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Abstract
In this paper, we address the problem of unsupervised video
summarization that automatically extracts key-shots from an
input video. Specifically, we tackle two critical issues based
on our empirical observations: (i) Ineffective feature learning
due to flat distributions of output importance scores for each
frame, and (ii) training difficulty when dealing with long-
length video inputs. To alleviate the first problem, we propose
a simple yet effective regularization loss term called variance
loss. The proposed variance loss allows a network to predict
output scores for each frame with high discrepancy which
enables effective feature learning and significantly improves
model performance. For the second problem, we design a
novel two-stream network named Chunk and Stride Network
(CSNet) that utilizes local (chunk) and global (stride) tem-
poral view on the video features. Our CSNet gives better
summarization results for long-length videos compared to
the existing methods. In addition, we introduce an attention
mechanism to handle the dynamic information in videos. We
demonstrate the effectiveness of the proposed methods by
conducting extensive ablation studies and show that our final
model achieves new state-of-the-art results on two benchmark
datasets.

Introduction
Video has become a highly significant form of visual data,
and the amount of video content uploaded to various on-
line platforms has increased dramatically in recent years.
In this regard, efficient ways of handling video have be-
come increasingly important. One popular solution is to
summarize videos into shorter ones without missing se-
mantically important frames. Over the past few decades,
many studies (Song et al. 2015; Ngo, Ma, and Zhang 2003;
Lu and Grauman 2013; Kim and Xing 2014; Khosla et
al. 2013) have attempted to solve this problem. Recently,
Zhang et al. showed promising results using deep neu-
ral networks, and a lot of follow-up work has been con-
ducted in areas of supervised (Zhang et al. 2016a; 2016b;
Zhao, Li, and Lu 2017; 2018; Wei et al. 2018) and unsu-
pervised learning (Mahasseni, Lam, and Todorovic 2017;
Zhou and Qiao 2018).

Supervised learning methods (Zhang et al. 2016a; 2016b;
Zhao, Li, and Lu 2017; 2018; Wei et al. 2018) utilize ground
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truth labels that represent importance scores of each frame
to train deep neural networks. Since human-annotated data
is used, semantic features are faithfully learned. However,
labeling for many video frames is expensive, and overfitting
problems frequently occur when there is insufficient label
data. These limitations can be mitigated by using the unsu-
pervised learning method as in (Mahasseni, Lam, and Todor-
ovic 2017; Zhou and Qiao 2018). However, since there is no
human labeling in this method, a method for supervising the
network needs to be appropriately designed.

Our baseline method (Mahasseni, Lam, and Todor-
ovic 2017) uses a variational autoencoder (VAE) (Kingma
and Welling 2013) and generative adversarial networks
(GANs) (Goodfellow et al. 2014) to learn video summa-
rization without human labels. The key idea is that a good
summary should reconstruct original video seamlessly. Fea-
tures of each input frame obtained by convolutional neu-
ral network (CNN) are multiplied with predicted importance
scores. Then, these features are passed to a generator to re-
store the original features. The discriminator is trained to
distinguish between the generated (restored) features and the
original ones.

Although it is fair to say that a good summary can rep-
resent and restore original video well, original features can
also be restored well with uniformly distributed frame level
importance scores. This trivial solution leads to difficulties
in learning discriminative features to find key-shots. Our ap-
proach works to overcome this problem. When output scores
become more flattened, the variance of the scores tremen-
dously decreases. From this mathematically obvious fact, we
propose a simple yet powerful way to increase the variance
of the scores. Variance loss is simply defined as a reciprocal
of variance of the predicted scores.

In addition, to learn more discriminative features, we
propose Chunk and Stride Network (CSNet) that simulta-
neously utilizes local (chunk) and global (stride) temporal
views on the video. CSNet splits input features of a video
into two streams (chunk and stride), then passes both split
features to bidirectional long short-term memory (LSTM)
and merges them back to estimate the final scores. Using
chunk and stride, the difficulty of feature learning for long-
length videos is overcome.

