
OPT2025: 17th Annual Workshop on Optimization for Machine Learning

Automatic mixed precision for optimizing gained time with constrained
loss mean-squared-error based on model partition to sequential

sub-graphs

Shmulik Markovich-Golan* Daniel Ohayon* Itay Niv Yair Hanani
Intel Corporation / Habana Labs
{shmulik.markovich-golan, daniel1.ohayon, itay.niv, yair.hanani}@intel.com

Abstract
Quantization is essential for Neural Network (NN) compression, reducing model size and compu-
tational demands by using lower bit-width data types, though aggressive reduction often hampers
accuracy. Mixed Precision (MP) mitigates this tradeoff by varying the numerical precision across
network layers. This study focuses on automatically selecting an optimal MP configuration within
Post-Training Quantization (PTQ) for inference. The first key contribution is a novel sensitivity
metric derived from a first-order Taylor series expansion of the loss function as a function of quan-
tization errors in weights and activations. This metric, based on the Mean Square Error (MSE)
of the loss, is efficiently calculated per layer using high-precision forward and backward passes
over a small calibration dataset. The metric is additive across layers, with low calibration memory
overhead as weight optimization is unnecessary. The second contribution is an accurate hardware-
aware method for predicting MP time gain by modeling it as additive for sequential sub-graphs.
An algorithm partitions the model graph into sequential subgraphs, measuring time gain for each
configuration using a few samples. After calibrating per-layer sensitivity and time gain, an Integer
Programming (IP) problem is formulated to maximize time gain while keeping loss MSE below a
set threshold. Memory gain and theoretical time gain based on Multiply and Accumulate (MAC)
operations are also considered. Rigorous experiments on the Intel Gaudi 2 accelerator validate the
approach on several Large Language Models (LLMs).

1. Introduction

Quantization is a key technique for compressing neural networks by converting high-precision weights
and activations to lower-precision formats, significantly reducing model size and computational
load ([17], [6], [13], [7], [19][11]). This is crucial for efficient inference on accelerators and edge
devices. The main quantization approaches are Quantization-Aware Training (QAT), Post-Training
Quantization (PTQ), and Quantization-Aware Fine-Tuning (QFT).

QAT incorporates quantization during training, maintaining accuracy despite aggressive quanti-
zation (e.g., INT4) but requires substantial data and computational resources ([9], [10]). In contrast,
PTQ quantizes pre-trained models efficiently but may reduce accuracy, especially in low-precision
scenarios ([12], [2]). QFT combines PTQ with fine-tuning to balance accuracy and resource efficiency
([1]).

Mixed Precision (MP) has emerged as a key technique for optimizing Neural Network (NN)
performance across hardware platforms ([16]). Automatic selection of MP configuration for inference
involves search-based methods (e.g., Hessian AWare Quantization (HAWQ) and Orthogonal Mixed

* Equal contribution.

© .



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Precision Quantization (OMPQ)) and optimization-based approaches (e.g., Differentiable Neural
Architecture Search (DNAS), Hardware-Aware Automated Quantization (HAQ), Reinforcement
Learning Approach for Deep Quantization (ReLeQ), AUTOQ). Optimization-based methods tackle
the non-differentiability of bit-widths through reinforcement learning and hardware feedback.

Pandey et al. [14] proposed an MP algorithm for post-training scenarios, minimizing data usage
and considering hardware limitations. The algorithm first measures layer sensitivity, then reduces
bit-width iteratively while maintaining performance. Wu et al. [20] introduced Structured Mixed-
precision (StruM), tailored for compatible hardware, while [4] formulated loss minimization as a
Multiple-Choice Knapsack Problem (MCKP), solved with a greedy search algorithm.

In this work, we address the challenge of selecting an MP configuration that optimizes gained
time or memory compared to the high-precision model for PTQ, while maintaining a constraint on
the Mean Square Error (MSE) of the loss. To solve this problem, we introduce a novel sensitivity
metric derived from the MSE of the loss of the quantized model. This metric is formulated by
approximating the loss error as a first-order Taylor series expansion of quantization errors from
weights and activations. It is estimated using both forward and backward passes of the model at
high precision with a calibration dataset. The metric predicts the MSE of the loss for arbitrary
MP configurations by considering the loss error components from different quantized layers as
statistically independent. The MSE of a given component from a layer is calculated as the product of
its sensitivity and the MSE of the quantization error of an individual element. Although the method
requires a backward pass, the additional memory requirement is minimal, mainly consisting of stored
activations (since weighta optimizer is not required).

