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Abstract

When a neural network can learn multiple distinct
algorithms to solve a task, how does it “choose”
between them during training? To approach this
question, we take inspiration from ecology: when
multiple species coexist, they eventually reach
an equilibrium where some survive while others
die out. Analogously, we suggest that a neural
network at initialization contains many solutions
(representations and algorithms), which compete
with each other under pressure from resource con-
straints, with the “fittest” ultimately prevailing.
To investigate this Survival of the Fittest hypothe-
sis, we conduct a case study on neural networks
performing modular addition, and find that these
networks’ multiple circular representations at dif-
ferent Fourier frequencies undergo such competi-
tive dynamics, with only a few circles surviving
at the end. We find that the frequencies with high
initial signals and gradients, the “fittest,” are more
likely to survive. By increasing the embedding
dimension, we also observe more surviving fre-
quencies. Inspired by the Lotka-Volterra equa-
tions describing the dynamics between species,
we find that the dynamics of the circles can be
nicely characterized by a set of linear differen-
tial equations. Our results with modular addition
show that it is possible to decompose complicated
representations into simpler components, along
with their basic interactions, to offer insight on
the training dynamics of representations.
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1. Introduction

The field of mechanistic interpretability attempts to reverse-
engineer the algorithms that neural networks learn. This
involves understanding the representations (features) net-
works learn (Liu et al., 2022; Zou et al., 2023; Cunningham
et al., 2023; Bricken et al., 2023; Marks & Tegmark, 2023;
Gurnee & Tegmark, 2024) and how these play a role in
larger circuits (Olah et al., 2020; Elhage et al., 2021; Olsson
et al., 2022; Nanda et al., 2023; Marks et al., 2024). While
most such work studies networks as static objects, some
have recently begun to study how network representations
and circuits form over training (Liu et al., 2022; Olsson
et al., 2022; Nanda et al., 2023; Hoogland et al., 2024; Chen
et al., 2023; Singh et al., 2024). In studying training dynam-
ics, we hope to understand not just what neural networks
learn, but how and ultimately why they learn the algorithms
that they learn. This understanding may eventually be useful
for training models with the properties we desire, such as
improved efficiency and safety.

One broad question in mechanistic interpretability regards
universality (Olah et al., 2020): can models consistently
learn the same algorithms across different seeds and scales?
While some work has found evidence of universality (Ols-
son et al., 2022; Gould et al., 2024; Gurnee et al., 2024),
in other cases there seems to be some variability in algo-
rithms and representations networks learn to solve particular
tasks (McCoy et al., 2019; Zhong et al., 2023; Lampinen
et al., 2024). In this work, we ask: when networks have
a choice between different representations, how do they
choose which one to learn?

The question above is hard to answer since representations
in the general case are high-dimensional and difficult to dis-
entangle, let alone to understand the dynamics between mul-
tiple representations. Therefore, our study focuses on the
toy models performing modular addition a+b = ¢ (mod p),
a mathematically defined and well studied problem. Prior
works have shown that circular representations in the em-
bedding, akin to how numbers are arranged around a clock,
are key for modular addition models to generalize (Liu et al.,
2022; Power et al., 2022; Liu et al., 2023; Nanda et al., 2023;
Zhong et al., 2023), and that the model learns a few such
circles that nicely correspond to different Fourier frequen-
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Figure 1. Our experiment method: perform a Fourier transform to the embedding, analyze the initialization, signal evolution, and their

effects on the final learned circles over different training runs.

cies (Nanda et al., 2023). Since the embedding is randomly
initialized, the projection of the embedding onto the Fourier
basis results in roughly similar frequencies, meaning that
all possible frequencies have a chance to become the final
circle representation. However, only 3-5 circles survive af-
ter training, while some frequencies do not form circles, as
illustrated in Figure 1. This begs the question: is there any
pattern to how these representations form?

To understand the pattern, we propose the Survival of the
Fittest hypothesis in analogy to ecosystems, where circles of
different frequencies can be thought of as ”species” compet-
ing for a fixed amount of total resources. The two systems
are analogous in many aspects: (1) We find surviving circles
to have large magnitudes and/or large expanding velocity
(gradient) at initialization, supporting the “survival of the
fittest” hypothesis. (2) The number of surviving frequen-
cies increases as the resources (embedding dimension) in-
creases. (3) A linear differential equation, inspired by the
Lotka—Volterra equations (Alon, 2019) describing interact-
ing dynamics between species, is able to fit the evolution
of the magnitude of these circles quite well, even when we
push the interaction matrices to be extremely sparse via
Lasso regression. Some circle pairs display collaborative
behavior, while other pairs are competitive.

