
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Stochastic Optimization under Hidden Convexity

Ilyas Fatkhullin∗ ILYAS.FATKHULLIN@AI.ETHZ.CH

Niao He∗ NIAO.HE@INF.ETHZ.CH

Yifan Hu∗† YIFAN.HU@EPFL.CH
∗ETH Zurich, †EPFL, Switzerland.

Abstract
In this work, we consider stochastic non-convex constrained optimization problems under hidden
convexity, i.e., those that admit a convex reformulation via a black box (non-linear, but invertible)
map c : X → U . A number of non-convex problems ranging from optimal control, revenue and
inventory management, to convex reinforcement learning all admit such a hidden convex structure.
Unfortunately, in the majority of considered applications, the map c(·) is unavailable and therefore,
the reduction to solving a convex optimization is not possible. On the other hand, the (stochastic)
gradients with respect to the original variable x ∈ X are often easy to obtain. Motivated by these
observations, we consider the projected stochastic (sub-) gradient methods under hidden convexity
and provide the first sample complexity guarantees for global convergence in smooth and non-
smooth settings. Additionally, we improve our results to the last iterate function value convergence
in the smooth setting using the momentum variant of projected stochastic gradient descent.
Keywords: hidden convexity, stochastic optimization, global convergence

1. Introduction

We study stochastic constrained non-convex optimization

min
x∈X

F (x) := Eξ∼D [f(x, ξ)] , (1)

where X is a closed convex subset of Rd, ξ is a random variable satisfying an unknown distribution
D, and F (·) is (possibly) non-convex in x. Our central structural assumption about (1) is that it
admits a convex reformulation of the form

min
u∈U

H(u) := F (c−1(u)), (2)

where H(·) is a convex function defined on a closed convex set U ⊂ Rd, and c : X → U is
an invertible map (with its inverse denoted by c−1(·)). Such problems frequently arise in vari-
ous applications including constrained nonlinear least-squares [22], policy optimization in convex
reinforcement learning and optimal control [66, 75], generative models [43], supply chain and rev-
enue management [10, 29]. Despite the existence of the convex reformulation, the transformation
function c(·) in these applications is usually hard to compute or even unknown. Thus one cannot
readily solve the convex reformulation. In this work, we show that the simple projected stochastic
(sub-)gradient method on the original non-convex problem (1) converges globally, and demonstrate
the sample complexity. If not surprisingly, the method is very classical and it does not require
approximating some global converging algorithms on the convex reformulation [11].
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Hidden convex optimization. In many problems of practical interest, global convergence is de-
sirable despite the non-convexity of the optimization landscape. To achieve that, some works relax
convexity/strong convexity of F (·) in a way to ensure that global convergence proofs of gradi-
ent methods still work without serious modifications, e.g. assuming Polyak-Łojasiewicz (PŁ) type
conditions [40, 41, 60]. However, such an approach dictated from the analysis leads to serious
challenges when it comes to verifying these assumptions for specific applications. In this work, we
focus on a different structural property, known as hidden convexity, i.e., the existence of a convex
reformulation (2). Hidden convexity is a very natural condition, since compositional optimization
problems are ubiquitous in modern applications, see Appendix D for various motivating examples.
Although hidden convexity has been identified in certain applications, the analysis of gradient meth-
ods under this condition is mostly done on a case by case basis for specific applications and often
under strong additional assumptions [4, 10, 11, 76]. We refer the interested reader to Appendix B,
where we review the most closely related work on hidden convex optimization. In this work, we
formally introduce stochastic optimization under hidden convexity and provide a systematic study
of projected stochastic (sub)-gradient methods for hidden convex problems. Our main contributions
are summarized as follows.

Contributions:

1. We identify the key properties of hidden convex optimization and demonstrate how these
conditions can be used to derive convergence of gradient methods.

2. In the general non-differentiable case, we analyze convergence of the stochastic sub-gradient
method under hidden convexity. To our knowledge, it is the first work that address the non-
differentiable setting.

3. Next, we specialize our results to the differentiable smooth setting, and analyze the sample
complexity of Projected stochastic gradient descent (P-SGD). Importantly, our analysis does
not require large batches of samples at every iteration nor bounded gradients assumptions.

4. Finally, we analyze the momentum variant of P-SGD for solving (1), which allows us to show
global convergence measured by the function value at the last iterate.

In terms of sample complexity, we obtain Õ(ε−3) sample complexity guarantee in hidden con-
vex case and further improve the result to Õ(ε−1) for hidden strongly convex problems.

2. Hidden Convex Problem Class

The fact that the problem (1) admits a convex reformulation (2) means that

min
x∈X

F (x) := H(c(x)). (3)

We call the above problem hidden convex if its components satisfy the following conditions.

C.1. The domain U = c(X ) is convex, the function H : U → R is convex and (2) admits a solution
u∗ ∈ U .

C.2. The map c : X → U is invertible. There exists µc > 0 such that for all x, y ∈ X it holds

∥c(x)− c(y)∥ ≥ µc ∥x− y∥ . (4)
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To analyze convergence of SM, we also make the following assumptions.

A.1. F (·) is ℓ-weakly convex, and defined on a closed, convex set X .

A.2. We have access to a stochastic sub-gradient oracle of F (·) at any x ∈ X , which outputs a
random vector g(x, ξ) such that E [g(x, ξ)] ∈ ∂F (x), where ∂F (x) is the sub-differential set
of F (·) at x. Moreover, there exists GF > 0

E
[
∥g(x, ξ)∥2

]
≤ G2

F for any x ∈ X .

Above assumptions are standard and appear frequently in non-smooth optimization [17, 77]. In
particular, in the absence of smoothness, the second assumption of bounded second moment of the
(stochastic) sub-gradients is classic assumption even in convex case [53, 56].

Remark 1 It is known that ℓ-WC is a much weaker condition than smoothness [15, 56]. In the
context of our hidden convexity (C.1. and C.2.), the following result shows that weak convexity is
not restrictive and, in fact, should not be treated as an additional assumption, since it comes for
free from the Lipschitz continuity of H(·) and the smoothness of the transformation function c(·) ,
which is often available in our applications.

Proposition 2 (Proposition 2.2(c) in [77]) Let U ⊆ Rd be a closed convex set, and H : U → R be
a convex and GH -Lipschitz continuous function defined on U , i.e., |H(u) −H(v)| ≤ GH ∥u− v∥
for all u, v ∈ U . Let c : X → U be Lc-smooth, i.e, ∥c(x)− c(y)− ⟨∇c(y), x− y⟩∥ ≤ Lc

2 ∥x− y∥2
for all x, y ∈ X . Then the composition F (x) = H(c(x)) is ℓ-weakly convex with ℓ := GHLc.

In differentiable, smooth case, however, the assumption A.2 can be limiting. For instance, when
the set X is unbounded, it fails to hold for convex quadratics. For this reason, in Sections 4 and 5, we
will present a tighter analysis replacing above assumptions with smoothness and bounded variance.

A.1’. The function F : X → R is differentiable on a closed, convex set X and its gradient ∇F (x)
is L-Lipschitz continuous.

A.2’. We have access to an unbiased stochastic gradient oracle with bounded variance σ2 > 0, i.e.
for any x ∈ X : E [∇f(x, ξ)] = ∇F (x), and

E
[
∥∇f(x, ξ)−∇F (x)∥2

]
≤ σ2,

where expectations are with respect to the random variable ξ ∼ D.

3. Stochastic Subgradient Method

In this section, we show the global convergence of the (projected) stochastic subgradient method
(SM) using the key Proposition 9. Starting from x0 ∈ X , SM generates a sequence xt via

xt+1 = ΠX (x
t − ηg(xt, ξt)). (5)
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Let x∗ ∈ X ∗, and Φ := F+δX . We define the Lyapunov function: Λt := E
[
Φ1/ρ(x

t)− F (x∗)
]
,

where Φ1/ρ is the Moreau envelope. Notice that Λt ≥ 0 for any t ≥ 0 and Λt = 0 iff xt ∈ X ∗

since Φ1/ρ(x
∗) = Φ(x∗) = F (x∗) and Φ1/ρ(x) ≥ Φ(x∗) for any x ∈ X . We first demonstrate the

convergence rate of the hidden convex setting.

