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Abstract

Many online decision-making problems correspond to maximizing a sequence
of submodular functions. In this work, we introduce sum-max functions, a
subclass of monotone submodular functions capturing several interesting
problems, including best-of-K-bandits, combinatorial bandits, and the ban-
dit versions on M -medians and hitting sets. We show that all functions in
this class satisfy a key property that we call pseudo-concavity. This allows
us to prove

(
1 − 1

e

)
-regret bounds for bandit feedback in the nonstochastic

setting of the order of
√
MKT (ignoring log factors), where T is the time

horizon and M is a cardinality constraint. This bound, attained by a simple
and efficient algorithm, significantly improves on the Õ

(
T 2/3) regret bound

for online monotone submodular maximization with bandit feedback. We
also extend our results to a bandit version of the facility location problem.

1 INTRODUCTION

In many concrete settings of sequential decision-making, decisions are subsets of a finite
set [K] (possibly with cardinality constraints) and utilities, or rewards, are non-linear set
functions over [K]. Although we may know that utility functions have some specific structure,
e.g., they are submodular, the feedback may not reveal anything beyond the utility of the
current decision. For example, consider an advertising campaign over [K] digital channels
(e.g., web, apps, and social media). Due to budget constraints, the campaign can show ads
only on a subset of M channels for every user. If a user ends up buying the advertised
product, we observe that a sale occurred, but we may not know which of the M channels
triggered the purchase. The advertiser’s goal is to choose the subset of channels for each
new user in order to maximize the number of sales.
The same problem was studied (with a different motivation) by Simchowitz et al. [2016]
under stochastic assumptions on the generation of the Bernoulli random variables each
indicating whether displaying an ad on a certain channel triggers a purchase for the current
user. In this work, we study the nonstochastic variant of this problem, where the binary
variables associated with the channels are chosen, for each user, by an oblivious adversary.
Our main result is an efficient algorithm minimizing regret in a much larger class of problems
containing the multichannel advertising problem as a special case. In particular, our regret
analysis applies to any sequential decision-making problem where reward functions belong to
a subclass of all monotone submodular functions called sum-max.
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A sum-max function is defined by a nonnegative matrix with K columns and an arbitrary
number of rows. The value of the function evaluated at a subset S ⊂ [K] of columns is
the sum over the rows of the maximum row element over the subset S of columns. In the
multichannel campaign example, the matrix is binary with a single row. The j-th entry
indicates whether the current user would buy the product if advertised on channel j. If the
matrix is square and symmetric, then we recover the non-metric facility location problem as
a special case.
As we said earlier, our analysis of regret for sum-max functions assumes bandit feedback:
at each time t we only observe the reward rt(At) associated with our decision At, where
rt is the sum-max function chosen by the adversary at time t. Hence, the reward rt(S)
that we would have obtained by choosing any S ̸= At remains unknown. We also consider
cardinality constraints, in the form of a parameter M requiring that the decision At at each
time t satisfy

∣∣At

∣∣ ≤ M . Note that when M = 1 we recover the adversarial K-armed bandit
problem.

Our main result is an efficient algorithm, MSE3, achieving a Õ
(√
MKT

)
bound on the γM -

regret for γM = 1 −
(
1 − 1/M

)M . For comparison, for the class of all monotone submodular
functions, Niazadeh et al. [2021] obtain a

(
1 − 1

e

)
-regret bound of O

(
(lnK)1/3M(KT )2/3).

As γM > 1 − 1
e for all M > 1, this bound is worse than ours in both approximation factor

and regret.
When M = 1, algorithm MSE3 reduces to the standard Exp3 algorithm for K-armed bandits
and our result specializes to the standard O

(√
K(lnK)T

)
regret bound of Exp3. This

implies that the
√
KT dependence in the regret bound is not improvable, even disregarding

efficiency. Moreover, we show that improving on the approximation factor γM with an
efficient algorithm would give an efficient randomized algorithm for solving set cover on [K]
with an approximation ratio of (1 − ε) lnK, which is NP-hard for any ε > 0 [Dinur and
Steurer, 2014].
In many real world problems, including an element i in the decision At at round t invokes a
cost (i.e., a negative reward) ct,i ≥ 0. When this is the case we would like to maximize the
cumulative reward: ∑

t∈[T ]

(
rt(At) −

∑
i∈At

ct,i

)
.

We show that MSE3 can handle this generalized problem if it receives, at the end of each
round t, the values of ct,i for all i ∈ At. We note that the bandit MSE3 without costs is a
special case of MSE3 with costs.
The inclusion of costs creates a tension between including arms in At to increase the reward
and, simultaneously, avoid including too many arms to control the costs. We address this
trade-off in Section 4 by introducing and analyzing a variant of MSE3 for regret minimization
with costs and bandit feedback where the rewards are sum-max functions without cardinality
constraints. We call this setting the bandit facility location problem because it is a bandit
version of the online facility location problem studied by Pasteris et al. [2021].
For M > 1 and arbitrary costs, MSE3 selects At by performing M independent draws
at,1, . . . , at,M from a distribution pt =

(
pt,1, . . . , pt,K

)
∈ ∆K . Then, a reward estimate for

each i ∈ [K] is computed using

gt,i = rt(At) − ct,i

pt,i

∑
j∈[M ]

Jat,j = iK , (1)

where, for any statement S, the Iverson bracket notation J·K is defined as JSK = 1 if S is true
and JSK = 0 otherwise. Note that for M = 1 and ct,i = 0 , the above reduces to the standard
reward estimate of Exp3.
We now give an overview of how MSE3 works when we have no costs (i.e., ct,i = 0). For all
set functions r, we construct a function Φr : RK

+ → R such that for all q ∈ ∆K we have that
Φr(q) is the expected value of r(A) when A is constructed by drawing M arms i.i.d. with
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replacement from q. Specifically, we first show that there exists a function r̃ : 2[K] → R such
that for all Q ⊆ [K] we have r(Q) =

∑
S⊆[K]JQ ⊆ SKr̃(S). For all q ∈ RK

+ we then define:

Φr(q) =
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

.

We learn via online exponentiated gradient ascent using the unbiased estimates (1) of the
gradient of Φrt . Clearly, for exponentiated gradient ascent to work we must have that, for all
rounds t, our objective function Φrt is concave over the simplex. We show that a sufficient
condition for this to hold is that the function rt is pseudo-concave, see Section 2 for a formal
definition.
Next, we bound the regret with respect to any vector p∗ ∈ ∆K . Namely, we bound
the expected reward of our algorithm relative to

∑
t∈[T ] Φrt(p∗). By taking p∗ such that

p∗
i = Ji ∈ SK/|S| for some set S we show that, because rt is submodular, we have Φrt(S) ≥

(1 − αM )rt(S) where α = (|S| − 1)/|S|. By bounding the variance of the gradient estimate
we show that the regret term is Õ(

√
MKT ).

We have provided an overview of how, when we have no costs, MSE3 works and why we
require rt to be pseudo-concave and submodular. We now describe how costs are incorporated.
This is done by using, instead of Φrt , the function Ψt defined by:

Ψt(q) = Φrt(q) −M
∑

i∈[K]

qict,i ,

so that Ψt(pt) lower bounds the expected profit on trial t. Since Ψt differs from Φrt by a
linear function it is straightforward to extend the above methodology to this new objective
function.

