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Abstract

Envision an AI capable of functioning in human-like settings, moving beyond
mere observation to actively understand, anticipate, and proactively respond to
unfolding events. Towards this vision, we focus on the innovative task where,
given ego-streaming video input, an assistant proactively answers diverse, evolving
questions at the opportune moment, while maintaining synchronized perception
and reasoning. This task embodies three key properties: (1) Proactive Coherence,
(2) Just-in-Time Responsiveness, and (3) Synchronized Efficiency. To evaluate and
address these properties, we first introduce ESTP-Bench (Ego Streaming Proactive
Benchmark) alongside the ESTP-F1 metric—a novel framework designed for their
rigorous assessment. Secondly, we propose a comprehensive technical pipeline to
enable models to tackle this challenging task. This pipeline comprises: (1) a data
engine, (2) a multi-stage training strategy, and (3) a proactive dynamic compression
technique. Our proposed model effectively addresses these critical properties while
outperforming multiple baselines across diverse online and offline benchmarks.

1 Introduction

Imagine an AI assistant that follows you through your day—assembling furniture, searching for
misplaced keys [3, 15], or preparing a meal [46, 44]—not just watching, but understanding, anticipat-
ing [54], and responding proactively when needed as events unfold. To function in such human-like
settings, where visual input is egocentric and continuously streaming, and user needs shift from
moment to moment, the assistant must go beyond passive observation. It should be able to interpret
the present, anticipate what comes next, and respond at exactly the right moment, all in real time.

As a first step toward this vision, we narrow our focus to perception and understanding in egocentric
streaming video, with a particular emphasis on the following innovative task: Given ego-streaming
video input, the assistant proactively answers to diverse and evolving questions at the right moment,
while seeing and thinking in sync, as shown in Fig. 1. This task relies on three key properties:

• Proactive Coherence: handling diverse question types, responding even when answers depend on
future visual streams (proactivity), and maintaining contextual consistency across related questions.
In ego-streaming scenarios, questions often go beyond the current frame, referencing future events
or past observations. As shown in Fig. 1, the segment of the conversation highlighted in green
is contextually dependent on the content within the segment highlighted in purple. Such queries
require temporal integration of past and present information, followed by proactive answering as
relevant visual evidence emerges.

• Just-in-Time Responsiveness: determining when to answer based on visual readiness, neither too
soon nor too late, and only when necessary. Responding before enough evidence is available can
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Synchronized Efficiency: Model Seeing and Thinking in Sync

There are some needles in 
front of you that you can 

use to extract fluid

The garbage is dropped to 
the next to the notebook 
on the counter

You can throw them from 
the counter and the lab 
bench into the yellow 
bucket near the shelf.

[00:30 – Silence- 01：26]

Can you tell me where the 
garbage are when I  drop 
them ? The garbage is 

dropped on 
the lab bench 
in front of you

[02:23]

[02:23 – Silence- 03：49]

[01:26]

[03:49]
I want to clean them up

[04:00 – Silence- 04：50]
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I want to extract some liquid 
from a flask. What should I do?

[00:30]
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[02:00]

Proactive Coherence: Diverse, Evolving Questions and Response
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Figure 1: An illustrative example of the ESTP task. The figure is structured in three layers: the
top layer depicts the model’s continuous visual processing and decision-making (See and Think), the
middle layer shows the real-world egocentric scene with the human’s trajectory, and the bottom layer
presents the human-model conversation.

lead to mistakes, while answering too late may miss the opportunity to help. Equally important is
staying silent when uncertain and avoiding unnecessary repetition. As shown in the blue-highlighted
segment of Fig. 1, it is necessary to remain silent until the “face to counter”. The assistant must
continuously track the evolving visual context and respond at the earliest reliable moment.

• Synchronized Efficiency: ensuring that answering and visual perception proceed in sync without
delay. Responses should not come at the cost of missing new visual input; perception and reasoning
must remain temporally aligned. Regarding the purple segment depicted in Fig. 1, maintaining
synchronization is crucial to prevent missed answers. This requires answering while continuously
observing, with zero latency, while also ensuring time and memory efficiency as the number of
incoming frames grows over time.

Unfortunately, existing evaluation frameworks [51, 27, 26, 61, 13] and streaming models [5, 52] fall
short in supporting or measuring the unified capabilities of proactive, just-in-time, and synchronized
reasoning—and often struggle even with some individual aspects. Offline video benchmarks [14,
66, 30, 50, 1] evaluate video LLMs across diverse question types and scenarios, but their offline
nature limits the assessment of the three core capabilities essential for online deployment. Recent
efforts toward online and streaming benchmarks address this gap by introducing proactive tasks.
Nevertheless, as shown in Tab 1, they often offer limited question diversity, lack contextual continuity
across queries, and—more importantly—rarely evaluate just-in-time responsiveness or synchronized
efficiency. As a result, current online video LLMs remain confined to narrow tasks such as narration
or simple question answering, lacking the capacity for continuous, multi-turn understanding. More
critically, as illustrated in Fig. 6, these models exhibit poor just-in-time behavior—often generating
under-responsive or over-extended answers. Similarly, although recent efforts [51, 33] have begun to
address efficiency, they tend to focus solely on accelerating response generation—potentially at the
cost of answer accuracy—while overlooking the need to balance perception and answering under
synchronized constraints.

As a first step toward addressing these challenges, we introduce a new Ego STreaming Proactive
(ESTP) benchmark and evaluation framework, specifically designed to capture the demands of the
three key properties in streaming video. For proactive coherence, all question-answering tasks in the
benchmark are proactive in nature: each question can only be answered based on future video streams
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Figure 2: ESTP Triangle of
Impossibility shows trade-
offs among the three dimen-
sions: Proactive Coherence,
Just-in-Time responsiveness,
and Efficiency, which are
quantified by contextual per-
formance, recall, and FPS.

Dataset Ques. Type Proactive Type JIT Responsiveness Eval. # Ques.Exp. Imp. Cont. Ans. Turn Is Prec. Timeliness
Online Benchmark
VStream [61] OE ✘ ✘ ✘ S ✘ ✘ 3,500
StreamingBench [27] MC ✘ ✘ ✘ S ✘ ✘ 4,500
StreamingBench (PO) [27] Q-Match ✔ ✘ ✘ S ✘ ✔ 50
OVO-Bench [26] MC ✘ ✘ ✘ S ✘ ✘ 2,814
OVO-Bench (FAR) [26] C & Q ✔ ✘ ✘ M ✔ ✘ 1618
MMDuet [51] OE ✔ ✘ ✘ M ✘ ✔ 2000
Ego Benchmark
EgoPlan [6] OE ✘ ✘ ✘ S ✘ ✘ 5,000
EgoPlan2 [35] OE ✘ ✘ ✘ S ✘ ✘ 1,300
EgoSDQES [13] Q-Match ✔ ✘ ✘ S ✔ ✔ 3,971
ESTP (Ours) OE ✔ ✔ ✔ M ✔ ✔ 2264

Table 1: Comparison of datasets based on proactive and streaming
criteria. This table summarizes datasets by Question Types (Open-
Ended (OE); Multiple Choice (MC); Query Matching (Q-Match &
Q); and Count (C)), Proactive Types (Explicit (Exp.); Implicit (Imp.);
and Contextual (Cont.)), and Just-in-Time (JIT) Responsiveness. Key
JIT Responsiveness aspects include Answer Turn (Ans. Turn) (op-
tions: Single (S), Multi (M)), Precision (Is Prec.), and Timeliness.
The notation ’# Ques.’ denotes the number of questions.

within one or more specific time intervals. To reflect different levels realistic scenarios, we group
them into three types: (1) explicit, grounded in clear visual cues; (2) implicit, requiring reasoning
beyond surface observations; and (3) contextual, involving temporally linked questions that demand
consistent multi-turn answers. We collect 2,264 questions spanning 14 task types—such as object
localization, state change understanding, and intention prediction—across over 100 types of distinct
scenarios, including kitchen activities, social interactions, and daily object manipulation. For just-in-
time responsiveness, we emphasize the importance of response timing: each question are annotated
an average of 3.96 valid answer intervals, and a prediction is considered valid only if it falls within
the designated window. To assess this, we introduce ESTP-F1, a metric that integrates answer quality,
response timing, and temporal precision. Additionally, 46% of questions are contextually linked,
requiring coherent responses based on prior questions—highlighting the need to continuously track
the evolving stream from past to future and respond at the right moment. For synchronized efficiency,
we not only evaluate time and memory efficiency and answering accuracy independently, but also
assess accuracy under tightly synchronized perception and response—offering a comprehensive
perspective on streaming video LLM evaluation.

To address this novel task, we propose a comprehensive and novel technical pipeline—including a
data engine, multi-stage training strategies, and a proactive dynamic compression technique—to
enhance the streaming video LLMs. Specifically,

• The data engine automatically generates diverse, multi-turn questions and their corresponding
answers to support the demands of continuous and proactive question answering. This involves a
three-stage generation pipeline covering (1) one-to-one: using LVLMs to generate captions and
extract initial question-answer pairs with a single temporal answer interval; (2) one-to-many: apply-
ing RAG to expand each answer into multiple valid intervals; and (3) many-to-many: composing
coherent multi-turn questions from related QA pairs.