Finally, we develop an attention mechanism to capture
dynamic scene transitions, which are highly related to key-
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shots. In order to implement this module, we use tempo-
ral difference between frame-level CNN features. If a scene
changes only slightly, the CNN features of the adjacent
frames will have similar values. In contrast, at scene tran-
sitions in videos, CNN features in the adjacent frames will
differ a lot. The attention module is used in conjunction with
CSNet as shown in Fig. 1, and helps to learn discriminative
features by considering information about dynamic scene
transitions.

We evaluate our network by conducting extensive exper-
iments on SumMe (Gygli et al. 2014) and TVSum (Song et
al. 2015) datasets. YouTube and OVP (De Avila et al. 2011)
datasets are used for the training process in augmented and
transfer settings. We also conducted an ablation study to
analyze the contribution of each component of our design.
Quantitative results show the selected key-shots and demon-
strate the validity of difference attention. Similar to previous
methods, we randomly split the test set and the train set five
times. To make the comparison fair, we exclude duplicated
or skipped videos in the test set.

Our overall contributions are as follows. (i) We propose
variance loss, which effectively solves the flat output prob-
lem experienced by some of the previous methods. This ap-
proach significantly improves performance, especially in un-
supervised learning. (ii) We construct CSNet architecture to
detect highlights in local (chunk) and global (stride) tempo-
ral view on the video. We also impose a difference atten-
tion approach to capture dynamic scene transitions which
are highly related to key-shots. (iii) We analyze our methods
with ablation studies and achieve the state-of-the-art perfor-
mances on SumMe and TVSum datasets.

Related Work
Given an input video, video summarization aims to pro-
duce a shortened version that highlights the representative
video frames. Various prior work has proposed solutions to
this problem, including video time-lapse (Joshi et al. 2015;
Kopf, Cohen, and Szeliski 2014; Poleg et al. 2015), synop-
sis (Pritch, Rav-Acha, and Peleg 2008), montage (Kang et
al. 2006; Sun et al. 2014) and storyboards (Gong et al. 2014;
Gygli et al. 2014; Gygli, Grabner, and Van Gool 2015;
Lee, Ghosh, and Grauman 2012; Liu, Hua, and Chen 2010;
Yang et al. 2015; Gong et al. 2014). Our work is most closely
related to storyboards, selecting some important pieces of
information to summarize key events present in the entire
video.

Early work on video summarization problems heavily
relied on hand-crafted features and unsupervised learning.
Such work defined various heuristics to represent the im-
portance of the frames (Song et al. 2015; Ngo, Ma, and
Zhang 2003; Lu and Grauman 2013; Kim and Xing 2014;
Khosla et al. 2013) and to use the scores to select represen-
tative frames to build the summary video. Recent work has
explored supervised learning approach for this problem, us-
ing training data consisting of videos and their ground-truth
summaries generated by humans. These supervised learning
methods outperform early work on unsupervised approach,
since they can better learn the high-level semantic knowl-
edge that is used by humans to generate summaries.

Recently, deep learning based methods (Zhang et al.
2016b; Mahasseni, Lam, and Todorovic 2017; Sharghi, Lau-
rel, and Gong 2017) have gained attention for video sum-
marization tasks. The most recent studies adopt recurrent
models such as LSTMs, based on the intuition that using
LSTM enables the capture of long-range temporal depen-
dencies among video frames which are critical for effective
summary generation.

Zhang et al. (Zhang et al. 2016b) introduced two LSTMs
to model the variable range dependency in video summa-
rization. One LSTM was used for video frame sequences in
the forward direction, while the other LSTM was used for
the backward direction. In addition, a determinantal point
process model (Gong et al. 2014; Zhang et al. 2016a) was
adopted for further improvement of diversity in the subset
selection. Mahasseni et al.. (Mahasseni, Lam, and Todorovic
2017) proposed an unsupervised method that was based on a
generative adversarial framework. The model consists of the
summarizer and discriminator. The summarizer was a vari-
ational autoencoder LSTM, which first summarized video
and then reconstructed the output. The discriminator was
another LSTM that learned to distinguish between its recon-
struction and the input video.

