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Abstract

When a neural network can learn multiple distinct
algorithms to solve a task, how does it “choose”
between them during training? To approach this
question, we take inspiration from ecology: when
multiple species coexist, they eventually reach
an equilibrium where some survive while others
die out. Analogously, we suggest that a neural
network at initialization contains many solutions
(representations and algorithms), which compete
with each other under pressure from resource con-
straints, with the “fittest” ultimately prevailing.
To investigate this Survival of the Fittest hypothe-
sis, we conduct a case study on neural networks
performing modular addition, and find that these
networks’ multiple circular representations at dif-
ferent Fourier frequencies undergo such competi-
tive dynamics, with only a few circles surviving
at the end. We find that the frequencies with high
initial signals and gradients, the “fittest,” are more
likely to survive. By increasing the embedding
dimension, we also observe more surviving fre-
quencies. Inspired by the Lotka-Volterra equa-
tions describing the dynamics between species,
we find that the dynamics of the circles can be
nicely characterized by a set of linear differen-
tial equations. Our results with modular addition
show that it is possible to decompose complicated
representations into simpler components, along
with their basic interactions, to offer insight on
the training dynamics of representations.
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1. Introduction
The field of mechanistic interpretability attempts to reverse-
engineer the algorithms that neural networks learn. This
involves understanding the representations (features) net-
works learn (Liu et al., 2022; Zou et al., 2023; Cunningham
et al., 2023; Bricken et al., 2023; Marks & Tegmark, 2023;
Gurnee & Tegmark, 2024) and how these play a role in
larger circuits (Olah et al., 2020; Elhage et al., 2021; Olsson
et al., 2022; Nanda et al., 2023; Marks et al., 2024). While
most such work studies networks as static objects, some
have recently begun to study how network representations
and circuits form over training (Liu et al., 2022; Olsson
et al., 2022; Nanda et al., 2023; Hoogland et al., 2024; Chen
et al., 2023; Singh et al., 2024). In studying training dynam-
ics, we hope to understand not just what neural networks
learn, but how and ultimately why they learn the algorithms
that they learn. This understanding may eventually be useful
for training models with the properties we desire, such as
improved efficiency and safety.

One broad question in mechanistic interpretability regards
universality (Olah et al., 2020): can models consistently
learn the same algorithms across different seeds and scales?
While some work has found evidence of universality (Ols-
son et al., 2022; Gould et al., 2024; Gurnee et al., 2024),
in other cases there seems to be some variability in algo-
rithms and representations networks learn to solve particular
tasks (McCoy et al., 2019; Zhong et al., 2023; Lampinen
et al., 2024). In this work, we ask: when networks have
a choice between different representations, how do they
choose which one to learn?

The question above is hard to answer since representations
in the general case are high-dimensional and difficult to dis-
entangle, let alone to understand the dynamics between mul-
tiple representations. Therefore, our study focuses on the
toy models performing modular addition a+b = c (mod p),
a mathematically defined and well studied problem. Prior
works have shown that circular representations in the em-
bedding, akin to how numbers are arranged around a clock,
are key for modular addition models to generalize (Liu et al.,
2022; Power et al., 2022; Liu et al., 2023; Nanda et al., 2023;
Zhong et al., 2023), and that the model learns a few such
circles that nicely correspond to different Fourier frequen-
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Figure 1. Our experiment method: perform a Fourier transform to the embedding, analyze the initialization, signal evolution, and their
effects on the final learned circles over different training runs.

cies (Nanda et al., 2023). Since the embedding is randomly
initialized, the projection of the embedding onto the Fourier
basis results in roughly similar frequencies, meaning that
all possible frequencies have a chance to become the final
circle representation. However, only 3-5 circles survive af-
ter training, while some frequencies do not form circles, as
illustrated in Figure 1. This begs the question: is there any
pattern to how these representations form?

To understand the pattern, we propose the Survival of the
Fittest hypothesis in analogy to ecosystems, where circles of
different frequencies can be thought of as ”species” compet-
ing for a fixed amount of total resources. The two systems
are analogous in many aspects: (1) We find surviving circles
to have large magnitudes and/or large expanding velocity
(gradient) at initialization, supporting the “survival of the
fittest” hypothesis. (2) The number of surviving frequen-
cies increases as the resources (embedding dimension) in-
creases. (3) A linear differential equation, inspired by the
Lotka–Volterra equations (Alon, 2019) describing interact-
ing dynamics between species, is able to fit the evolution
of the magnitude of these circles quite well, even when we
push the interaction matrices to be extremely sparse via
Lasso regression. Some circle pairs display collaborative
behavior, while other pairs are competitive.