• The multi-stage training strategy is employed to progressively learn: (1) passive interval re-
sponsiveness, which provides a basic ability to trigger responses by distinguishing visually similar
frames with different response labels, but often results in over-responsiveness even when the correct
response interval; (2) Proactive just-in-time responsiveness and accurate answering, which trains
the model to actively request high-resolution frames during uncertain timestamps, allowing it to use
fine-grained visual details to pinpoint both the correct response moment and the accurate answer;
(3) Coherence across multi-turn QA, which enables the model to maintain consistency by reasoning
over prior QA history and current context, supporting contextual consistency answering.

• The proactive dynamic compression technique fully leverages the streaming nature by applying
two levels of token compression based on response likelihood, including: (1) when the model
anticipates a potential response, it proactively requests high-resolution inputs to improve the
accuracy of perception and answering; (2) Otherwise, it applies a higher compression rate to
past content to reduce token usage and improve efficiency; (3) Additionally, once a response is
completed, the content preceding its timestamp is further compressed to free up resources without
affecting future perception or answering.
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In summary, our contributions include: the novel Ego-Streaming Proactive (ESTP) task, distinguished
by its three key properties; the ESTP-Bench benchmark and the ESTP-F1 metric for robust evaluation
of this task; and a comprehensive and novel technical pipeline, incorporating three key techniques,
designed to address the ESTP task. Our results demonstrate that the proposed model effectively
overcomes the key challenges posed by this task. Moreover, it demonstrates superior performance by
substantially exceeding multiple baselines in diverse online and offline benchmarks.

2 Ego Streaming Proactivate Dataset & Benchmark

2.1 Data Source and Annotation

Data Source is validation set of Ego4D [17, 44] that includes raw annotations such as event narrations
and steps for completing consistent goals. Following [28, 5], we filtered out video with missing or
uncertain annotations and converted annotations into a natural language format. This process yielded
890 videos, encompassing over 100 distinct scenes and a wide array of human activities, including
indoor home environments (e.g., cooking, cleaning), workspaces (e.g., working at desk, labwork,
baker), and public areas (e.g., grocery shopping). Furthermore, the videos exhibit rich dynamic
diversity, ranging from periods of relative stillness (e.g., observing a static scene) to highly dynamic
moments involving rapid manipulation tasks or active locomotion (e.g., cooking, walking).

Annotation process follows a two-step procedure. First, initial QA pairs are automatically generated
with the assistance of MLLMs [56, 49] and LLMs [10]. Second, these automatically generated
questions provided inspiration for annotators, aiding them in identifying valuable instances or
formulating question ideas. To ensure diversity of questions, we annotate three proactive types:

(b)

(a)

Figure 3: (a) Frequency of scenes or ac-
tivities from which tasks and questions
are derived. (b) Proportion of different
proactive and question task types.

(1). Explicit Proactive Tasks are defined as those re-
quired to identify and respond to queries by directly
leveraging and interpreting visual information present
in the input. This category encompasses tasks where
the relevant visual cues are explicitly referenced or are
central to formulating a correct response. This category
is comprised of eight distinct task types: Object Recog-
nition (OR), Attribute Perception (AP), Text-Rich Un-
derstanding (TRU), Object Localization (OL), Object
State Change (OSC), Ego Object Localization (EOL),
Ego Object State Change (EOSC), and Action Recogni-
tion (AR). (2). Implicit Proactive Tasks are defined as
those requiring inference and deeper scene understand-
ing that goes beyond immediate, direct observation.
This category is comprised of four distinct task types:
Object Function Reasoning (OFR), Information Func-
tion Reasoning (IFR), Next Action Reasoning (NAR),
and Task Understanding (TU). (3). Contextual Proac-
tive Tasks are defined as those requiring the model to
maintain awareness of dialogue history and visual co-
herence across temporally extended interactions. This
category is comprised of two distinct task types: Ob-
ject Relative Context (ORC) and Task Relative Context
(TRC). Fig. 3 illustrate dataset distribution.

To enable the evaluation of Just-in-Time Responsiveness and eliminate ambiguity in answer intervals,
human annotators are required to mark clear time interval boundaries based on the completeness of
objects within frames or the start/end of events. Simultaneously, questions with ambiguous references
are filtered out (e.g., “Remind me the location of the ceramic bowl.” where multiple ceramic bowls
might be present in different locations). Each sample’s question, answer, and corresponding answer
interval are verified by two annotators. This rigorous verification process resulted in a dataset of 2264
verified question-answer instances. Notably, every answer in the dataset is associated with precise
temporal annotations. Statistical information regarding the annotated data is presented in Fig. 3.
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2.2 Evaluation Metric in ESTP

To comprehensively measure performance along three key evaluation aspects – answer quality,
response timing, and temporal precision – we introduce the ESTP-F1 score. Here, we denote a
ground truth item as gk with content ok, and a prediction as p̂l with content ôl and time t̂l. Evaluation
components are defined for matched pairs (p̂l, gk), where p̂l is a prediction that temporally matches
gk. For answer quality, an LLM [10] is used to measure correctness, defined as a score Sanswer(ôl, ok)
for the predicted content ôl relative to the ground truth content ok. For evaluating response timing, we
go beyond simply considering recall (which inherently accounts for False Negatives (FN)) and employ
a score Stime(t̂l, gk) to more precisely measure timeliness. Furthermore, for temporal precision, we
introduce precision, utilizing False Positives (FP) as a penalty term. These components contribute
to the aggregated ground truth score S(gk), which replaces the traditional binary TP count. The
ESTP-F1 score is computed as:

ESTP-F1 =
2×

∑M
k=1 S(gk)

2
∑M

k=1 S(gk) + FP+ FN
, (1)

where M is number of GT. High answer quality (reflected by a high Sanswer score), effective response
timeliness (characterized by high Stime for on-time responses and a low False Negative (FN) rate),
and high precision (indicated by a low False Positive (FP) rate) collectively contribute to a high
ESTP-F1 score. More details are provided in the Appendix.

3 Methodology: VideoLLM-EyeWO

In this section, we introduce a technical pipeline designed for the ESTP task. For the data engine,
utilizing the Ego4D [17] training set and a three-stage generation pipeline as introduced in Sec. 1, we
generate 60K single-turn and 20K multi-turn questions, as shown in Fig. 4. Each generated instance
includes questions, answers, and their corresponding valid answer intervals (named as ESTP-IT). See
Appendix for data engine details. Subsequently, we detail the problem definition and preliminary,
the multi-stage training strategies, and the proactive dynamic compression technique in respective
subsections.

3.1 Problem Definition and Preliminary

Problem Definition. Given a streaming video input and a sequence of emerging queries Q =
{(qi, tqi)}, where qi is the query content and tqi is the query timestamp. At each timestep t following
a query (i.e., t > tqi), the model must leverage its historical memory Ht (including visual input
history and past query-response interactions) , while concurrent observation Ot, to decide whether to
perform a response action and generate corresponding content. The model’s decision-making process
at time t can be formulated as selecting the optimal action At from a predefined set A:

At = argmaxa∈A Pθ(At = a | qi, Ot, Ht). (2)

Here, θ represent model parameter, At is the model’s action at time t, and A is the set of possible
actions. Notably, while previous work typically considers an action space that only includes asilence
(staying silent) and aresponse (executing a response and generating a reply), we expands this by
including the action aask_high (requesting a high-resolution frame), as introduced in Sec. 3.2 Stage-1.

Preliminary. LIVE [5] utilizes ground truth containing timestamps and applies cross-entropy
supervision [48] to the model’s action output at each timestep. Specifically, if the current time t
falls within a ground truth response region (denoted as t ∈ Ttimestamp), the model is supervised to
execute the response action (aresponse) and generate a reply, incorporating a language modeling loss
LLM [59, 11, 48]. Otherwise, it is supervised to remain silent (acontinue). This is formulated as:

L(t) =
{
− logPθ(aresponse | qi, Ot, Ht) + ωLLM(t) if t ∈ Ttimestamp

− logPθ(acontinue | qi, Ot, Ht) otherwise,
, (3)

where, ω is a balancing coefficient weighting the language modeling objective.
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Figure 4: Overview of the proposed pipeline. The figure illustrates the three main components: (a)
Data Engine (ESTP-Gen), which automatically generates diverse, multi-turn QA data through a
three-stage pipeline. (b) Multi-Stage Training Strategy incrementally builds the model from basic
responsiveness to proactive just-in-time accuracy, and ultimately to achieving multi-turn coherence,
detailed in Section 3.2. (c) Proactive Dynamic Compression detailed in Section 3.3.

3.2 Multi-Stage Training Strategy

Following [5], VideoLLM-EyeWO utilizes the same network architecture and is trained using
LoRA [20]. However, the single-stage training and simple binary supervision strategy employed
in [5] can lead to training conflict due to the high similarity of adjacent frames in streaming inputs.
This conflict necessitates a difficult trade-off between over-extended and under-responsive. To address
these limitations, we employ a multi-stage training strategy designed to progressively endow the
model with response capabilities. The following subsections detail each stage of this training strategy.

Stage-1 : Passive Interval Responsivenes. To provide the basic ability for autonomous response
triggering, we leverage the valid answer intervals within the ESTP-IT to achieve a progressive
transition from silence to response. Specifically, if current time t falling within a valid answer interval
(where Tinterval is defined as the set of all such intervals [si, ei]), we apply a weighted degree of
response supervision, rather than direct binary classification, using the following loss function:

L(t) =

− log

(
f
(

|t−e |
|s−e |

)
· Pθ(aresponse | qi, Ot, Ht)

)
+ ωLLM(t) if ∃[s, e] ∈ Tinterval, t ∈ [s, e]

− logPθ(acontinue | qi, Ot, Ht) otherwise
,

(4)
The function f is a linear decrease map used as a weighting factor applied to the response probability
loss. The highlight in Equ. 4 is used to distinguish the components specific to this stage.