Theorem 3 (Convex H(·)) Let C.1, C.2., A.1 and A.4 hold, and the set U be bounded by a
diameter DU . Fix ε > 0, and set the step-size in (5) as η = 1

2ℓ ·min
{
1, µ2

cε
2

24D2
UG2

F

}
. Then for

ρ = 2l, we have ΛT ≤ ε after T = Õ
(
ℓD2

U
µ2
c

1
ε +

ℓD4
UG2

F
µ4
c

1
ε3

)
iterations.

We remark that in the absence of smoothness of F (·), the guarantee on Λt might not necessarily
translate to the function value. However, with the following corollary we show that the output of
(5), xT , is in fact close to an ε-approximate global solution x̂T = proxηΦ(x

T ).

Corollary 4 Under the setting of Theorem 3, the method (5) finds a point xT ∈ X , which is close
to x̂T , an ε-global solution of (1). More specifically, it holds that E

[∥∥x̂T − xT
∥∥2] ≤ ε/(4ℓ) and

E
[
F (x̂T )− F (x∗)

]
≤ ε after T = Õ(ε−3).

Proof The result follows directly from the definition of ΛT and Theorem 3.

4. Projected SGD

In this section, we consider the smooth setting, i.e., assumptions A.1’ and A.2’ holds. Then the SM
becomes Projected SGD.

xt+1 = ΠX (x
t − η∇f(xt, ξt)). (6)

Theorem 5 (Convex H(·)) Let C.1, C.2, A.1’ and A.2’ hold, and the set U be bounded by
a diameter DU . Then for any η ≤ 2

9L , and α ≤ 2ηL, we have for all T ≥ 0

ΛT ≤ (1− α)TΛ0 +
3D2

Uα

2µ2
cη

+
4Lη2σ2

α
.

Fix ε > 0, and set the step-size in (6) as η = 2
9L · min

{
1, µ2

cε
2

12D2
Uσ2

}
. Then ΛT ≤ ε after

T = Õ
(
LD2

U
µ2
c

1
ε +

LD4
Uσ2

µ4
c

1
ε3

)
iterations.

5. Projected SGD with Momentum

In this section, we study Projected SGD with Polyak’s (heavy-ball) momentum [58]. Comparing to
earlier sections, we directly derive its global convergence to an ε-global solution. The analysis in
this section uses the same properties established in Appendix E.3, but the Lyapunov function used
here is completely different from Λt used in Sections 3 and 4. The Projected SGD with Polyak’s
(heavy-ball) momentum admits the following updates.

4



STOCHASTIC OPTIMIZATION UNDER HIDDEN CONVEXITY

xt+1 = ΠX (x
t − η gt), gt+1 = (1− β) gt + β∇f(xt+1, ξt+1). (7)

Let x∗ ∈ X ∗, for any xt ∈ X , we define the Lyapunov function:

ΛHB
t :=

[
F (xt)− F (x∗) +

η

β

∥∥gt −∇F (xt)
∥∥2 ]. (8)

We show that both E
[
F (xt)− F (x∗)

]
and E

[
1
L

∥∥gt −∇F (xt)
∥∥2] are diminishing over iterations

of the scheme (7). Combining Lemma 19 with Lemma 20, we obtain at the following theorem.

Theorem 6 (Convex H(·)) Let C.1, C.2, A.1’ and A.2’ hold, and the set U be bounded by
a diameter DU . Then for any η ≤ β

4L , β ∈ (0, 1], and α ≤ β
2 , we have for any T ≥ 0

ΛHB
T ≤ (1− α)TΛHB

0 +
αD2

U
µ2
cη

+
βησ2

α
,

where ΛHB
t is given by (8). Fix ε > 0, and set the parameters of algorithm (7) as

η =
β

4L
, β = min

{
1,

µ2
c

9D2
Uσ

2
ε2
}
.

Then the scheme (7) returns a point xT with E
[
F (xT )− F (x∗)

]
≤ ε when

T = Õ
(LD2

U
µ2
c

1

ε
+

LD4
Uσ

2

µ4
c

1

ε3

)
.

We remark that both Theorems 6 and 22 provide last iterate global convergence for P-SGD with
momentum without the need of using large mini-batch (even once). Additionally, it guarantees that
the gradient estimate gt also converges to the true gradient ∇F (x∗) at the optimum x∗ ∈ X ∗. In
case of strongly convex H(·), similarly to Corollary 12 and Theorem 17, the result of Theorem 22
(for strongly convex H(·)) can be translated into the point (iterate) convergence to the optimal x∗.

6. Conclusions

In this work, we make the first steps towards theoretical understanding of stochastic optimization
under hidden convexity and develop batch-free stochastic gradient methods with projection.

A few related questions regarding considered projected stochastic (sub-)gradient descent algo-
rithm still remain open. 1) For hidden strongly convex problem, i.e., when µH > 0, the derived
sample complexities are optimal in ε up to the logarithmic factor as it matches the result for usual
strongly convex settings, and therefore unimprovable for SM and P-SGD. However, for merely hid-
den convex F (·), i.e., µH = 0, it is unclear if our Õ(ε−3) sample complexity is tight for SM and
P-SGD. 2). The benefits of momentum variants of P-SGD can be further explored, e.g., to under-
stand if Nesterov’s acceleration is possible under hidden convexity. 3) When µH = 0, our iteration
and sample complexity results depend on the diameter of the reformulated problem. It would be
interesting to explore if DU can be replaced with the distance to the solution, i.e.,

∥∥c(x0)− c(x∗)
∥∥.
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Appendix A. Related Work on SM and P-SGD in Convex and Non-convex Settings

The projected sub-gradient methods (SM), its special case, projected stochastic gradient descent (P-
SGD), in the differentiable setting, and their numerous variants have a long history of development
since the first works on stochastic approximation appeared in 1950s [6, 12, 42, 61].

Convex optimization. The case of convex F (·) is particularly well documented [1, 30, 30, 51].
Researchers have studied how to deal with convex constraints, proximal operators, general Bregman
divergences [5, 53], and leveraging averaging and momentum schemes [31, 46, 59, 64]. In the
convex case, the global convergence of gradient methods in the function value, i.e., find x ∈ X with
E [F (x)− F (x∗)] ≤ ε for any ε > 0, is naturally possible and the sample complexity required is
O
(
ε−2
)
.1

Non-convex optimization. In the last decade, the interest in the optimization community shifted
towards general non-convex problems (often smooth or weakly convex), where only convergence
to a first-order stationary point (FOSP) is possible in general [3, 20, 41, 70], i.e., find x ∈ X
with E [∥∇F (x)∥] ≤ ε when F (·) is smooth. Similar to developments in convex optimization,
convergence of non-convex SGD extends to constrained/proximal setting [7, 32, 44], mirror descent
[17, 77], momentum [27, 47], variance-reduction [3, 13], and biased gradient setting [36–38]. For
the more general weakly-convex case [15, 48, 77], the convergence guarantees are usually with
respect to a gradient norm of a smoothed objective. Some works consider non-convex functions
with a specific compositional structure similar to (2), e.g. the composition of a convex function
with a differentiable and smooth map c(·), see [22, 45, 54, 74]. Recently a number of works focus
on non-convex non-smooth optimization (beyond weak convexity) and develop convergence for
suitably defined notions of FOSP [14, 39, 73]. Although the above works consider non-convex
problems, which find a wide range of applications, they often only provide convergence to a FOSP
rather than global convergence in the function value.

Appendix B. Related Work on Hidden Convexity and Other Structural Conditions

The most closely related works are [4, 11, 33, 75, 76], which analyze gradient methods under similar
structural assumptions in the context of specific applications.

Policy gradient methods in RL. In particular, [4, 75, 76] analyze policy gradient (PG) type meth-
ods in reinforcement learning (RL) setting, and derive global convergence guarantees for their algo-
rithms. In [75], the authors consider a PG method with projection, but it is only limited to the case
where the exact gradients are available. It is unclear how to extend the technique in their work to
the case of stochastic gradients with bounded variance (without resorting to large batches). Next,
[76] consider the stochastic setting and propose variance reduced PG method with truncation using
large batches of trajectories. Later, [4] removes the requirement of large batches via a normalized
variance reduced PG method. However, their results are difficult to extend to the constrained case
due to the normalization. In addition, for a general stochastic optimization problem of the form (1),
it requires additional strong individual (or expected) smoothness assumption to analyze variance
reduced gradient methods.