In this work, we focus on unsupervised video summariza-
tion, and adopt LSTM following previous work. However,
we empirically worked out that these LSTM-based models
have inherent limitations for unsupervised video summariza-
tion. In particular, two main issues exits: First, there is in-
effective feature learning due to flat distribution of output
importance scores and second, there is the training difficulty
with long-length video inputs. To address these problems,
we propose a simple yet effective regularization loss term
called Variance Loss, and design a novel two-stream net-
work named the Chunk and Stride Network. We experimen-
tally verify that our final model considerably outperforms
state-of-the-art unsupervised video summarization. The fol-
lowing section gives a detailed description of our method.

Proposed Approach
In this section, we introduce methods for unsupervised
video summarization. Our methods are based on a varia-
tional autoencoder (VAE) and generative adversarial net-
works (GAN) as (Mahasseni, Lam, and Todorovic 2017).
We firstly deal with discriminative feature learning under a
VAE-GAN framework by using variance loss. Then, a chunk
and stride network (CSNet) is proposed to overcome the lim-
itation of most of the existing methods, which is the diffi-
culty of learning for long-length videos. CSNet resolves this
problem by taking a local (chunk) and a global (stride) view
of input features. Finally, to consider which part of the video
is important, we use the difference in CNN features between
adjacent or wider spaced video frames as attention, assum-
ing that dynamic plays a large role in selecting key-shots.
Fig. 1 shows the overall structure of our proposed approach.

Baseline Architecture
We adopt (Mahasseni, Lam, and Todorovic 2017) as our
baseline, using a variational autoencoder (VAE) and gener-
ative adversarial networks (GANs) to perform unsupervised



Figure 1: The overall architecture of our network. (a) chunk and stride network (CSNet) splits input features xt into ct and st
by chunk and stride methods. Each orange, yellow, green, and blue color represents how the chunk and stride divide the input
features xt. Divided features are combined in the original order after going through LSTM and FC separately. (b) Difference
attention is a approach for designing dynamic scene transitions at different temporal strides. d1t , d2t , d4t are difference of input
features xt with 1, 2, 4 temporal strides. Each difference features are summed after FC, which is denoted as difference attention
dt, and summed again with c′t and s′t, respectively.

video summarization. The key idea is that a good summary
should reconstruct original video seamlessly and adopt a
GAN framework to reconstruct the original video from sum-
marized key-shots.

In the model, an input video is firstly forwarded through
the backbone CNN (i.e., GoogleNet), Bi-LSTM, and FC lay-
ers (encoder LSTM) to output the importance scores of each
frame. The scores are multiplied with input features to select
key-frames. Original features are then reconstructed from
those frames using the decoder LSTM. Finally, a discrimi-
nator distinguishes whether it is from an original input video
or from reconstructed ones. By following Mahasseni et al.’s
overall concept of VAE-GAN, we inherit the advantages,
while developing our own ideas, significantly overcoming
the existing limitations.

Variance Loss

The main assumption of our baseline (Mahasseni, Lam, and
Todorovic 2017) is “well-picked key-shots can reconstruct
the original image well”. However, for reconstructing the
original image, it is better to keep all frames instead of se-
lecting only a few key-shots. In other words, mode collapse
occurs when the encoder LSTM attempts to keep all frames,
which is a trivial solution. This results in flat importance out-
put scores for each frame, which is undesirable. To prevent
the output scores from being a flat distribution, we propose
a variance loss as follows:

LV (p) =
1

V̂ (p) + eps
, (1)

where p = {pt : t = 1, ..., T}, eps is epsilon, and V̂ (·) is the
variance operator. pt is an output importance score at time
t, and T is the number of frames. By enforcing Eq. (1), the
network makes the difference in output scores per frames
larger, then avoids a trivial solution (flat distribution).

In addition, in order to deal with outliers, we extend vari-
ance loss in Eq. (1) by utilizing the median value of scores.
The variance is computed as follows:

V̂median((p)) =

T∑
t=1
|pt −med(p)|2

T
, (2)

where med(·) is the median operator. As has been reported
for many years (Pratt 1975; Huang, Yang, and Tang 1979;
Zhang, Xu, and Jia 2014), the median value is usually more
robust to outliers than the mean value. We call this modified
function variance loss for the rest of the paper, and use it for
all experiments.