Stage-2 : Proactive just-in-time responsiveness and accurate answering. To use fine-grained
visual details to pinpoint both the correct response moment and the accurate answer, we train the model
to actively request high-resolution frames during uncertain timestamps in this stage. Specifically, we
first introduce a third predefined action aask_high. When the model executes this action at time t, it
triggers the acquisition of the high-resolution frame Oh

t corresponding to the current observation Ot

using the following loss function for training: Lask_high(t):

Lask_high(t) =

{
− log

(
f
(

|t−e|
|s−e |

)
· Pθ( aask_high | qi, Ot, Ht)

)
if t ∈ Tuncertain

− logPθ(acontinue | qi, Ot, Ht) otherwise,
, (5)

where Tuncertain denotes the set of the model’s uncertain (see more detail in Appendix D Stage-2 Input).
We use this loss to enable the model to acquire the ability to request high-resolution frames, and
then based on the more detailed information, determine whether it is the correct time to respond and
provide a more accurate answer, using the following loss:

Ldetermine(t) =

− log Pθ(aresponse | qi, Ot, Ht, O
h
t ) + ωLLM(t) if t ∈ Ttimestamp

− logPθ(acontinue | qi, Ot, Ht, O
h
t ) otherwise

, (6)
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where Oh
t represents the high-resolution frame acquired at time t. The overall loss function at

timestep t is the sum of the two components:
L(t) = Lask_high(t) + Ldetermine(t) (7)

See appendix for detailed uncertain timestamps Tuncertain identified.

Stage-3 : Coherence across multi-turn QA. Building upon the model’s acquired proactive and
timely response capabilities, we introduce a separate training stage. Specifically, this stage involves
training solely on multi-turn question, with the aim of further improving its contextual understanding
while preserving its timely responsiveness.

3.3 Proactive Dynamic Compression Mechanism

In order to ensure memory efficiency as the number of incoming frames grows over time, we propose
the Proactive Dynamic Compression Mechanism, which applies two levels of token compression and
employs a uniform compression method, detailed respectively in the following two subsections.

Two-Level Compression. In contrast to fixed compression rates [29, 34, 4] and steps [43, 39, 58, 63],
our mechanism leverages the streaming nature to allow the model to proactively determine both
when to compress and which compression level to apply. Regarding the timing of compression, after
the model generates a response, the preceding visual input and the response content itself form a
natural segment or processing unit. Simultaneously, lower compression rates are applied to question-
relevant content such as high-resolution frames, while higher rates are applied to other content, with
these decisions proactively made by the model. Specifically, after a response, a fixed number of
compression tokens (e.g., 1) are used to compress the preceding content, absorbing information from
potentially many low-resolution frames or a single high-resolution frame. This approach naturally
achieves a high compression rate for redundant parts of the past content, resulting in an average token
usage of only about one-tenth of the original sequence.

Uniform Compression Method. For achieving two-level compression, we employ a Uniform
Compression Method. Specifically, unlike methods using additional compression modules [34, 33],
we insert a special compression token (⟨ct⟩) after segments of original input, namely after single high-
resolution frames, after multiple low-resolution frames, and after answer. This token is initialized
using the text embedding of the “<EOS>” token. Leveraging the properties of the causal self-attention
mechanism, this token prompts the LLM to compress the information from the preceding segment
into a compact representation stored in the KV cache.

During training, inspired by [43], the LLM is trained to process response turns sequentially. A
response turn refers to a turn of interaction, typically a comprising visual input and a model’s
response. Training for the Proactive Dynamic Compression Mechanism, including the integration of
high-resolution frame requests, commences in Stage 2 of our multi-stage training strategy to ensure
manageable training memory overhead.

4 Experiment

4.1 Baseline and Evaluation Settings

We evaluate three categories of models in this study: Offline MLLMs, VLMs, and Online MLLMs.

For Offline MLLMs we selected representative models from different open-source MLLM families,
including LLaVA-OneVision [23], Qwen2-VL [49], MiniCPM-V [56], LLaVA-NeXT-Video [24],
and InternVL-V2 [7]. As offline MLLMs lack inherent proactive response capability, following
previous studies [27, 26, 51, 5], we employed two evaluation settings: (1) Response-in-Last: The
model processes the complete video and is tasked with generating textual reply with timestamps. (2)
Polling Strategy: The model is periodically queried at fixed time intervals. If the model indicates
readiness, it is then prompted to generate the answer. Specific details regarding the prompts and
hyperparameter used in these settings are provided in Appendix.

Regarding VLMs, following the approach of SDQES [13], we selected CLIP [36], LaViLa [64], and
EgoVLP [28] for evaluation. These models were evaluated by computing the similarity between each
frame and the query, using 0.5 as the threshold to determine responsiveness. Notably, as these models
cannot generate open-ended replies, their reply score is set to 0.
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Model Explicit Proactive Task Implicit Proactive Task Contextual Q Overall
OR AP TRU OL OSC EOL EOSC AR All OFR IFR NAR TU All ORC TRC All

Offline MLLMs Response-in-Last
LLaVA-OneVision 7.2 11.5 4.9 10.0 4.9 6.9 5.6 3.2 6.8 3.8 6.3 11.6 29.8 12.9 10.8 5.7 8.2 8.7
Qwen2-VL 11.7 8.1 14.9 10.5 1.7 8.9 10.6 6.0 9.0 10.2 4.4 26.5 49.5 22.6 13.3 9.4 11.3 13.3
MiniCPM-V 12.3 12.6 10.7 13.7 8.6 7.5 11.9 5.5 10.4 11.8 9.2 36.0 55.3 28.1 32.6 25.4 29.0 18.1
LLaVA-NeXT-Video 8.3 9.4 7.4 10.2 7.8 7.4 10.3 5.6 8.3 6.4 6.7 21.1 45.9 20.0 10.1 9.8 9.9 11.9
InternVL-V2 9.3 14.6 9.5 10.6 1.7 6.3 3.0 3.6 7.3 3.3 9.2 15.5 28.2 14.0 16.9 15.6 16.2 10.5
VLMs for Streaming Detection
CLIP 7.3 9.5 7.4 8.5 1.8 4.7 2.2 2.7 5.5 2.8 5.2 51.3 29.3 22.2 4.6 3.8 4.2 10.1
LaViLa 8.4 10.7 9.0 9.1 3.1 5.4 3.6 4.3 6.7 7.8 10.0 56.2 34.4 27.1 9.4 28.9 19.2 14.3
EgoVLP 10.5 11.0 8.7 8.5 5.5 5.6 5.3 4.4 7.4 6.2 10.7 58.4 48.3 30.9 8.0 25.3 16.6 15.5
Offline MLLMs Polling Strategy
LLaVA-OneVision 8.3 8.8 22.8 25.4 13.5 9.8 9.6 10.3 13.6 20.3 20.9 35.9 49.9 31.8 14.6 1.9 8.2 18.0
Qwen2-VL 13.7 13.5 15.4 29.5 8.0 15.4 16.6 10.9 15.4 17.8 19.8 56.4 63.1 39.3 13.0 7.7 10.4 21.3
MiniCPM-V 14.9 16.8 17.1 26.8 7.7 12.9 12.5 13.1 15.2 15.9 21.0 46.8 62.2 36.5 24.3 28.9 26.6 22.9
LLaVA-NeXT-Video 15.6 14.6 21.9 26.8 12.8 14.2 13.5 12.3 16.5 18.6 23.2 44.9 51.6 34.6 19.9 7.7 13.8 21.3
InternVL-V2 11.3 5.9 7.0 10.1 0.7 2.7 5.2 2.2 5.6 8.3 2.9 4.3 11.2 6.7 6.1 5.3 5.7 5.9
Online MLLMs
LIVE(threshold=0.8) 9.7 11.0 7.4 10.8 1.9 6.0 3.6 5.6 7.0 4.2 7.4 12.9 12.8 9.3 19.6 13.8 11.8 9.1
LIVE(threshold=0.9) 11.2 13.9 7.9 13.2 5.6 9.4 6.0 8.9 9.5 5.8 8.9 41.0 46.7 25.6 11.3 26.5 18.9 15.5
MMDuet 7.2 10.3 17.6 10.2 4.2 6.1 8.8 8.5 9.1 10.0 7.7 50.1 69.1 34.2 17.4 23.1 20.3 17.8
VideoLLM-EyeWO(Ours) 26.6 26.6 25.1 26.8 19.8 22.3 20.8 20.7 23.6 24.8 31.0 75.3 78.7 52.5 39.5 47.8 43.6 34.7

Table 2: Experimental results of various models evaluated on the ESTP-Bench. We present perfor-
mance across Explicit Proactive, Implicit Proactive, and Contextual Question task types, as well as
the Overall score, for Offline MLLMs (Response-in-Last and Polling Strategy), VLMs for streaming
detection, and Online MLLMs. Deep blue highlights the best overall performance, while blue indi-
cates the best performance within each model category and evaluation setting group.

For Online MLLMs, we selected VideoLLM-Online [5] and MMDuet [51], which provide open-
source weights and streaming inference code, for evaluation. For VideoLLM-Online, we experimented
with different thresholds to assess its performance variations.

