
the trust value𝑇 (ID). This function ensures a smooth transi-
tion in the weight assigned to security as trust increases. 𝑘 is
a steepness parameter controlling this transition from low to
high security priority as trust increases, 𝜙 represents the im-
portance of energy and delay (𝜙 = 0.5 for equal importance),
the coefficients satisfy 𝛼 + 𝛽 +𝛾 = 1. Additionally, 𝜆 → [0, 1]
controls the influence of trust on the trade-off, allowing for
easier integration of other contextual factors in the selection
process. For example 𝜆 = 𝑓 (𝑇 (ID),𝐶1,𝐶2, ...) where𝐶1,𝐶2...
represent other contextual factors (e.g., device type, critical-
ity of the operation). For now, 𝜆 = 1 as trust is the primary
factor. This allows for a smooth and dynamic adjustment of
priorities based on the trust value of the claimed identity.

This ensures that for high-trust identities, security takes priority,
while for low-trust identities, resource efficiency is favored. To
summarize, the authentication process consists of the following
steps:

(1) An agent presents a claimed_ID.
(2) The receiving agent (truster) retrieves 𝑇 (claimed_ID) and

the Pareto-optimal authentication solutionsS from the avail-
able set of authentication factors.

(3) The function F𝑠𝑒𝑙 selects the most suited solution 𝑆∗.
(4) The selected authentication method is applied.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed au-
thentication decision-making model by analyzing its effectiveness
under different conditions.

4.1 Simulation Setup:
The energy cost, delay, and security level values assigned to each
authentication factor are synthetic but inspired by plausible char-
acteristics observed in IoT authentication systems, drawn from
typical energy consumption patterns, estimated processing and
communication times, and multi-criteria security evaluations in
the literature [7, 15, 22]. These values are intended to facilitate the
exploration of trade-offs between energy efficiency, security, and
delay, rather than represent any specific authentication protocols.
Future work may incorporate empirical data to refine these values.
The factors used in our simulation are presented in Table 2, ensur-
ing logical consistency throughout. Specifically, we account for the
inherent correlation between security and energy consumption,
as stronger authentication mechanisms typically demand more



Table 2: Artificial authentication factors

Factor Security level Energy cost Delay

Factor 1 2 0.1 5
Factor 2 3 0.15 15
Factor 3 2.5 0.25 10
Factor 4 4 0.2 25
Factor 5 5.5 0.5 30
Factor 6 6 0.3 40
Factor 7 6 0.65 20
Factor 8 7 0.8 45
Factor 9 7.5 1.0 50
Factor 10 7.5 1.4 35
Factor 11 8 1.3 60
Factor 12 8 1.2 65
Factor 13 8.5 1.6 75
Factor 14 9.5 2 90
Factor 15 9 2.3 75

computational resources. Each factor is characterized by three key
metrics: (i) Security level (SL) → [1, 10] where higher values indi-
cate stronger security; (ii) Energy consumption (EC) → [0.1, 2.5]
measured in millijoules (mJ); (iii) Delay (D) → [0.1, 100] measured
in milliseconds (ms).

To assess our model, we implemented NSGA-II algorithm to
optimize the selection of two-factor and three-factor authentica-
tion schemes. The key parameters used in NSGA-II process are
as follows: crossover rate 𝑝𝑐 of 0.9 and mutation rate 𝑝𝑚 of 0.1.
The fitness evaluation considers the three objectives defined previ-
ously. The number of possible solutions for two-factor schemes is(15
2
)
= 105, while for three-factor schemes, it increases to

(15
3
)
= 455.

4.2 Results and Analysis of Pareto Front
Figure 3 and Figure 4 illustrate the evolution of the optimization pro-
cess using NSGA-II for two-factor and three-factor authentication
schemes, respectively. The 3D plots represent security on the x-axis,
energy cost on the y-axis, and delay indicated by the color-bar. In
both cases, the initial population is randomly distributed across the
objective space, covering diverse combinations of authentication
factors with varying levels of security, energy consumption, and
delay.

As the optimization progresses, the algorithm gradually refines
the population towards a set of non-dominated solutions forming
the Pareto front. The final Pareto fronts for two-factor and three-
factor schemes highlight the fundamental trade-offs inherent in
authentication scheme selection: (i) Trade-off between security,
energy, and delay: increasing security generally leads to higher
energy consumption and increased delay. Solutions that minimize
energy consumption tend to offer lower security levels. (ii) Impact
of adding a third factor: the pareto front for three-factor schemes
extends beyond the two-factor front, reflecting the potential for
achieving higher security. However, this comes at the cost of in-
creased energy consumption and delay, emphasizing the growing
complexity with additional factors.

The analysis of the Pareto front highlights that selecting an
optimal authentication scheme requires navigating these trade-offs.
The Pareto front analysis underscores the importance of balancing
security, energy, and delay when selecting authentication schemes.
The trust-based decision process presented in the next subsection
dynamically guides this selection.

4.3 Trust-based Selection of Authentication
Factors

We apply a trust-based selection mechanism to the Pareto-optimal
solutions obtained via NSGA-II, as described in previous sections.
This mechanism adjusts the selection based on dynamic trust levels,
with parameters 𝛼 , 𝛽 , and 𝛾 computed according to the trust value
and steepness parameter 𝑘 . Higher values of 𝑘 make the selection
more sensitive to changes in trust.