2 SUM-MAX FUNCTIONS

We now introduce sum-max functions and define the key property of this class that allows
us to learn it with bandit feedback.
Definition 2.1. A set function r : 2[K] → R is sum-max if and only if there exists some
N ∈ N and some matrix V ∈ RN×K such that for all S ⊆ [K] with S ≠ ∅ we have:

r(S) =
∑

k∈[N ]

max
i∈S

Vk,i and r(∅) ≤
∑

k∈[N ]

min
i∈[K]

Vk,i

For example, consider a marketplace with N buyers and K sellers. The value Vk,i is the
combined utility of buyer k going to seller i. The value r(S) is the social welfare when
a subset S of sellers participate in the marketplace, and buyers match up with sellers to
optimize their combined utilities. When there is only one buyer (N = 1), V is a vector
(V1, . . . , VK) and we view each i ∈ [K] as an arm with reward Vi. Then r(S) = maxi∈S Vi,
the maximum reward of an arm in the chosen set S.
As sum-max functions are sums of monotone submodular functions, they are monotone
submodular. We now list a number of sequential decision-making problems that can be
expressed as regret minimization of specific sum-max functions under bandit feedback.
The multichannel campaign problem. This is our nonstochastic variant of the best-of-k
bandit problem of Simchowitz et al. [2016]. To view it as an instance of sum-max optimization,
set N = 1 and let Vi ∈ {0, 1} indicate whether a user makes a purchase when the ad is
displayed on channel i. Then (V1, . . . , VK) can be viewed as the incidence vector of a subset
D ⊆ [K] of channels, and the reward is defined by r(S) = JS ∩ D ̸= ∅K. The feedback is
bandit because we do not know what channel triggered the sale for that user.
Bandit hitting sets. This is a generalization of the previous example where N ≥ 1 and V
is a boolean matrix. Each row of V denotes a subset Ck of [K] and Vk,i indicates whether
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i ∈ Ck. The value r(S) then counts how many sets Ck have a non-empty intersection with S.
Bandit setting occurs when the sets remain unknown and each time we only observe the
number of intersected sets.
Combinatorial bandits. Another important special case is when we receive the sum of the
rewards ri of the arms i ∈ S. In this case N = K and Vk,i = Jk = iKri. The problem is then
equivalent to a combinatorial bandit (with full bandit feedback) over the class of M -sized
subsets [Cesa-Bianchi and Lugosi, 2012].
Bandit k-medians. Given x1, . . . ,xN points in a metric space (X , d), consider the version
of the k-medians problem (for k = M) where the M centroids have to be chosen in the
given set of points. The value of the objective function at a candidate solution S ⊂ [K] with
|S| ≤ M can be written as

r(S) = −
∑

k∈[N ]

min
i∈S

d(xk,xi) .

Clearly, this is a sum-max function for V with elements Vk,i := −d(xk,xi). The feedback
is bandit when we do not know the metric, but we can observe the value of the objective
function.
In Appendix A, additional related works and approaches are discussed.
Next, we introduce an important property of sum-max functions.
Definition 2.2. Suppose we have a set function r : 2[K] → R. For any S ⊆ [K] define the
matrix U r,S ∈ RK×K such that Ur,S

i,j = r(S ∪ {i, j}) for all i, j ∈ [K]. We call the function r
pseudo-concave if and only if x⊤U r,Sx ≤ 0 for all S ⊆ [K] and all x ∈ RK with x · 1 = 0.

In Appendix F, we show that there are monotone submodular functions that are not pseudo-
concave. As a consequence, sum-max functions are indeed a proper subset of the class of
monotone submodular functions. The following theorem confirms that all sum-max functions
are pseudo-concave:
Theorem 2.3. Any sum-max set function is pseudo-concave.

3 MAIN RESULT

Our learning problem is formally defined as follows. The values M,K ∈ N and C ∈ R+
are all preliminarily known to the learner. Hidden from the learner, the adversary selects
a sequence of set functions ⟨rt | t ∈ [T ]⟩, each with domain 2[K] and a sequence of vectors
⟨ct | t ∈ [T ]⟩ each in [0, C]K . On each trial t ∈ [T ]:

1. The learner chooses some At ⊆ [K] with |At| ≤ M .
2. The value rt(At) is revealed.
3. For all i ∈ At the value ct,i is also revealed.

The learner maintains a probability vector pt ∈ ∆K , and behaves as described in Algorithm
1.
To aid our theorem statement we add the following definitions. For all t ∈ [T ] and Q ⊆ [K]
we define r̂t(Q) := rt(Q) − rt(∅), which is the difference between the learner’s profit on trial
t and that which it would have obtained by selecting the empty set, ψt := r̂t(At) − γt(At),
and γt(Q) :=

∑
i∈Q ct,i. We note that by considering r̂t instead of rt our bounds do not

change when rt is shifted by an additive constant (which can be different for different trials
t) as long as the range of rt falls within the bounds described as follows.
We assume that the learner knows upper and lower bounds on the range rt for all trials t.
Hence, without loss of generality, assume that rt(Q) ∈ [−1, 0] for all t ∈ [T ] and Q \ [K]
(otherwise scale and shift rt and C). Let

R := (1 + C)
√

2 ln(K)M(K +M − 1)T .

Our results hold for a relaxed notion of submodularity, which we call pseudo-submodularity.
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Algorithm 1 MSE3
Set η := ln(K)/R and p1,i := 1/K for i ∈ [K]
for t = 1, 2, . . . , T do:
1. For all j ∈ [M ] draw at,j ∈ [K] from distribution pt
2. Define At := {at,j | j ∈ [M ]}
3. Receive rt(At) and {ct,i | i ∈ At}
4. For all i ∈ [K] set

gt,i := rt(At) − ct,i

pt,i

∑
j∈[M ]

Jat,j = iK

5. For all i ∈ [K] define p̃t,i := pt,i exp(ηgt,i)
6. Define pt+1 := p̃t/∥p̃t∥1

Definition 3.1. A set function r : 2[K] → R is pseudo-submodular if and only if for every
set S ⊆ [K] with S ̸= ∅ there exists some i ∈ S such that for all Q ⊆ S \ {i} we have
r(Q ∪ {i}) − r(Q) ≥ r(S) − r(S \ {i}).

Note that all pseudo-submodular set functions are also submodular. We now present our
main result.
Theorem 3.2. Given rt is pseudo-concave and pseudo-submodular for all t ∈ [T ] , then for
any set S ⊆ [K] with S ≠ ∅ we have∑

t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − M

|S|
∑

t∈[T ]

γt(S) −R ,

where
α := 1 − 1

|S|
.

Proof. See Section 5

We note that both the standard facility location and k-medians problems are often phrased
as the minimization of a loss rather than a maximization of a profit. Our results easily
capture this by considering the reward as a negative loss.
We now show that the approximation ratio 1 − αM is not improvable in general in the
class of sum-max functions. In particular, we show that obtaining an efficient online
learning algorithm for the multichannel advertising problem with a sublinear γ-regret with
γ < 1 − αM would give an efficient randomized algorithm for solving set cover on [K] with
an approximation better than lnK. As shown in [Dinur and Steurer, 2014], obtaining an
approximation of (1 − ε) lnK for set cover is NP-hard for any ε > 0.
Recall that an instance of the multichannel campaign problem over K ads is defined by a
sequence ⟨rt | t ∈ [T ]⟩ of set functions over [K] such that for all t ∈ [T ] there exists some
Dt ⊆ [K] with rt(Q) = JQ ∩ Dt ̸= ∅K for all Q ⊆ [K].
Theorem 3.3. Suppose that there exists some d ∈ N, s ∈ (0, 1), γ > 1, and a randomized
polynomial time algorithm for the learner such that for all K,M ∈ N and for any instance
of the multichannel advertising problem, it holds that

∣∣At

∣∣ ≤ M for all t = 1, . . . , T and, for
any subset S ⊆ [K],

E

∑
t∈[T ]

rt(At)

 ≥
(
1 − αγM

) ∑
t∈[T ]

rt(S) −R′ ,

where R′ ∈ O(KdT s) and α := 1 − 1
|S| . Then, for all ε ∈

(
0, 1 − 1/γ

)
and B > 41/((1−ε)γ−1),

there exists a randomized polynomial-time algorithm for the set cover problem on [B] that,
with probability at least 1

2 , achieves approximation ratio at least (1 − ε) ln(B).