4.2 Benchmarking in ESTP-Bench

Comparative Analysis of Baseline Models. Tab. 2 shows the performance of different models across
three proactive types and fourteen task types under various evaluation settings, the experimental
results consistently demonstrate that ESTP tasks pose significant challenges for all current types
of models. Analysis revealed variations across model categories, with certain models exhibiting
stronger capabilities within their respective groups (e.g., MiniCPM-V [56] and QwenVL-2 [49]
among offline MLLMs aligning with previous work [8], and temporal VLMs like LaViLa [64] and
EgoVLP [28] outperforming spatially-focused models like CLIP [36]). Furthermore, the evaluation
strategy significantly impacts performance. Specifically, offline MLLMs showed a notable disparity,
performing on average better under the Polling Strategy compared to the Response-in-Last strategy,
with improvements up to 5.4%. This highlights the effectiveness of ESTP-Bench in evaluating models
from a timeliness perspective and underscores the limitations in temporal grounding of existing
offline models.

Performance of VideoLLM-EyeWO Against Baselines. As presented in Tab. 2, our proposed
model achieved significant performance improvements across all proactive tasks. Compared to the
baseline videoLLM-Online [5], our model demonstrated an improvement of +19.2%. Furthermore, it
outperformed the best-performing model, MiniCPM-V [56](using the Polling strategy), by +11.8%.

4.3 In-Depth Analyses in ESTP-Bench

Challenges with Coherent and Contextual Questions: Fig. 5 illustrates the average performance of
different models across 14 tasks. (NAR) and (TU) exhibit significantly higher performance compared
to other tasks. Upon visualizing the proportion of valid answer intervals relative to the input video
duration for these two tasks, we observe that this proportion is substantially higher than for other tasks.
This is attributed to these annotations originating from the raw GoalStep [44] labels, which involve
segmenting continuous actions towards a consistent goal, thereby leading to a larger proportion of
valid answer interval within the video and consequently, higher Recall. Conversely, for the (TRC)
task, which also derives from the same original annotations and possesses a high proportion of
valid answer interval, both Recall and overall performance significantly decrease. This marked
performance drop underscores the significant challenge that proactive coherence and understanding
contextual information pose for existing models.
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Figure 5: Average performance
and Ground Truth interval pro-
portion across 14 tasks, illustrat-
ing challenges with coherent and
contextual questions.
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Difficulty in Responding Only When Necessary: Fig. 6 presents the relationship between recall
and precision for different models under various evaluation settings. We observe a prevalent negative
correlation between recall and precision among most models. For instance, MMDuet achieves
exceptionally high recall but at the expense of low precision. This trade-off indicates the struggle of
existing models to provide proactive yet precise responses.

Synchronization Efficiency Challenges: Fig. 7 illustrates the inherent performance-speed tradeoff
in ESTP tasks by plotting Action Per Second (APS) against Performance Score for various models.
Existing methods often lie along a clear tradeoff curve, where higher performance is typically
associated with lower APS, highlighting the difficulty in achieving both simultaneously. As seen for
offline MLLMs using the Polling strategy, achieving high performance while maintaining sufficient
speed for real-time synchronization remains challenging. Even approaches near the input frame rate
(e.g., LIVE at ∼2 FPS) may demonstrate suboptimal performance. This underscores the significant
challenges current models face in achieving both high task performance and effective synchronization
with the dynamic video stream.

4.4 Evalutation of VideoLLM-EyeWO

Evaluating Zero-Shot Capability in Online/Offline Tasks. Table 3 presents a performance
comparison of our model against the baseline on both online and offline tasks. We selected VideoLLM-
online [5] as our baseline, given that it shares the same base model (LLaMA3 [16] and SigLIP [60])
and data source (Ego4D) as our own mode. For the online task, we utilize OvO-Bench [26] as a
recognized benchmark. For the offline task, following [12], we evaluate our model on the multiple-
choice subset of the QAEGO4D-test benchmark [3]. The ‘Online’ setting involves posing questions
as soon as the relevant answer segment appears, whereas the ‘Offline’ setting involves questioning
after the entire video has been presented. The experimental results demonstrate the generalization
capability of our model across these distinct tasks.

Model
Online Task: OVO-Bench Offline Task

Real-Time Perception Backward Tracing QAEGO4DMC

OCR ACR ATR STU FPD OJR Avg. EPM ASI HLD Avg. Online Offline

VideoLLM-online 8.05 23.85 12.07 14.04 45.54 21.20 20.79 22.22 18.80 12.18 17.73 29.80 30.20

Ours (VideoLLM-EyeWO) 24.16 27.52 31.89 32.58 44.55 35.87 32.76 39.06 38.51 6.45 28.00 36.20 33.00

Table 3: Detailed Performance Evaluation on OVO-Bench [26] and QAEGO4D [3] Tasks.
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Evaluating Architecture Generaliz-
ability on Offline Tasks As presented
in Tab. 4, our model demonstrated com-
prehensive performance improvements
on five tasks related to traditional tempo-
ral summarization and forecasting prob-
lems. The performance gain reached up
to +2.8%, which indicates that our pro-
posed model architecture can effectively
generalize to other offline tasks.

Method COIN Benchmark
Step Task Next Proc Proc+

ClipBERT [22] 30.8 65.4 - - -
VideoLLM-online-7B-v1 [5] 59.8 92.1 44.7 47.9 52.9

VideoLLM-online-8B-v1+ [5] 63.1 92.6 49.0 49.7 53.6
VideoLLM-MOD [52] 63.4 92.7 49.8 49.8 53.3

Ours (LLaMa3 [16, 47]) 65.9 92.7 50.9 50.8 54.7
Ours (LLaMa3.1 [16, 47]) 66.0 93.3 51.5 51.1 55.5

Table 4: COIN [46] Benchmark Top-1 Accuracy
comparison across different methods.

5 Related Work

Streaming Video Understanding. Unlike traditional offline video understanding tasks [14, 66,
1, 50] which only allow for question answering after processing the entire video, Online Video
Understanding tasks aim to evaluate the ability to respond to questions that arise at any time,
based on past information and current observations from a sequential video stream input. Previous
work [61, 26, 27] has employed various question types presented during the video stream, such as
object or event perception, leveraging different spatiotemporal cues to comprehensively evaluate
streaming video understanding capabilities. However, for proactive tasks where questions often
require reasoning [65] beyond the current frame, existing methods often exhibit limited question
diversity and lack contextual continuity across queries. Furthermore, evaluation in previous work has
often overlooked efficiency and timeliness.

To specifically endow MLLMs [42] with proactive response capability, VideoLLM-Online [5] pro-
posed the LIVE training framework, which supervises the model’s output at each frame. Subsequent
work has focused on improving training efficiency [52], inference speed [33], and response capa-
bility [51]. However, these methods often generate under-responsive or over-extended answers and
struggle to adapt to continuous, multi-turn conversation.

Egocentric Video Understanding. Compared to traditional third-person video understanding,
egocentric video data poses unique challenges, such as the scarcity of large-scale annotated datasets
and the inherent narrow and often unstable viewpoint. However, recent work [17, 18, 9, 44] has
contributed massive egocentric video datasets and fundamental annotations, significantly benefiting
the community. Prior work has typically focused on classic egocentric video understanding tasks
such as activity recognition [25, 38], temporal grounding [55, 31, 41], and hand-object detection [2,
21], which are often limited by a closed vocabulary. Other efforts have focused on offline video
understanding tasks, such as QaEgo4D [3], EgoSchema [30], and MM-Ego [57]. While SDQES [13]
introduced a streaming detection benchmark for egocentric video, it primarily evaluates similarity-
based responsiveness and lacks the scope to assess the open-ended generative and conversational
capabilities required from Online MLLMs in proactive scenarios.

6 Conclusion

We definite an novel AI assistant’s task of proactive, synchronized question answering from ego-
streaming video, targeting the key properties of proactive coherence, just-in-time responsiveness, and
synchronized efficiency. Our contributions—the ESTP-Bench with its ESTP-F1 metric for evaluation,
and a novel technical pipeline incorporating a data engine, multi-stage training, and proactive dynamic
compression—enable our model to effectively tackle these properties. This approach outperforms
multiple baselines across diverse online and offline benchmarks.

Acknowledgement: This work is supported in part by the National Natural Science Foundation of
China under Grant No.62206174 and No.62576365.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide an accurate and faithful summary of the
paper’s contributions, with no overstatement or omission of key elements.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A detailed discussion of the limitations will be included in the supplementary
material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include thorough descriptions of our experimental setup, implementation,
and evaluation protocols.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We observe substantial performance gains, supported by comprehensive
analyses that validate our conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide resources details in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the dataset and benchmark we collected.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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In the Appendix, we provide additional information regarding,

• Ablation Study of VideoLLM-EyeWO in Sec. A

• ESTP-Bench: Dataset and Evaluation Details in Sec. B

• Model Input Example in Sec. C

• Training Implementation Detail in Sec. D

• ESTP-Bench Evaluation Details in Sec. E

• Limitation and Future Work in Sec. F

• Data Examples in Sec. G

• Qualitative Results in Sec. H

A Ablation Study of VideoLLM-EyeWO

Single Question Contextual Question

Method Performance ↑ KV Cache Size ↓ Performance ↑ KV Cache Size ↓
LIVE 14.9 9636.0 18.9 31199.5
+ ESTP-IT 22.0 7859.1 25.7 28236.4

Stage-0 24.9 7988.2 23.0 17567.6
with increased proactive dynamic compression mechanism

+ Stage-1 ask high frame 34.0 1182.8 38.7 3731.8
+ Stage-2 33.2 942.0 43.6 3242.8

Table 5: Ablation study results on ESTP bench

Tab. 5 details the results of our ablation study on the ESTP benchmark:

1. (+ESTP-IT) enhanced the LIVE baseline’s performance on both Single and Contextual Question
tasks, increasing it by +7.1 and +6.8 respectively, thereby demonstrating the effectiveness of
ESTP-IT.