Stochastic gradient methods in revenue management. A different line of works [10, 11] con-
sider hidden convex objectives in revenue management and design preconditioned gradient-based

1. For P-SGD under smooth and bounded variance assumptions, A.1’ and A.2’ in section 2, or for SM under Lipschitz
continuity and bounded second moment of stochastic sub-gradients, i.e., A.2.
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methods over X , which approximate the classical P-SGD method on the convex reformulation (2)
over U . Their MSG method in [10] obtain an Õ(ϵ−2) sample complexity for a special revenue man-
agement problem under the assumptions that the domain X is a box constraint, the transformation
function c(x) = E [c(x, ξ)] is separable and the additional access to c(x, ξ) is available. Leverag-
ing the box constraint structure, [10] also analyze P-SGD and derive Õ(ϵ−4) sample complexity.
In contrast, we show that the P-SGD can achieve better Õ(ϵ−3) sample complexity for a general
convex compact constraint X , and further extend the results to non-smooth setting.

In the online learning setting, [33] consider a structural property similar to hidden convexity and
propose strong assumptions on the reparameterization map c(·) (see Assumptions 2 and 4 therein)
under which non-convex online gradient descent in the original space X is equivalent to online
mirror descent for the (convex) reformulated problem. Such equivalence allows them to demonstrate
an O(T 2/3) regret bound. Instead of showing regret bounds, we directly derive the last iterate
convergence in the function value using a different technique and make less restrictive assumptions
on c(·), which allows us to cover a wide range of applications.

For more structured non-convex optimization problems that admit hidden convexity, interested
readers may refer to [67, 68]. Note that the transformation mapping c(·) can be unknown in appli-
cations, and thus the methodology developed therein is generally not applicable.

Related structural assumptions. We would like to mention that several other non-convex struc-
tural assumptions have also appeared in unconstrained optimization, including essential strong con-
vexity [40], quasar (strong) convexity [35], restricted secant inequality [72], error bounds [18],
quadratic growth [21, 52], PŁ type condition [40]. The latter2 along with its various generaliza-
tions to constrained minimization such as Proximal-PŁ [40] and variational gradient dominance
[69] turned out to be particularly popular in the recent years. The convergence of gradient methods
under gradient dominance condition has been extensively analyzed [40, 71], including the stochastic
setting [25, 26, 63] and even second-order methods [49]. Despite a few examples [19, 24, 28, 69]
that show some variants of the PŁ condition hold, it remains a big question how to verify PŁ like
conditions for non-convex problems in general. Moreover, the situation becomes even more chal-
lenging, when dealing with constrained optimization and/or non-differentiable objectives, where a
suitable generalization of the gradient dominance needs to be introduced and carefully studied.

Appendix C. Notations

We denote by ⟨·, ·⟩ the inner product in Rd along with its induced Euclidean norm ∥·∥. For a real
valued matrix A ∈ Rm×n, we denote by ∥·∥op its operator norm, i.e., ∥A∥op := max∥x∥≤1 ∥Ax∥.
The map c : X → U is called invertible if there exists a map c−1 : U → X (called inverse)
such that c−1(c(x)) = x for any x ∈ X and c(c−1(u)) = u for any u ∈ U . For any u, v ∈ U
and any λ ∈ [0, 1], if (1 − λ)u + λv ∈ U , we say U is convex. We denote the diameter of U as
DU := supu,v∈U ∥u− v∥. For a function H : U → R, if there exists µH ≥ 0 such that for all

u, v ∈ U and λ ∈ [0, 1], it holds H((1−λ)u+λv) ≤ (1−λ)H(u)+λH(v)− (1−λ)λµH

2 ∥u− v∥2 ,
we call H convex on U if µH = 0, and µH -strongly convex on U if µH > 0.

A function F : X → R ∪ {+∞} is ℓ-weakly convex (ℓ-WC) if for any fixed y ∈ X ,
Fℓ(x, y) := F (x) + ℓ

2 ∥x− y∥2 is convex in x ∈ X . The sub-differential F (·) at x ∈ X is
given by ∂F (x) :=

{
g ∈ Rd | F (y) ≥ F (x) + ⟨g, y − x⟩+ o(∥y − x∥), ∀y ∈ X

}
. The elements

2. Also known as global Kurdyka-Łojasiweicz (KŁ) and gradient domination condition.
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g ∈ ∂F (x) are called sub-gradients of F (·) at x, see [16] for alternative definitions of the sub-
differential set for ℓ-WC functions. A differentiable function F : X → R is L-smooth on X ⊂ Rd

if its gradient is L-Lipschitz continuous on the set X , i.e., it holds ∥∇F (x)−∇F (y)∥ ≤ L ∥x− y∥
for all x, y ∈ X . For a convex set X ⊂ Rd, the projection of a point y ∈ Rd onto X is
ΠX (y) := argminx∈X ∥y − x∥. We denote δX as the indicator function of a set X ⊂ Rd and
define δX (x) = 0 if x ∈ X and δX (x) = +∞ otherwise. We define by X ∗ ⊂ X the set of optimal
points of minx∈X F (x). A point x̄ ∈ X is called a stationary point of a weakly convex function
F : X → R if 0 ∈ ∂(F + δX )(x̄). For any function Φ and a real ρ > 0, we define the Moreau
envelope and the proximal mapping as follows, respectively.

Φ1/ρ(x) := min
y∈Rd

{
Φ(y) +

ρ

2
∥y − x∥2

}
, proxΦ/ρ(x) := argmin

y∈Rd

{
Φ(y) +

ρ

2
∥y − x∥2

}
.

Appendix D. Motivating Examples

Notice that the hidden convex function class includes the convex function class as a special case
when the transformation map c(·) is identical. In addition, it also includes many non-convex func-
tions. For instance, let 0 < δ ≤ 1 and consider X = [δ, 1], c(x) = x2, H(u) = −u. Then
F (x) = −x2 is concave (non-convex) on X , but is hidden convex by the construction. Another
simple example considers 0 < δ < π and X = [δ, 2π−δ], c(x) = cos(x), H(u) = u. The obtained
composition F (x) = cos(x) is non-convex and non-concave on X . In what follows, we present
more practical (possibly high dimensional) problems, which belong to our hidden convex class.

D.1. Non-linear least squares [22, 55, 57]

Consider solving a system of nonlinear equations under a box constraint, e.g., c(x) = 0 with c(x) =
(c1(x), . . . , cd(x))

⊤ for x ∈ X = [0, D]d, D > 0. Such problem can be equivalently formulated as

min
x∈[0,D]d

d∑
i=1

c2i (x) or min
x∈[0,D]d

max
1≤i≤d

|ci(x)|.

When c(·) is an invertible mapping, it belongs to the hidden convex optimization class. For d = 2,
c1(x) = x1 − 1, and c2(x) = x2 − 2x21 + 1, we demonstrate its countour plot in Appendix D.

D.2. Minimizing posinomial functions [9, 23]

In power control in communication systems and optimal doping profile problems [9, 23], one often
needs to minimize posinomial functions F (·) : Rd

+ → R of the following form

F (x) =
K∑
k=1

bkx
a1k
1 · · ·xadkd ,

where bk > 0 and aik ∈ R for all k = 1, · · · ,K, i = 1, · · · , d. The function F (·) is non-convex,
but it is well-known that it admits a convex reformulation via a variable change u = c(x) :=
[log(x1), . . . , log(xd)]

⊤. The convex reformulation is of the form

H(u) = F (c−1(u)) =
K∑
k=1

bke
a1ku1 · · · eadkud ,
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Figure 1: The countour plots of the functions F (x) = 1
4(x1 − 1)2 + 1

2(2x
2
1 − x2 − 1)2 (top),

and F (x) = max
{
1
4 |x1 − 1|, 12 |2x

2
1 − x2 − 1|

}
(bottom), x = (x1, x2)

⊤ The left plots
present the conour plots in the original space X and the right plots illustrate the reformu-
lated space U . The red star denotes the global minimum.

16



STOCHASTIC OPTIMIZATION UNDER HIDDEN CONVEXITY

where H(·) is convex. One can easily see that the above problem is hidden convex and it is possible
to verify assumptions in Section 2 if we add a convex compact constraint X (e.g., a box constraint)
to this problem.