Our results show that it is possible to decompose compli-
cated, high-dimensional embeddings into low-dimensional,
interpretable representations that also have simple inter-
actions. Our work serves as a proof-of-concept example,
demonstrating that this decomposition-style analysis can
help understand model training dynamics in more real-world
contexts. The paper is organized as follows: In Section 2,
we introduce the problem setup, observing that most circles
die and only a few survive. In Section 3, we investigate how

many circles survive and which circles survive under differ-
ent circumstances. In Section 4, we show that the dynamics
of circles can be well modeled by a linear differential equa-
tion. Related works are discussed in Section 5. We conclude
in Section 6.

2. Problem Setup

Modular addition We study models performing the task
of modular addition in the form of a + b = ¢ (mod p),
where a,b,c = 0,1,...,p — 1. Our models have an em-
bedding matrix W of size (p,d), where every integer
t € {0,1,---,p — 1} is treated as a token and has an
associated embedding vector I, € R?. The model tok-
enizes the two inputs a and b, concatenates them, and feeds
[E., Ep] € R?? to a two-layer MLP with two hidden layers
of 100 neurons each, producing a categorical output c. We
default to d = 128 and a large weight decay of 0.5 to make
sure the model quickly ”groks” (Power et al., 2022) to form
the final representation.

Circles and signals Prior work has shown that circular rep-
resentations (circles) are important for neural networks to
perform modular addition (Liu et al., 2022; Nanda et al.,
2023; Zhong et al., 2023). However, as shown in Figure 3,
neighboring numbers along the circle may have increments
other than 1 because there are p equivalent group repre-
sentations that correspond to circles with different Fourier
frequencies k = 1,2,--- ,(p — 1)/2. ! The circle of fre-
quency k places a token ¢ at (cos(2mkt/p), sin(27kt/p)).

Similar to Nanda et al. (2023), we decompose representa-

"Note that frequency k and p— k refer to the same circle, which
accounts for the factor 2.
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Figure 2. (Top) The signals, the magnitude of the Fourier coef-
ficients, of each embedding frequencies over time shown on a
logarithmic scale. The surviving frequencies clearly separate them-
selves from the rest of the frequencies that quickly go to 0. (Bot-
tom) Snapshots of the embedding projected onto a dead frequency
(top) and a survived frequency (bottom) at different timesteps dur-
ing training.

tions into a linear combination of circles of different fre-
quencies. Denoting E,, € R? to be the embedding vector
for token n, we define the Fourier coefficients of frequency
k to be

p—1
Fo=Y e "B, (1)
n=0

The circle of frequency k is located on the plane spanned
by two vectors Real(E}), Imag(Ey) € RY. We define the
Fourier signal of frequency & as || Fy||? = Z?;S (F,ﬁ )2 and
observe how the signal of each frequency evolves over train-
ing steps, shown in Figure 2(Top). We observe that only a
few circles have significant signals (hence survived) in the
end, while the signals of all other circles decay to almost
zero (hence dead). Shown in Figure 2(Bottom), projections
of a surviving frequency stabilize into a clear circle (bottom),
while a dead frequency collapses towards its center (top).

While prior works have found circles either with Fourier
transformation (Nanda et al., 2023) or with principal com-
ponent analysis (PCA) (Liu et al., 2022), we use the Fourier
transformation since it can reveal circular representations
better (see Figure 3). Because each frequency corresponds
to a circle, we use the phrase “circle”, “circular represen-
tations” or “frequencies” interchangeably throughout the

whole paper.

Research question: which circles survive? In Fig-
ure 2(Top), we observe that the surviving circles in the
end tend to have higher initial signal. Can we use this in-
formation to predict survived circles? Unfortunately, we
find that initially large frequencies do not always lead to
surviving circles, but large initial signals do lead to higher
probability of surviving. Therefore, we resort to statistical
analysis rather than deterministic analysis by aggregating
training results with a fixed embedding and random initial-
izations of MLPs and datasets and report the mean and 95%
confidence interval.

3. Survival of the Fittest

In an ecological system with constrained resources, only
the fittest will survive. We hypothesize that this theory also
holds true in the case of modular addition. Motivated by
the ecological analogy, we wish to analyze the competitive
dynamics of how the model selects certain circles as its
representation by answering Q1: how many circles survive?
Q2: what are the properties of the circles that survive?

3.1. Q1: How many circles survive? A Resource
Perspective.

In ecological systems, with more resources available, it is
intuitive to think that more species could have a chance
to survive. Similarly, in neural networks, the embedding
dimension can be made analogous to the total resources
available, as a larger model has stronger approximation
power and can lead to better performance on the desired
task (Sharma & Kaplan, 2020; Michaud et al., 2024; Song
et al., 2024). We expect that higher-dimensional embed-
dings, even just randomly initialized, provide more “re-
sources” for model training. Specifically, in the setting of
modular addition, when d > p, with probability one, perfect
circles can be obtained by linearly projecting d-dimensional
random representations into suitable subspaces. 2