We also introduce a method for predicting the empirical time gained from a MP configuration,
based on the additive execution time of sequentially computed sub-graphs. The model structure is
analyzed to find sequential sub-graphs, each potentially comprising multiple layers or a single layer.
Time gains for all MP configurations are measured for each group, enabling the prediction of gained
time for any configuration. The total time gain is estimated as the sum of the gained times per group.

2. Proposed method

In Sec. 2.1 the problem is formulated and the solution is derived based on Integer Programming (IP)
optimizing a generic objective function with constrained loss MSE per group (sequential sub-graph).
A full derivation of the sensitivity and the loss MSE, are given Appendix E. Various performance
metrics which can substitute the generic objective function are defined in Sec. 2.2. We also discuss
the motivation and method for partitioning the model graph to sequential sub-graphs for accurately
assessing the time gained by MP. The method is summarized in Sec. A.

2.1. Formulation

Let M, X and Y respectively denote a NN, the input and output, such that:

Y ≜ M (X) (1)

and let g (M (X) ,Ytrue) denote the loss function where Ytrue represents the ground-truth target
corresponding to Y. The NN is composed of L linear operations, including both standard linear
layers and Batch General Matrix Multiplication (BGEMM) layers. Assume that the underlying
hardware accelerator supports F distinct numerical formats. A per-layer MP configuration I layer

2



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

is defined by a set of L × F binary indicators (one per each combination of layer and numerical
format):

I layer ≜
{
i
layer
ℓ,f ∈ {0, 1}

}
ℓ∈[0,L−1],f∈[0,F−1]

(2)

where ℓ indexes the layers and f indexes the numerical formats. Each layer is assigned exactly one
numerical format, enforcing the constraint

∑
f i

layer
ℓ,f = 1. The numerical formats are assumed to be

various floating-point representations, differentiated by their mantissa bit widths, denoted mf .
Now, suppose the model is partitioned into J disjoint groups of layers, {Vj}J−1

j=0 , such that layers
within a group exhibit dependent performance characteristics, while different groups are independent.
Define each group as the set of layer indices comprising it, i.e., Vj ≜

{
ℓj,0, . . . , ℓj,Lj−1

}
, where

Lj is the number of layers in group j. Let Qj ∈ ZLj×FLj be the matrix enumerating all per-layer
possible quantization configurations for group j, where each column specifies a choice of numerical
formats for the group layers, and each of its elements is in the range [0, F − 1].

We extend the standard per-layer binary indicator into a per-group binary indicator as follows. A
per-group MP configuration I, also denoted here as an MP configuration for brevity, is defined by a
set of J × FLj binary indicators (one per each combination of group and any of its FLj possible
quantization combinations):

I ≜ {ij,p ∈ {0, 1}}
j∈[0,J−1],p∈[0,FLj−1] (3)

where j indexes the groups and p indexes its quantization configurations (indicating that the con-
figuration in p-th column of Qj is selected). Each group is assigned exactly one configuration,
enforcing the constraint

∑
p ij,p = 1. A special case arises when the entire model is sequential; this

corresponds to J = L single layer groups with Vℓ = {ℓ}.
Let cj ∈ RFLj be the vector of performance metric values associated with the configurations in

Qj , and dj ∈ RFLj the corresponding loss MSE values. Define the MSE of the loss function due to
approximation under an MP configuration as:

E
[
g̃2
]
= E

[
(ĝ − g)2

]
(4)

where E [•] denotes the expectation operator and ĝ is the perturbed loss under the MP configuration.
Let c be a performance metric to be maximized. In this study, we evaluate several metrics:

empirical time gain denoted cET, theoretical time gain estimated from the number of Multiply and
Accumulate (MAC) operations denoted cTT and memory gain from reduced model size denoted cM.
Execution under an MP configuration I aims to improve performance, while potentially increasing
the loss MSE.