D.3. System level synthesis in optimal control [2]

Consider a linear-time-varying system

x(t+ 1) = At x(t) +Bt u(t) + w(t), t = 0, . . . , T,

where x(t) ∈ Rn is a state, u(t) ∈ Rp is a control input, and w(t) ∈ Rn is an exogenous
disturbance process, and x(0), w(t) ∼ N (0,Σ) are independent for t = 0, . . . , T . Matrices
At ∈ Rn×n and Bt ∈ Rn×p determine the system dynamics. Define x = (x(0), . . . , x(T ))⊤,
u = (u(0), . . . , u(T ))⊤, w = (x(0), w(0), . . . , w(T −1))⊤, and consider a time varying controller
of the form u(t) =

∑t
i=0K(t, t− i)x(i), which depends on a control matrix

K =


K(0, 0)
K(1, 1) K(1, 0)

...
. . . . . .

K(T, T ) · · · K(T, 1) K(T, 0)

 .

The goal of the system level synthesis is to find a control policy to minimize some loss functions,
e.g., quadratic in x and u: F (K) := E

[
x⊤Qx+ u⊤Ru

]
, where Q = diag(Q0, . . . , Q(T )) ⪰ 0

and R = diag(R0, . . . , R(T )) ⪰ 0.
Despite the fact that F (·) is convex in both x and u, it is non-convex in the decision variable K.

Nevertheless, it admits a convex reformulation [2] of the form

min
Φx,Φu

H(Φx,Φu), s.t. M
[
Φx

Φu

]
= I, Φx,Φu are lower-block-triangular,

where Φx,Φu ∈ R(T+1)×(T+1) are the new variables, H(·) is a strongly-convex function of Φ :=
(Φx,Φu). M ∈ R(T+1)×(T+1) is a deterministic matrix, which depends on matrices At, Bt, t =
0, . . . , T − 1, and I is the identity matrix. It turns out that there exists a bijection between variables
K and Φ subject to the constraints of the reformulated problem. The (inverse of the) map c(·)
is given by K = c−1(Φ) := ΦuΦ

−1
x [2]. Therefore, one can easily verify that the optimization

problem over K is hidden convex.
A number of other problems in optimal control also admit suitable convex reformulations. We

refer readers to [8, 66] for more examples.

D.4. Revenue Management and Inventory Control [10, 11]

Consider a booking limit control in a passenger network revenue management problem. The goal is
to maximize the revenue by finding an optimal booking limit threshold for each demand class, e.g.,
flying from New York to Seattle with economy class. Such a problem forms a two-stage stochastic
programming such that

min
x∈[0,D]d

F (x) := Eξ[r
⊤(x ∧ ξ)− EηΓ(x ∧ ξ, η)]

where Γ(x ∧ ξ, η) = min
0≤w≤x∧ξ

{l⊤(x ∧ ξ − w) | Aw ≤ η},
(9)
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where d denotes the number of demand classes in the airline networks, x ∈ Rd is the booking limit
control threshold for each demand class, ξ is the random demand vector (of the same dimension as
x) during the reservation stage, x ∧ ξ denotes the number of reservations accepted, and r⊤(x ∧ ξ)
denotes revenue collected during the reservation stage with r ∈ Rd being the price vector. In the
service stage, Γ(x∧ ξ, η) denotes the penalty on the airline companies when there are x∧ ξ number
of reservations with plane seats capacity η that is random, w is the actual number of passengers that
can get on the plane, l is the penalty vector for declining passengers with reservation to get on the
plane. Notice that F is non-convex in x due to the truncation between x and ξ. However, when ξ
admits component-wise independent coordinates, this problem admits a convex reformulation via a
variable change [10], i.e., u = c(x) = Eξ[x ∧ ξ]. Note that comparing to previous applications, the
transformation function involves unknown distribution and thus is not explicitly known.

For more examples of hidden convex problems in operations research, we refer readers to [29]
about supply chain management and [11, 50] about revenue management.

D.5. Convex reinforcement learning [75]

Convex reinforcement learning (RL) problem generalizes the classical RL setting. It bases on a
discounted Markov Decision Process M(S,A,P, H, ρ, γ), where S and A denote the (finite) state
and action spaces respectively, P : S × A → ∆(S) is the state transition probability kernel (where
∆(S) denotes the distribution over S), ρ is the initial state distribution and γ ∈ (0, 1) is the discount
factor. A stationary policy π : S → ∆(A) maps each state s ∈ S to a distribution π(·|s) over
the action space A. The set of all (stationary) policies is denoted by Π . At each time step h ∈ N
in a state sh ∈ S , the RL agent chooses an action ah ∈ A with probability π(ah|sh) and the
environment transitions to a state sh+1 with probability P(sh+1|sh, ah) . We denote by Pρ,π the
probability distribution of the Markov chain (sh, ah)h∈N induced by the policy π with an initial
state distribution ρ. For any policy π ∈ Π, we define the state-action occupancy measure

λπ(s, a) :=

+∞∑
h=0

γhPρ,π(sh = s, ah = a) for all a ∈ A, s ∈ S . (10)

The set of such state-action occupancy (visitation) measures is denoted by U := {λπ : π ∈ Π} .
Different from the classical RL, in convex RL, H : U → R is a general (convex) utility function

that maps the state-action occupancy measure to a cost. The goal is to find a policy that minimizes
the costs

min
π∈Π

F (π) := H(λπ). (11)

Notice that F (·) is not convex in π, but H(·) is convex in the occupancy measure λπ for several
widely-used utility functions. For standard RL, H(λπ) = r⊤λπ is linear in λπ, where r is the
reward vector. For the pure exploration setting where the goal is to fully explore the transitions in
the environment, H(λπ) denotes the negative entropy of λπ, which is also convex [75]. For the
imitation learning where the goal is to imitate the expert’s behavior given their sampled trajectories,
H(λπ) denotes the KL-divergence between λπ and the state-action occupancy measure learned from
the expert’s sampled trajectories, which is also convex [75]. Thus, the convex RL problem belongs
to the hidden convex class with X = Π and c(x) = λπ (with x = π). Under mild (exploration)
assumptions on the initial distribution ρ, the constant µc > 0 can be estimated [75]. Note that in
convex RL, we can only control the policy π and can influence λπ only implicitly.
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Appendix E. Properties of Hidden Convex Optimization

E.1. Globally optimal solution

The following proposition suggests that every stationary point of a hidden convex function is a
global minima.

Proposition 7 Let F (·) be hidden convex and x̄ ∈ X be its stationary point. If the map c(·) is
differentiable at x̄ , then x̄ is a global solution for (3), i.e., F (x̄) ≤ F (x) for any x ∈ X .

Proof By the definition of a stationary point and the chain rule [62] (Theorem 10.49), we can write

0 ∈ ∂x(F + δX )(x̄) = ∇c(x̄) (∂uH(ū) + ∂uδU (ū)) , (12)

where ū = c(x̄). As the map c(·) is invertible, then ∇c(x̄)y = 0 for some y ∈ Rd implies y = 0.
Thus, we have 0 ∈ ∂uH(ū) + ∂uδU (ū). Since function H(·) is convex, by the sufficient optimality
condition, ū is a globally optimal solution, i.e., H(ū) ≤ H(u) for any u ∈ U . As a result, we have
F (x̄) = H(ū) ≤ H(u) = F (x) for any x ∈ X .

Note that a similar result appeared in [75] under additional smooth assumptions on H(·) and c(·).
The analysis above is much simpler and does not require such smoothness.

E.2. Connections with gradient dominated functions

It is natural to ask what is the connection between hidden convex problems and previously studied
gradient dominated function classes that also ensure the global convergence of gradient-based al-
gorithms [40]. Unfortunately, the exact characterization is difficult to establish in the constrained
setting. With the following proposition, we show that a problem satisfies the global KŁ condition if
it is hidden strongly convex (µH > 0).

Proposition 8 Let F (·) be differentiable, hidden strongly convex (µH > 0), and the map c(·) be
differentiable on X , then the optimization problem satisfies the global KŁ condition.

min
hx∈∂δX (x)

∥∇F (x) + hx∥2 ≥ 2µHµ2
c (F (x)− F ∗) for all x ∈ X . (13)

Proof Since H(·) is differentiable and strongly convex on a convex set U , then it satisfies the
following Proximal-PŁ condition [40] (Appendix F)

DδU (u, µH) ≥ 2µH(H(u)−H(u∗)) for all u ∈ U ,

where DδU (u, µH) := −2µH minv∈U

{
⟨∇H(u), v − u⟩+ µH

2 ∥u− v∥2
}

. The inequality above
implies global KŁ condition, see Appendix G in [40],

min
hu∈∂δU (u)

∥∇H(u) + hu∥2 ≥ 2µH (H(u)−H(u∗)) .