Chunk and Stride Network
To handle long-length videos, which are difficult for LSTM-
based methods, our approach suggests a chunk and stride
network (CSNet) as a way of jointly considering a local and
a global view of input features. For each frame of the input
video v = {vt : t = 1, ..., T}, we obtain the deep features
x = {xt : t = 1, ..., T} of the CNN which is GoogLeNet
pool-5 layer.

As shown in Fig. 1 (a), CSNet takes a long video fea-
ture x as an input, and divides it into smaller sequences in
two ways. The first way involves dividing x into succes-
sive frames, and the other way involves dividing it at a uni-
form interval. The streams are denoted as cm, and sm, where



{m = 1, ...,M} and M is the number of divisions. Specifi-
cally, cm and sm can be explained as follows:

cm =

{
xi : i = (m− 1) · ( T

M
) + 1, ...,m · ( T

M
)

}
, (3)

sm = {xi : i = m,m+ k,m+ 2k, ....,m+ T −M} , (4)

where k is the interval such that k = M . Two differ-
ent sequences, cm and sm, pass through the chunk and
stride stream separately. Each stream consists of bidirec-
tional LSTM (Bi-LSTM) and a fully connected (FC) layer,
which predicts importance scores at the end. Then, each of
the outputs are reshaped into c′m and s′m, enforcing the main-
tenance of the original frame order. Then, c′m and s′m are
added with difference attention dt. Details of the attention-
ing process are described in the next section. The combined
features are then passed through sigmoid function to predict
the final scores pt as follows:

p1t = sigmoid
(
c′t + dt

)
, (5)

p2t = sigmoid
(
s′t + dt

)
, (6)

pt = W [p1t + p2t ]. (7)

where W is learnable parameters for weighted sum of p1t
and p2t , which allows for flexible fusion of local (chunk) and
global (stride) view of input features.

Difference Attention
In this section, we introduce the attention module, exploiting
dynamic information as guidance for the video summariza-
tion. In practice, we use the differences in CNN features of
adjacent frames. The feature difference softly encodes tem-
porally different dynamic information which can be used as
a signal for deciding whether a certain frame is relatively
meaningful or not.

As shown in Fig. 1 (b), the differences d1t , d2t , d4t between
xt+k, and xt pass through the FC layer (d′1t , d′2t , d′4t ) and
are merged to become dt, then added to both cm and sm.
The proposed attention modules are represented as follows:

d1t = |xt+1 − xt|, (8)
d2t = |xt+2 − xt|, (9)
d4t = |xt+4 − xt|, (10)

dt = d′1t + d′2t + d′4t. (11)

While the difference between the features of adjacent
frames can model the simplest dynamic, the wider tempo-
ral stride can include a relatively global dynamic between
the scenes.

Experiments
Datasets
We evaluate our approach on two benchmark datasets,
SumMe (Gygli et al. 2014) and TVSum (Song et al. 2015).
SumMe contains 25 user videos with various events. The
videos include both cases where the scene changes quickly
or slowly. The length of the videos range from 1 minute to

Setting Training set Test set
Canonical 80% SumMe 20% SumMe

Augmented OVP + YouTube + TVSum + 80% SumMe 20% SumMe
Transfer OVP + YouTube + TVSum SumMe

Table 1: Evaluation setting for SumMe. In the case of TV-
Sum, we switch between SumMe and TVSum in the above
table.

6.5 minutes. Each video has an annotation of mostly 15 user
annotations, with a maximum of 18 users. TVSum contains
50 videos with lengths ranging from 1.5 to 11 minutes. Each
video in TVSum is annotated by 20 users. The annotations of
SumMe and TVSum are frame-level importance scores, and
we follow the evaluation method of (Zhang et al. 2016b).
OVP (De Avila et al. 2011) and YouTube (De Avila et al.
2011) datasets consist of 50 and 39 videos, respectively. We
use OVP and YouTube datasets for transfer and augmented
settings.