Assuming a maximum allowable loss MSE of τ2E
[
g2
]
, for a parameter τ < 1 (which is the

normalized-Root Mean Square Error (RMSE) threshold), our objective is to determine the optimal
MP configuration by solving:

{ij,p}j,p = argmax{ij,p}j,p

∑
j,p

ij,pcj,p

s.t.:
∑
j,p

ij,pdj,p ≤ τ2E
[
g2
]
,
∑
p

ij,p = 1 : ∀j, ij,p ∈ {0, 1} : ∀j, p. (5)

Define the IP loss MSE and performance metrics as:

3



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

d ≜
∑
j,p

ij,pdj,p (6) c ≜
∑
j,p

ij,pcj,p (7)

In Appendix E and Sec. 2.2, we derive explicit expressions for the latter, respectively. The loss MSE
components dj,p are defined as:

dj,p ≜

Lj−1∑
l=0

sℓj,lαQj,lp
(8) srℓ ≜ ∥zrℓ ⊙ żrℓ∥2 (9)

with srℓ being the sensitivity of the loss to the quantization of tensor zrℓ , comprising the activations
and parameters of the ℓ-th layer, with żrℓ being the gradient of the loss with respect to this tensor,
sℓ ≜

1
R

∑
r s

r
ℓ is its average over the sample index r, and αQj,lp

the respective quantization noise
variance according to configuration Qj,lp.

2.2. Performance metric

The choice of the performance metric c significantly impacts the resulting MP configuration. We
consider three metrics: empirical time gain, theoretical time gain, and memory gain.

2.2.1. EMPIRICAL TIME GAIN cET

Model partition to sequential sub-graphs: The partition process is briefly described. For more
details please refer to Sec. B. Consider representing the computation of a model as a Directed Acyclic
Graph (DAG). Note that two adjacent sub-graphs that are connected by a single edge are computed
sequentially since the second sub-graph depends on the output of the first sub-graph. This sequential
computation allows us to model their combined computation time as the sum of their individual
times, which also applies to their gained time. Our partition procedure identifies single-entry/single-
exit sub-graphs bounded by branching and merging nodes, splitting the computation graph into as
many sequential sub-graphs as possible. These sub-graphs form an ordered sequence {Vj}J−1

j=0 that
executes strictly sequentially at run-time. Predicting the computation time of concurrent layers within
sub-graphs presents significant challenges. Operations within a sub-graph may execute in parallel,
while the compiler is free to fuse or reorder operations. Additionally, latency depends on complex
interactions between layer dependencies, hardware resources, and scheduling rules. We propose to
avoid this complication and measure the gained time of each sub-graph, represented as a group of
layers comprising it, for all their possible quantization configurations.

Gained time based on empirical time measurements per-group vs. per-layer: Consider the
gained time of the Attention sub-graph in LLAMA-3.1-8B, illustrated in Figure 5, which contains
the quantizable layers: q_proj, v_proj, k_proj, qk_matmul and av_matmul. Figure 1
compares the measured empirical time gain cET

j,p of the attention sub-graph against the theoretical
time gain predicted as the corresponding sum of per-layer time gain measurements. The large
discrepancies demonstrate that simple summation of per-layer measurements does not yield a good
estimate for the time gain of a sub-graph which contains concurrent computations. It shows the gap
that the proposed method addresses.

4



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Figure 2: Layer-wise quantization patterns across MP configurations (rows) and model layers
(columns) for IP-EmpiricalTime (IP-ET). Yellow: FP8, purple: BF16.

Figure 1: Measured empirical time gain cET
j,p of the Attention sub-graph in LLAMA-3.1-8B (in

blue) compared to its prediction based on the summation of per-layer time gain measurements (in
orange) and for the theoretical time gain cTT

j,p (green) for any of its 25 MP configurations. The various
configurations are ordered in ascending order of empirical time gain. Configurations are labeled
as 5-bit binary words which represent the numerical format of each of the 5 linear operations (
q_proj, v_proj, k_proj, qk_matmul, and av_matmul) with BF16 and FP8 denoted as 0
and 1, respectively.