Combined with chain rule, we have for any u = c(x) such that

min
hx∈∂δX (x)

∥∇F (x) + hx∥2 ≥ min
hu∈∂δU (u)

∥∇c(x)(∇H(u) + hu)∥2

≥ 2µHµ2
c (F (x)− F (x∗)) ,
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which concludes the proof.

Note that even in this restrictive case when µH > 0, it is unclear to us how condition (13) can
be used to establish global convergence of Projected SGD. To our knowledge, under the assumption
(13) no analysis of stochastic gradient methods appear in the literature even for smooth F (·).

In the more interesting case when H(·) is merely convex, the above argument fails since the
global KŁ condition becomes vacuous when µH = 0.

E.3. Key inequalities for analysis of gradient methods

The following observations are the key for deriving global convergence guarantees on hidden convex
optimization problems.

Proposition 9 Let F (·) be hidden convex with µH ≥ 0. For any α ∈ [0, 1], x∗ ∈ X ∗ and x ∈ X ,
define xα := c−1 ((1− α)c(x) + αc(x∗)). Then

F (xα) ≤ (1− α)F (x) + αF (x∗)− (1− α)αµH

2
∥c(x)− c(x∗)∥2 , (14)

∥xα − x∥ ≤ α

µc
∥c(x)− c(x∗)∥ . (15)

Proof By (strong) convexity of H(·) and convexity of U , we have

F (xα) = F (c−1 ((1− α)c(x) + αc(x∗)))

= H((1− α)c(x) + αc(x∗))

≤ (1− α)H(c(x)) + αH(c(x∗))− (1− α)αµH

2
∥c(x)− c(x∗)∥2

= (1− α)F (x) + αF (x∗)− (1− α)αµH

2
∥c(x)− c(x∗)∥2 .

where the inequality uses the fact that U is a convex set and that (1−α)c(x) +αc(x∗) ∈ U for any
x ∈ X . By definition of xα and (4), we derive

∥xα − x∥ =
∥∥c−1 ((1− α)c(x) + αc(x∗))− c−1(c(x))

∥∥ ≤ 1

µc
∥α(c(x)− c(x∗))∥ .

Appendix F. Proofs for Stochastic Subgradient Method

The following (descent like) lemma is the essential for the proofs of global convergence in Theo-
rems 3 and 11.

Lemma 10 Let C.1, C.2, A.1 and A.2 hold with µH ≥ 0. Set ρ = 2ℓ, η ≤ 1
2ℓ . Define x̂t :=

proxΦ/ρ(x
t). Then for any 0 < α ≤ ηℓ and t ≥ 0

Λt+1 ≤ (1− α)Λt +

(
3α2

2µ2
cη

− (1− α)αµH

2

)
E
[∥∥c(x̂t)− c(x∗)

∥∥2]+ 4ℓη2G2
F .
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Proof By the definition of x̂t+1, we have for any z ∈ X

E
[
Φ1/ρ

(
xt+1

)]
= E

[
Φ
(
x̂t+1

)
+

ρ

2

∥∥x̂t+1 − xt+1
∥∥2]

(i)

≤ E
[
Φ (z) +

ρ

2

∥∥z − xt+1
∥∥2]

(ii)

≤ E
[
Φ (z) + (1 + s)

ρ

2

∥∥x̂t − xt+1
∥∥2 + (1 + 1

s

)
ρ

2

∥∥x̂t − z
∥∥2]

(iii)

≤ E
[
Φ (z) + (1 + s) (1− ηρ)

ρ

2

∥∥x̂t − xt
∥∥2]

+

(
1 +

1

s

)
ρ

2
E
[∥∥x̂t − z

∥∥2]+ (1 + s) ρη2G2
F ,

where in (i) we use the optimality of x̂t+1, (ii) follows from Young’s inequality for any s >
0, and in (iii) we apply the result of Lemma 25. We now select s = ηρ/2, which guarantees
(1 + s) (1− ηρ) ≤ 1− ηρ/2, 1 + s ≤ 2, and 1 + 1/s ≤ 3/(ηρ). Thus

E
[
Φ1/ρ

(
xt+1

)]
≤ E

[
F (z) +

(
1− ηρ

2

) ρ

2

∥∥x̂t − xt
∥∥2]+ 3

2η
E
[∥∥x̂t − z

∥∥2]+ 2ρη2G2
F .

We are now ready to utilize the properties of hidden convex functions to bound F (z) and∥∥x̂t − z
∥∥2 for some specific choice of z ∈ X . By Proposition 9, we have for z = x̂tα :=

c−1((1− α)c(x̂t) + αc(x∗))

F (z) ≤ (1− α)F (x̂t) + αF (x∗)− (1− α)αµH

2

∥∥c(x̂t)− c(x∗)
∥∥2 ,

∥∥z − x̂t
∥∥2 ≤ α2

µ2
c

∥∥c(x̂t)− c(x∗)
∥∥2 .

Combining three inequalities above, we have

E
[
Φ1/ρ(x

t+1)
]

≤ (1− α)E
[
F (x̂t)

]
+ αF (x∗) +

(
1− ηρ

2

) ρ

2
E
[∥∥x̂t − xt

∥∥2]+ 2ρη2G2
F

+

(
3α2

2µ2
cη

− (1− α)αµH

2

)
E
[∥∥c(x̂t)− c(x∗)

∥∥2]
≤ (1− α)E

[
Φ1/ρ(x

t)
]
+ αF (x∗) + 2ρη2G2

F

+

(
3α2

2µ2
cη

− (1− α)αµH

2

)
E
[∥∥c(x̂t)− c(x∗)

∥∥2] ,
where the last inequality holds since 1− ηρ

2 ≤ 1−α (by the choice α ≤ ηℓ, ρ = 2ℓ) and recognizing
Φ1/ρ(x

t). Subtracting F (x∗) from both sides, we conclude the proof.

F.1. Hidden Convex Setting

Proof [Theorem 3] Setting µH = 0 in Lemma 10 and leveraging compactness of U , we have

Λt+1 ≤ (1− α)Λt +
3D2

Uα
2

2µ2
cη

+ 4ℓη2G2
F .
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Unrolling the recursion for t = 0 to t = T − 1, we get

ΛT ≤ (1− α)TΛ0 +
3D2

Uα

2µ2
cη

+
4ℓη2G2

F

α
≤ ε,

where the last step holds by setting α = min
{
ηℓ, 2εµ

2
cη

3D2
U
,
√
16ℓµcGF η

3/2
√
3DU

}
after T = 1

α log
(
3Λ0
ε

)
=

Õ
(
ℓD2

U
µ2
cε

+
ℓD4

UG2
F

µ4
cε

3

)
.

F.2. Hidden Strongly Convex Setting

The following theorem presents a stronger result in the case when H(·) is additionally strongly
convex.

Theorem 11 (Strongly convex H(·)) Let C.1, C.2, A.1 and A.2 hold with µH > 0. Then
for any η ≤ 1

2ℓ , and α ≤ min
{
ηℓ, ηµ

2
cµH

2

}
, we have for all T ≥ 0

ΛT ≤ (1− α)TΛ0 +
4ℓη2G2

F

α
.

Fix ε > 0, and set the step-size in (6) as η = min
{

1
2ℓ ,

µ2
cµHε

10ℓG2
F

}
. Then ΛT ≤ ε after

T = Õ
(

ℓ
µ2
cµH

+
ℓG2

F

µ4
cµ

2
H

1
ε

)
iterations.

Proof We invoke Lemma 10 with µH > 0. The choice of α guarantees the coefficient in front of
E
[∥∥c(x̂t)− c(x∗)

∥∥2] is non-positive and

Λt+1 ≤ (1− α)Λt + 4ℓη2G2
F .

It remains to conclude the proof by unrolling the recursion and setting the step-size.

In the presence of strong convexity, since the optimal x∗ ∈ X ∗ is unique, we can establish a
strong convergence of the sequence {xt}t≥0 to x∗.

Corollary 12 Let the assumptions of Theorem 11 hold and xT be the output of the method (5) after
T iterations. If 2ℓ ≥ µHµ2

c , then µHµ2
c

4 E
[∥∥xT − x∗

∥∥2] ≤ ε after T = Õ(ε−1).