Evaluation Metric
Similar to other methods, we use the F-score used in (Zhang
et al. 2016b) as an evaluation metric. In all datasets, user an-
notation and prediction are changed from frame-level scores
to key-shots using the KTS method in (Zhang et al. 2016b).
The precision, recall, and F-score are calculated as a mea-
sure of how much the key-shots overlap. Let “predicted” be
the length of the predicted key-shots, “user annotated” be the
length of the user annotated key-shots and “overlap” be the
length of the overlapping key-shots in the following equa-
tions.

P =
overlap

predicted
, R =

overlap
user annotated

, (12)

F-score =
2PR

P +R
∗ 100%. (13)

Evaluation Settings
Our approach is evaluated using the Canonical (C), Aug-
mented (A), and Transfer (T) settings shown in Table 1
in (Zhang et al. 2016b). To divide the test set and the training
set, we randomly extract the test set five times, 20% of the
total. The remaining 80% of the videos is used for the train-
ing set. We use the final F-score, which is the average of the
F-scores of the five tests. However, if a test set is randomly
selected, there may be video that is not used in the test set
or is used multiple times in duplicate, making it difficult to
evaluate fairly. To avoid this problem, we evaluate all the
videos in the datasets without duplication or exception.

Implementation Details
For input features, we extract each frame by 2fps as in
(Zhang et al. 2016b), and then obtain a feature with 1024 di-
mensions through GoogLeNet pool-5 (Szegedy et al. 2015)
trained on ImageNet (Russakovsky et al. 2015). The LSTM
input and hidden size is 256 reduced by FC (1024 to 256) for
fast convergence, and the weight is shared with each chunk
and stride input. The maximum epoch is 20, the learning rate
is 1e-4, and 0.1 times after 10 epochs. The weights of the



(a) Video 1 (b) Video 15

(c) Video 18 (d) Video 41

Figure 2: Visualization of which key-shots are selected in the various videos of TVSum dataset. The light blue bars represent
the labeled scores. Our key-shots are painted in red, green, blue, and yellow respectively in (a) - (d).

Exp. CSNet Difference Variance Loss F-score (%)
1 40.8
2 X 42.0
3 X 42.0
4 X 44.9
5 X X 43.5
6 X X 49.1
7 X X 46.9
8 X X X 51.3

Table 2: F-score (%) of all cases where each proposed meth-
ods can be applied. When CSNet is not applied, LSTM with-
out chunk and stride is used. Variance loss and difference at-
tention can be simply on/off. This experiment uses SumMe
dataset, unsupervised learning and canonical setting.

network are randomly initialized. M in CSNet is experimen-
tally picked as 4. We implement our method using Pytorch.

Baseline Our baseline (Mahasseni, Lam, and Todorovic
2017) uses the VAE and GAN in the model of Mahasseni et
al. We use their adversarial framework, which allows us un-
supervised learning. Specifically, basic sparsity loss, recon-
struction loss, and GAN loss are adopted. For supervised
learning, we add binary cross entropy (BCE) loss between
ground truth scores and predicted scores. We also put fake
input, which has uniform distribution.

Quantitative Results

In this section, we show the experimental results of our vari-
ous approach proposed in the ablation study. Then, we com-
pare our methods with the existing unsupervised and super-
vised methods and finally show the experimental results in
canonical, augmented, and transfer settings. For fair compar-
ison, we quote performances of previous research recorded
in (Zhou and Qiao 2018).

Ablation study. We have three proposed approaches:
CSNet, difference attention and variance loss. When all
three methods are applied, the highest performance can be
obtained. The ablation study in Table 2 shows the contribu-
tion of each proposed method to the performance by con-
ducting experiments on the number of cases in which each
method can be applied. We call these methods shown in exp.
1 to exp. 8 CSNet1 through CSNet8, respectively. If any of
our proposed methods is not applied, we experiment with
a version of the baseline in that we reproduce and modify
some layers and hyper parameters. In this case, the lowest F-
score is shown, and it is obvious that performance increases
gradually when each method is applied.