The proof can be found in Appendix E.
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Algorithm 2 FLE3
Run MSE3 with L = 2K arms and M := K

2 ln(T/K2).
On each trial t ∈ [T ]:

1. Let A′
t be the output of MSE3

2. Output At := A′
t ∩ [K]

3. Receive rt(At) and {ct,i | i ∈ [K]}
4. For all i ∈ [L] \ [K] set ct,i := 0
5. Feed rt(At) and {ct,i | i ∈ [L]} back to MSE3

4 BANDIT FACILITY LOCATION

We can view this setting as a generalization of the marketplace example where sellers pay a
known cost to enter the market. At each round, the platform admits a subset At of sellers
and only observes the resulting social welfare (bandit feedback).
In this application, there are no restrictions on the set of arms At that we choose. We seek
to maximize r(At) − γ(At) where r is the sum-max reward function and γ is the linear and
positive cost function.
For the facility location problem we must choose M , noting that although a high value of
M increases the approximation ratio on the reward, it also increases that on the costs. To
decrease the potentially large approximation ratio on the costs, we borrow from Pasteris
et al. [2021] the idea of dummy arms and the tuning of M . This leads to our algorithm FLE3
described in Algorithm 2. The bound on the total profit of FLE3 is given in the following
theorem.
Theorem 4.1. Given that C = 1 and rt : 2K → [−1, 0] is pseudo-concave and pseudo-
submodular for all t ∈ [T ] , we have that the algorithm FLE3 obtains the following bound for
all S ⊆ [K] with S ≠ ∅:∑

t∈[T ]

E[ψt] ≥
∑

t∈[T ]

r̂t(S) − 1
2 ln

(
T

K2

) ∑
t∈[T ]

γt(S) −R′′ ,

where R′′ ∈ Õ(K
√
T ).

5 ANALYSIS

We now give an overview of the proof of Theorem 3.2. All the Theorems and lemmas stated
here are proven in Appendix C.
We first consider the case that we have no costs (i.e. ct = 0). MSE3 works by maintaining
a probability distribution over the set of arms. Specifically, pt ∈ ∆K is the vector whose
components are the probabilities of drawing the actions on trial t. On trial t the algorithm
constructs the set At by drawing a sequence ⟨at,j | j ∈ [M ]⟩ of arms i.i.d. with replacement
from pt and then setting At := {at,j | j ∈ [M ]}.
This stochastic draw of a sequence and set from a probability vector will be represented by
the following notation.
Definition 5.1. For all q ∈ ∆K let ⟨bj(q) | j ∈ [M ]⟩ be a sequence of stochastic quantities
drawn i.i.d. at random from (the probability distribution characterised by) q. In addition,
let B(q) := {bj(q) | j ∈ [M ]}.

Note that our expected reward on trial t is E[rt(B(pt))] and hence, for all set functions
r we shall construct a differentiable function Φr : RK → R such that for all q ∈ ∆K we
have Φr(q) = E[r(B(q))]. This construction is based on the following notion of a subset
decomposition.
Definition 5.2. Given a function r : 2[K] → R , we call a function r̃ : 2[K] → R a subset
decomposition of r if and only if for all Q ⊆ [K] we have

r(Q) =
∑

S⊆[K]

JQ ⊆ SKr̃(S) .
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The following lemma confirms that every set function has a unique subset decomposition.
Lemma 5.3. Given a function r : 2[K] → R there exists a unique subset decomposition r̃ of
r.

Now we can define our function Φr.
Definition 5.4. For all r : 2K → R and all q ∈ RK define

Φr(q) :=
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

,

where, by Lemma 5.3, r̃ is the unique subset decomposition of r.

The following lemma confirms that our function Φr indeed satisfies our condition.
Lemma 5.5. For all r : 2K → R and all q ∈ ∆K we have Φr(q) = E[r(B(q))].

Drawing inspiration from Auer et al. [2001] we will learn via online exponentiated gradient
ascent with the functions Φrt using unbiased gradient estimates. Of course, this means that
we must be able to construct unbiased gradient estimates. Remarkably, we now show that
we can use our sequence ⟨at,j | j ∈ [M ]⟩ and the observed reward rt(At) to construct an
unbiased gradient estimate gt defined in Algorithm 1 of the function Φrt at pt.
Lemma 5.6. For all r : 2K → R, all q ∈ ∆K and all i ∈ [K] we have

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK

 .
For exponentiated gradient ascent to work, we must have that, for all trials t, our objective
function Φrt is concave over the simplex. We now show that a sufficient condition for this to
hold is that the function rt is pseudo-concave.
Lemma 5.7. For all pseudo-concave set functions r : 2K → R we have that Φr is concave
over the simplex ∆K .

Now that we have all the underpinnings for exponentiated gradient ascent to function
properly, we can establish a bound on the regret relative to any vector p∗ ∈ ∆K via the
following classic result.
Lemma 5.8. For any vector p∗ ∈ ∆K we have∑

t∈[T ]

(p∗ − pt) · gt ≤ 1
η

∑
i∈[K]

p∗
i ln(Kp∗

i )

+ η
∑

t∈[T ]

∑
i∈[K]

pt,ig
2
t,i .

Proof. A classic result from the analysis of Hedge.

This lemma gives a bound on the regret since, because we have shown that gt is an unbiased
estimate of the gradient and the objective function is concave over the simplex, the term
(p∗ − pt) · gt is bounded below by Φrt(p∗) − Φrt(pt). Note that we have shown above that
Φrt(pt) is equal to E[rt(At)].
We will later discuss the bounding of the regret itself, but first we shall show how to choose
p∗ such that we can bound Φrt(p∗) relative to rt(S) for some set S ⊆ [K]. Specifically, we
will choose p∗ equal to pS in the following definition.
Definition 5.9. For all S ⊆ [K] with S ̸= ∅ define pS ∈ ∆K such that for all i ∈ [K] we
have

pS
i := Ji ∈ SK

|S|
.
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Figure 1: Cumulative reward over time in the three environment settings is described. The
results also display the 95% confidence intervals over 35 runs with an Intel Xeon Gold 6312U,
calculated using the standard error multiplied by the z-score of 1.96.

We use the following lemma will to bound Φrt(pS), and it explains why we require rt to be
pseudo-submodular.
Lemma 5.10. Let S ⊆ [K] with S ̸= ∅, r : 2[K] → R be a pseudo-submodular function, and
Z ⊆ [K] be a set formed by drawing M elements uniformly at random (with replacement)
from S. Then we have

E[r(Z) − r(∅)] ≥

(
1 −

(
|S| − 1

|S|

)M
)

(r(S) − r(∅)) .

With this lemma in hand, we can now bound Φrt(pS).
Lemma 5.11. Given any S ⊆ [K] and any pseudo-submodular set function r : 2[K] → R we
have

Φr(pS) ≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) .

Before we bound the regret term, we show how to incorporate the costs, so that ct can be
non-zero. This is done by choosing, instead of Φrt , the objective function Ψt defined as
follows.
Definition 5.12. For all trials t ∈ [T ] define Ψt : RK → R such that for all q ∈ RK we have

Ψt(q) := Φrt(q) −Mq · ct .

Note that by Lemma 5.5 we have that Ψt(pt) is a lower bound on the expected profit and
by Lemma 5.7 Ψt is concave over the simplex. It can hence serve as a surrogate concave
objective function.
Lemma 5.6 leads to the following lemma, which confirms that gt is an unbiased gradient
estimate of Ψt at pt.
Lemma 5.13. For all trials t ∈ [T ] and Ψt as defined in Definition 5.12, we have

∇Ψt(pt) = E[gt | pt] ,

Now we have shown that our results carry over to the case of non-zero costs, we can finally
bound the regret via Lemma 5.8 and the following lemma.
Lemma 5.14. For all trials t ∈ [T ] we have

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ (1 + C)2M(K +M − 1) .