2Finding a subspace where a perfect circle of frequency k lives
on is equivalent to find two linear projections p; and p2 such
that F, - p1 = sin(2mak/p) and E, - p2 = cos(2mwak/p) for all
a=20,1,--- ,p— 1. Since these equations are linear and linearly
independent (due to random initializations), when the number
of unknown variables 2d is larger (smaller) than the number of
equations 2p, the system is underdetermined (overdetermined),
leading to the existence (nonexistence) of solutions.
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Figure 3. (Top) The model embedding projected onto the first 10 principal components in pairs, the only components with significant
singular values. (Bottom) The model embedding projected onto the Fourier basis of frequencies in descending order of signal magnitude.
The A between adjacent tokens shows a correspondence between PCA and FFT. Note that A can be calculated as the inverse of frequency
k modulo p. This indicates that PCA is a loose approximation of circles associated with Fourier frequencies.
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Figure 4. Freezing the initial embedding and training only the MLP,
test loss (zoomed in on the bottom to < 1.0) in relation to embed-
ding dimension d. One can notice a dip in loss at d = p.

Freezing embeddings We confirm with experiments that
the initial random embeddings already encapsulate rich rep-
resentations for MLPs to learn. To verify, we freeze the
embeddings at their initialization and train only the MLP.
We vary the dimension d of the embedding and observe
evolution of test loss. In Figure 4, we show snapshots of the
test loss at different timesteps as a function of embedding di-
mension, where we indeed notice a phase transition around
d = p—the test loss is sharply better when d > p than when
d < p. Interestingly, we observe that at 10,000 steps, mod-
els with the small ds (d < 20) have lower loss than models
with “medium” ds (20 < d < 59), an intriguing observation
similar to the phenomenon of double descent (Nakkiran
et al., 2020). Our speculation is: networks with small ds
can benefit from feature learning, while networks with large
ds (d > p = 59) have more sheer approximation resources,
as we argue above, despite being in a lazy learning regime
(Geiger et al., 2020). Networks of medium ds fail perhaps
because they are both lazy and resource constrained. A full
investigation of this phenomenon is left for future work.

Trainable embeddings Now, we go back to the standard
setup where embeddings are trainable. Since dimensionality
is analogous to resources in ecological systems, we want
to understand if more circles can survive in embeddings of
larger dimensions. The answer is yes. As both p and d de-
termine the embedding dimension, we conduct experiments
varying one while fixing the other. In Figure 5(Top), we fix
d and study the effect of varying p on the expected number
of surviving frequencies after sampling over 100 trials, from
which we identify clear positive correlation between p and
the number of circles the model learns. Similarly, we fix p
and vary d to see d’s effect on the total number of surviving
frequencies in Figure 5(Bottom), which similarly shows an
upward curve. As the embedding dimension increases, the
number of circles (algorithm redundancy) increases. This
redundant mechanism potentially makes neural networks
more robust, but less parameter-efficient and interpretable.
Understanding this mechanism would be an intriguing topic
for future work.

3.2. Q2: Which Circles? Some Are “Fitter” at
Initialization.

We want to predict the final surviving circles from the ini-
tialization. Following the Survival of the Fittest hypothesis,
we wish to define a few “fitness” measures that make certain
frequencies more likely to survive than others. We indeed
observe some properties that make some frequencies more
“fit,” including large initial signals and large initial gradi-
ents. Intuitively, one can think of these “fitness” measures
as being born either strong or fast in the ecosystem analogy.

3.2.1. INITIAL SIGNAL—1ST FITNESS MEASURE

We define survival rate as the number of times a particular
frequency survives and becomes part of the final represen-
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Figure 5. (Top): The number of circles the model chooses for its
final representation in relation to the number of tokens, p, over 100
random trials. (Botfom): The number of circles as the embedding
dimension d increases from 16 to 128.

tation over the total number of the trials where we fix the
embedding and randomize over different MLPs and dataset
initializations. In Figure 6(Left), we show that over 10
different embedding initializations and 50 trials each, es-
tablishing a linear correlation: the higher the initial signal,
the more likely the model is to choose that frequency as
its final representation. To confirm, we find the Pearson
correlation between survival rate and initial signal is 0.85
with a p-value smaller than 10~3.

To corroborate, we conduct a perturbation experiment on
the initial embedding. Specifically, for a given embedding
at initialization, we perform Fourier transform and find the
initial coefficients of an arbitrary frequency. We manually
enlarge or shrink its magnitude and perform an inverse FFT
to restore the embedding, from which we perform model
training. We demonstrate in Figure 6(Middle) the survival
rate of the perturbed frequency in different initializations
as it deviates from the mean of the rest of the signals. We
observe that if the frequency is much higher than the rest,
survival rate is near 100%, while the frequency rarely sur-
vives if it is much lower than the mean. This experiment
indeed suggests that as we control the environment much
more closely, the initial signal of the frequency plays a
unique role in determining the final representation.