Gained time measurements: The time gain of the p-th MP configuration of the j-th group is
measured by subtracting the end-to-end Time To First Token (TTFT) of the model with the j-th
group configured correspondingly and the other groups configured to BF16 from the end-to-end
TTFT of the model in BF16.

3. Experimental results

We evaluate our proposed mixed-precision strategies (IP-ET, IP-TT, IP-M) against Random and
Prefix baselines using 1B and 8B models on an Intel Gaudi 2 accelerator. We first validate the key
additivity assumptions of our method in Sec. D.3 before analyzing the final trade-off curves for loss
vs. time (Sec. 3.1) and accuracy vs. performance (Sec. 3.2). The complete experimental setup is
detailed in Appendix D.1.

5



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Figure 3: Theoretical loss MSE vs. empirical time gain on the Meta-Llama-3.2-1B-Instruct (1B)
model across four tasks.

3.1. Loss MSE vs. empirical time gain curve

Figure 3 demonstrates that the IP-ET strategy is significantly and consistently better then the Random
and Prefix strategies, yielding an appealing loss MSE vs. empirical time gain curve. Furthermore, it
maintains markedly low loss MSE vs. empirical time gain.

3.2. Accuracy vs. performance curve

Figure 4(a)subfigure and Figure 4(b)subfigure illustrate the accuracy degradation vs. TTFT curves
of different strategies for the 1B and 8B models, respectively. For both models, IP-ET consistently
achieves better accuracy at comparable latency than the baselines. E.g., with Meta-Llama-3.1-8B-
Instruct (8B), IP-ET achieves accuracy loss below 0.1% at 450ms TTFT, whereas other strategies
require ∼600ms for similar accuracy—a 30% speedup.

Table 1 provides a comprehensive comparison across all strategies and models. The proposed
IP-based methods consistently outperform the baselines. Despite its limited quantization scope (linear
layers only), IP-Memory (IP-M) still surpasses the baselines in most cases, with one exception: for
8B on LAMBADA, the Prefix strategy achieves slightly higher accuracy. These results confirm that
sensitivity-aware, hardware-informed quantization significantly improves inference efficiency while
preserving model quality. The improvement of the proposed method for the 1B model is better then
the 8B model since the gap between the FP8 and BF16 accuracies there is larger. See Sec. D for
additional results on per-task time gains, MAC-based gains, and memory gains.

6



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

(a) 1B (b) 8B

Figure 4: Average accuracy difference [%] vs. TTFT across HellaSwag, LAMBADA, Winogrande,
and PIQA. Comparing MP quantization strategies (IP-ET, Random and Prefix)

4. Conclusions
By utilizing a novel loss MSE and empirical time gain per sequential sub-graphs metrics, we intro-
duce an automatic MP method based on IP for PTQ. The proposed loss MSE metric, which exhibits
additive properties per layer, serves as a proxy for model accuracy. We efficiently approximate
this metric using forward- and backward-passes over a small calibration dataset. Recognizing that
the empirical time gain exhibits additivity solely for sequential sub-graphs—attributable to parallel
capabilities and advanced compiler optimizations in the hardware accelerator— we formulate an
algorithm for model partitioning. In this approach, each sub-graph is characterized as a group of con-
stituent layers, and we define a performance objective function by summing the empirical time gain
for each group. To achieve this, we measure the empirical time gains of each sub-graph over a limited
set of samples. We validate both the approximation of the loss MSE and its additive nature across
layers. Furthermore, we demonstrate that the empirical time gain is additive per group, resulting in a
highly accurate estimate of the measured time gain. Finally, we evaluate the proposed method by
comparing it against baseline strategies (Random and Prefix configurations), demonstrating that it
consistently outperforms these approaches across various Large Language Models (LLMs).

References

[1] Saleh Ashkboos, Bram Verhoef, Torsten Hoefler, Evangelos Eleftheriou, and Martino Dazzi.
Efqat: An efficient framework for quantization-aware training. arXiv preprint arXiv:2411.11038,
2024. URL https://arxiv.org/abs/2411.11038.