This completes the analysis. Although discussed here, Appendix C.9 formally shows how to
piece the lemmas together in order to prove Theorem 3.2.
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6 EXPERIMENTS

We experimentally evaluated the performance of our method by comparing it against two
baselines: CascadeBandit from Kveton et al. [2015] (in both the UCB and KL settings)
and Comband from Cesa-Bianchi and Lugosi [2012] for M -sized subsets, whose efficient
implementation is described in Appendix G. We conducted our experiments in various
synthetic settings. In each of these environments, a hidden vector θ ∈ RK is maintained.
For each k ∈ [K], the entry θk represents the probability of obtaining a unit reward. These
values can be viewed as attraction probabilities: the probability that a user clicks on the
specific item. After presenting a subset of M elements, the learner gets a unit reward if any
of the selected items returns a 1, and 0 otherwise. It is worth emphasizing that our model
does not necessitate binary rewards; it offers the flexibility to accommodate any sum-max
reward function (as discussed in Section 2). The use of a binary reward model is specifically
required for comparisons with click models such as CascadeBandit.

Environments for the experiments. We experimentally evaluated our method in three
different synthetic environments. We conducted experiments across a wide range of values
for K, M , T , and for the probabilities associated with both optimal and suboptimal arms.
In Figure 1, we display the cumulative reward over time obtained with T = 105, K = 20,
M = 3 when the environments are set as follows:

1. Stochastic (Figure 1(a)): we randomly select M good actions to which we assign a
reward probability of 0.3. The reward probabilities of the remaining k −M arms are set to
0.1.
2. Stochastic with adversarial corruptions (Figure 1(b)): the rewards are generated as
in the stochastic setting. However, in the first

√
T rounds all good actions have a deterministic

reward of 0.
3. Worst-case stochastic (Figure 1(c)): this setting is inspired by the lower bound of
Cohen et al. [2017]. Here the set M ⊂ [K] of M good actions is drawn uniformly at random.
Then, for each k ∈ [K], the probabilities are assigned as follows:

θk =
{
Xk + ϵ if k ∈ M
Xk otherwise , where Xk ∼ N

(
1
2 , σ

2
)
,

σ2 = 1
192 + 96 log T and ϵ = σ

√
KM

8T .

In Appendix H we present also results obtained varying the subset size M .

Results As expected, our most compelling results were achieved in the adversarial setting,
where our approach demonstrated its superiority. In the two stochastic settings, we observed
results that were on par with the established baseline methods, affirming the competitiveness
of our proposed approach. These findings collectively underscore the effectiveness of our
method, particularly in the challenging adversarial context, while also highlighting its
versatility in stochastic scenarios. We emphasize that our method is the most efficient one,
as each prediction only requires sampling M times from a probability distribution over the
K available actions.
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A ADDITIONAL RELATED WORK

The work closest to ours is Pasteris et al. [2021], where they study online facility location
with full information feedback. Our work improves on theirs in many respects: First, we solve
the problem with bandit feedback, which requires designing an entirely different algorithm
based on our discovery of an unbiased estimator for the gradient of our expected reward
(we find it remarkable that such an estimator exists). As a consequence, our algorithm is
also applicable to the full-information setting, where we obtain a per-trial running time of
O(MK) when given an oracle for the reward function. When considering general sum-max
functions, the methodology of Pasteris et al. [2021] would instead require a per-trial running
time exponential in K1. Second, our algorithm can efficiently learn classes that are even
more general than sum-max functions. Third, we obtain tighter approximation ratios and
show optimality for the multichannel campaign problem (and thus optimality in general).
Sum-max functions are a special case of linear submodular functions [Yue and Guestrin,
2011], which are of the form r(S) =

∑
i∈[N ] wiFi(S) for F1, . . . , FN monotone submodular

functions and w1, . . . , wN non-negative coefficients. However, linear submodular functions
have been only studied in stochastic settings, assuming preliminary knowledge of F1, . . . , FN ,
and using a feedback model more informative than our bandit feedback.
Click-models [Lattimore and Szepesvári, 2020, Lattimore et al., 2018, Kveton et al., 2015]
provide a different stochastic formalization of the best-of-k bandit problem. Here the user
is presented with an ordered list of items, and the learner receives a positive reward if the
user clicks on one of the presented items. The difference with our multichannel campaign
problem is that the items are ordered, and the likelihood of clicking an item is also affected
by the position of the item within the list.

B Sum-max proof

Theorem 2.3. Any sum-max set function is pseudo-concave.

Proof. Suppose we have some sum-max function r : 2[K] → [0, 1]. Let V be as in Definition
2.1. Without loss of generality, we will assume that all components of V are non-negative
and r(∅) = 0 (since any sum-max function can be transformed into this form by the addition
of a constant).
Define, for any Q ⊆ [K], the set function rQ : 2[K] → [0, 1] such that for all S ⊆ [K] we have

rQ(S) := JS ∩ Q ̸= ∅K.

We shall now show that for all such Q we have that rQ is pseudo-concave. Choose any
x ∈ RK with x · 1 = 0 and any S ⊆ [K]. We have two cases:

1. If S ∩ Q ̸= ∅, for all i, j ∈ [K] we have rQ(S ∪ {i, j}) = 1, this implies U rQ,S = 11⊤ and
hence x⊤U rQ,Sx = 0.
2. If S ∩ Q = ∅ then for all i, j ∈ [K] we have

rQ(S ∪ {i, j}) = J(i ∈ Q) ∨ (j ∈ Q)K.
Let z ∈ {0, 1}K be such that for all k ∈ [K] we have zk := Jk /∈ QK. Then for all i, j ∈ [K]
we have

J(i ∈ Q) ∨ (j ∈ Q)K = 1 − zizj ,

so that, by above, we have U rQ,S = 11⊤−zz⊤ This implies that: x⊤U rQ,Sx = −(x·z)2 ≤ 0.
And therefore, rQ is pseudo-concave.
Now suppose we have a vector v ∈ RK

+ and define the set function rv : 2[K] → R+ such that
for all S ⊆ [K] we have

rv(S) := max
i∈S

vi ,

1The work of Pasteris et al. [2021] only considered single-user cases, but it is straightforward to
extend their methodology to general sum-max functions.
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where the maximum of the empty set is defined as equal to zero. We can order the set [K]
into the sequence ⟨ji | i ∈ [K]⟩ = [K] where vji+1 ≤ vji for all i ∈ [K − 1]. For all i ∈ [K] we
can define Qi := {jk | k ≤ i}. Now note then that for all S ⊆ [K] the set function rv(S) can
be expressed as ∑

i∈[K−1]

(vji − vji+1)JS ∩ Qi ̸= ∅K + vjK
JS ∩ QK ̸= ∅K

=
∑

i∈[K−1]

(vji − vji+1)rQi(S) + vjK
rQK (S) ,

so, by above, rv is a positive sum of pseudo-concave functions and is hence itself pseudo-
concave. Note also that rv is clearly submodular. Noting that r is a positive sum of functions
of the form rv we have now shown that it is both pseudo-concave and submodular as
required.

C ANALYSIS PROOFS (PROOF OF THEOREM 3.2)

C.1 Lemma 5.3

Lemma C.1. Given a function r : 2[K] → R there exists a unique subset decomposition r̃ of
r.