To further substantiate our findings, we manually construct
an embedding to evaluate survival rate. We first randomly
sample 2 out of p frequencies and set their signals to be of
a varying ratio r € [0, 1]. Concretely, the largest frequency
will have signal magnitude s, while the second highest will
have a signal r - s. We set all other frequencies to have
a signal of small ¢ = 1075, In this setup, we show in
Figure 6(Right) that the frequency with the highest signal
will always survive, while the second highest frequency
increases in survival rate as its signal increases and differen-
tiates itself further from the rest of the signals. Interestingly,
despite all other frequencies having a signal near 0 at ini-
tialization, the model sometimes chooses to revive them
rather than always choosing the two clear frontrunners, a
phenomenon that warrants more investigation in the future.

3.2.2. INITIAL GRADIENT—2ND FITNESS MEASURE

In evolution theory, species best adapted to their environ-
ment would survive. In neural networks, we hypothesize
that not only the representations with high initial signals,
but also those can quickly adapts into circles are more likely
to survive. This observation motivates us to examine ini-
tial expanding velocity (gradient). We simply calculate the
gradient as the difference in the signals before and after a
given timestep ¢, taking into account both the embedding
gradients and weight decay.

In Figure 7(Left), we show the frequencies’ initial gradient
values alongside their survival status. Due to the weight
decay mechanism, all gradient signals decrease over time,
but those with higher initial gradients tend to shrink less and
are more likely to survive. In Figure 7(Middle), we show
that as the initial gradient increases, the survival rate of those
frequencies increases. To analyze the possibly compounding
effect, we show that frequencies with both high initial signal
and gradient are more likely to survive in Figure 7(Right),
as the top right corner is more lit with oranges, indicating
more survived frequencies. To further verify the above
observation, we train a linear support vector machine (SVM)
that separates the dead and survived frequencies, achieving
an 83.8% accuracy.

Relation to Lottery Ticket Hypothesis Our analysis can
be related to the Lottery Tickets Hypothesis (LTH) (Frankle
& Carbin, 2019), where some subnetworks are “winning
tickets* that achieve comparable test accuracy to the original
network when trained in isolation. Our results suggest that
with large embedding dimensions, good circles exist even
at initialization, similar to “winning tickets.” Our analysis
is technically different from LTH in two ways: (1) LTH
requires training and pruning to identify “winning” tickets,
while circles are mathematically defined without training
(but specific to modular addition); (2) LTH only states the
existence of “winning” tickets at initialization, while we
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manage to characterize the properties of “winning” circles,
that, when trained in isolation, have comparable accuracy
(see Appendix C). Our work provides representation-level
insights to the studies of LTH.

4. Circles Can Collaborate or Compete

In the last section, we demonstrated how Survival of the
Fittest explains the evolution of circles. However, what is
lacking from this explanation is the interaction between cir-
cles, considering “fitness” is defined on individual circles.
This section seeks to understand circle interaction from two
aspects: (1) understand how a group of n circles “collabo-
rate” to reduce losses on the task at hand; (2) understand the
(effective) differential equations that govern the evolution
of circle signals.

4.1. Circles Have to Collaborate to Reduce Loss

We observed that models naturally form multiple circles in
training. Why is this the case? Can’t a single circle perform
modular addition effectively? Here, we show that a strong

cooperative pattern exists between the circles of different
frequencies. We investigate this relationship by conducting
ablation studies, by manually isolating 1, 2, and 3 different
frequencies (removing all other frequencies) and see if these
isolated frequencies can solve the task of modular addition.
We find that the model is not able to perform the modular
addition with only one circle, still has considerably high loss
using two circles, and reaches near zero loss with 3 circles.
The loss achieved over time in 30, 000 training steps, with
1, 2 and 3 circles respectively, is shown in Figure 8.

4.2. Modeling Circle Dynamics with Differential
Equations

In ecology, the Lotka-Volterra equations are famous for us-
ing first-order nonlinear differential equations to model the
relationship between prey x and predators y (Alon, 2019).
They have the following form da/dt = ax — Bzy,dy/dt =
dxy — vy, where x and y represent the population density
of prey and predators, respectively, and dz/d¢ and dy/d¢
are the instantaneous growth rates of the two populations.
This can be easily generalized to more than two species by
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involving linear single-body terms and quadratic two-body
terms. Interpreting species population as frequency signals,
we have:

de N N. N.
dtﬁ => i+ Y Y By, i=12--N,
i=1 i=1 j=i

@)

where x; represents signals of each frequency.

Although the fit yields an R? value close to 1, the model
suffers from overfitting due to too many free parameters
of z; - x; terms. When we attempt to compute a trajectory
using our estimates, errors accumulate, leading to a rapid
loss of numerical stability. This prompts a natural question:
are the quadratic nonlinear terms really necessary?