Proof Since H(·) is µH -strongly convex on X , we have

F (x̂T )− F (x∗) = H(c(x̂T ))−H(c(x∗)) ≥ µH

2

∥∥c(x̂T )− c(x∗)
∥∥2 ≥ µHµ2

c

2

∥∥x̂T − x∗
∥∥2 ,

(16)

where the first inequality follows by the first-order characterization of strong convexity and the
optimality condition, and the last inequality holds by C.2.
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Recall that ΛT = E
[
F (x̂T )− F (x∗) + ρ

2

∥∥x̂T − xT
∥∥2] with ρ = 2ℓ. Then

µHµ2
c

4
E
[∥∥xT − x∗

∥∥2] ≤ µHµ2
c

2
E
[∥∥x̂T − x∗

∥∥2]+ µHµ2
c

2
E
[∥∥x̂T − xT

∥∥2]
≤ E

[
F (x̂T )− F (x∗)

]
+ ℓE

[∥∥x̂T − xT
∥∥2] = ΛT ≤ ε,

where the second inequality holds by (16) and 2ℓ ≥ µHµ2
c . The last step follows by Theorem 11.

Appendix G. Proofs for Projected SGD

Replacing Lemma 25 with Lemma 26 in the proof of Lemma 10 of the previous section, we are able
to derive the following results under assumptions A.1’ and A.2’

Lemma 13 Let C.1, C.2, A.1’ and A.2’ hold with µH ≥ 0. Set ρ = 4L, η ≤ 2
9L . Define x̂t :=

proxΦ/ρ(x
t). Then for any 0 < α ≤ 2ηL and t ≥ 0

Λt+1 ≤ (1− α)Λt + ρη2σ2 +

(
3α2

2µ2
cη

− (1− α)αµH

2

)
E
[∥∥c(x̂t)− c(x∗)

∥∥2] .
Using the above lemma, we provide a refined analysis of P-SGD in the differentiable setting

with smoothness and bounded variance.

G.1. Hidden Convex Setting

We start with the case of convex H(·).
Proof [Theorem 5] By setting µH = 0 in Lemma 13 and using the bound on the size of U , we have

Λt+1 ≤ (1− α)Λt +
3D2

Uα
2

2µ2
cη

+ ρη2σ2.

Unrolling the recursion for t = 0 to t = T − 1, we get

ΛT ≤ (1− α)TΛ0 +
3D2

Uα

2µ2
cη

+
4Lη2σ2

α
≤ ε,

where the last step holds by setting α = min
{
2ηL, 2εµ

2
cη

3D2
U
,
√
8Lµcση

3/2
√
3DU

}
, and η = 2

9L ·min
{
1, µ2

cε
2

12D2
Uσ2

}
,

after T = 1
α log

(
3Λ0
ε

)
= Õ

(
LD2

U
µ2
cε

+
LD4

Uσ2

µ4
cε

3

)
.

Similar to Corollary 4, we can show that xT is close to an ε-global optimal solution. But in the
case of smooth F (·), we can derive a stronger result after applying one (post-processing) step of
mini-batch P-SGD. The next corollary presents the results.

Corollary 14 Let the assumptions of Theorem 5 hold and GF > 0 be the Lipschitz constant of

F (·) over X . Set xT+1 = ΠX

(
xT − 1

3L
1
B0

∑B0
i=1∇F (xT , ξTi )

)
, where B0 ≥ min{1,

(
GF σ
3Lε

)2
},

and xT is the output of the method (6) applied with batch-size B = 1 after T iterations. Then
E
[
F (xT+1)− F (x∗)

]
≤ 2 ε after T = Õ

(
LD2

U
µ2
cε

+
LD4

Uσ2

µ4
cε

3

)
.
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STOCHASTIC OPTIMIZATION UNDER HIDDEN CONVEXITY

Proof Define xT+ := ΠX (x
T − 1

ρ−L∇F (xT )), ρ = 4L. Notice that F (xT+) = Φ(xT+) ≤ Φ1/ρ(x
T ),

where the inequality follows by [65, Poposition 2.5-(i)] with γ := (ρ−L)−1. Therefore, Theorem 5
implies that

E
[
F (xT+)− F (x∗)

]
≤ E

[
Φ1/ρ(x

T )− F (x∗)
]
≤ ε,

On the other hand, the post-processing step guarantees

E
[
F (xT+1)− F (xT+)

]
≤ GF E

[∥∥xT+1 − xT+
∥∥]

≤ GFE

[∥∥∥∥∥ΠX

(
xT − 1

3L

1

B0

B0∑
i=1

∇F (xT , ξTi )

)
−ΠX

(
xT − 1

3L
∇F (xT )

)∥∥∥∥∥
]

≤ GF

3L
E

[∥∥∥∥∥ 1

B0

B0∑
i=1

∇F (xT , ξTi )−∇F (xT )

∥∥∥∥∥
]
≤ GFσ

3L
√
B0

≤ ε.

Combining the above two inequalities, the result follows.

The following corollary shows that if we apply mini-batching at each iteration with sufficiently
large batch-size, then the number of iterations required for convergence is reduced to Õ(ε−1).

Corollary 15 Let the assumptions of Theorem 5 hold and GF > 0 be the Lipschitz constant of
F (·) over X . Suppose P-SGD with batch-size B is applied, i.e., {xt}t≥0 is generated by xt+1 =

ΠX

(
xt − η 1

B

∑B
i=1∇F (xt, ξti)

)
with η = 2

9L , B ≥ min{1, D
2
Uσ2

µ2
cε

2 }. Define

xT+1 = ΠX

(
xT − 1

3L

1

B0

B0∑
i=1

∇F (xT , ξTi )

)
,

where ρ = 4L, and B0 ≥ min{1,
(
GF σ
3Lε

)2
}. Then E

[
F (xT+1)− F (x∗)

]
≤ 2 ε after T =

Õ
(
LD2

U
µ2
cε

)
.

Proof The proof follows from the previous corollary by replacing σ2 with σ2/B.

However, we want to highlight that the results of Theorems 5 and 14 do not require using large
batches of samples at every iteration.

G.2. Hidden Strongly Convex Setting

Similarly to the exposition in Section 3, we present an improved sample complexity result in case
of strongly convex H(·).
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Theorem 16 (Strongly convex H(·)) Let C.1, C.2, A.1’ and A.2’ hold with µH > 0. Then
for any η ≤ 2

9L , and α ≤ min
{
2ηL, ηµ

2
cµH

2

}
, we have for all T ≥ 0

ΛT ≤ (1− α)TΛ0 +
4Lη2σ2

α
.

Fix ε > 0, and set the step-size in (6) as η = min
{

2
9L ,

µ2
cµHε

10Lσ2

}
. Then ΛT ≤ ε after

T = Õ
(

L
µ2
cµH

+ Lσ2

µ4
cµ

2
H

1
ε

)
iterations.

Proof Similarly to the proof of Theorem 5 we invoke Lemma 13 with µH > 0. The choice of α
guarantees the coefficient in front of E

[∥∥c(x̂t)− c(x∗)
∥∥2] is non-positive and

Λt+1 ≤ (1− α)Λt + ρη2σ2.

It remains to conclude the proof by unrolling the recursion and setting the step-size to compute the
total sample complexity.

Similarly to Corollary 12, we can translate convergence in ΛT to the last iterate point conver-
gence.

Corollary 17 Let the assumptions of Theorem 16 hold and xT be the output of the method (6) after
T iterations. If 2L ≥ µHµ2

c , then µHµ2
c

4 E
[∥∥xT − x∗

∥∥2] ≤ ε after T = Õ
(
ε−1
)
.

If we apply mini-batch version of P-SGD, then the method converges linearly.

Corollary 18 Let the assumptions of Theorem 16 hold. Suppose P-SGD with batch-size B is
applied, i.e., xt+1 = ΠX

(
xt − η 1

B

∑B
i=1∇F (xt, ξti)

)
with η = 2

9L , B ≥ min{1, σ2

µ2
cµHε

}. If 2L ≥

µHµ2
c , then the sequence {xt}t≥0 converges linearly to x∗, i.e., we have µHµ2

c
4 E

[∥∥xT − x∗
∥∥2] ≤ ε

after T = Õ
(

L
µ2
cµH

)
iterations.3

Proof The proof follows from the previous corollary by replacing σ2 with σ2/B.