2. (Stage-0) addressed the training conflicts stemming from simple binary supervision, enabling
performance improvements without requiring any manual threshold tuning, which demonstrates
the model’s acquisition of a basic ability to trigger responses.

3. With the increased proactive dynamic compression mechanism, the model’s KV cache consump-
tion was significantly reduced, requiring on average only about 0.11% of the baseline.

4. (+Stage-1) significantly boosted Single Question performance to 34.0 and Contextual Question
performance jumped to 38.7 by incorporating the mechanism for actively requesting high-
resolution frames for scrutiny alongside initial compression.

5. (+Stage-2) further improved contextual coherence and refined compression, enabling the
model to achieve a gain of +4.9 on Contextual tasks, reaching 43.6. Simultaneously, the more
accurate and efficient responses further reduced memory consumption to minimal levels.

B ESTP-Bench: Dataset and Evaluation

In this section, we first introduce the detailed description for each task within ESTP-Bench. Subse-
quently, we present the annotation tool and pipeline employed for these tasks. Finally, we provide a
detailed description of the ESTP-F1 metric.

B.1 Task Explanation

Explicit Proactive Tasks require detecting and responding to queries that directly reference visual
cues. This category includes eight distinct task types:

1. [OR] Object Recognition: Detect and identify specific objects.
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Figure 8: Interface of the annotation tool. This tool enables annotators to define valid answer
intervals on the video timeline, author questions, and input corresponding answers. For clarity,
multiple answers and their associated intervals for a single question are visually linked by a shared
color.

2. [AP] Attribute Perception: Recognize object attributes.
3. [TRU] Text-Rich Understanding: Interpret and explain text content.
4. [OL] Object Localization: Identify spatial relations between objects.
5. [OSC] Object State Change: Detect object state transitions.
6. [EOL] Ego Object Localization: Localize objects relative to the ego.
7. [EOSC] Ego Object State Change: Track object state changes from the ego’s view.
8. [AR] Action Recognition: Detect and classify specific actions.

Implicit Proactive Tasks require performing inference and scene understanding beyond direct
observation. Task types include:

1. [OFR] Object Function Reasoning: Identify functional objects and guide their use.
2. [IFR] Information Function Reasoning: Extract and provide information from source objects.
3. [NAR] Next Action Reasoning: Predict and recommend next user actions.
4. [TU] Task Understanding: Comprehend user goals and offer task guidance.

Contextual Proactive Tasks require maintaining dialogue history and visual coherence over time.
Task types include:

1. [ORC] Object Relative Context: Track an object’s attributes, position changes, and function
across question sequences.

2. [TRC] Task Relative Context: Monitor user task progress, action correctness, and provide
sequential guidance.

See Sec. G for data examples.

B.2 Annotation Tool and Pipeline

Annotation Tool. As shown in Fig. 8, our annotation tool [62] facilitates the labeling process:
annotators can adjust the start and end timestamps of valid answer intervals in the upper region, while
authoring questions in the bottom-left area and completing answers in the corresponding region on
the right. Notably, a single question can be associated with multiple answers and their corresponding
intervals, which are visually linked through a shared color for clarity.

Annotation Construction Pipeline. As a first step, we leverage LLMs [10] to convert raw annotations
into initial question-answer pairs. For Action Recognition (AR) tasks, we utilize Ego4D [17]
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basic Narration raw annotations, which comprise descriptions of action-related events and their
corresponding timestamps. For Next Action Reasoning (NAR), Task Understanding (TU), and Task
Relative Context (TRC) questions, we leverage Ego4D GoalStep [44] annotations, which provide a
task goal, multiple task steps, and their corresponding temporal intervals. For these aforementioned
tasks, we directly prompt LLMs for question generation. For all other task types, question generation
is performed through the data engine.

Subsequently, the data undergoes a human annotation phase. For Action Recognition (AR), Next
Action Reasoning (NAR), Task Understanding (TU), and Task Relative Context (TRC) tasks, given
their origin from existing dataset [44], annotators primarily focus on three aspects: (1) detecting ques-
tion ambiguity; (2) assessing the question-answer pair’s matching quality and correcting erroneous
wording; and (3) calibrating the answer interval timestamps. For all other task types, annotators are
additionally required to generate questions and complete answers, inspired by the initial QA pairs,
before executing the aforementioned refinement steps. Simultaneously, a double-check mechanism is
implemented, where a second annotator independently re-executes the aforementioned three steps for
verification.

B.3 Evaluation Metric (ESTP-F1)

Let G = {gk = (ok, [t
start
k , tend

k ], topt
k )}Mk=1 denote a set of M ground truth items, where ok is the

content, [tstart
k , tend

k ] is the temporal interval, and topt
k ∈ [tstart

k , tend
k ] is the optimal response timestamp.

Let P = {p̂l = (ôl, t̂l)}Nl=1 represent the set of N predictions, where each prediction p̂l consists of
the predicted content ôl and a prediction timestamp t̂l. Following [13], we also introduce temporal
tolerances: τant (set to 1 second) for allowed anticipation before tstart

k , and τlat (set to 2 seconds) for
allowed latency after tend

k .

A prediction p̂l is considered a valid match for a ground truth gk if its timestamp t̂l falls within the
interval [tstart

k − τant, t
end
k + τlat]. We define Pk = {p̂l ∈ P | p̂l is a valid match for gk} as the set of

all such valid matching predictions for gk.

For each prediction p̂l that is a valid match for gk, we compute a match quality score S(p̂l, gk) ∈
[0, 1] to comprehensively evaluate its quality. This score is the average of a answer accuracy score
and a timeliness score:

S(p̂l, gk) =
Scoreanswer(ôl, ok) + Scoretime(t̂l, gk)

10
. (8)

The Scoreanswer(ôl, ok) ∈ [1, 5] evaluates the semantic correctness of the predicted content ôl against
the ground truth content ok, typically assessed by a advanced Large Language Model [10].

The Scoretime(t̂l, gk) ∈ [0, 5] assesses the temporal accuracy of the prediction timestamp t̂l relative
to the optimal response timestamp topt

k . The definition of topt
k varies by task type:

• For tasks emphasizing immediate perception upon appearance (e.g., Object Recognition (OR),
Attribute Perception (AP), Text-Rich Understanding (TRU), Object Localization (OL), Object
Function Reasoning (OFR), Information Function Reasoning (IFR), and Object Relative Context
(ORC)), topt

k is set to tstart
k .

• For all other task types that may require more observation of event progression, topt
k is the

midpoint of the interval [tstart
k , tend

k ], allowing sufficient time for information processing before a
response.

The timeliness score is then calculated as:

Scoretime(t̂l, gk) = 5− 5×min

(
1,

|t̂l − topt
k |

scalek

)
, (9)

where scalek = max(1, (tend
k − tstart

k ) + τant + τlat) is a normalization factor representing the total
effective time window. This factor is used to prevent division by zero for point intervals (where
tstart
k = tend

k ).
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For each ground truth item gk, an aggregated score S(gk) ∈ [0, 1] is determined by averaging the
quality scores of its matching predictions:

S(gk) =

{
1

|Pk|
∑

p̂l∈Pk
S(p̂l, gk) if Pk ̸= ∅

0 if Pk = ∅
. (10)

This S(gk) provides a nuanced measure of performance for each ground truth item.

Finally, the ESTP-F1 score is calculated as:

ESTP-F1 =
2
∑M

k=1 S(gk)

N +M − 2
∑M

k=1 I(S(gk) ̸= 0) + 2
∑M

k=1 S(gk)
(11)

where I(·) is the indicator function. This metric offers a comprehensive evaluation of a model’s just-
in-time proactive capability by jointly considering content accuracy and temporal alignment through
the S(gk) scores. In contrast to classic detection tasks, which may generate redundant proposals
for the same region, streaming proactive tasks necessitate a single, well-considered judgment at
each timestamp. Therefore, rather than selecting the best among multiple redundant proposals
as a True Positive (TP), our evaluation metric calculates the average of all valid matches. This
approach comprehensively assesses each of the model’s actions, reflecting the unique temporal
nature of streaming environments.

B.4 Data Cleaning and Filtering

To ensure the high quality and suitability of the egocentric video data for the ESTP tasks, a compre-
hensive data cleaning and filtering pipeline is applied, involving the following key steps:

1. Initial quality control was performed in accordance with [28] to identify and remove corrupted,
incomplete, or visually ambiguous segments, ensuring the foundational integrity of the data.

2. Segments with a duration shorter than 250 seconds were filtered out to ensure sufficient
temporal context for learning proactive behaviors.

3. Segments where the narration annotation coverage fell below a threshold of 0.8 were discarded
to ensure robust linguistic supervision and data richness.

This multi-stage filtering process results in a refined dataset optimized for the challenges of streaming
proactive perception, ensuring both visual and linguistic fidelity.