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. Post-training 4-bit quantization of convolu-
tion networks for rapid-deployment. In Advances in Neural Information Processing Systems
(NeurIPS), 2019. URL https://arxiv.org/abs/1810.05723.

[3] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

7

https://arxiv.org/abs/2411.11038
https://arxiv.org/abs/1810.05723


AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

[4] Weihan Chen, Peisong Wang, and Jian Cheng. Towards mixed-precision quantization of neural
networks via constrained optimization, 2021. URL https://arxiv.org/abs/2110.
06554.

[5] EleutherAI. Language model evaluation harness. https://github.com/EleutherAI/
lm-evaluation-harness, 2025.

[6] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. 2021. https:
//arxiv.org/abs/2103.13630.

[7] Yunhui Guo. A survey on methods and theories of quantized neural networks. 2018. https:
//arxiv.org/abs/1808.04752.

[8] Intel Corporation. Intel neural compressor. https://github.com/intel/
neural-compressor, 2024.

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2704–2713, 2018. URL https:
//arxiv.org/abs/1712.05877.

[10] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1806.08342, 2018. URL https://arxiv.org/abs/
1806.08342.

[11] Joonhyung Lee, Shmulik Markovich-Golan, Daniel Ohayon, Yair Hanani, Gunho Park,
Byeongwook Kim, Asaf Karnieli, Uri Livne, Haihao Shen, Tai Huang, Se Jung Kwon,
and Dongsoo Lee. Faster inference of llms using fp8 on the intel gaudi, 2025. URL
https://arxiv.org/abs/2503.09975.

[12] Szymon Migacz. 8-bit inference with tensorrt. NVIDIA GPU Technology Conference (GTC),
2017. URL https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.
pdf. Presentation.

[13] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. 2021. https:
//arxiv.org/abs/2106.08295.

[14] Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tijmen
Blankevoort. A practical mixed precision algorithm for post-training quantization. arXiv
preprint arXiv:2302.05397, 2023.

[15] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[16] Mariam Rakka, Mohammed E Fouda, Pramod Khargonekar, and Fadi Kurdahi. A review of
state-of-the-art mixed-precision neural network frameworks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

8

https://arxiv.org/abs/2110.06554
https://arxiv.org/abs/2110.06554
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1808.04752
https://arxiv.org/abs/1808.04752
https://github.com/intel/neural-compressor
https://github.com/intel/neural-compressor
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/2503.09975
https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.pdf
https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.pdf
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295


AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

[17] Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Transactions on Intelligent
Systems and Technology, 2023. https://arxiv.org/abs/2205.07877.

[18] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

[19] Olivia Weng. Neural network quantization for efficient inference: A survey. 2021. https:
//arxiv.org/abs/2112.06126.

[20] Michael Wu, Arnab Raha, Deepak A. Mathaikutty, Martin Langhammer, and Engin Tunali.
Strum: Structured mixed precision for efficient deep learning hardware codesign, 2025. URL
https://arxiv.org/abs/2501.18953.

[21] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Appendix

Appendix A. Proposed method summary

Algorithm 1 summarizes our end-to-end approach for automatic MP configuration. The method
integrates hardware-aware timing measurements with gradient-based sensitivity analysis to determine
optimal precision assignments. After partitioning the model into sequential sub-graphs (line 1), we
perform sensitivity calibration through forward and backward passes on the calibration dataset (line
2). We then measure empirical time gains for each sub-graph across different precision configurations
(line 3), before formulating and solving the IP optimization that maximizes performance while
respecting the loss MSE threshold (line 4). This algorithm forms the foundation for all three
optimization strategies (IP-ET, IP-TheoreticalTime (IP-TT), and IP-M).

