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Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation

Aman Gupta“' Aditi Sheshadri”! Sujit Roy “? Vishal Gaur?> Manil Maskey®> Rahul Ramachandran?

Abstract

Global climate models typically operate at a grid
resolution of hundreds of kilometers and fail to
resolve atmospheric mesoscale processes, e.g.,
clouds, precipitation, and gravity waves (GWs).
Model representation of these processes and their
sources is essential to the global circulation and
planetary energy budget, but subgrid scale con-
tributions from these processes are often only ap-
proximately represented in models using parame-
terizations. These parameterizations are subject
to approximations and idealizations, which limit
their capability and accuracy. The most drastic
of these approximations is the “single-column
approximation” which completely neglects the
horizontal evolution of these processes, resulting
in key biases in current climate models. With a
focus on atmospheric GWs, we present the first-
ever global simulation of atmospheric GW fluxes
using machine learning (ML) models trained on
the WINDSET dataset to emulate global GW em-
ulation in the atmosphere, as an alternative to tra-
ditional single-column parameterizations. Using
an Attention U-Net-based architecture trained on
globally resolved GW momentum fluxes, we illus-
trate the importance and effectiveness of global
nonlocality, when simulating GWs using data-
driven schemes.

1. Introduction

Gravity waves are fast-propagating perturbations in a stably
stratified fluid. In the atmosphere, they are constantly gener-
ated by a myriad of sources like jet imbalance, geostrophic
adjustment processes, flow over mountains, storm tracks,
etc. Their spatial scales range from O(100) m to O(1000)
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km, i.e., they span across the atmospheric mesoscales and
submesoscales.

Gravity waves (GWs) dynamically couple the different lay-
ers of the atmosphere and are among the key drivers of the
meridional overturning circulation in the middle atmosphere
(Fritts & Alexander, 2003; Achatz et al., 2023). They are pri-
mary contributors in driving the pole-to-pole mesospheric
circulation (Holton, 1982; Becker, 2012). In the strato-
sphere, they influence the quasi-biennial oscillation (QBO)
of tropical winds (Giorgetta et al., 2002), and the spring-
time breakdown of the Antarctic polar vortex (Gupta et al.,
2021). GWs can also contribute to rapid breakdowns of
the wintertime polar vortex, i.e., sudden warmings (Albers
& Birner, 2014; Song et al., 2020), eventually influencing
tropospheric storm tracks (Kidston et al., 2015; Domeisen
& Butler, 2020).

Due to limited grid resolution, all state-of-the-art climate
models represent subgrid momentum fluxes due to GWs
using parameterizations. Depending on the source, these
parameterizations can be broadly classified as orographic
(for GWs generated over mountains, having zero ground-
based phase speed) and nonorographic (generate elsewhere,
having non-zero phase speeds). The most prominent oro-
graphic parameterizations include Lott & Miller (1997);
van Niekerk et al. (2020) and the most prominent nonoro-
graphic parameterizations include Alexander & Dunkerton
(1999); Scinocca (2002; 2003). All these schemes use the
large-scale background state resolved by the climate models
to predict the subgrid-scale momentum fluxes. The gener-
ated momentum fluxes are then coupled with the large-scale
momentum equations that solve for the resolved flow dy-
namics in the model. Over nearly four decades now, all
parameterizations have employed the single-column approx-
imation, i.e., only the atmospheric state within a model
vertical column is used to determine the GW flux in that col-
umn, thus neglecting any horizontal propagation that these
waves exhibit. This assumption directly contradicts observa-
tions (Sato et al., 2009; 2012; Geldenhuys et al., 2023) and
mesoscale resolving simulations (Kruse et al., 2022; Hind-
ley et al., 2020; Gupta et al., 2024a), that show that GWs
can often propagate horizontally thousands of kilometers
away from their sources. Past studies have often reiterated
the limitations of these assumptions and the urgent need
to represent lateral propagation to resolve key circulation
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Figure 1. The three architectures used for global GW resolved momentum flux simulation. The three architectures, described in section
2.2 employ three different degrees of nonlocality. On one end, M1 uses single-column background data to predict the fluxes within that
column. A timeslice is therefore a single vector of length 366. Intermediately, M2 uses background information in a 3 X3 stencil to predict
the fluxes within the single-column at the center of the stencil. A timeslice for M2 has dimensions 3 x 3 X 366. On the other end, M3
uses global maps of the background field to predict global maps of fluxes. A timeslice for M3, thus, has dimensions 366 x 64 x 128.

biases resulting from these assumptions (McLandress et al.,
2012; de la Camara et al., 2016; Kruse et al., 2022; Kim
et al., 2024; Gupta et al., 2024b).

Although WKB ray-tracing-based (Amemiya & Sato, 2016;
Voelker et al., 2023) and momentum redistribution-based
schemes (Eichinger et al., 2023) provide viable alternatives
to represent lateral propagation by simulating wave trajec-
tories along which they conserve pseudomomentum, these
schemes continue to face computational roadblocks.