B.5 Data Engine: ESTP-Gen

As shown in Fig. 9, for automatically generates diverse, multi-turn data, we propose ESTP-Gen,
a data engine that leverages VLMs [56, 49] and LLMs [10] to generate diverse proactive QA data
from large-scale ego video datasets like Ego4D [17]. We apply a multi-stage pipeline including
Caption Generation, Key Segment Extraction, and Multi-Level QA Generation. For simplification, in
the main paper, we consolidate the Caption Generation and Key Segment Extraction steps into the
one-to-one stage. For videos spanning several minutes, directly generating QA for all segments
proves challenging for entities that are persistently visible and static, as defining clear response
boundaries for such entities is often ambiguous. Instead, we solely generate relevant QA
from extracted key segments and complete answers by leveraging all available captions. This
approach simultaneously ensures clear response boundaries and answer completeness. The
specific details of each stage below:

Multi-Perspective Caption Generation:

• Narration: Origin narration [44, 17] provides basic descriptions of human actions and their
corresponding timestamps, serving as a foundational reference for our caption generation process.

• Event Caption: The original narration is typically structured as a simple subject-verb-object
phrase, merely including basic category information for the actor, action, and manipulated object.
It often lacks detailed information regarding object attributes, spatial-temporal location, state, or
actions beyond the basic level. To generate more detailed captions specifically for events, we first
follow the video clipping approach of EgoVLP [28] to obtain event-relevant video clips based
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counter.

[03:49] The garbage is dropped on the lab bench in front of you.

Implicit:  Object Function Reasoning
Question  : I want to clean up some things. Is 
there anything that can help me ?
Answer :
[04:50] You can clean up some things into the 
yellow bucket near the shelf.

Contextual QA : Object Relative
Question 1 : …..
[02:23] : ….
[03:49] : ….
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Figure 9: ESTP-Gen Data Engine is a multi-stage pipeline for automatically generating diverse, high-
quality egocentric proactive QA data, which includes: (a) Multi-Perspective Caption Generation,
creating Narration, Event, and Scene Captions to provide comprehensive foreground and background
context. (b) Key Segment Extraction, identifying key segments characterized by significant visual
changes and specific events. (c) QA Generation Pipeline, proceeding through three stages: One-to-
One QA for initial pairs, One-to-Many Expansion, and Many-to-Many.

on the origin narration timestamps. Then, using lexical analysis [19], we extract the actions and
interacted objects. Subsequently, we use an MLLM [56] to provide detailed descriptions of the
action and the interacted object.

• Scene Caption: The Event Captions primarily focus on foreground directly involved in human
interaction, potentially overlooking the broader background content within ego videos. Therefore,
a detailed description of the video’s background information is necessary to complement the Event
Captions. First, we perform video scene segmentation. Then, for each video segment, we prompt
an MLLM [56] to generate detailed descriptions of the background context. Specifically, we utilize
SigLIP [60] to extract features from each video frame and compute the change from the previous
frame using cosine similarity. Potential video scene boundaries are identified where the similarity
is significantly below the video’s average similarity. This segmentation method, based on visual
content changes, preserves the comprehensive scene content within ego videos, facilitating effective
description by the MLLM.

Key Segment Extraction: Avoiding questions about persistently visible visual and static content is a
key challenge for data generation of proactive task. We address this by employing two criteria for
key segment extraction aimed at identifying moments suitable for generating proactive QA: specific
egocentric actions and visual similarity change. The key insight is that moments in ego videos
characterized by significant visual changes and scene transitions are necessarily accompanied by
specific egocentric events of the actor (e.g., “turn around,” “walk,” “step into”). In conjunction with
visual similarity analysis, we extract visual segments exhibiting viewpoint changes to serve as the
basis for QA generation. As illustrated in the portion of Fig. 9, we extract key segments for QA
generation. These segments are identified by significant visual changes (e.g., “scene 1”) and specific
event (e.g., “You look around”)

• One-to-One QA: Using diverse prompting strategies, we guide LLMs to generate questions, visual
cues, and answers from captions. As illustrated in the portion of Fig. 9, the caption of discarding
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a package prompted the LLM [10] to generate a question concerning the “location of dropped
garbage”, while the yellow bucket prompted the LLM [10] to generate a question regarding the
“function of the item for helping clean”.

• One-to-Many Expansion: We refine timestamps by aligning QA pairs with captions that fully
contain the visual cues needed to answer, improving temporal coverage and QA consistency.
As shown in the portion of Fig. 9, utilizing the LLM’s Retrieval-Augmented Generation (RAG)
capabilities, segments with similar visual cues are identified from all remaining captions to complete
all related answers.

• Many-to-Many Contextual QA: Logically grouped questions from the same video are combined
via LLMs to form coherent multi-turn contextual QA sets. As illustrated in the portion of the Fig. 9,
the questions “location of dropped garbage” and “function of the item for helping clean” exhibit
logical relevance, and are therefore merged into a coherent multi-turn contextual QA set.

C Model Input Example

In this section, we utilize input examples to more clearly illustrate the concepts presented in Sec. 3 of
the main paper. We first present input examples for LIVE [5] (corresponding to Sec. 3.1 of the main
paper), followed by input examples for our multi-stage training strategy (corresponding to Sec. 3.2
of the main paper). Finally, we will demonstrate Compression Token Insertion and related training
details, further elucidating key aspects introduced in Sec. 3.3 of the main paper.

LIVE Input. An input example for the LIVE [5] model is provided below. Visual tokens [F] denote
the tokens per frame. The number of visual tokens per frame, |[F]|, is set to 10, comprising 1 CLS
token and 3× 3 average-pooled spatial tokens for enhanced visual understanding. Tokens marked in
purple indicate an output of aresponse, while green tokens correspond to an output of acontinue. Text
highlighted in red is subject to language model loss [59, 11, 48], whereas other textual elements
receive no supervision. Some chat template strings have been omitted for better visualization.

LIVE Example
[System Prompt]
Observation: [F] [F] . . . User: Can you tell me where the garbage are when I drop
them? Observation: [F][F]. . . [F][F]Assistant: The garbage is dropped to the next to
the notebook on the counter. Observation: [F][F]. . . [F][F]Assistant: The garbage is
dropped on the lab bench in front of you. Observation: [F] [F] . . . User: I want to clean
them up. Observation: [F][F]. . . [F][F]Assistant: You can throw them from the counter
and the lab bench into the yellow bucket near the shelf. Observation: [F] [F] . . .

Stage-1 Input. An input example for the Stage-1 training is provided below. The core distinction
from the LIVE [5] example is the transformation of the abrupt supervision signal into a progressive
one. Visually, as the purple color deepens, the weight of the supervision signal increases, indicating
that the supervision signal becomes stronger as it approaches the optimal response timestamp.

Stage-1 Example
[System Prompt]
Observation: [F] [F] . . . User: Can you tell me where the garbage are when I drop them?
Observation: [F][F]. . . [F]Assistant: The garbage is dropped to the next to the notebook
on the counter. Observation: [F][F]. . . [F][F]Assistant: The garbage is dropped on
the lab bench in front of you. Observation: [F] [F] . . . User: I want to clean them up.
Observation: [F][F]. . . [F][F][F]Assistant: You can throw them from the counter and the
lab bench into the yellow bucket near the shelf. Observation: [F] [F] . . .

Stage-2 Input. First, the set of uncertain timestamps Tuncertain (shown in Equ. 5) is automatically
identified by perceiving timesteps where the model is likely to be confused or uncertain. Specifically,
an initial training phase is conducted for one epoch using the Lask_high(t) loss, with Tuncertain initially
set equal to Tinterval. An illustrative example is provided below. Compared to Stage 1, the aresponse is
now replaced by aask_high, with the blue tokens indicating receiving this new supervision.
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[System Prompt]
Observation: [F] [F] . . . User: Can you tell me where the garbage are when I drop
them? Observation: [F][F]. . . [F][HF]Assistant: The garbage is dropped to the next to
the notebook on the counter. Observation: [F][F]. . . [F][F][HF]Assistant: The garbage is
dropped on the lab bench in front of you. Observation: [F] [F] . . . User: I want to clean
them up. Observation: [F][F]. . . [F][F][F][HF]Assistant: You can throw them from the
counter and the lab bench into the yellow bucket near the shelf. Observation: [F] [F] . . .

Subsequently, by comparing the model’s predicted sequence against the ground truth sequence, we
identify timestamps of erroneous aask_high predictions (terror). For each such error timestamp terror, we
locate the nearest preceding timestamp tvisual_change_prev characterized by a significant visual feature
change, measured using visual [60] similarity. The set Terror is then defined as the union of intervals
[tvisual_change_prev, terror], where for each response turn, terror corresponds to the erroneous prediction
with the highest logit if multiple errors are present within that turn. An example is provided below,
where red tokens indicate timesteps where the ground truth was acontinue but the model erroneously
predicted aask_high.

[System Prompt]
Observation: [F] [F] . . . User: Can you tell me where the garbage are when I drop them?
Observation: [F][F]. . . [F][F]. . . [F][HF]Assistant: The garbage is dropped to the next to
the notebook on the counter. Observation: [F][F]. . . [F][F]. . . [F][F][HF]Assistant: The
garbage is dropped on the lab bench in front of you. Observation: [F] [F] . . . User: I
want to clean them up. Observation: [F][F]. . . [F][F]. . . [F][F][F][HF]Assistant: You can
throw them from the counter and the lab bench into the yellow bucket near the shelf.
Observation: [F] [F] . . .

Tuncertain is then constructed by merging Terror with the Ground Truth relevant regions Tinterval. This
allows the model to learn from mistakes and focus training on challenging moments, encouraging
it to utilize scrutiny before making correct decisions in these uncertain scenarios. An illustrative
example is provided below.