Our results show that it is possible to decompose compli-
cated, high-dimensional embeddings into low-dimensional,
interpretable representations that also have simple inter-
actions. Our work serves as a proof-of-concept example,
demonstrating that this decomposition-style analysis can
help understand model training dynamics in more real-world
contexts. The paper is organized as follows: In Section 2,
we introduce the problem setup, observing that most circles
die and only a few survive. In Section 3, we investigate how

many circles survive and which circles survive under differ-
ent circumstances. In Section 4, we show that the dynamics
of circles can be well modeled by a linear differential equa-
tion. Related works are discussed in Section 5. We conclude
in Section 6.

2. Problem Setup
Modular addition We study models performing the task
of modular addition in the form of a + b = c (mod p),
where a, b, c = 0, 1, . . . , p � 1. Our models have an em-
bedding matrix WE of size (p, d), where every integer
t 2 f0, 1, � � � , p � 1g is treated as a token and has an
associated embedding vector Et 2 Rd. The model tok-
enizes the two inputs a and b, concatenates them, and feeds
[Ea, Eb] 2 R2d to a two-layer MLP with two hidden layers
of 100 neurons each, producing a categorical output c. We
default to d = 128 and a large weight decay of 0.5 to make
sure the model quickly ”groks” (Power et al., 2022) to form
the final representation.

Circles and signals Prior work has shown that circular rep-
resentations (circles) are important for neural networks to
perform modular addition (Liu et al., 2022; Nanda et al.,
2023; Zhong et al., 2023). However, as shown in Figure 3,
neighboring numbers along the circle may have increments
other than 1 because there are p equivalent group repre-
sentations that correspond to circles with different Fourier
frequencies k = 1, 2, � � � , (p � 1)/2. 1 The circle of fre-
quency k places a token t at (cos(2πkt/p), sin(2πkt/p)).

Similar to Nanda et al. (2023), we decompose representa-

1Note that frequency k and p�k refer to the same circle, which
accounts for the factor 2.
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Figure 2.(Top) The signals, the magnitude of the Fourier coef-
�cients, of each embedding frequencies over time shown on a
logarithmic scale. The surviving frequencies clearly separate them-
selves from the rest of the frequencies that quickly go to 0. (Bot-
tom) Snapshots of the embedding projected onto a dead frequency
(top) and a survived frequency (bottom) at different timesteps dur-
ing training.

tions into a linear combination of circles of different fre-
quencies. DenotingEn 2 Rd to be the embedding vector
for tokenn, we de�ne the Fourier coef�cients of frequency
k to be

Fk =
p� 1X

n =0

e� i 2� k
p n En : (1)

The circle of frequencyk is located on the plane spanned
by two vectorsReal(Ek ); Imag(Ek ) 2 Rd. We de�ne the
Fourier signal of frequencyk askFk k2 =

P d� 1
j =0 (F j

k )2 and
observe how the signal of each frequency evolves over train-
ing steps, shown in Figure 2(Top). We observe that only a
few circles have signi�cant signals (hencesurvived) in the
end, while the signals of all other circles decay to almost
zero (hencedead). Shown in Figure 2(Bottom), projections
of a surviving frequency stabilize into a clear circle (bottom),
while a dead frequency collapses towards its center (top).

While prior works have found circles either with Fourier
transformation (Nanda et al., 2023) or with principal com-
ponent analysis (PCA) (Liu et al., 2022), we use the Fourier
transformation since it can reveal circular representations
better (see Figure 3). Because each frequency corresponds
to a circle, we use the phrase “circle”, “circular represen-
tations” or “frequencies” interchangeably throughout the
whole paper.

Research question: which circles survive? In Fig-
ure 2(Top), we observe that the surviving circles in the
end tend to have higher initial signal. Can we use this in-
formation to predict survived circles? Unfortunately, we
�nd that initially large frequencies do notalwayslead to
surviving circles, but large initial signals do lead tohigher
probabilityof surviving. Therefore, we resort to statistical
analysis rather than deterministic analysis by aggregating
training results with a �xed embedding and random initial-
izations of MLPs and datasets and report the mean and 95%
con�dence interval.