Proof. For all k ∈ [K] ∪ {0} define Vk := {S ∈ 2[K] | k ≤ |S|}. We take the inductive
hypothesis that for all k ∈ [K] ∪ {0} there exists a unique function r̃k : Vk → R such that
for all Q ∈ Vk we have

r(Q) =
∑

S∈Vk

JQ ⊆ SKr̃k(S) .

We will prove the inductive hypothesis via reverse induction on k (i.e. from k = K to k = 0).
The inductive hypothesis holds for k = K since the only element of VK is [K] so we must
have r̃K([K]) := r([K])
Now suppose, for some i ∈ [K] , the inductive hypothesis holds when k = i. Now consider
the case that k = i− 1. Note that for all Q ∈ Vi and S ∈ Vi−1 \ Vi we must have that Q ̸⊆ S
and hence we must have that:

r(Q) =
∑

S∈Vi

JQ ⊆ SKr̃i−1(S) ,

so, by the inductive hypothesis, the restriction of r̃i−1 to Vi is equal to r̃i. Now choose some
arbitrary Q ∈ Vi−1 \ Vi and define:

v(Q) :=
∑

S∈Vi

JQ ⊆ SKr̃i−1(S)

which, by above, is uniquely defined. Note that for all S ∈ Vi−1 \ Vi we have that Q ⊆ S if
and only if S = Q and hence we must have that:

r(Q) =
∑

S∈Vi

JQ ⊆ SKr̃i−1(S) + r̃i−1(Q) = v(Q) + r̃i−1(Q) ,

so that r̃i−1(Q) = r(Q) − v(Q) which is unique.
We have hence shown that the inductive hypothesis holds for k = i − 1 and hence holds
always. Noting that V0 = 2[K] we then get the result by necessarily setting r̃ = r̃0.

C.2 Lemma 5.5

Lemma C.2. For all r : 2K → R and all q ∈ ∆K we have Φr(q) = E[r(B(q))].
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Proof. Let r̃ be a subset decomposition of r. We have

E[r(B(q))] =
∑

S⊆[K]

r̃(S)P[B(q) ⊆ S]

=
∑

S⊆[K]

r̃(S)
∏

j∈[M ]

P[bj(q) ∈ S]

=
∑

S⊆[K]

r̃(S)
∏

j∈[M ]

∑
i∈[K]

Ji ∈ SKqi

=
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

= Φr(q)

as required.

C.3 Lemma 5.6

Lemma C.3. For all r : 2K → R, all q ∈ ∆K and all i ∈ [K] we have

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK

 .
Proof. Let r̃ be a subset decomposition of r. For all q′ ∈ RK and S ⊆ [K] define

ΛS(q′) :=

 ∑
k∈[K]

Jk ∈ SKq′
k

M

.

Fix some j ∈ [M ]. Note that

∂iΛS(q) = MJi ∈ SK

 ∑
k∈[K]

Jk ∈ SKqk

M−1

= MJi ∈ SK
∏

j′∈[M ]\{j}

∑
k∈[K]

Jk ∈ SKqk

= MJi ∈ SK
∏

j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[bj(q) = i]Ji ∈ SK

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (i ∈ S)]

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (bj(q) ∈ S)]

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (∀j′ ∈ [M ] , bj′(q) ∈ S)]

= M

qi
P[(bj(q) = i) ∧ (B(q) ⊆ S)]

= M

qi
E[Jbj(q) = iKJB(q) ⊆ SK] ,
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so since:
Φr(q) =

∑
S⊆[K]

r̃(S)ΛS(q) ,

we have
∂iΦr(q) =

∑
S⊆[K]

r̃(S)∂iΛS(q)

= M

qi

∑
S⊆[K]

r̃(S)E[Jbj(q) = iKJB(q) ⊆ SK]

= M

qi
E

Jbj(q) = iK
∑

S⊆[K]

r̃(S)JB(q) ⊆ SK


= M

qi
E[Jbj(q) = iKr(B(q))] .

Summing over all j ∈ [M ] and dividing by M then gives us

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK


as required.

C.4 Lemma 5.7

Lemma C.4. For all pseudo-concave set functions r : 2K → R we have that Φr is concave
over the simplex ∆K .

Proof. Choose any q ∈ ∆K . Define ⟨b′
j(q) | j ∈ [M − 2]⟩ to be a sequence of stochastic

quantities drawn i.i.d. at random from (the probability distribution characterised by) q. In
addition, let:

B′(q) := {b′
j(q) | j ∈ [M − 2]} .

Direct from the definition of Φr we have, for all i, i′ ∈ [K], that

∂i∂i′Φr =
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK

 ∑
k∈[K]

Jk ∈ SKqk

M−2

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK
∏

j∈[M−2]

∑
k∈[K]

Jk ∈ SKqk

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK
∏

j∈[M−2]

P[b′
j(q) ∈ S]

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SKP[B′(q) ⊆ S]

=
∑

S⊆[K]

r̃(S)P[B′(q) ∪ {i, i′} ⊆ S]

= E

 ∑
S⊆[K]

r̃(S)JB′(q) ∪ {i, i′} ⊆ SK


= E[r(B′(q) ∪ {i, i′})]

=
∑

S⊆[K]

P[B′(q) = S]r(S ∪ {i, i′})

=
∑

S⊆[K]

P[B′(q) = S]Ur,S
i,i′ .
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So for all x ∈ RK with x · 1 = 0 we have
x⊤(∇2Φr(q))x =

∑
i,i′∈[K]

xi(∂i∂i′Φr)xi′

=
∑

i,i′∈[K]

xixi′

∑
S⊆[K]

P[B′(q) = S]Ur,S
i,i′

=
∑

S⊆[K]

P[B′(q) = S]
∑

i,i′∈[K]

xiU
r,S
i,i′ xi

=
∑

S⊆[K]

P[B′(q) = S](x⊤U r,Sx)

≤ 0 ,
which means that Φr is concave on ∆K as required.

C.5 Lemma 5.10

Lemma C.5. Let S ⊆ [K] with S ̸= ∅, r : 2[K] → R be a pseudo-submodular function, and
Z ⊆ [K] be a set formed by drawing M elements uniformly at random (with replacement)
from S. Then we have

E[r(Z) − r(∅)] ≥

(
1 −

(
|S| − 1

|S|

)M
)

(r(S) − r(∅)) .

Proof. Without loss of generality assume that r(∅) = 0.
We prove by induction on m that the lemma holds whenever M ≤ m. In the case that m = 0
we have E[r(Z)] = r(∅) = 0 and M = 0 so the result holds. Now assume that it holds for all
M ≤ m and consider the case that M = m+ 1.
Since r is pseudo-submodular choose i ∈ S such that

r(Q ∪ {i}) − r(Q) ≥ r(S) − r(S \ {i}) (2)
for all Q ⊆ S \ {i}. Define σ := |S| and

ϕ := r(S) − r(S \ {i}) . (3)
Let ⟨zs | s ∈ [M ]⟩ be a sequence of M elements drawn uniformly at random from S such that
Z = {zs | s ∈ [M ]}. Define

µ :=
∑

s∈[M ]

Jzs ̸= iK .