Machine learning provides a promising, computationally
efficient avenue to generate a new class of data-driven PDE
solvers and model parameterizations that learn both large-
scale and subgrid-scale physics, directly from high-quality
data (Mansfield et al., 2023; Roy et al., 2024). Such ML
schemes can be trained to take the background atmospheric
state as input (just like traditional parameterizations) and
use the state to predict the subgrid-scale momentum fluxes.
These ML models can subsequently be coupled with the tra-
ditional Fortran-based momentum equations solvers. This
effectively transforms the problem from the parameteriza-
tion tuning and approximate modeling space into a problem
that focuses on the development of physics-informed ML
architectures and their optimal training on high-fidelity data.

This study focuses on the development of such parameter-
izations. Unlike existing models which have been trained

on GW parameterization output, the goal here is to develop
ML simulators that learn from inter-annual records of re-
solved momentum fluxes derived from modern reanalysis
and kilometer-scale global climate models. The first step in-
volves the training of ML models followed by offline testing
of the inferred fluxes. The following step involves coupling
these data-driven predictors to coarse-resolution models to
test their online performance. Here, we focus on the first
step.

The data-driven GW scheme discussed here is also being
prepared to be used as part of a much larger foundation
model for weather and climate, where it serves as a down-
stream application to first predict the global atmospheric
state and then infer the small-scale GW flux distribution
corresponding to that state.

1.1. Previous Works

ML emulation of gravity wave forcing in climate models
has been explored in the past (Chantry et al., 2021; Espinosa
etal., 2022; Lu et al., 2024; Sun et al., 2023). However, such
efforts have focused on learning GW fluxes from parame-
terized drag, not resolved drag. Parameterized fluxes have
highly analytical forms and contain biases. As a result, the
ML models trained on such parameterizations, while easier
to train, themselves contain these biases; pure-vertical GW
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Figure 2. Mean predicted fluxes from globally nonlocal model, M3, for May 2015 at 200 hPa height. (a) and (b) respectively show the
true mean and the predicted mean zonal flux (u’w”) for May 2015. (c) and (d) show the true mean and the predicted mean meridional flux
(v'w"). The WINDSET dataset contains input variables and momentum fluxes which were normalized using a constant mean and standard
deviation. Mean predicted fluxes for Models M1 and M3 are shown in Figures 4 and 5.

propagation being the most prominent bias.

Wang et al. (2022) proposed a strategy to embed nonlocality
within ANNs by using input data from surrounding columns
to infer the momentum fluxes within a given column. The
strategy can be useful when learning from resolved GW
momentum fluxes, as opposed to single-column output. This
study, in part, builds upon their idea and explores different
degrees of embedded spatial nonlocality: single-column,
neighboring cells, and global nonlocality.

2. Methodology
2.1. Dataset

The training uses the “Weather Insights and Novel Data
for Systematic Evaluation and Testing” (WINDSET) data
introduced by Shinde et al. (2024). WINDSET is a compi-
lation of multiple weather-related datasets incl. long-term
precipitation forecasting, hurricane prediction and intensity
estimation, aviation turbulence prediction, natural language
forecasting, etc. It also comprises four years of the back-
ground field and resolved GW momentum fluxes derived
from modern reanalysis, ERAS (Hersbach et al., 2020).

The GW momentum fluxes in WINDSET used ERAS at
its native 30 km resolution to compute the background at-
mospheric state, and GW fluxes using Helmholtz decom-
position, and conservatively coarsegrained the input fields
and output fluxes to a 64 x 128 (latitude x longitude) Gaus-

sian grid and 137 model levels. The 15 vertical levels near
the model top are removed to eliminate artificial damping
effects, and thus there are 122 vertical levels.

The input comprises the meteorological variables: zonal
wind (u), meridional wind (v), potential temperature (6).
The vertical velocity (w) is not added because the hydro-
static model allows only two degrees of freedom. 6 serves as
an appropriate vertical coordinate that combines both tem-
perature and pressure information. The output comprises the
zonal and meridional components of the vertical momentum
flux (v'w’ and v'w’). The variables are stacked along the
vertical dimension. Thus, an input timeslice has dimensions.
366 x 64 x 128 and an output timeslice has dimensions
244 x 64 x 128.

The data is available for four years: 2010, 2012, 2014,
and 2015 at an hourly resolution. For single-column ANN
training, this corresponds to ~300 million data samples for
training (not spatio-temporally uncorrelated). For global
training, this corresponds to roughly 35k training samples.

2.2. Model Architecture

When dealing with nonlocal propagation of mesoscale sys-
tems, one pressing question arises naturally: how much
spatial nonlocality should the ML model represent?. To ad-
dress this, we train a set of three ML models which consider
different degrees of nonlocality in their input:
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MI1. Single Column (1 x 1) ANN: with 4 hidden layers,
each twice the input layer size (366), using ReL.U ac-
tivation, Adam optimized with cyclic learning rates.
This single-column model aims to replicate the design
for traditional single-column parameterizations.

M2. A nonlocal (3 x 3) ANN-CNN: that predicts the fluxes
in a given column using the 3 x 3 grid surrounding the
column. The first (input) layer is a 3 X 3 convolution
layer which pools the data into a single column.