To our satisfaction, the answer is no. Deviating from the
Lokta-Volterra equations, we found an even simpler, linear
differential equation, that can estimate the training trajectory
well. Removing the second-order terms from Equation 2,
we get

N,

dz; - )

=D +b, i=120 Ny ()
j=1

or in matrix form %‘f = Ax + b. With this new set of
equations, we can model the trajectory well. We report
the R? of our fit for both linear regression and Lasso in
Figure 9 over many trials with embeddings of varying size,
using 80% of the data for training and evaluate the model
on the other 20%. For two frequencies in a given trained
model, one survived and one dead, we compare the original
trajectory, the estimated trajectory from Linear Regression
and from Lasso in Figure 9. While linear regression gives us
an almost perfect fit at the risk of overfitting, Lasso provides
comparable estimations with reasonable errors bounds and
extremely sparse coefficients.

As the differential equations are linear, we can find an ana-
lytical solution to the ODE system. Assume A as the coeffi-
cient matrix of the regression model and b as the intercept,
for a given x4, we have the following solution

z(t) = eMag 4 (et — 1)A™ . )]

Note that for the coefficient matrix of the Lasso fit, the
matrix is extremely sparse and is not naturally invertable, so
we have added a small €I (¢ = 10~%) to A. The analytical
solution similarly provides us with a comparable estimation
of the trajectory in Figure 9.

Relation to Neural Tangent Kernel Despite the fact that
the Lotka-Volterra equations work well to model ecological
dynamics, it is not too surprising that a linear ODE is suf-
ficient to model the training dynamics in neural networks,
when the neural networks are wide enough to be charac-
terized by the neural tangent kernel (Jacot et al., 2018).
However, our analysis is still novel in the sense that we
can disentangle the entire embedding space into individual
circles and study their interactions linearly. The idea of
decomposition allows the analysis of a complicated system
to be broken down to analysis of many simple subsystems
and their interactions.

5. Related Work

Mechanistic Interpretability on Algorithmic Tasks A
lot of work has been done to reverse engineer how neu-
ral networks implement algorithmic tasks (Nanda et al.,
2023; Zhong et al., 2023; Liao et al., 2023; Chughtai et al.,
2023; Stander et al., 2023; Quirke & Barez, 2024; Quirke
et al., 2024) because they are mathematically well-defined
and simple. However, even on these toy tasks, neural net-
works already display some intriguing phenomena, includ-
ing phase changes during training (Nanda et al., 2023), dif-
ferent algorithms (Zhong et al., 2023; Liao et al., 2023), or
show the existence of multiple copies of algorithms (Nanda
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et al., 2023; Zhong et al., 2023).

Training Dynamics Training dynamics strives to under-
stand what happens internally within a model during train-
ing. Two most studied phenomena in this area are “grokking”
(Power et al., 2022; Thilak et al., 2022; Liu et al., 2022;
2023; Barak et al., 2023) and “double descent” (Nakkiran
et al., 2020; Yilmaz & Heckel, 2022; Davies et al., 2023;
Schaeffer et al., 2024).Other works have studied training
dynamics at various abstraction levels, such as on emerg-
ing capabilities level (McCoy et al., 2019; Hoogland et al.,
2024), on the circuit level (Olsson et al., 2022; Chen et al.,
2023; Singh et al., 2024), and on the neuron level (Quirke
et al., 2023). Similar to our analysis of circle interactions us-
ing ODEs, previous work attempted to model representation
dynamics during training using simple effective dynam-
ics (Liu et al., 2022; Hu et al., 2023; Baek et al., 2024; van
Rossem & Saxe, 2024).

Representation Learning Representation learning is key
for networks to generalize (Bengio et al., 2013; Le-Khac
et al., 2020; Zou et al., 2023; Huh et al., 2024). Many learn-
ing paradigms aim to encourage better representations, in-
cluding weak supervised learning (Zhou, 2018), contrastive
learning (Jaiswal et al., 2020; Le-Khac et al., 2020), and
Siamese learning (Grill et al., 2020; Chen & He, 2021).
Similar to our paper revealing circles on different frequen-
cies, prior works have shown redundant representations and
algorithms in models (Doimo et al., 2023; Song et al., 2024)
and similarly circular representations in general language
models (Engels et al., 2024).

Lottery Ticket Hypothesis The Lottery Ticket Hypothesis
(Frankle & Carbin, 2019) posits that some subnetworks—
“winning tickets”—identified at initialization and trained in
isolation can match the test accuracy of the original, dense
network. It has inspired extensions, such as a stronger
conjecture on finding such subnetworks without training
(Zhou et al., 2019; Ramanujan et al., 2020; Malach et al.,
2020; Orseau et al., 2020; Pensia et al., 2020; Diffender-
fer & Kailkhura, 2021; da Cunha et al., 2022), transferring
winning tickets across setups (Morcos et al., 2019; Chen

et al., 2021), and improving methods of pruning to find the
subnetworks (Lee et al., 2019; Frankle et al., 2020; Wang
et al., 2020; Tanaka et al., 2020; Frankle et al., 2021). Our
work relates to LTH that circles can be treated as subnet-
works with distinct signals at initialization. In our setting,
“winning tickets” exist at initialization and have nice proper-
ties like high initial signals, which allow them to eventually
become the learned representations.