For all j ∈ [M ] ∪ {0} let Zj be a set formed by sampling j actions independently and
uniformly at random from S \ {i}.
Note that by the inductive hypothesis, we have

E[Ji /∈ ZKr(Z)] = P[i /∈ Z]E[r(Z) | i /∈ Z]

= P[i /∈ Z]
(

1 −
(

|S \ {i}| − 1
|S \ {i}|

)M
)
r(S \ {i})

= P[i /∈ Z]
(

1 −
(
σ − 2
σ − 1

)M
)
r(S \ {i})

= P[µ = M ]
(

1 −
(
σ − 2
σ − 1

)M
)
r(S \ {i}) . (4)

Note also that
E[Ji ∈ ZKr(Z)] =

∑
j∈[m]∪{0}

P[µ = j]E[r(Zj ∪ {i})] . (5)
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By equations (2) and (3) and the inductive hypothesis we have, for all j ∈ [m] ∪ {0}, that
E[r(Zj ∪ {i})] ≥ E[ϕ+ r(Zj)]

= ϕ+ E[r(Zj)]

≥ ϕ+
(

1 −
(

|S \ {i}| − 1
|S \ {i}|

)j
)
r(S \ {i})

= ϕ+
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) . (6)

We also have that ∑
j∈[m]∪{0}

P[µ = j] = P[i ∈ Z] . (7)

Substituting equations (6) and (7) into Equation (5) gives us

E[Ji ∈ ZKr(Z)] = P[i ∈ Z]ϕ+
∑

j∈[m]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) .

Adding this equation to Equation (4) gives us

E[r(Z)] = P[i ∈ Z]ϕ+
∑

j∈[M ]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) . (8)

Take any k ∈ S \ {i}. Note that

1 −
(
σ − 2
σ − 1

)j

= 1 − (1 − 1/(σ − 1))j = 1 − P[k /∈ Zj ] = P[k ∈ Zj ] ,

so that ∑
j∈[M ]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Zj ]

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Z \ {i} |µ = j]

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Z |µ = j]

= P[k ∈ Z] .

Substituting into Equation (8) gives us:
E[r(Z)] ≥ P[i ∈ Z]ϕ+ P[k ∈ Z]r(S \ {i})

= P[i ∈ Z](ϕ+ r(S \ {i}))
= P[i ∈ Z]r(S)
= (1 − P[i /∈ Z])r(S)
= (1 − (1 − 1/σ)M )r(S)

=
(

1 −
(

|S| − 1
|S|

)M
)
r(S) .

So the inductive hypothesis holds for all M ∈ [m+ 1] and hence holds always.

C.6 Lemma 5.11

Lemma C.6. Given any S ⊆ [K] and any pseudo-submodular set function r : 2[K] → R we
have

Φr(pS) ≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) .
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Proof. Let Z be a set formed by drawing M elements i.i.d. with replacement from S. Let z
be an element drawn i.i.d. from S. Let r̃ be a subset-decomposition of r. Note that for all
i ∈ [K] we have

pS
i = P[z = i] .

Hence, we have

Φr(pS) =
∑

Q⊆[K]

r̃(Q)

∑
i∈[K]

Ji ∈ QKpS
i

M

=
∑

Q⊆[K]

r̃(Q)

∑
i∈[K]

Ji ∈ QKP[z = i]

M

=
∑

Q⊆[K]

r̃(Q)P[z ∈ Q]M

=
∑

Q⊆[K]

r̃(Q)P[Z ⊆ Q]

=
∑

Q⊆[K]

r̃(Q)E[JZ ⊆ QK]

= E

 ∑
Q⊆[K]

r̃(Q)JZ ⊆ QK


= E[r(Z)] .

So
Φr(pS) − r(∅) = E[r(Z) − r(∅)] ,

Lemma 5.10 then gives us the result.

C.7 Lemma 5.13

Lemma C.7. For all trials t ∈ [T ] and Ψt as defined in Definition 5.12, we have
∇Ψt(pt) = E[gt | pt] ,

Proof. Take any i ∈ [K]. For any j ∈ [M ] we have
ct,i = pt,ict,i/pt,i

= P[at,j = i | pt]ct,i/pt,i

= E[Jat,j = iKct,i/pt,i | pt] .
So:

Mct,i =
∑

j∈[M ]

E[Jat,j = iKct,i/pt,i | pt]

= E

ct,j

pt,i

∑
j∈[M ]

Jat,j = iK
∣∣∣∣pt

 .
Hence, by Lemma 5.6, we have

∂iΨt(pt) = ∂iΦrt(pt) −Mct,i

= E

rt(B(pt))
pt,i

∑
j∈[M ]

Jbj(pt) = iK

−Mct,i

= E

rt(At)
pt,i

∑
j∈[M ]

Jat,j = iK
∣∣∣∣pt

−Mct,i

= E[gt,i | pt]
as required.
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C.8 Lemma 5.14

Lemma C.8. For all trials t ∈ [T ] we have

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ (1 + C)2M(K +M − 1) .

Proof. Given i ∈ [K] we have that

E[g2
t,i]

(1 + C)2 = 1
(1 + C)2E

(rt(At) − ct,i)2
∑

j,j′∈[M ]

Jat,j = iKJat,j′ = iK
p2

t,i


≤

∑
j,j′∈[M ]

E

[
Jat,j = iKJat,j′ = iK

p2
t,i

]

=
∑

j∈[M ]

E

[
Jat,j = iK
p2

t,i

]
+

∑
j,j′∈[M ]

Jj ̸= j′KE

[
Jat,j = iKJat,j′ = iK

p2
t,i

]

=
∑

j∈[M ]

P[at,j = i]
p2

t,i

+
∑

j,j′∈[M ]

Jj ̸= j′K
P[at,j = i]P[at,j′ = i]

p2
t,i

=
∑

j∈[M ]

1
pt,i

+
∑

j,j′∈[M ]

Jj ̸= j′K

= M

pt,i
+M(M − 1) ,

and hence

E

∑
i∈[K]

pt,ig
2
t,i

 =
∑

i∈[K]

pt,iE[g2
t,i] ≤ (1 + C)2M(K +M − 1)

as required.

C.9 Theorem 3.2

Theorem 3.2. Given rt is pseudo-concave and pseudo-submodular for all t ∈ [T ] , then for
any set S ⊆ [K] with S ≠ ∅ we have∑

t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − M

|S|
∑

t∈[T ]

γt(S) −R ,

where
α := 1 − 1

|S|
.

Proof. Consider some trial t ∈ [T ]. By Lemma 5.7 and the definition of Ψt we have that Ψt

is concave over ∆K . Hence, by Lemma 5.13, we have
E[(pS − pt) · gt | pt] = (pS − pt) · E[gt | pt]

= (pS − pt) · ∇Ψt(pt)
≥ Ψt(pS) − Ψt(pt) . (9)

Lemma 5.11 gives us:
Ψt(pS) = Φrt(pS) −M

∑
i∈[K]

pS
i ct,i

≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) − M

|S|
∑
i∈S

ct,i (10)
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and Lemma 5.5 gives us:

Ψt(pt) = Φrt(pt) −M
∑

i∈[K]

pt,ict,i

= E[rt(B(pt))] −M
∑

i∈[K]

pt,ict,i

= E[rt(At) | pt] −M
∑

i∈[K]

pt,ict,i

= E[rt(At) | pt] −
∑

j∈[M ]

∑
i∈[K]

P[at,j = i | pt]ct,i

= E[rt(At) | pt] −
∑

j∈[M ]

E[ct,at,j | pt]

= E[rt(At) | pt] − E

 ∑
j∈[M ]

ct,at,j

∣∣∣∣pt


≤ E[rt(At) | pt] − E

[∑
i∈At

ct,at,j

∣∣∣∣pt

]
= E[ψt | pt] + rt(∅) . (11)

Substituting equations (10) and (11) into Equation (9) gives us:

E[(pS − pt) · gt | pt] ≥ −E[ψt | pt] +
(

1 −
(

|S| − 1
|S|

)M
)
r̂t(S) − M

|S|
∑
i∈S

ct,i

and hence:

E[(pS − pt) · gt] ≥ −E[ψt] +
(

1 −
(

|S| − 1
|S|

)M
)
r̂t(S) − M

|S|
∑
i∈S

ct,i . (12)

Lemma 5.14 gives us:

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ R2

T
, (13)

Lemma 5.8 gives us:∑
t∈[T ]

E[(pS − pt) · gt] ≤ ln(K)
η

+ η
∑

t∈[T ]

E

∑
i∈[K]

pt,ig
2
t,i

 . (14)

Substituting equations (12) and (13) into Equation (14) gives us:

−
∑

t∈[T ]

E[ψt] +
(

1 −
(

|S| − 1
|S|

)M
) ∑

t∈[T ]

r̂t(S) − M

|S|
∑

t∈[T ]

∑
i∈S

ct,i ≤ ln(K)
η

+ ηR2 .