Stage-2 Example
[System Prompt]
Observation: [F] [F] . . . User: Can you tell me where the garbage are
when I drop them? Observation: [F][F]. . . [F][F][F][HF]. . . [F][HF]Assistant: The
garbage is dropped to the next to the notebook on the counter. Observation:
[F][F]. . . [F][F][F][F][HF]. . . [F][F][HF]Assistant: The garbage is dropped on the lab bench
in front of you. Observation: [F] [F] . . . User: I want to clean them up. Observation:
[F][F]. . . [F][F]. . . [F][F][F][HF]Assistant: You can throw them from the counter and the
lab bench into the yellow bucket near the shelf. Observation: [F] [F] . . .

Proactive Dynamic Compression Mechanism Example. An example illustrating the insertion of
compression tokens is provided below. Compared to the Stage-2 example, ⟨ct⟩ tokens are inserted
after segments of input, specifically following multiple low-resolution frames, single high-resolution
frames, and text replies.

Compression Example
[System Prompt]
Observation: [F] [F] . . . ⟨ct⟩ User: Can you tell me where the garbage are when I
drop them? Observation: [F][F]. . . [F][F][F]⟨ct⟩ [HF]⟨ct⟩ . . . [F]⟨ct⟩ [HF]⟨ct⟩ Assistant:
The garbage is dropped to the next to the notebook on the counter. ⟨ct⟩ Observation:
[F][F]. . . [F][F][F][F]⟨ct⟩ [HF]⟨ct⟩ . . . [F][F]⟨ct⟩ [HF]⟨ct⟩ Assistant: The garbage is dropped
on the lab bench in front of you. ⟨ct⟩ Observation: [F] [F] . . . ⟨ct⟩ User: I want to clean
them up. Observation: [F][F]. . . [F][F]⟨ct⟩ [HF]⟨ct⟩ . . . [F][F]⟨ct⟩ [F][HF]⟨ct⟩ Assistant:
You can throw them from the counter and the lab bench into the yellow bucket near the
shelf. ⟨ct⟩ Observation: [F] [F] . . .
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Stage-1 Stage-2 Stage-3
Data Dataset Ego4D:

Narration Stream +
GoalStep Stream
ESTP-IT
Single-Turn +
Multi-Turn

ESTP-IT
Single-Turn +
Multi-Turn

ESTP-IT
Multi-Turn

#Samples 113K + 21K
60K + 20K

60K + 20K 20K

Model Base LLM LLaMA3 LLaMA3 LLaMA3
Vision Encoder(s) SigLIP SigLIP SigLIP
Vision Token per Frame 1+3x3 Low Res: 1+3x3

High Res: 1+7x7
Low Res: 1+3x3
High Res: 1+7x7

Connector MLP MLP MLP
Trainable Connector(full)

LLM(LoRA
r=128, scale=256)

Connector(full)
LLM(LoRA
r=128, scale=256)

Connector(full)
LLM(LoRA
r=128, scale=256)

Initialization Connector N/A Stage-1 Connector Stage-2 Connector
LLM LLaMA3 + Stage-1 LoRA + Stage-2 LoRA

Training Batch Size per Device 1 1 1
Gradient Accumulation 8 8 8
Learning Rate 2e-4 1e-4 5e-5
Warm-up Ratio 0.05 0.05 0.05
LR Scheduler Cosine Cosine Cosine
Optimizer Adamw Adamw Adamw
Epochs 2 1 1
Precision bf16 fp16 bf16 fp16 bf16 fp16

Table 6: Multi-Stage Training Plan in ESTP

During training, inspired by [43], the LLM is trained to process response turns sequentially.The initial
sequence provided to the LLM is as follows:

[System Prompt]
Observation: [F] [F] . . . ⟨ct⟩

Past visual tokens are compressed into a ⟨ct⟩. The System Prompt, containing essential system-level
instructions [53], remains uncompressed. The subsequent sequence processed by the LLM is as
follows, where gray portions indicate tokens stored in the KV Cache:

[System Prompt] ⟨ct⟩
User: Can you tell me where the garbage are when I drop them? Observation:
[F][F]. . . [F][F][F]⟨ct⟩ [HF]⟨ct⟩ . . . [F]⟨ct⟩ [HF]⟨ct⟩ Assistant: The garbage is dropped
to the next to the notebook on the counter. ⟨ct⟩

Following this, solely the user’s query content and the ⟨ct⟩ are maintained in the KV cache.

D Training Implementation Detail

In this section, we provide detailed implementation configurations of our training methodology.

ESTP-Bench. Our training methodology employs a three-stage strategy to progressively endow the
VideoLLM-EyeWO model with advanced proactive capabilities. Tab. 6 summarizes key details of
each stage’s specific configuration and learning objectives, while Tab. 5 presents the corresponding
ablation results.

COIN-Benchmark. Tab. 7 presents the training plan on the COIN [46] dataset. For a fair comparison
with VideoLLM-Online [5], we utilized the same base model (LlaMa3 [16] and SigLIP [60]) and
adopted identical training hyperparameters.

E ESTP-Bench Evaluation Details

In this section, we first present the parameter scales and hyperparameters for various models. Subse-
quently, we illustrate the corresponding prompts used in the evaluation.
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Data Dataset COIN

Model Base LLM LLaMA3
Vision Encoder(s) SigLIP
Vision Token per Frame Low Res: 1+3x3

High Res: 1+7x7
Connector MLP
Trainable Connector(full)

LLM(LoRA
r=128, scale=256)

Initialization Connector N/A
LLM LLaMA3

Training Batch Size per Device 1
Gradient Accumulation 8
Learning Rate 1.5e-4
Warm-up Ratio 0.05
LR Scheduler Cosine
Optimizer Adamw
Epochs 5
Precision bf16 fp16

Table 7: Training Plan in COIN [46]

Model Params Frame Query Frequency
Offline MLLMs Response-in-Last
LLaVA-OneVision 7B 32 Ask per Question
Qwen2-VL 8B 0.2-1 fps Ask per Question
MiniCPM-V 8B 64 Ask per Question
LLaVA-NeXT-Video 7B 32 Ask per Question
InternVL-V2 8B 32 Ask per Question

VLMs for Streaming Detection
CLIP Base 1 fps 1 Hz
LaViLa Base 1 fps 1 Hz
EgoVLP Base 1 fps 1 Hz

Offline MLLMs Polling Strategy
LLaVA-OneVision 7B 32 0.175 Hz
Qwen2-VL 8B 0.2-1 fps 0.175 Hz
MiniCPM-V 8B 64 0.175 Hz
LLaVA-NeXT-Video 7B 32 0.175 Hz
InternVL-V2 8B 32 0.175 Hz

Online MLLMs
LIVE(threshold=0.8) 8B 2 fps 2 Hz
LIVE(threshold=0.9) 8B 2 fps 2 Hz
MMDuet 8B 2 fps 2 Hz
VideoLLM-EyeWO(Ours) 8B 2 fps 2 Hz

Table 8: Parameter Scales and Hyperparameters for Various Models

E.1 Various MLLMs Hyperparameter

For Offline MLLMs, considering Synchronized Efficiency, we employed models around the 7B/8B
scale. For the Response-in-Last strategy, a single query was issued after processing the complete
video segment. Regarding the Polling strategy, the querying frequency was set to 0.175 queries per
second. This frequency was chosen to match the model’s response efficiency (Action Per Second), as
illustrated in Fig. 7. Given that our videos are often significantly longer than the typical input frame
capacity of these MLLMs, we followed the open-source code from [27], utilizing the corresponding
sampling frequencies or input frame counts for different models.
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For VLMs, we adopted model parameters and input sampling frequencies consistent with [13]. Given
their inherent lack of text generation capabilities and consequently, their relatively low computational
cost, the query frequency was set to match the input sampling frequency.

For Online MLLMs, we utilized model parameters, input frequencies, and query frequencies as
reported in [5, 51].

E.2 Evalutation Prompt

Below, we present the prompt used for the Offline MLLMs Response-in-Last strategy. Inspired
by [37], we guided the model within the system prompt to output all answers corresponding to a
given question, along with their respective frame indices. These frame indices are then converted into
corresponding timestamps via a defined sampling relationship. Contextual information, encompassing
both timestamps and content, is incorporated into the prompt following the approach of [27].

Below, we present the prompt used for the Offline MLLMs Polling Strategy, following the approach
of [27]. The sole distinction lies in that proactive tasks in [27] solely require the model to judge if it
can answer a question at the current moment, outputting only ‘yes’ or ‘no’. In contrast, our approach
additionally requires the model to generate a textual reply. Therefore, at timesteps where the model
indicates readiness (by outputting ’yes’), we execute an additional query, prompting the model to
generate the answer.

Prompt Used for Response-in-Last
You are an advanced video AI assistant. Given a video and a question, carefully
analyze each frame of the video, identify all relevant moments that help answer
the question, and provide the corresponding frame numbers along with the answer.
The format should be: ‘[frame idx] answer’.
For example, [6] The object is a cup.
[60] The object is a cup.
[100] The object is a yellow cup.

Here are the contextual information related to the video. Please answer the questions
based on the contextual information:
At timestamp {}, the following question occurred: {}
At timestamp {}, the following answer occurred: {}

Here is the question. Answer it and don’t confuse it with the previous conversation
Question: {}
The answer is:

Prompt Used for Polling Strategy
You are an advanced video question-answering AI assistant. You have been
provided with video and a question related to the video. Your task is to
carefully analyze the video and provide the answer to the question. You need
to carefully confirm whether the video content meet the conditions of the
question, and then output the correct content.