Analyzing the contribution to each method, first of all, the
performance improvement due to variance loss is immensely
large, which proves that it is a way to solve the problem
of our baseline precisely. CSNet4 is higher than CSNet1 by
4.1%, and CSNet8 is better than CSNet5 by 7.8%. The vari-
ance of output scores is less than 0.001 without variance
loss, but as it is applied, the variance increases to around
0.1. Since we use a reciprocal of variance to increase vari-
ance, we can observe the loss of an extremely large value
in the early stages of learning. Immediately after, the effect
of the loss increases the variance as a faster rate, giving the
output a much wider variety of values than before.

By comparing the performance with and without the dif-
ference attention, we can see that difference attention is
well modeled in the relationship between static or dynamic
scene changes and frame-level importance scores. By com-
paring CSNet1 to CSNet3, the F-score is increased by 1.2%.
Similarly, CSNet5 and CSNet7 are higher than CSNet2 and
CSNet4 by 1.5% and 2.0%. CSNet8 is greater than CSNet6
by 2.2%. These comparisons mean that the difference atten-
tion always contributes to these four cases.

We can see from our Table 2 that CSNet also contributes
to performance, and it is effective to design the concept of lo-
cal and global features with chunk and stride while reducing
input size of LSTM in temporal domain. Experiments on the
number of cases where CSNet can be removed are as follow.



(a) CSNet 8 (b) CSNet 2

(c) CSNet 3 (d) CSNet 4

Figure 3: Similar to Fig. 2, key-shots are selected by variants of CSNet denoted in ablation study. A video 1 in TVSum is used.

Method SumMe TVSum
K-medoids 33.4 28.8
Vsumm 33.7 -
Web image - 36.0
Dictionary selection 37.8 42.0
Online sparse coding - 46.0
Co-archetypal - 50.0
GANdpp 39.1 51.7
DR-DSN 41.4 57.6
CSNet 51.3 58.8

Table 3: F-score (%) of unsupervised methods in canoni-
cal setting on SumMe and TVSum datasets. Our approach
outperforms other existing methods. Dramatic performance
improvement is shown on the SumMe dataset.

CSNet2 is better than CSNet1 by 1.2%, and each CSNet5,
CSNet6 outperform CSNet3, CSNet4 by 1.5%, 4.2%. Lastly,
CSNet8 and CSNet7 have 4.4% difference.

Since each method improves performance as it is added,
the three proposed approaches contribute individually to per-
formance. With the combination of the proposed methods,
CSNet8 achieves a higher performance improvement than
the sum of each F-score increased by CSNet2, CSNet3 and
CSNet4. In the rest of this section, we use CSNet8.

Comparison with unsupervised approaches. Table 3
shows the experimental results for SumMe and TVSum
datasets using unsupervised learning in canonical settings.
Since our approach mainly target unsupervised learning,
CSNet outperforms both SumMe and TVSum over the ex-
isting methods (Elhamifar, Sapiro, and Vidal 2012; Khosla
et al. 2013; De Avila et al. 2011; Zhao and Xing 2014;
Song et al. 2015; Zhou and Qiao 2018; Mahasseni, Lam,
and Todorovic 2017). As a significant improvement in per-
formance for the SumMe dataset, Table 3 shows a F-score
enhancement over 9.9% compared to the best of the existing
methods (Zhou and Qiao 2018).

To the best of our knowledge, all existing methods are

Method SumMe TVSum
Interestingness 39.4 -
Submodularity 39.7 -
Summary transfer 40.9 -
Bi-LSTM 37.6 54.2
DPP-LSTM 38.6 54.7
GANsup 41.7 56.3
DR-DSNsup 42.1 58.1
CSNetsup 48.6 58.5

Table 4: F-score (%) of supervised methods in canonical set-
ting on SumMe and TVSum datasets. We achieve the state-
of-the-art performance.

scored at less than 50% of the F-score in the SumMe dataset.
Evaluation of the SumMe dataset is more challenging than
the TVSum dataset in terms of performance. DR-DSN has
already made a lot of progress for the TVSum dataset, but for
the first time, we have achieved extreme advancement in the
SumMe dataset which decreases the gap between SumMe
and TVSum.