Since η = ln(K)/R this implies the result.

D Facility location proof

Theorem 4.1. Given that C = 1 and rt : 2L → [−1, 0] is pseudo-concave and pseudo-
submodular for all t ∈ [T ] , we have that the algorithm FLE3 obtains the following bound for
all S ⊆ [L] with S ≠ ∅:∑

t∈[T ]

E[ψt] ≥
∑

t∈[T ]

r̂t(S) − 1
2 ln

(
T

L2

) ∑
t∈[T ]

γt(S) −R′′ ,

where R′′ ∈ Õ(L
√
T ).
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Proof. For all t ∈ [T ] define the set function r′
t : 2K → [0, 1] such that for all Q ⊆

[K], r′
t(Q) := rt(Q ∩ [L]) and, as consequence, r̂′

t(Q) := r′
t(Q) − r′

t(∅). Now taking into
consideration any possible comparator set S ⊆ [K], we define

S ′ := S ∪ {L+ i | i ∈ [L− |S|]} ,

noting that |S ′| = L. Note that r′
t is sum-max and hence, by Theorem 2.3, is pseudo-concave

and submodular for all t ∈ [T ]. This allows us to apply Theorem 3.2, that gives us:∑
t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂′
t(S ′) − M

|S ′|
∑

t∈[T ]

γt(S ′) −R

=
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − M

|S ′|
∑

t∈[T ]

γt(S) −R (15)

=
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − 1
2 ln T

L2

∑
t∈[T ]

γt(S) −R , (16)

where equation (15) comes from the contribution of the dummy arms and equation (16) from
the definition of M . Given that

α := |S ′| − 1
|S ′|

= L− 1
L

≤ exp (−1/L) ,

we can therefore see that

αM
∑

t∈[T ]

r̂t(S) ≤ αMT = exp(−M/L)T

= 1√
T/L2

T =
√
TL2 , (17)

where we used the definition of M given in Algorithm 2. Putting together (16) and (17)
gives us the result, where R′′ = R+

√
TL2.

E PROOF OF THEOREM 3.3

Theorem 3.3. Suppose that there exists some d ∈ N, s ∈ (0, 1), γ > 1, and a randomized
polynomial time algorithm for the learner such that for all K,M ∈ N and for any instance
of the multichannel advertising problem, it holds that

∣∣At

∣∣ ≤ M for all t = 1, . . . , T and, for
any subset S ⊆ [K],

E

∑
t∈[T ]

rt(At)

 ≥
(
1 − αγM

) ∑
t∈[T ]

rt(S) −R′ ,

where R′ ∈ O(KdT s) and α := 1 − 1
|S| . Then, for all ε ∈

(
0, 1 − 1/γ

)
and B > 41/((1−ε)γ−1),

there exists a randomized polynomial-time algorithm for the set cover problem on [B] that,
with probability at least 1

2 , achieves approximation ratio at least (1 − ε) ln(B).

Proof. Suppose we have such an algorithm. Let c > 0 and γ > 1 be such that

E

∑
t∈[T ]

rt(At)

 ≥

(
1 −

(
|S| − 1

|S|

)γM
) ∑

t∈[T ]

rt(S) − cKdT s . (18)

Choose any ρ ∈ (1/γ, 1) and then consider any B ∈ N such that B > 41/(ργ−1). Consider
also any collection of sets {Ck | k ∈ [K]} ⊆ 2[B] such that⋃

k∈[K]

Ck = [B] .
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Let S be a subset of [K] of minimum cardinality such that⋃
k∈S

Ck = [B] .

Now choose
T :=

⌈
(4cKdB)1/(1−s)

⌉
.

and choose any M ∈ N such that M ≥ ρ ln(B)|S|. For all t ∈ [T ] draw Dt randomly as
follows. First draw βt uniformly at random from [B] and then define

Dt := {k ∈ [K] | βt ∈ Ck} .

It is a classic result that (
|S| − 1

|S|

)|S|

≤ e−1 .

so by the conditions on B and M we have(
|S| − 1

|S|

)γM

≤ exp(−γM/|S|) = B−ργ = B1−ργ

B
<

1
4B . (19)

By definition of S we have, for all t ∈ [T ], that there exists some k ∈ S such that βt ∈ Ck so
that Dt ∩ S ≠ ∅. This implies ∑

t∈[T ]

rt(S) = T ,

and hence, by (18) and (19), we have

E

∑
t∈[T ]

(1 − rt(At))

 ≤ T − T + T

4B + cKdT s ≤ T

4B + TcKd

T 1−s
≤ T

2B . (20)

Fix t and a realization of At. If we have⋃
k∈At

Ck ̸= [B] ,

then we must also have that

E[1 − rt(At) | At] = P[At ∩ Dt = ∅ | At]
= P[∀ k ∈ At , βt /∈ Ck | At]

= P

[
βt /∈

⋃
k∈At

Ck

∣∣∣∣∣ At

]
≥ 1
B
.

Hence, by taking the randomness of A1, . . . ,AT into account,

P

∑
t∈[T ]

J
⋃

k∈At

Ck ̸= [B]K = T


≤ P

E
 ∑

t∈[T ]

(
1 − rt(At)

) ∣∣∣∣∣∣ A1, . . . ,AT

 ≥ T

n

 ≤ 1
2

by (20). Since T is polynomial in KB and |At| ≤ M , we have a randomized polynomial-
time algorithm that, with probability at least 1

2 , solves the set cover problem on [B] with
approximation ratio (1 − ε) ln(B) for ε = 1 − ρ ∈

(
0, 1 − 1/γ

)
.
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F SUBMODULAR MONOTONE NON-PSEUDOCONCAVE
FUNCTIONS

We provide a function counterexample to show that there are submodular monotone functions
which are not pseudoconcave.
Let K = 8, P = 2[K], S = {K}, and α > 0. We define Ur,S as follows:

Ur,S :=



1 2 2 2 1 + α 1 + α 1 + α 1
2 1 2 2 1 + α 1 + α 1 + α 1
2 2 1 2 1 + α 1 + α 1 + α 1
2 2 2 1 1 + α 1 + α 1 + α 1

1 + α 1 + α 1 + α 1 + α 1 2 2 1
1 + α 1 + α 1 + α 1 + α 2 1 2 1
1 + α 1 + α 1 + α 1 + α 2 2 1 1

1 1 1 1 1 1 1 0


.

Now, let x = (1, 1, 1, 1,−1,−1,−1,−1)⊤. Note that we have ⟨x,1⟩ = 0 as required by the
pseudoconcavity definition, and x⊤Ur,Sx = 17 − 24α, which is positive for α ∈

(
0, 17

24
)
,

implying therefore the non-pseudoconcavity of r for such values of α.

We now show how to define r starting from Ur,S in such a way that it is both monotone and
submodular while being therefore also non-pseudoconcave.

We have |P| = 2K = 256 possible subsets as the arguments of r, 29 of which are already
defined by the above matrix Ur,S :

• 1 subset ({K}) with cardinality 1,
• 7 subsets ({j,K}j∈[K−1]) with cardinality 2,
• 21 subsets ({i, j,K}1≤j<i≤K−1) with cardinality 3.