3. Survival of the Fittest

In an ecological system with constrained resources, only
the �ttest will survive. We hypothesize that this theory also
holds true in the case of modular addition. Motivated by
the ecological analogy, we wish to analyze the competitive
dynamics of how the model selects certain circles as its
representation by answeringQ1: how many circles survive?
Q2: what are the properties of the circles that survive?

3.1. Q1: How many circles survive? A Resource
Perspective.

In ecological systems, with more resources available, it is
intuitive to think that more species could have a chance
to survive. Similarly, in neural networks, the embedding
dimension can be made analogous to the total resources
available, as a larger model has stronger approximation
power and can lead to better performance on the desired
task (Sharma & Kaplan, 2020; Michaud et al., 2024; Song
et al., 2024). We expect that higher-dimensional embed-
dings, even just randomly initialized, provide more “re-
sources” for model training. Speci�cally, in the setting of
modular addition, whend � p, with probability one, perfect
circles can be obtained by linearly projectingd-dimensional
random representations into suitable subspaces.2

2Finding a subspace where a perfect circle of frequencyk lives
on is equivalent to �nd two linear projectionsp1 and p2 such
thatEa � p1 = sin(2 �ak=p ) andEa � p2 = cos(2�ak=p ) for all
a = 0 ; 1; � � � ; p � 1. Since these equations are linear and linearly
independent (due to random initializations), when the number
of unknown variables2d is larger (smaller) than the number of
equations2p, the system is underdetermined (overdetermined),
leading to the existence (nonexistence) of solutions.
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Figure 3.(Top) The model embedding projected onto the �rst 10 principal components in pairs, the only components with signi�cant
singular values. (Bottom) The model embedding projected onto the Fourier basis of frequencies in descending order of signal magnitude.
The� between adjacent tokens shows a correspondence between PCA and FFT. Note that� can be calculated as the inverse of frequency
k modulop. This indicates that PCA is a loose approximation of circles associated with Fourier frequencies.

Figure 4.Freezing the initial embedding and training only the MLP,
test loss (zoomed in on thebottomto < 1:0) in relation to embed-
ding dimensiond. One can notice a dip in loss atd = p.

Freezing embeddingsWe con�rm with experiments that
the initial random embeddings already encapsulate rich rep-
resentations for MLPs to learn. To verify, we freeze the
embeddings at their initialization and train only the MLP.
We vary the dimensiond of the embedding and observe
evolution of test loss. In Figure 4, we show snapshots of the
test loss at different timesteps as a function of embedding di-
mension, where we indeed notice a phase transition around
d = p—the test loss is sharply better whend > p than when
d < p. Interestingly, we observe that at 10,000 steps, mod-
els with the smallds (d � 20) have lower loss than models
with “medium” ds (20 � d � 59), an intriguing observation
similar to the phenomenon of double descent (Nakkiran
et al., 2020). Our speculation is: networks with smallds
can bene�t from feature learning, while networks with large
ds (d � p = 59) have more sheer approximation resources,
as we argue above, despite being in a lazy learning regime
(Geiger et al., 2020). Networks of mediumds fail perhaps
because they are both lazy and resource constrained. A full
investigation of this phenomenon is left for future work.

Trainable embeddings Now, we go back to the standard
setup where embeddings are trainable. Since dimensionality
is analogous to resources in ecological systems, we want
to understand if more circles can survive in embeddings of
larger dimensions. The answer is yes. As bothp andd de-
termine the embedding dimension, we conduct experiments
varying one while �xing the other. In Figure 5(Top), we �x
d and study the effect of varyingp on the expected number
of surviving frequencies after sampling over 100 trials, from
which we identify clear positive correlation betweenp and
the number of circles the model learns. Similarly, we �xp
and varyd to seed's effect on the total number of surviving
frequencies in Figure 5(Bottom), which similarly shows an
upward curve. As the embedding dimension increases, the
number of circles (algorithm redundancy) increases. This
redundant mechanism potentially makes neural networks
more robust, but less parameter-ef�cient and interpretable.
Understanding this mechanism would be an intriguing topic
for future work.