Appendix H. Proofs for Projected SGD with Momentum

Lemma 19 Suppose that C.1, C.2, A.1’ and A.2’ hold with µH ≥ 0, and the step-size in (7) satisfies
η ≤ 1/L. For any α ∈ [0, 1], it holds that

F (xt+1) ≤ (1− α)F (xt) + αF (x∗) +

(
α2

µ2
cη

− (1− α)αµH

2

)∥∥c(xt)− c(x∗)
∥∥2 ,

−
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2 + η

2

∥∥gt −∇F (xt)
∥∥2 . (17)

3. Notice that L/(µHµ2
c) is the analogue of the condition number in convex optimization.
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Proof By the updating rule of xt+1 and using Lemma 27 with ϕ(y) = ⟨gt, y⟩, x = xt, and
x+ = xt+1, we have for any y = z ∈ X that

⟨gt, xt+1 − z⟩+ 1

2η

∥∥xt+1 − xt
∥∥2 ≤ 1

2η

∥∥z − xt
∥∥2 − 1

2η

∥∥z − xt+1
∥∥2 . (18)

By the smoothness of F (·), we derive

F (xt+1) ≤ F (xt) + ⟨∇F (xt), xt+1 − xt⟩+ L

2

∥∥xt+1 − xt
∥∥2

= F (xt) + ⟨gt, xt+1 − xt⟩+ 1

2η

∥∥xt+1 − xt
∥∥2

+⟨∇F (xt)− gt, xt+1 − xt⟩ −
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2

(i)

≤ F (xt) + ⟨gt, z − xt⟩+ 1

2η

∥∥z − xt
∥∥2 − 1

2η

∥∥z − xt+1
∥∥2

+⟨∇F (xt)− gt, xt+1 − xt⟩ −
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2

= F (xt) + ⟨∇F (xt), z − xt⟩+ 1

2η

∥∥z − xt
∥∥2 − 1

2η

∥∥z − xt+1
∥∥2

+⟨∇F (xt)− gt, xt+1 − z⟩ −
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2

(ii)

≤ F (xt) + ⟨∇F (xt), z − xt⟩+ 1

2η

∥∥z − xt
∥∥2 + η

2

∥∥gt −∇F (xt)
∥∥2

−
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2

(iii)

≤ F (z) +
L

2

∥∥z − xt
∥∥2 + 1

2η

∥∥z − xt
∥∥2 + η

2

∥∥gt −∇F (xt)
∥∥2

−
(

1

2η
− L

2

)∥∥xt+1 − xt
∥∥2 ,

where (i) follows from (18), (ii) holds by Young’s inequality, i.e., ⟨a, b⟩ ≤ η
2 ∥a∥

2 + 1
2η ∥b∥

2 with

a = ∇F (xt) − gt, b = xt+1 − z, (iii) holds by the smoothness of F (·), i.e., −L
2

∥∥z − xt
∥∥2 ≤

F (xt)− F (z)− ⟨∇F (xt), z − xt⟩.
We are now ready to utilize the properties of hidden convex functions to bound F (z) and∥∥z − xt

∥∥2 for some specific choice of z ∈ X . We select z := xtα = c−1((1− α)c(xt) + αc(x∗)) ∈
X , for some α ∈ [0, 1], and x∗ ∈ X ∗. By Proposition 9, we have for µH ≥ 0

F (z) ≤ (1− α)F (xt) + αF (x∗)− (1− α)αµH

2

∥∥c(xt)− c(x∗)
∥∥2 ,

∥∥z − xt
∥∥2 ≤ α2

µ2
c

∥∥c(xt)− c(x∗)
∥∥2 .

Combining the three inequalities above and utilizing the assumption η ≤ 1/L, we complete the
proof of (17).
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The next lemma controls the error between the momentum gradient estimator gt and the true
gradient ∇f(xt, ξt). We borrow the analysis from [27], where they demonstrate the convergence
of SGD with momentum for general non-convex unconstrained problems (Lemma 2 in Appendix F
and Theorem 8 in Appendix J [27]).

Lemma 20 Let β ∈ (0, 1] and the sequence
{
gt
}
t≥0

be updated via (7) Then

E
[∥∥gt+1 −∇F (xt+1)

∥∥2] ≤ (1− β)E
[∥∥gt −∇F (xt)

∥∥2]+ 3L2

β
E
[∥∥xt − xt+1

∥∥2]+ β2σ2.

Proof Using the updating rule of gt+1 and the unbiasedness of stochastic gradients, we have

E
[∥∥gt+1 −∇F (xt+1)

∥∥2] = E
[∥∥(1− β)gt + β∇f(xt+1, ξt+1)−∇F (xt+1)

∥∥2]
= (1− β)2E

[∥∥gt −∇F (xt+1)
∥∥2]

+β2E
[∥∥∇f(xt+1, ξt+1)−∇F (xt+1)

∥∥2]
≤ (1− β)2

(
1 +

β

2

)
E
[∥∥gt −∇F (xt)

∥∥2]
+

(
1 +

2

β

)
E
[∥∥∇F (xt)−∇F (xt+1)

∥∥2]+ β2σ2

≤ (1− β)E
[∥∥gt −∇F (xt)

∥∥2]+ 3L2

β
E
[∥∥xt − xt+1

∥∥2]
+β2σ2,

where the first inequality uses Young’s inequality and the bound of the variance of stochastic
gradients, and the last step uses the Lipschitz continuity of the gradient and the fact that (1 −
β)
(
1 + β

2

)
≤ 1 for all β ∈ (0, 1].

H.1. Hidden Convex Setting

Proof [Theorem 6] By Lemma 19, subtracting F (x∗) from both sides of (17), setting µH = 0, and
taking the expectation, we have for any η ≤ 1/L that

E
[
F (xt+1)− F (x∗)

]
≤ (1− α)E

[
F (xt)− F (x∗)

]
+

α2

µ2
cη

E
[∥∥c(xt)− c(x∗)

∥∥2]
−
(

1

2η
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ η

2
E
[∥∥gt −∇F (xt)

∥∥2]
≤ (1− α)E

[
F (xt)− F (x∗)

]
+

α2D2
U

µ2
cη

−
(

1

2η
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ η

2
E
[∥∥gt −∇F (xt)

∥∥2] ,
where the second inequality uses boundedness of U .
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Summing up the inequality above with a η
β multiple of the result of Lemma 20, we recognize

the Lyapunov function ΛHB
t defined in (8), and derive

ΛHB
t+1 ≤ ΛHB

t − αE
[
F (xt)− F (x∗)

]
− η

2
E
[∥∥gt −∇F (xt)

∥∥2]
+
α2D2

U
µ2
cη

−
(

1

2η
− L

2
− 3L2η

β2

)
E
[∥∥xt+1 − xt

∥∥2]+ βησ2

≤ (1− α)ΛHB
t +

α2D2
U

µ2
cη

+ βησ2,

where the last step holds for α ≤ β/2 and η ≤ β
4L . Unrolling the recursion from t = 0 to t = T − 1

and choosing η = β
4L , we obtain

ΛHB
T ≤ (1− α)TΛHB

0 +
αD2

U
µ2
cη

+
βησ2

α

≤ (1− α)TΛHB
0 +

4LD2
U

µ2
c

α

β
+

σ2

4L

β2

α
≤ ε,

where the last inequality holds by setting α = min
{

β
2 ,

3µ2
c

2LD2
U
βε, σµc

4LDU
β

3
2

}
, β = min

{
1, µ2

c

9D2
Uσ2 ε

2
}

,
and the number of iterations as

T =
1

α
log

(
3ΛHB

0

ε

)
= Õ

(
LD2

U
µ2
c

1

ε
+

LD4
Uσ

2

µ4
c

1

ε3

)
.

Similar to P-SGD, the momentum variant also supports mini-batching and the iteration com-
plexity is O(ε−1) when sufficiently large mini-batch is utilized.

Corollary 21 Let the assumptions of Theorem 6 hold. Suppose momentum variant of P-SGD with
batch-size B is applied with η = β

4L , η ∈ (0, 1], B ≥ min{1, 9D
2
Uσ2

µ2
cε

2 }. Then E
[
F (xT+1)− F (x∗)

]
≤

ε after T = Õ
(
LD2

U
µ2
cε

)
.

Proof The proof follows immediately from Theorem 6 by replacing σ2 with σ2/B.

H.2. Hidden Strongly Convex Setting

We conclude the section with the improved result for P-SGD with momentum under strongly convex
H(·).
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Theorem 22 (Strongly convex H(·)) Let C.1, C.2, A.1’ and A.2’ hold with µH > 0. Then
for any η ≤ β

4L , β ∈ (0, 1], and α ≤ min
{

β
2 ,

µ2
cµHη
4

}
, we have for any T ≥ 0

ΛHB
T ≤ (1− α)TΛHB

0 +
βησ2

α
,

where ΛHB
t is given by (8). Fix ε > 0, and set the parameters of algorithm (7) as

η =
β

4L
, β = min

{
1,

µ2
cµH

8σ2
ε

}
.