We performed a series of simulations using a range of trust val-
ues 𝑇 (ID) ∈ [0, 1]. For each trust value, the selection process was
applied to the Pareto-optimal solutions generated by NSGA-II. The
impact of varying trust values on the chosen authentication solu-
tion was observed across several scenarios. Figure 5 illustrates the
relationship between the trust value and the selected authentication
solution. As trust increases, the selection mechanism prioritizes
solutions with higher security levels, while minimizing energy con-
sumption and delay as secondary factors. Conversely, for low-trust
values, the selection process favors solutions that reduce resource
consumption, opting for less secure but more energy-efficient or
lower-delay authentication methods.

To further validate the effectiveness of our trust-based multi-
objective optimization (TB-MOO) framework, we conducted a com-
parison with three alternative methods, each method includes the
selection of three authentication factors:

• Fixed Authentication (FixedA): Always uses the same three
authentication factors while prioritizing security, providing
a static baseline.

• Random Authentication (RandA): Selects factors randomly
for each authentication.

• Trust Rule-based Authentication (RuleA): Adjusts factor
selection based on three predefined trust thresholds (e.g.,
𝑇 (ID) < 0.3 → low energy,
0.3 < 𝑇 (ID) < 0.7 → balances objectives,
𝑇 (ID) > 0.7 → high security).

The simulationmodels a direct communication process, where an
agent interacts with 10 other agents, updating trust values dynam-
ically based on predefined behaviors. For simplicity, trust values
are updated after each episode in the simulation according to these
behaviors, without relying on a formal trust management model.
The objective is to verify how authentication factor selection adapts
based on trust values. The 10 agents exhibited distinct behaviors: 3
malicious agents, 3 changing behavior agents, and 4 honest agents.
Malicious agents results in a declining trust trend with occasional
random fluctuations. Changing behavior agents demonstrate unpre-
dictable trust oscillations, reflecting erratic behavior. Honest agents
results in an increasing trust trend with minor noise. The simulation
consisted of 1,000 episodes, with each episode involving authenti-
cation attempts for all 10 agents using the four methods: TB-MOO,
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Figure 3: Results of two-factor authentication factor combinations
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Figure 4: Results of three-factor authentication factor combinations
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Figure 5: Visualization of trust-driven selection on the pareto front

FixedA, RandA, RuleA. The attack success rate and cumulative en-
ergy consumption over time were measured for each method. To
simulate attacks, the security level of each authentication factor,
ranging from 1 to 10, is directly linked to its robustness against at-
tacks. For example, a security level of 9 corresponds to a successful

attack probability of approximately 1% (10 − 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑙𝑒𝑣𝑒𝑙)/100,
with lower security levels increasing the likelihood of a successful
attack.

The results, shown in Figure 6, illustrate the trade-offs between
attack resistance and energy consumption for each method. FixedA
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Figure 6: Comparison of attack rate and energy consumption on three-factor individuals

achieves the lowest attack rate at 0.0214, reflecting its strong se-
curity performance. This method was intentionally designed to
prioritize security, utilizing a combination of authentication fac-
tors with an average security level of 8.1. While it minimizes the
likelihood of attacks, it incurs significant energy consumption. In
contrast, TB-MOO offers a balanced approach, with an attack rate of
0.0257 and the lowest cumulative energy consumption. By adapting
the security requirements based on the trust level of each identity,
TB-MOO efficiently allocates resources, ensuring higher security
when necessary while reducing energy expenditure by ignoring
low-trust claimed identities. RuleA, which relies on trust values
assigned to three clusters, outperforms RandA in terms of energy
efficiency, but it does not achieve the same level of balance between
security and energy as TB-MOO. Unlike RuleA, RandA follows a
random strategy, resulting in higher attack rates and energy con-
sumption.

Overall, the results shows that TB-MOO achieves the best bal-
ance between security and energy efficiency, leveraging trust to
adapt security requirements dynamically. FixedA may be suitable
for scenarios where security is paramount, but it sacrifices energy
efficiency. RuleA offers a middle ground, better than RandA, but
still less adaptable than TB-MOO. By incorporating trust into the
decision-making process, TB-MOO not only improves security but
also optimizes the use of energy.

5 CONCLUSION
In this paper, we present a novel adaptive framework for authenti-
cation factor selection in IoT environments that balances security
robustness with energy and latency efficiency. By integrating multi-
objective optimization (NSGA-II) and trust-based decision-making,
our approach addresses the critical challenge of balancing conflict-
ing objectives in resource-constrained IoT systems. The framework
first generates a Pareto front of non-dominated authentication
solutions, capturing optimal trade-offs between the objectives. A

sigmoid-like trust-weighting mechanism then dynamically priori-
tizes solutions from this Pareto front, favoring high-security config-
urations for highly trusted identities to prevent trust exploitation by
identity spoofing, and energy-efficient configurations for low-trust
interactions. This dual-layer optimization ensures that authenti-
cation decisions adapt to both the operational constraints of IoT
devices and the evolving trustworthiness of agents.

Our simulation results demonstrate that the proposed approach
effectively adapts authentication decisions based on trust levels,
selecting from a Pareto front composed of two-factor and three-
factor authentication solutions. The results show that our approach
ensures robust security for high-trust identities while reducing
authentication overhead for low-trust interactions. Comparative
evaluations further highlight that our method achieves the best
balance between attack resistance and energy efficiency compared
to a high-security fixed approach, a three-category trust-based rule,
and a random selection method.

The integration of trust management and adaptive authentica-
tion mechanisms in IoT and MAS represents a promising direction
for enhancing security. By leveraging the strengths of both ap-
proaches, it is possible to create systems that are more resilient to
attacks and better suited to the dynamic and resource-constrained
environments typical of IoT and MAS. Future work will explore
the integration of additional contextual factors, such as device type,
criticality of the operation, and environmental conditions, into the
selection process. Furthermore, we aim to validate our approach
through real-world deployments and extend it to other security-
related decision-making processes in IoT systems.
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