9

https://arxiv.org/abs/2205.07877
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2112.06126
https://arxiv.org/abs/2112.06126
https://arxiv.org/abs/2501.18953


AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Algorithm 1 Proposed automatic MP algorithm summary

Input: A model M, a calibration dataset Dcalib and a relative RMSE threshold τ
Output: MP configuration I (see (3))

1: Analyze model and partition it to J sequential sub-graphs {Vj}j as described in B
2: Sensitivity calibration

• Wrap the model M to enable sensitivity measurement

• Run forward- and backward- passes over Dcalib, and obtain: sensitivity {sℓ}ℓ and mean-
square loss E

[
g2
]

(see (26))

3: Empirical time gain measurement

• Measure TTFT of j-th group and p-th MP configuration, for j ∈ [0, J − 1] and p ∈[
0, FLj − 1

]
• Compute cET by subtracting the measurements from the TTFT of the model in BF16,

4: Obtain I by solving the IP optimization problem (see (5))
5: return I

Appendix B. Model Partitioning into sequential groups of layers

Effective MP assignment requires identifying model sub-graphs which execution time is additive.
Given a network’s computation graph, that can be formulated as a DAG with a single sink vertex -
our partitioning algorithm splits the model to sequential sub-graphs with a single entry and a single
exit points. Figure 5 illustrates the resulting partitioning for a Llama-3 transformer layer, showing
the Attention and MLP blocks split into single-entry/single-exit sub-graphs (V1–V4) that serve as the
fundamental units for our MP optimization.

Appendix C. Alternative Optimization Metrics

C.0.1. THEORETICAL TIME GAIN cTT

This performance metric is defined per-layer as the theoretical time gain based on the number of MAC
operations multiplied by the gained time of a single MAC in the f -th numerical format (compared to
BF16), denoted δT,f .

For a linear layer ℓ ∈ {Llin,LBGEMM} with N samples, input dimension Cℓ, and output dimension
Kℓ the theoretical time gain is defined as:

cℓ,f ≜

{
NCℓKℓδT,f ; ℓ ∈ Llin
NC2

ℓ δT,f ; ℓ ∈ LBGEMM
(10)

It is a simple performance metric that approximates the gained time without requiring any timing
measurements.

We compare theoretical and empirical time gains, i.e., cTT
j,p and cET

j,p, for the Attention sub-graph
in LLAMA-3.1-8B. By definition, since the theoretical time gain is based on number of MACs, it is
additive across layers. Therefore, the theoretical time gain of the p-th configuration of the j-group

10



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Algorithm 2 Partition model to sequential groups of layers

Input: A model M
Output: Model partition {Vj}j

1: Construct a DAG graph of the model computation {Vertices,Edges}
2: Add a start vertex start_vertex and denote the end vertex as end_vertex
3: Run Breadth-first search (BFS) and denote the longest path from start_vertex to vertex as

path_len [vertex] for each vertex ∈ Vertices
4: V = [], vertex = start_vertex
5: while vertex ̸= end_vertex do
6: Define set V ′ = {}
7: cur_len = path_len[vertex] + 1
8: Define the set A = next[vertex]
9: while |A| > 1 do

10: for vertex′ ∈ A do
11: if path_len[vertex′] ≤ cur_len then
12: A.pop(vertex′)
13: V ′.push(vertex′)
14: A.push(next[vertex′])
15: end if
16: end for
17: cur_len = cur_len + 1
18: end while
19: vertex = A.pop()
20: V ′.push(vertex)
21: Pop non-quantizable vertices/layers from V ′

22: if |V’|>0 then
23: V.append(V ′)
24: end if
25: end while
26: return V

11



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

(a) Attention block

(b) MLP block

Figure 5: Single-entry/single-exit sub-graphs (V1–V4) identified in one Llama-3 transformer layer.
Dashed blue regions denote the latency-additive sub-graphs used in 2.2.1; residual adds are omitted
for clarity. The final LM-head forms an additional single-layer sub-graph that is omitted from the
illustration for brevity.

is cTT
j,p =

∑
l∈Vj

cTT
ℓ,Qj,p

. Figure 1 compares the aforementioned theoretical versus measured time
gain. In order to simplify the comparison we fit the theoretical and empirical time gains, by constant
scale and bias which we apply to the theoretical time gain. Even after optimal fitting, the theoretical
proxy fails to capture the measured behavior, indicating that MAC counts do not reflect kernel fusion,
memory traffic, or scheduler effects. Note that the IP is not affected by multiplying the performance
metric by a scale factor and adding a bias to it.