For any i ∈ [K], let δi and ∆i be equal respectively to the minimum and the maximum
difference (gain) over all values of r for subsets with cardinality i and all the ones for subsets
with cardinality i− 1. As previously anticipated, we construct function r starting from the
above matrix Ur,S in such a way that for all i ∈ [K − 1], we have

δi ≥ ∆i+1 ,

which is a sufficient condition for submodularity because, for all i ∈ [K], each subset Si ∈ P
with cardinality i can be generated by adding one of its element only from a subset Si−1 ⊂ Si

with cardinality i− 1.
We set α = 2

3 <
17
24 , which guarantees the non-pseudoconcavity of r. To ensure monotonicity

and submodularity, we define

• r(S1) := 0 for all subsets S1 ∈ P with |S1| = 1 (consistently with Ur,S
K,K);

• r(S2) := 1 for all subsets S2 ∈ P with |S2| = 2 (consistently with Ur,S
K,j , U

r,S
j,j , U

r,S
j,1

for all j ∈ [K − 1]);
• r(S3) := 1 + 2

3 = 5
3 for all subsets S3 ∈ P with |S3| = 3 that are not already defined

by Ur,S ;
• r(S4) := r(S3) + 1

2 = 5
3 + 1

2 = 2 + 1
6 > maxi,j U

r,S
i,j = 2 for all subsets S4 ∈ P with

|S4| = 4;
• r(S5) := r(S4) + 1

6 = 2 + 2
6 ,

r(S6) := r(S5) + 1
6 = 2 + 3

6 ,
r(S7) := r(S6) + 1

6 = 2 + 4
6 ,

r(S8) := r(S7) + 1
6 = 2 + 5

6
for all subsets S5, S6, S7, S8 ∈ P such that |S5| = 5, |S6| = 6, |S7| = 7, |S8| = 8.
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Finally, we also set r(∅) = −1. Note that, to ensure that submodularity is not violated, for
each subset SU

3 with |SU
3 | = 3 defined by Ur,S , we have that the difference r(SU

3 ) − r(S2)
for any subset S2 ⊂ SU

3 with |S2| = 2 is either equal to α = 2
3 or 1, that is not smaller than

the maximum difference r(S4) − r(S3) over all S3, S4 ∈ P with |S3| = 3 and |S4| = 4, which
in turn is equal to 1

2 <
2
3 . Furthermore, r(S4) = 2 + 1

6 is never smaller than any values of
r(SU

3 ) for all subsets SU
3 ∈ P with |S3| = 3 that are already defined by Ur,S , because we

have r(SU
3 ) ≤ 2, thereby preserving monotonicity for all subsets in P with cardinality smaller

or equal to 4.
Now, we recall that for any i ∈ [K], δi and ∆i are defined to be respectively equal to the
minimum and the maximum difference (gain) over all values of r for subsets with cardinality
i and all the ones for subsets with cardinality i− 1. Since we have

• δ1,∆1, δ2,∆2 = 1 (which immediately implies ∆2 ≤ δ1),
• δ3 = 2

3 ; ∆3 = 1 ≤ δ2,
• δ4 = 1

6 ; ∆4 = 1
2 ≤ δ3,

• δ5,∆5, δ6,∆6, δ7,∆7, δ8,∆8 = 1
6 ≤ δ4,

then δi ≥ ∆i+1 for all i ∈ [K − 1] which guarantees the submodularity of r. Finally, it is
immediate to verify that r is monotone also for all subsets in P with cardinality larger than
4. Hence, we conclude that r is monotone submodular and non-pseudoconcave.

G EFFICIENT IMPLEMENTATION OF COMBAND

To implement the algorithm the ComBand presented in Cesa-Bianchi and Lugosi [2012],
it is necessary to devise an efficient method for sampling from a set whose size can be
exponential in K. In fact, at each trial, given a set S of positive real numbers, we need to
select any of the subsets S with a given size m from S with a probability proportional to the
product of the elements contained in S itself.
To be consistent with the notation used in Cesa-Bianchi and Lugosi [2012], henceforth we
use the symbol d in place of K.
Given a set S = {q1, q2, . . . , qd} of real positive numbers, we now show how to select a
m-sized subset of indices {u1, . . . , um} from [d] with a probability proportional to Πm

i=1qui

by using dynamic programming. The running time of this sampling method is always linear2

in m · d.
For each sampling operation, consider the sequence of element indices u1, u2, . . . , um ordered
according to the elements in [d], i.e., ui < ui+1 for all i ∈ [m− 1].
The main idea of this method is to sample first um, and then um−1, . . . , u1 (i.e., in reverse
order) having derived in a preliminary phase via dynamic programming all the probabilities
that um = j for all m ≤ j ≤ d, and the conditional probabilities that um′ = j given that
um′+1 = j′, for all m′ ∈ [m− 1] and m′ ≤ j < j′ ≤ d−m+m′.
We denote the conditional probability that um′ = j given that um′+1 = j′, where m′ ∈ [m−1]
and m′ ≤ j < j′ ≤ d−m+m′ by

Pm′,j|j′ := P(um′ = j|um′+1 = j′) ,

and, for the selection of um, we define for all j ∈ [d]

Pm,j := P(um = j) ,
2We assume that multiplying two numbers requires a constant time. Removing this assumption,

since it is known that it is possible to multiply two numbers represented by at most m bits in time
equal to Õ(m) when m ≫ 1 Harvey and Van Der Hoeven [2021], the total sampling time would be
Õ(m2d) instead of O(md).
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because there is no element uj′ > um (with j′ > m) in the sequence of selected indices from
[d]. We clearly have

∑j′−1
j=m′ Pm′,j|j′ = 1 and

∑d
j=m Pm,j = 1.

For each m′ ∈ [m] and m′ ≤ j ≤ d − m + m′ let zm′,j , be the the sum of the products of
numbers of S with indices u1, u2, . . . , um′ contained in each m′-sized subset of [j] such that
um′ = j. We define Zm′,k :=

∑k
i=m′ zm′,i for any integer k such that m′ ≤ k ≤ d−m+m′.

Thus, for all m′ ∈ [m− 1] and m′ ≤ j < j′ ≤ d−m+m′ we have

Pm′,j|j′ = zm′,j

Zm′,j′−1
.

Analogously, for the selection of um, for all m ≤ j ≤ d we can write

Pm,j = zm,j

Zm,d
.

Hence, once we obtain zm′,j and Zm′,j′−1 for all m′ ∈ [m− 1] and m′ ≤ j < j′ ≤ d−m+m′,
zm,j for all m ≤ j ≤ d, and Zm,d, we can immediately compute the desired probabilities to
sample um, um−1, . . . , u1 in this (reverse) order.

We now show how to calculate these values. To this goal, since Zm′,k :=
∑k

i=m′ zm′,i, we
only need to show how to compute the values appearing at the numerator in the above
probability formulas.
The possibility to efficiently the above probabilities is given by the following observation:

zm′,j = Zm′−1,j−1 · qj .

Note that Zm′−1,j−1 can be in turn defined in terms of zm′−1,m′−1, zm′−1,m′ ,
zm′−1,m′+1, . . . , zm′−1,j−2, zm′−1,j−1. This recurrence relation allows us to compute all
these values once we know z1,1, z1,2, . . . , z1,d. Since we clearly have z1,j = qj for all j ∈ [d],
we can therefore compute all these values and the above probabilities to efficiently accomplish
this sampling operation by finding the indices um, um−1, . . . , u1 in this order. It is immediate
to verify that both the number of sum and multiplication operations are equal to Θ(md).

H ADDITIONAL EXPERIMENTAL RESULTS
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Figure 2: Stochastic environment, cumulative reward with respect to the M parameter
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Figure 3: Stochastic with adversarial corruptions environment, cumulative reward with
respect to the M parameter
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Figure 4: Worst case stochastic environment, cumulative reward with respect to the M
parameter
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