6. Conclusion

In this paper, we show that the Survival of the Fittest theory
can explain the training dynamics of the toy modular ad-
dition task. Qualitatively, embeddings can be decomposed
into circles of different frequencies, deemed as species in-
teracting with one another. Under the resource constraint
of model sizes, circles with large signals and gradients are
more likely to survive. Quantitatively, the dynamics of cir-
cle interaction can be described by a simple linear differen-
tial equation. Our results highlight simple laws underlying
seemingly complicated representation dynamics and open
the door for more fine-grained analysis of representation
dynamics for mechanistic interpretability.

Limitations We have focused on a single learning problem:
modular addition. Our work studying dynamics between
different representations is made possible because repre-
sentations in modular addition models are well-defined and
well-understood. Significant additional work is needed to
scale these analyses to even more complex, general models,
which remains a challenge.

Broader Impact

Understanding training dynamics contributes broadly to
the field of mechanistic interpretability, which allows us to
better understand and control neural networks in ways we
desire, such as making them more accurate and safe. Neural
networks, just like any other dual-use technologies, have
accompanying risks, so one should exercise caution when
deploying the models that this work contributes to building.
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Survival of the Fittest Representation

A. Weight Decay

In the main paper, we have estimated how dimensionality is
analogous to total resources in an ecosystem, while weight
decay represents the resource constraint in the environment
that decay at each time step.

Considering the extreme case where weight decay is zero:
there is no resource limit and it is not surprising that all
the frequencies survive while the neural network fails to
generalize, as it has trouble “grokking” (Liu et al., 2022;
2023). As weight decay slightly increases, the different
frequencies pose a competitive dynamic against each other.
The number of final circular representations gradually drops,
as illustrated in Figure 10.

B. Circularity

In addition to the signal magnitude metric used throughout
the paper, we compute another metric, circularity, to analyze
the initial embedding. We modify the metric introduced in
Zhong et al. (2023) by calculating through each frequency
in the Fourier Basis instead of through the principal compo-
nents. As established in the paper, if Xy, ..., X,,_1 € R? are
embeddings projected onto the Fourier basis, the circularity
for a specific frequency f is defined as
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Using this metric, we conduct two experiments: one to mea-
sure the circularity of the embedding as its dimensionality
varies and another to see if initial circularity plays a role in
informing eventual representations.

To investigate the impact d exerts on the system, we ran-
domly sample 50 initial embeddings of different dimensions
and compute the mean and maximum circularity among all
frequencies, as shown in Figure 11(Left). Indeed, circularity
increases as dimensionality increases, confirming our ob-
servation that higher-dimensional embedding encodes more
complex information at initialization.

We also aim to verify the hypothesis that if the embedding
is initialized closer to a circle on a given frequency, that
frequency is more likely to survive. However, the evidence
shown in Figure 11(Right) is inconclusive as to whether
larger initial circularity implies a better chance of survival.

C. Forcing Model to Learn < 3 Circles

In our training with an embedding of reasonably large
size, such as (p,d) = (59, 128), the model almost always
chooses three or more circles as its final representations.
As illustrated in Figure 8, these circles cooperate to solve
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the modular addition task instead of acting on their own.
However, one would notice that if the model were using
the Clock algorithm (Nanda et al., 2023), a single circle
would be sufficient to solve the task perfectly. The observa-
tion naturally evokes the following questions: why does the
model choose to learn multiple circles, and can we ’force’
it to learn fewer than three circles under some contrived
conditions?

To restrict the representations the model can learn, we man-
ually ablate the initial embedding so that only one or two
frequencies have non-zero signals on the Fourier basis.

Specifically, for a given embedding, we first train without
any ablation, from which we identify the original circles
the model chooses to learn. We then use k; to denote the
frequency with largest signal after training and k5 to denote
the second largest frequency.

Using this information, we conduct four ablation experi-
ments:

Experiment A At initialization, project the embedding onto
the Fourier basis, set all frequencies except for k; to 0, and
use inverse FFT to reconstruct the embedding. Train the
model using this initial embedding.

Experiment B At initialization, use the same ablation pro-
cedure as above, but suppress all other frequencies except
for k1 and k5 to 0.

Experiment C At initialization, randomly select a frequency
k1 and suppress all other frequencies except for k,. ;.

Experiment D At initialization, randomly select two fre-
quencies k.1 and k, > and suppress all other frequencies
except for those two.