3.2. Q2: Which Circles? Some Are “Fitter” at
Initialization.

We want to predict the �nal surviving circles from the ini-
tialization. Following theSurvival of the Fittest hypothesis,
we wish to de�ne a few “�tness” measures that make certain
frequencies more likely to survive than others. We indeed
observe some properties that make some frequencies more
“�t,” including large initial signals and large initial gradi-
ents. Intuitively, one can think of these “�tness” measures
as being born either strong or fast in the ecosystem analogy.

3.2.1. INITIAL SIGNAL —1ST FITNESSMEASURE

We de�ne survival rate as the number of times a particular
frequency survives and becomes part of the �nal represen-
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Figure 5.(Top): The number of circles the model chooses for its
�nal representation in relation to the number of tokens,p, over 100
random trials. (Bottom): The number of circles as the embedding
dimensiond increases from 16 to 128.

tation over the total number of the trials where we �x the
embedding and randomize over different MLPs and dataset
initializations. In Figure 6(Left), we show that over 10
different embedding initializations and 50 trials each, es-
tablishing a linear correlation: the higher the initial signal,
the more likely the model is to choose that frequency as
its �nal representation. To con�rm, we �nd the Pearson
correlation between survival rate and initial signal is0:85
with a p-value smaller than10� 3.

To corroborate, we conduct a perturbation experiment on
the initial embedding. Speci�cally, for a given embedding
at initialization, we perform Fourier transform and �nd the
initial coef�cients of an arbitrary frequency. We manually
enlarge or shrink its magnitude and perform an inverse FFT
to restore the embedding, from which we perform model
training. We demonstrate in Figure 6(Middle) the survival
rate of the perturbed frequency in different initializations
as it deviates from the mean of the rest of the signals. We
observe that if the frequency is much higher than the rest,
survival rate is near 100%, while the frequency rarely sur-
vives if it is much lower than the mean. This experiment
indeed suggests that as we control the environment much
more closely, the initial signal of the frequency plays a
unique role in determining the �nal representation.

To further substantiate our �ndings, we manually construct
an embedding to evaluate survival rate. We �rst randomly
sample 2 out ofp frequencies and set their signals to be of
a varying ratior 2 [0; 1]. Concretely, the largest frequency
will have signal magnitudes, while the second highest will
have a signalr � s. We set all other frequencies to have
a signal of small� = 10 � 6. In this setup, we show in
Figure 6(Right) that the frequency with the highest signal
will always survive, while the second highest frequency
increases in survival rate as its signal increases and differen-
tiates itself further from the rest of the signals. Interestingly,
despite all other frequencies having a signal near0 at ini-
tialization, the model sometimes chooses to revive them
rather than always choosing the two clear frontrunners, a
phenomenon that warrants more investigation in the future.

3.2.2. INITIAL GRADIENT—2ND FITNESSMEASURE

In evolution theory, species best adapted to their environ-
ment would survive. In neural networks, we hypothesize
that not only the representations with high initial signals,
but also those can quickly adapts into circles are more likely
to survive. This observation motivates us to examine ini-
tial expanding velocity (gradient). We simply calculate the
gradient as the difference in the signals before and after a
given timestepi , taking into account both the embedding
gradients and weight decay.

In Figure 7(Left), we show the frequencies' initial gradient
values alongside their survival status. Due to the weight
decay mechanism, all gradient signals decrease over time,
but those with higher initial gradients tend to shrink less and
are more likely to survive. In Figure 7(Middle), we show
that as the initial gradient increases, the survival rate of those
frequencies increases. To analyze the possibly compounding
effect, we show that frequencies with both high initial signal
and gradient are more likely to survive in Figure 7(Right),
as the top right corner is more lit with oranges, indicating
more survived frequencies. To further verify the above
observation, we train a linear support vector machine (SVM)
that separates the dead and survived frequencies, achieving
an83:8%accuracy.

Relation to Lottery Ticket Hypothesis Our analysis can
be related to the Lottery Tickets Hypothesis (LTH) (Frankle
& Carbin, 2019), where some subnetworks are “winning
tickets“ that achieve comparable test accuracy to the original
network when trained in isolation. Our results suggest that
with large embedding dimensions, good circles exist even
at initialization, similar to “winning tickets.” Our analysis
is technically different from LTH in two ways: (1) LTH
requires training and pruning to identify “winning” tickets,
while circles are mathematically de�ned without training
(but speci�c to modular addition); (2) LTH only states the
existence of “winning” tickets at initialization, while we

5