C.0.2. MEMORY GAIN cM

Memory savings arise exclusively from storing weights at lower precision. Intermediate tensors
produced by BGEMM kernels can certainly be computed in FP8, but since they are not persistent
they are stored in the stack memory. Quantizing them therefore improves latency but does not change
the static model size. Under these observations, the additivity assumption across layers holds. Let
δM,f be the byte reduction obtained when a single parameter element is stored in format f instead of
BF16.

12



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Since memory is additive across layers, we treat each primitive layer as its own group, i.e. J = L
and Vj = {ℓj}. For a (trivial) group j and bit-width assignment Qj,p the memory gain is:

cℓ,f ≜

CℓKℓδM,f ℓ ∈ Llin,

0 ℓ ∈ LBGEMM.
(11) cj,p ≜

Lj−1∑
l=0

cℓj,l,Qj,p
. (12)

These cj,p values are used by the IP with the objective of maximizing memory gain cM.

Appendix D. Additional experimental results

D.1. Experimental setup details

We evaluate MP quantization during the prefill stage of LLM inference using Intel’s Gaudi 2
accelerator with F = 2 numerical formats (BF16 and FP8-E4M3: 4 exponent, 3 mantissa bits), the lm-
evaluation-harness [5], and Neural Compressor [8]. Our evaluation spans four tasks (HellaSwag [21],
LAMBADA [15], Winogrande [18], and PIQA [3]), averaging 5 iterations per configuration for time
measurement, 20% of the samples in each dataset for calibration and sensitivity measurements, and
the full datasets for final evaluation. Results are reported for 1B (with batch size 40) and 8B models
(with batch size 10). Each evaluation is run over 10 different randomization seeds in which we perturb
the scales before quantization in order to assess the accuracy statistics (mean and standard-deviation)
and not just a single noisy realization of it.

Our proposed method combined with the different metrics yields the following strategies: IP-ET
maximizes empirical time gain (Sec. 2.2.1), IP-TT maximizes theoretical time gain (Sec. C.0.1), and
IP-M maximizes memory gain (Sec. C.0.2). Both IP-ET and IP-TT quantize linear and BGEMM
layers , while IP-M quantizes only linear layers.

Each of the IP strategies is compared against two baseline strategies: Random which arbitrarily
selects layers to quantize, resulting in scattered patterns and Prefix which quantizes layers in a
sequential order. Both baseline strategies adhere to the loss MSE threshold. Figure 6 illustrates how
each strategy selects layers for quantization given normalized-RMSE threshold τ . Our proposed
IP-ET strategy produces optimal configurations which maximize the performance metric under the
loss MSE constraint, leading to its superior accuracy-performance curve shown in subsequent results.

D.2. Layer-wise quantization patterns

Figure 6 illustrates the distinct layer-wise quantization patterns produced by our proposed IP-ET
strategy in contrast to the Random and Prefix baseline methods.

13



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Figure 6: Layer-wise quantization patterns across MP configurations (rows) and model layers
(columns) for IP-ET (top), Prefix (middle), and Random (bottom). Yellow: FP8, purple: BF16.

D.3. Time gain and loss MSE model validation

Considering the 1B model for MP configurations attained using the proposed method with τ ∈
{0, 0.1%, . . . , 0.7%} in addition to the all-FP8 configuration, we depict the measured vs. the-
oretical empirical time gain (see (7)) and loss MSE, respectively, in Figure 7(a)subfigure and
Figure 7(b)subfigure. Evidently our assumptions hold as the empirical time gain appears additive
across groups and the theoretical loss MSE, assuming the per-layer model (26) and additivity (6), is
a reliable estimate for the measured loss MSE.

D.4. Per task accuracy

This subsection reports the per-task outcomes that complement the main text’s task-average accu-
racy–TTFT curves. For each tolerance, we compare Random, Prefix, and our IP-ET (see 2.2.1),
IP-TT (see C.0.1) and IP-M (see C.0.2) strategies against the full-BF16 baseline.