In Experiment A, although the embedding is initialized with
only one frequency with significant signal, the model re-
vives some frequencies with an originally O signal to form
circular structures with strong signals, and eventually ends
up with four learned circles. Figure 12(Left) shows the test
loss for Experiment A in orange. We can infer from the loss
curve that despite trying to learn with only one circle, the
model struggles to achieve lower loss with this simple repre-
sentation and has to make its representation more complex
over time, leading to the periodic spikes in test loss. In none
of our experiments were we able to construct a model that
naturally forms a single-circle representation.

However, in Experiment B, the model achieves good per-
formance using only the two circles initialized with non-
zero signals. Two circles seem sufficient for the model to
achieve a loss as low as 1e~7, if the two circles are initalized
well and we force the model to only use two. Therefore,
we suspect that three circles are not necessary but rather
a model choice to prefer redundant representations (Dalvi
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Figure 10. Number of circles survived as a function of weight decay. The left panel displays the complete range of weight decays tested in
our experiments; the middle focuses on smaller weight decays, while the right illustrates the transition in the number of surviving circles

at larger weight decays.

Initial Circularity in Relation to Dimension Histogram of Initial Circularity

Survived
mmm Dead

60
250
S
S a0
30
2 ||| ||
0 | ||
o Lol

0.65

metric
—— mean circularity
max circularity

°
3

Circularity
s o o
5 o o

°
w

60
Dimension

80 0.70 0.75

Circularity

100 120 .60

Figure 11. (Left) Circularity of projections of the embedding onto
different Fourier frequencies at initialization as dimension d varies,
calculated using Equation 5. (Right) Histogram of different fre-
quencies by their gradients, along with their survival status.

et al., 2020). Interestingly, Experiment B reaches lower test
loss more quickly than the original, mainly because ablating
to have only the strongest two frequencies already serves
as a type of training and makes the model training process
easier, similar to the findings of Zhou et al. (2019).

In comparison, Figure 12(Right) shows that the model strug-
gles to learn with only 1 or 2 random frequencies; after
training, at least three circles survive. Summarizing these
results, we conclude that the choice of the circles are not
arbitrary: the model can learn the task well with only the
two most fitted frequencies but not two random frequencies.
Here, we further corroborate that the embedding initializa-
tion plays a significant role in the model’s preference for its
circle representations.

Note that in experiments A, C, and D, the test loss curve
exhibits several cycles of spiking and subsequent decay.
This slingshot phenomenon is associated with the use of the
Adam optimizer and often co-occurs with grokking (Thilak
etal., 2022). We do not discuss this further, as it falls outside
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Figure 12. (Left) Test loss curve over training timesteps of the ab-
lation experiment when keeping all frequencies (blue), the largest
frequency (orange), and the largest two frequencies (green). (Right)
Test loss curve of the ablation experiment when keeping all fre-
quencies (blue), one random frequency (pink), and two random
frequencies (cyan).

the scope of our research.

D. Embedding Gradients

In Section 3.2.2, we approximate the gradient as the dif-
ference of signals before and after a given timestep. We
provide further justification here.

The actual gradient on the embeddings consists of two
parts: the gradlent produced by MLP on the embedding
through backpropagatlon and weight decay of the initial data.
To understand the effect of the former on frequency signals,
we use the same Fourier transform procedure to transform
the gradients to the Fourier basis and compute their norm,
as the Fourier transform is a linear transformation. In Figure
13, we visualize the norm of the gradient in Fourier basis
over time. The Fourier gradient spikes around 100 steps and
quickly diminishes to near zero after 1000 steps. After this
point, the gradient becomes negligibly small, and weight
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decay becomes the dominant factor affecting the evolution
of signals.
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Figure 13. The embedding gradients through backpropagation pro-
jected onto the Fourier basis over time. The right zooms into
timesteps 100 to 1000. The colored curves denote frequencies that
eventually survived, while the grey ones represent gradients of
dead frequencies.

These observations motivate two experimental decisions in
our paper.

First, because it is difficult to reconstruct the effect of both
backpropagation and weight decay compounded on top of
each other on the Fourier basis, especially when weight de-
cay dominates the gradient, we think the difference in signal
is a simple and sufficient proxy to conduct experiments with
in Section 3.2.2.

Second, since the embedding gradient becomes negligibly
small after 1000 steps, we only use data from the first 1000
steps to fit the linear ODE system in Section 4. More data-
points after the first 1000 steps will only allow the regres-
sion model to capture the dynamics of weight decay, which
distracts from our study of the dynamics between represen-
tations.
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Figure 14. Number of survived circles over random trials as a func-
tion of p, where p ranges from 17 to 97.
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E. Training Details

As discussed in Section 2, the model we trained for the
modular addition task features a simple embedding-MLP
architecture. The embedding has a size of (p, d), where p
represents the modulus and d stands for the dimension. By
default, we set p = 59 and d = 128. In our experiments,
we vary p and d to study their effects on model’s learned
embeddings.

The MLP in our model consists of two layers: an input layer
with dimension 2d, two hidden layers, each with a width of
100, and an output layer with dimension p, which represents
the logits for each token from 0 to p — 1.