M3. Global Attention U-Net utilizing convolution layers
(Oktay et al., 2018): that takes global (64 x 128) data
with 366 input channels as input, encodes it using a
U-Net backbone with residual connections scaled with
attention multipliers, and decodes it to produce global
flux predictions with 244 output channels.
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Figure 3. R? value for M3 for (a) zonal flux and (b) meridional
flux predictions for May 2015. R? denotes the percent variance
captured by the predictor. A higher R? value indicates better
prediction.

The architectures are illustrated in Figure 1. The models
were optimized to minimize the mean squared error. The
models were trained on the four years of ERAS data, except
one month, May 2015, which was used for testing. Due to
limited space, here, we discuss results only from the global

nonlocal model (M3), which is the most complex among
the three models considered.

3. Results

Predictions of the globally resolved fluxes using model M3
show a strong agreement, both in terms of the mean clima-
tology for May 2015 (Figure 2) and intermediate snapshots
(not shown). The predictions from M3 outperform predic-
tions from both M1 and M2, demonstrating the importance
of nonlocality and model complexity in learning the nonlin-
ear evolution of atmospheric waves. The model accurately
predicts both the structure and strength of the normalized
fluxes over well-known stationary GW hotspots including
the Rocky Mountains, the Andes, and the East Asian Moun-
tains. Even in the tropics, where most GWs are generated
by moist convective activity, the predicted mean climatol-
ogy agrees reasonably well with the normalized fluxes from
WINDSET (ERAS).

The prediction skill in the tropics is relatively weaker than
in the midlatitudes, as quantified by the R? metric. For the
zonal flux, M3 achieves an R? ~ 0.6 in the midlatitudes in
both hemispheres. This value is down to 0.3-0.4 on average
in the tropics. Moreover, the corresponding R? values are
generally weaker for the meridional flux.

The prediction skill is quite poor in the stratosphere, where
even negative R? values are obtained in the tropics. This is
due to an exponential decrease in the background density
and strong shear in the stratosphere, leading to data imbal-
ance and reduced predictive skill. Efforts to enhance the
prediction skill in the stratosphere are currently underway.

These results highlight (a) the challenges involved in sim-
ulating small-scale nonlocal wave evolution in the atmo-
sphere, and (b) that simulation of non-stationary GWs can be
more challenging than stationary or quasi-stationary GW's
generated over orography which may have longer wave-
lengths.

This is work in progress and the next steps include transfer
learning-focused experiments to combine the fluxes from
WINDSET with GW fluxes obtained from global 1 km
climate models that resolve the whole mesoscale spectrum.

Broader Impact

Model parameterizations present as a major source of un-
certainty in current climate models. Success with nonlocal
ML simulation of GWs can be extended to develop ML
simulators for a broad range of unresolved mesoscale and
submesoscale processes in coarse-climate models, poten-
tially reducing model uncertainty.

These ML models can also be used as downstream plug-
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ins for weather and climate foundation models for quick
and inexpensive weather forecasting and climate prediction,
empowering climate model use by the wider community
and for educational purposes. Efforts in this direction are
underway.
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Global Gravity Wave Simulation Using ML
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Figure 4. Mean predicted fluxes compared with the (top left) true ERAS flux from the (top right) M1: single-column ANN, (bottom left)
M2: 3x3 nonlocal columns ANN, and (bottom right) M3: globally nonlocal Attnetion U-Net CNN, for May 2015 at 200 hPa height. The
figure compares the true mean and the predicted mean vertical flux of zonal momentum (u'w’) for the 3 models trained for the same
number of epochs. The 1x1 and 3x3 ANNSs had identical hyperparameters and the 3x3 input was processed and propagated into a single
1x1 column input by applying a 3x3 2D convolution layer. Even though the 1x1 ANN roughly captures the gross structure of the fluxes,
and identifies the stationary hotspots in the midlatitudes to a certain degree, the predictions have a clear strong bias. Moreover, M1
incorrectly predicts the sign of the zonal flux over most of the Northern polar region and the sign of the meridional flux over most of the
Southern polar region. Introducing nonlocal leads to a drastic improvement in performance, reduced model overfitting, and produces
better prediction. The globally nonlocal UNet provides the best prediction.
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Figure 5. Same comparison as in Figure 5, but for the meridional flux of vertical momentum (v’w’) at 200 hPa.



Global Gravity Wave Simulation Using ML

Qgaua]
ggran

Je—{ romden ]

TEB2E

OEAunD

'

UL E Y

farila]

e—{oton |

TS

apwesdn
H20 [ FL O USTY

REwRgdn

ggmng
aEAunn

TR

apwesdn
H2OIGU DY
spwesdn

e rwomEn |

azaunn

T512H T8

e e )

apiwe N
Jon|guonUEY
spuRsdn

[

TEEEE

Figure 6. Schematic illustrating the architecture of the Attention-UNET used in the global nonlocal model M3.
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Figure 7. Training and Validation loss curve for the Attention-UNet model, M3.