An interesting observation of supervised learning in video
summarization is the non-optimal ground truth scores. Users
who evaluated video for each data set are different, and every
user does not make a consistent evaluation. In such cases,
there may be a better summary than the ground truth which
is a mean value of multiple user annotations. Surprisingly,
during our experiments we observe that predictions for some
videos receive better F-scores than in the results of ground
truth. Unsupervised approaches do not use the ground truth,
so it provides a step closer to the user annotation.

Comparison with supervised approaches. We imple-
mented CSNetsup for supervised learning by simply adding
binary cross entropy loss between prediction and ground
truth to existing loss for CSNet. In Table 4, CSNetsup ob-
tains state-of-the-art results compared to existing meth-
ods (Gygli et al. 2014; Gygli, Grabner, and Van Gool 2015;
Zhang et al. 2016a; 2016b; Zhou and Qiao 2018), but does



SumMe TVSum
Method C A T C A T
Bi-LSTM 37.6 41.6 40.7 54.2 57.9 56.9
DPP-LSTM 38.6 42.9 41.8 54.7 59.6 58.7
GANdpp 39.1 43.4 - 51.7 59.5 -
GANsup 41.7 43.6 - 56.3 61.2 -
DR-DSN 41.4 42.8 42.4 57.6 58.4 57.8
DR-DSNsup 42.1 43.9 42.6 58.1 59.8 58.9
HSA-RNN - 44.1 - - 59.8 -
CSNet 51.3 52.1 45.1 58.8 59.0 59.2
CSNetsup 48.6 48.7 44.1 58.5 57.1 57.4

Table 5: F-score (%) of both unsupervised and supervised
methods in canonical, augmented and transfer settings on
SumMe and TVSum datasets.

not provide a better performance than CSNet. In general, su-
pervision improves performance, but in our case, the point of
view mentioned in the unsupervised approaches may fall out
of step with using ground truth directly.

Comparison in augmented and transfer settings. We
compare our CSNet with other state-of-the-art literature with
augmented and transfer settings in Table 5. We can make a
fair comparison using the 256 hidden layer size of LSTM
used by DR-DSN (Zhou and Qiao 2018), which is a previ-
ous state-of-the-art method. We obtain better performance
in CSNet than CSNetsup, and our unsupervised CSNet per-
forms better than the supervised method in any other ap-
proach except for GANsup, which uses 1024 hidden size in
TVSum dataset with augmented setting.

Qualitative Results

Selected key-shots. In this section, we visualize selected
key-shots in two ways. First, in Fig. 2, selected key-shots are
visualized in bar graph form using various genre of videos.
(a) - (d) show that many of our key-shots select peak points
of labeled scores. In terms of the content of the video, the
scenes selected by CSNet are mostly meaningful scenes by
comparing colored bars with the images in Fig. 2. Then, in
Fig. 3, we compare variants of our approach with a video 1
in TVSum. Although minor differences exist, each approach
select peak points well.

Difference attention. With a deeper analysis of difference
attention, we visualize the difference attention in the TVSum
dataset. Its motivation is to capture dynamic information be-
tween frames of video. We can verify our assumption that
the dynamic scene should be more important than the static
scene with this experiment. As shown in Fig. 4, the plotted
blue graph is in line with the selected key-shots, which high-
light portions with high scores. The selected key-shots are of
a motorcycle jump, which is a dynamic scene in the video.
As a result, difference attention can effectively predict key-
shots using dynamic information.

Figure 4: Experiment with video 41 in the TVSum dataset.
In addition to the visualization results in Fig. 2, difference
attention is plotted with blue color. When visualizing the
difference attention, it is normalized to have a same range of
ground truth scores. The picture is the video frames which
are mainly predicted part with key-shots.

Conclusion
In this paper, we propose discriminative feature learning for
unsupervised video summarization with our approach. Vari-
ance loss tackles the temporal dependency problem, which
causes a flat output problem in LSTM. CSNet designs a lo-
cal and global scheme, which reduces temporal input size
for LSTM. Difference attention highlights dynamic informa-
tion, which is highly related to key-shots in a video. Exten-
sive experiments on two benchmark datasets including ab-
lation study show that our state-of-the-art unsupervised ap-
proach outperforms most of the supervised methods.
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