Both the embedding and the MLP are initialized from a
Gaussian distribution with 4 = 0 and ¢ = 1. We train
the model using the AdamW optimizer (Loshchilov & Hut-
ter, 2019), with a learning rate set to 0.01. The training
loss is defined as the cross-entropy loss between the logits
computed by the model and the ground truth. To encour-
age model generalization, we use a train-test split of 80-20
and apply a default weight decay of 0.5. Additionally, we
experiment with other weight decay values to study their
impact.

In each experiment, the model is trained for 3 x 10% steps.

F. Non-prime Modulus p

In Section 3.1, we only provide results for prime modulus p
since non-prime p behaves differently in the modular addi-
tion task due to their non-trivial factors. For example, when
p = 12, a circle with delta A = 2 does not cover all the
numbers in [0, p — 1], and our previous analysis in Fourier
basis no longer holds true. However, we present supplemen-
tary results on the effect of the number of surviving circles
for all possible moduli in Figure 14.Compared with Figure
5(Left), one can observe more variation in Figure 14, but an
upward trend can still be observed.

G. More ODE Approximated Trajectories

In Figure 9, we have shown the trajectories of two repre-
sentative frequencies approximated by our linear ODE, one
dead and one survived, and one representative coefficients
heatmap. In Figure 15, we show the sparse coefficients
heatmap for 3 more ODE fits with Lasso. In Figure 16, we
report predicted trajectories for all 29 frequencies in one
training run.

H. Experiments Compute Resource

All the model training is performed on NVIDIA V100 GPUs.
We provide the GPU specs as follows:
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- Fome - sz - w07 I. Acknowledgement for Online Assets Used

. . 2 - P We have utilized several online assets in creating Figure
g : : 5 000 1. The original illustration of the Fourier Transform can

: : e : oo be accessed here. The icons are sourced from The Noun

8 8 8 Project and Clker.
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Figure 15. Coefficients heatmaps for 3 more Lasso fits of the em-
beddings’ training dynamics.

* Processor: Intel Xeon Gold 6248

* Nodes: 224

* Clock Rate: 2.5GHz

* CPU cores: 40

* Node RAM: 384GB

* RAM per core: 9GB

* Accelerator type: Nvidia Volta V100

* Accelerators(per Node): 2

* Accelerator RAM: 32GB
The GPU days needed for each experiment are:

* Initial gradient/gradient experiment in 3.2: 1 GPU day

* Freeze embedding experiment in Section 3.1: 0.8 GPU
days

* Varying modulus p experiment in Section 3.1: 15 GPU
days

* Varying dimension experiment in Section 3.1: 9 GPU
days

* Initial signal perturbation experiment in Section 3.2.1:
15 GPU days

e Manual construction experiment in Section 3.2.1: 0.5
GPU days

* Varying weight experiment in Appendix A: 2 GPU
days

¢ Other small-scale experiments: 1 GPU day

Overall, the experiments compute resource adds up to about
45 GPU days. The full research project does not require
more compute than the experiments reported in the paper.
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Figure 16. Original and estimated trajectories for signal evolution of all 29 frequencies during training.

Frequency 1: Dead

>

200

Frequency 6: Survived

200

Frequency 11: Dead

400 600

400 600

800

800

1000

1000

>

200

Frequency 16: Dead

400 600

800

1000

-
>

200

Frequency 21: Dead

400 600

800

1000

>
>

200

Frequency 26: Dead

400 600

800

1000

7
>

400 600
Timestep

800

1000

100

100

a0

100

a0

100

a0

100

a0

100

a0

Frequency 2: Dead

[
&

°

200

Frequency 7: Dead

400 600

800

1000

e

°

200

Frequency 12: Dead

400 600

800

1000

;
-

° ° °

°

200

Frequency 17: Dead

200

Frequency 22: Dead

200

Frequency 27: Dead

200

400 600

400 600

400 600

400 600
Timestep

800

800

800

800

1000

1000

1000

1000

100

100

100

100

100

100

Frequency 3: Dead

200

Frequency 8: Survived

200

Frequency 13: Dead

200

Frequency 18: Dead

400 600

400 600

400 600

800

800

800

1000

1000

1000

>

200

Frequency 23: Dead

400 600

800

1000

/

200

Frequency 28: Dead

400 600

800

1000

[

400 600
Timestep

800

1000

100

40

100

a0

100

a0

100

40

100

a0

100

a0

Frequency 4: Dead

7

°

200

Frequency 9: Survived

400 600

800

1000

Y

°

200

Frequency 14: Dead

°

200

400 600

400 600

800

800

1000

1000

Frequency 19: Survived

T

°

200

Frequency 24: Dead

°

200

Frequency 29: Survived

400 600

400 600

800

800

1000

1000

(

0 200

400 600
Timestep

800

1000