Here are the contextual information related to the video. Please answer the questions
based on the contextual information:
At timestamp {}, the following question occurred: {}
At timestamp {}, the following answer occurred: {}

Here is the question. Answer it and don’t confuse it with the previous conversation
Question: Is it the right time to answer the question “{}”? You need to answer yes or no. /
Please answer the question: “{}”
The answer is:
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F Limitation and Future Work

To build a truly intelligent agent akin to Jarvis, it is essential to move beyond passive perception
and incorporate active interaction with the environment. In this work, we focus on a constrained
setting where the agent operates solely on pre-recorded videos. The objective is to train a model that
can perceive the visual world and respond promptly within a fixed observation window. While this
setting enables us to study perceptual grounding and response capabilities in a controlled manner,
it inevitably limits the agent’s ability to engage in real-time decision making, action planning, or
closed-loop interaction.

This limitation highlights an important future direction: extending perceptual agents into embodied
settings where they can interact with the environment through physical actions. For instance, integrat-
ing vision-language models into real-world robots-such as home assistants, warehouse manipulators,
or autonomous drones—would require the ability to reason about action consequences, update beliefs
based on new observations, and adapt behavior on the fly. Existing platforms like Habitat [32, 40, 45]
for embodied AI or Meta’s HomeAssist offer promising testbeds for such developments.

Therefore, future work should explore how to bridge the gap between static visual perception and
dynamic agent-environment interaction. This includes developing methods for real-time perception-
action loops, task-aware decision making, and cross-modal alignment under continual feedback.
Strengthening interaction with the environment is a crucial step toward building general-purpose,
autonomous agents that go beyond observation to perform useful actions in the real world.
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G Data Examples

Task Type: Object Recognition

Question:  What is the object on the desk near the tablet?

The object on the desk near the tablet is a white cup.

A white cup.

Task Type: Attribution Perception

Question:  What color is the frisbee held by the person in the frame?

blue

blue

Figure 10: Data examples for Object Recognition, Attribution Perception tasks.
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Task Type: Text-Rich Understanding

Question:  Can you remind me of the specific brand name written on the signboard above the 

store entrance?

Task Type: Object Location

Question: Where's the blue bike's position in the room?

“tamimi markets express”

“tamimi markets express” “Welcome to Tamimi Express ”

The blue bike is positioned elevated on a 

repair stand in the room.

The blue bike is positioned elevated on a 

repair stand in the room.

Figure 11: Data examples for Text-Rich Understanding, Object Location tasks.
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Task Type: Ego-Object Localization

Question:  How far the copper-colored pot is from me?
The copper-colored pot is on the 

sink's edge, within arm's reach.

The copper-colored pot is located to your 

right on the countertop, within arm's reach

Task Type: Object State Change 

Question:  Can you remind me when the state of the fridge changes?

The fridge has been opened.

The fridge has been closed.

The fridge has been opened. The fridge has been closed.

Figure 12: Data examples for Object State Change, Ego-Object Localization tasks.
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Task Type: Ego-Object State Change 

Question:  When does the tree change its position relative to me?

It moves closer to you.
It moves closer to you and finally 

disappear on your left side.

Task Type: Action Recognition

Question:  I want to know when I pick up items from the shelf in the market. 

Could you let me know?

You pick up the box 

from the shelf.

You pick up the 

packet from the shelf.

You pick up the milk 

from the shelf.

Figure 13: Data examples for Ego-Object State Change, Action Recognition tasks.
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Task Type: Information Function

Question:  What time is it now?

According to the time displayed on 

the phone, it's 16:56.

Task Type: Object Function

Question:  What could help if I want to load a lot of cargo to a far position?

You could use the tractor to help you 

with the task.

You could use the tractor 

to help you with the task.

Figure 14: Data examples for Object Function, Information Function tasks.
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Task Type:  Next Action Reasoning

Question:  What should I do next to continue dicing ingredients after completing the earlier 

tasks: washing utensils and slicing meat? Please provide clear instructions

First, wash the cucumber thoroughly under running 

water to ensure it clean and ready for preparation.
Next, slice the cucumber into even pieces. This will 

make it easier to dice them into smaller, uniform cubes.

Task Type: Task Understanding

Question:  Please explain how to achieve my goal of seasoning vegetables, starting from the 

very beginning and detailing each step.

To begin, pour lime juice over the vegetables. This will 

add a tangy flavor and help the seasoning adhere better.

Next, add your chosen seasoning to the vegetables. This could 

include salt, pepper, herbs, or any other spices you prefer.

Finally, mix the seasoning thoroughly into the vegetables to 

ensure an even distribution of flavors.

Figure 15: Data examples for Task Understanding, Next Action Reasoning tasks.
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Task Type: Object Relative Context

Question:  [270s] Could you remind me when the dog is pooing?

The dog is pooing.

Question:  [332s] I want to clean it up. Give me some advice.

You can use the green plastic bag in 

your right hand to collect them.

You can drop it into the dark bin 

on the left of you..

You can drop it into the dark 

bin on the left of you.

Figure 16: Data examples for Object Relative Context task.
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Task Type: Object Relative Context

Question:  [98.1s] Can you analyze my current approach? Currently, you’re moving the 

mushrooms around in the pan, which 

is great for ensuring even cooking. 

I noticed you’re adjusting the heat this is a good 

practice to maintain control over the cooking process.

Question:  [150s] What are the resources I'll need for the next task?

You’ve just added paprika spice, 

which will enhance the flavor profile.

Now that you’ve added chili flakes, 

the dish is gaining a nice kick of heat

For the next task, you’ll need a spatula or spoon to continue moving the mushrooms, a heat source to 

maintain the cooking temperature, and possibly a timer to keep track of the cooking duration.

Question:  [162.4s] What are the resources I'll need for the next task?

Your current goal is to cook the mushrooms thoroughly 

while ensuring the spices (oregano, paprika, and chili 

flakes) are evenly distributed.

You’re now checking the recipe from the pack this is a 

good step to ensure you’re on track.

Figure 17: Data examples for Task Relative Context task.
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H Qualitative Results

Question:  Where is the fire extinguisher located relative to the microwave?

silence

[1187.5s]The fire extinguisher is 

mounted on the wall to the left

of the microwave.

VideoLLM-Online / 
MiniCPM-V

Ours

Question:  Can you outline the subsequent steps for making a rice sushi roll after 

completing the previous steps: setting a nori sheet on the rolling mat, spreading rice on the 

nori sheet, and transferring rice from a rice cooker into the bowl with a spoon? Provide 

detailed guidance.
[783.0s] First, season the rice in the bowl 

with a mixture of rice vinegar, sugar, and 

salt to enhance its flavor.
Ours

[815.0s] The next step is to spread the rice 

evenly on the nori sheet. This ensures a 

consistent layer for rolling.
Ours

[787.0s-814s] Put / Add the 
rice on the nori sheet.

MMDuet

[823.0s-830s] Place rice on the 
nori sheet. 

MMDuet

[839.0s] After setting a nori sheet on the rolling mat, spreading rice on the nori sheet, and transferring rice from a rice cooker 

into the bowl with a spoon, the subsequent steps for making a rice sushi roll are as follows:\n\n1. **Prepare Ingredients**: 

Gather all necessary ingredients such as fish (e.g., salmon), vegetables (e.g., cucumber, avocado), and any desired fillings like 

mayonnaise or wasabi.\n\n2. **Trim Nori Sheet**: Lightly moisten the edge of the nori sheet to prevent it from sticking 

together during assembly. Use a wet brush or your fingers to dampen the edges.\n\n3. **Lay Out Ingredients**: Place the 

prepared ingredients on the center of the rice-covered nori sheet, leaving about an inch of empty space at one end. The 

arrangement should be neat and even.\n\n4. **Roll the Sushi**: Starting from the end closest to you, use the mat to gently 

press down on the ingredients while simultaneously rolling them up towards yourself. Apply firm but gentle pressure to ensure

the ingredients stay in place without crushing them.\n\n5. **Shape the Roll**: Once the sushi is rolled, unroll the mat and 

hold the sushi firmly with both hands. Gently press the ends of the roll inward to create a cylindrical shape.\n\n6. **Slice the

Sushi**: Using a sharp knife, carefully slice the sushi roll into individual pieces. For perfect slices, dip the tip of the knife in 

water between each cut.\n\n7. **Serve**: Arrange the sliced sushi rolls on a plate or platter, garnish if desired, and serve 

immediately.\n\nBy following these detailed steps, you can successfully make a delicious rice sushi roll after completing the 

previous steps mentioned.

[840.0s]Once the rice is spread, you can 

begin shaping the nori sheet into a roll.

OursMiniCPM-V

Figure 18: Qualitative Comparison with Baseline.
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Question:  What can help in case of fire?

[2050.5s] A fire extinguisher is 
mounted on the wall near the 
kitchen entrance

[2045s] The object is a fire 
extinguisher.

[2063.5s] A fire extinguisher is 
mounted on the wall near the 
kitchen entrance

[1922.5s] cut the fire hose.

Ours

MiniCPM-V

[1903.5s] A fire extinguisher is 
mounted on the wall near the 

kitchen entrance, slightly to the 
right of the central workspace.

Ours

Ours

[1903.5s] The person puts the pot 
on the stove and turns on the 

stove.

MMDuet MMDuet

[1975.5s] put the fire 
extinguisher in the kitchen.

MMDuet

[2054.5s,2055.0s,2056.0s] put 
the fire extinguisher in the 
kitchen.

MMDuet

[2057.0s,2057.5s,2058.0s,2059
.0s] put the bag into the 
refrigerator.

MMDuet

Figure 19: Qualitative Comparison with Baseline.
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