Then the scheme (7) returns a point xT with E
[
F (xT )− F (x∗)

]
≤ ε after

T = Õ
(

L

µ2
cµH

+
Lσ2

µ4
cµ

2
H

1

ε

)
.

Proof Applying Lemma 19 with µH > 0, and setting α small enough allows us to cancel the term
invloving

∥∥c(xt)− c(x∗)
∥∥2. The rest of the proof is similar to the one of Theorem 16.

Again, the convergence rate becomes linear in the number of iteration if sufficiently large mini-
bach is used.

Corollary 23 Let the assumptions of Theorem 22 hold. Suppose momentum variant of P-SGD with
batch-size B is applied with η = β

4L , η ∈ (0, 1], B ≥ min{1, 8σ2

µ2
cµHε

}. Then the method converges

linearly, i.e., E
[
F (xT+1)− F (x∗)

]
≤ ε after T = Õ

(
L

µ2
cµH

)
.

Proof The proof follows immediately from Theorem 22 by replacing σ2 with σ2/B.

Appendix I. Technical Lemma

We report the following three technical lemma from [15] and include their slightly modified proofs
for completeness.

Lemma 24 Let ρ > ℓ, and for any xt ∈ X , define x̂t := proxΦ/ρ(x
t), where Φ := F + δX , and

ĝt ∈ ∂F (x̂t). Then x̂t = ΠX
(
ηρxt − ηĝt + (1− ηρ)x̂t

)
.

Proof By definition of x̂t and Φ(·), we have

0 ∈ ∂
(
F +

ρ

2

∥∥· − xt
∥∥2 + δX

)
(x̂t) = ĝt + ρ

(
x̂t − xt

)
+ ∂δX

(
x̂t
)
,

where the last equality holds, since F (·)+ ρ
2

∥∥· − xt
∥∥2, and δX (·) are both convex (due to the conic

combination rule). Multiplying both sides by η > 0 and rearranging, we get zt := ηρxt − ηĝt +
(1−ηρ)x̂t ∈ x̂t+η∂δX

(
x̂t
)
. Therefore, by the optimality condition for the proximal sub-problem,

we have x̂t = proxηδX
(
zt
)
= ΠX (z

t).
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Lemma 25 Let Assumptions A.1, A.2 hold, and ρ > ℓ, η ≤ 1/ρ . Then for all t ≥ 0

E
[∥∥xt+1 − x̂t

∥∥2 | xt] ≤ (1− ηρ)
∥∥xt − x̂t

∥∥2 + 2G2
F η

2

Proof Lemma 24 states that for any ĝt ∈ ∂F (x̂t) and zt = ηρxt − ηĝt + (1 − ηρ)x̂t, we have
x̂t = ΠX (z

t). Thus, using the update rule of xt+1 and non-expansiveness of the projection, we
derive

E
[∥∥xt+1 − x̂t

∥∥2 | xt
]
= E

[∥∥ΠX
(
xt − ηg(xt, ξt)

)
−ΠX

(
zt
)∥∥2 | xt

]
≤ E

[∥∥xt − ηg(xt, ξt)−
(
ηρxt − ηĝt + (1− ηρ)x̂t

)∥∥2 | xt
]

= E
[∥∥(1− ηρ)

(
xt − x̂t

)
− η

(
g(xt, ξt)− ĝt

)∥∥2 | xt
]

(i)
= (1− ηρ)2

∥∥xt − x̂t
∥∥2 − (1− ηρ)η⟨gt − ĝt, xt − x̂t⟩+ η2E

[∥∥g(xt, ξt)− ĝt
∥∥2 | xt

]
(ii)

≤ (1− ηρ)2
∥∥xt − x̂t

∥∥2 − (1− ηρ)η⟨gt − ĝt, xt − x̂t⟩+ 2G2
F η

2

(iii)

≤ (1− ηρ)2
∥∥xt − x̂t

∥∥2 − (1− ηρ)ηℓ
∥∥xt − x̂t

∥∥2 + 2G2
F η

2

≤ (1− ηρ)
∥∥xt − x̂t

∥∥2 + η2G2
F ,

where in (i) use unbiasedness of the gradient estimator. In (ii), we use Young’s inequality and A.2,
(iii) holds by hypomonotonicity inequality ⟨gt− ĝt, xt− x̂t⟩ ≥ −ℓ

∥∥xt − x̂t
∥∥2. The last inequality

holds by the choice of ρ and η .

Lemma 26 Let Assumptions A.1’, A.2’ hold, and ρ = 4L, η ≤ 2
9L . Then for all t ≥ 0

E
[∥∥xt+1 − x̂t

∥∥2 | xt] ≤ (1− ηρ)
∥∥xt − x̂t

∥∥2 + σ2η2

Proof For a differentiable F (·) Lemma 24 implies that for zt = ηρxt − η∇F
(
x̂t
)
+ (1 − ηρ)x̂t,

we have x̂t = ΠX (z
t). Thus, using the update rule of xt+1 and non-expansiveness of the projection,

30



STOCHASTIC OPTIMIZATION UNDER HIDDEN CONVEXITY

we derive

E
[∥∥xt+1 − x̂t

∥∥2 | xt
]
= E

[∥∥ΠX
(
xt − η∇f

(
xt, ξt

))
−ΠX

(
zt
)∥∥2 | xt

]
≤ E

[∥∥xt − η∇f
(
xt, ξt

)
−
(
ηρxt − η∇F

(
x̂t
)
+ (1− ηρ)x̂t

)∥∥2 | xt
]

= E
[∥∥(1− ηρ)

(
xt − x̂t

)
− η

(
∇f

(
xt, ξt

)
−∇F

(
x̂t
))∥∥2 | xt

]
= E

[∥∥(1− ηρ)
(
xt − x̂t

)
− η

(
∇F

(
xt
)
−∇F

(
x̂t
))

− η
(
∇f

(
xt, ξt

)
−∇F

(
xt
))∥∥2 | xt

]
(i)
=
∥∥(1− ηρ)

(
xt − x̂t

)
− η

(
∇F

(
xt
)
−∇F

(
x̂t
))∥∥2 + η2E

[∥∥∇f
(
xt, ξt

)
−∇F

(
xt
)∥∥2 | xt

]
(ii)

≤
∥∥(1− ηρ)

(
xt − x̂t

)
− η

(
∇F

(
xt
)
−∇F

(
x̂t
))∥∥2 + η2σ2

= (1− ηρ)2
∥∥xt − x̂t

∥∥2 − 2(1− ηρ)η
(
xt − x̂t,∇F

(
xt
)
−∇F

(
x̂t
)〉

+ η2σ2

+ η2
∥∥∇F

(
xt
)
−∇F

(
x̂t
)∥∥2

(iii)

≤ (1− ηρ)2
∥∥xt − x̂t

∥∥2 + 2(1− ηρ)ηL
∥∥xt − x̂t

∥∥2 + η2L2
∥∥xt − x̂t

∥∥2 + η2σ2

= (1− ηρ)

(
1− ηρ+ 2ηL+

η2L2

1− ηρ

)∥∥xt − x̂t
∥∥2 + η2σ2

≤ (1− ηρ)
∥∥xt − x̂t

∥∥2 + η2σ2,

where in (i) and (ii) use unbiasedness of the gradient estimator and bounded variance. In (iii), we
use Cauchy–Schwarz inequality and smoothness of F (·), i.e.,

∥∥∇F
(
x̂t
)
−∇F

(
xt
)∥∥ ≤ L

∥∥x̂t − xt
∥∥.

The last inequality holds by the choice of ρ, η and 2ηL ≤ ηρ
2 , and η2L

1−ηρ ≤ ηρ
2 .

The following technical lemma is fairly standard, e.g., see [34].

Lemma 27 Let ϕ(·) be convex and for some η > 0, x ∈ X , x+ := argminy∈X

{
ϕ(y) + 1

2η ∥y − x∥2
}

,
then

ϕ(y) +
1

2η
∥y − x∥2 ≥ ϕ(x+) +

1

2η

∥∥x+ − x
∥∥2 + 1

2η

∥∥y − x+
∥∥2 for all y ∈ X .
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