D.5. Per task: gained time based on measurements

Figure 8 reports for each individual task the accuracy difference (relatively to BF16) as a function
of TTFT. The proposed IP-ET outperforms Random and Prefix strategies on most of the settings,
particularly in the 1B model. For example, in HellaSwag using the 1B model (Figures 8(a)subfigure
and 8(b)subfigure), IP-ET shows a significant advantage across all MP configurations.

14



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

(a) Loss MSE versus τ . Blue - theoretical loss
MSE; Green - measured loss MSE using the
chosen configurations by IP-ET

(b) Relative TTFT reduction versus τ . Blue -
theoretical gain from the group aware IP-ET;
Green - measured gain on Gaudi 2.

Figure 7: Empirical validation of the additivity assumption on different MP configurations

Model Strategy LAMBADA LAMBADA HellaSwag Winogrande PIQA Tasks Avg.

ppl diff ↓ [%] acc diff ↑ [%] acc diff ↑ [%] acc diff ↑ [%] acc diff ↑ [%] acc diff ↑ [%]

IP-ET - Empirical Time Gain Optimization (both BGEMMs and linear layers)

Llama-3.2-1B-Instruct
Random 4.938 ± 0.96 -2.107 ± 0.45 -1.077 ± 0.35 0.077 ± 0.93 -0.449 ± 0.34 -0.889 ± 0.52
Prefix 5.986 ± 1.61 -2.206 ± 0.51 -1.586 ± 0.43 -0.271 ± 0.78 -0.615 ± 0.55 -1.170 ± 0.57
IP-ET 2.170 ± 0.32 -1.401 ± 0.26 -0.303 ± 0.14 0.020 ± 0.59 -0.169 ± 0.21 -0.463 ± 0.30

Llama-3.1-8B-Instruct
Random 1.290 ± 0.15 -0.256 ± 0.25 -0.071 ± 0.08 0.085 ± 0.55 -0.399 ± 0.26 -0.160 ± 0.286
Prefix 1.075 ± 0.15 -0.029 ± 0.24 -0.157 ± 0.12 -0.065 ± 0.66 -0.566 ± 0.30 -0.204 ± 0.33
IP-ET 0.922 ± 0.08 -0.229 ± 0.17 2.53e−4± 0.06 0.276 ± 0.41 -0.341 ± 0.17 -0.073 ± 0.20

IP-TT - Theoretical Time Gain Optimization (both BGEMMs and linear layers)

Llama-3.2-1B-Instruct
Random 4.938 ± 0.98 -2.107 ± 0.46 -1.077 ± 0.35 0.077 ± 0.85 -0.449 ± 0.33 -0.889 ± 0.49
Prefix 5.986 ± 1.62 -2.206 ± 0.50 -1.586 ± 0.43 -0.271 ± 0.79 -0.615 ± 0.54 -1.170 ± 0.57
IP-TT 2.744 ± 0.43 -1.697 ± 0.41 -0.429 ± 0.14 0.096 ± 0.61 -0.102 ± 0.26 -0.533 ± 0.35

Llama-3.1-8B-Instruct
Random 1.290 ± 0.15 -0.256 ± 0.25 -0.071 ± 0.08 0.085 ± 0.55 -0.399 ± 0.26 -0.160 ± 0.28
Prefix 1.075 ± 0.15 -0.029 ± 0.24 -0.157 ± 0.12 -0.065 ± 0.67 -0.566 ± 0.31 -0.204 ± 0.33
IP-TT 1.002 ± 0.08 -0.178 ± 0.15 2.58e−4± 0.06 0.185 ± 0.43 -0.279 ± 0.19 -0.068 ± 0.21

IP-M - Memory Gain Optimization (only linear layers)

Llama-3.2-1B-Instruct
Random 4.151 ± 1.25 -1.886 ± 0.52 -0.980 ± 0.35 0.396 ± 0.87 -0.363 ± 0.30 -0.708 ± 0.51
Prefix 4.483 ± 1.41 -1.693 ± 0.64 -1.361 ± 0.41 0.435 ± 0.86 -0.554 ± 0.44 -0.794 ± 0.59
IP-M 2.497 ± 0.34 -1.512 ± 0.33 -0.421 ± 0.15 0.230 ± 0.67 -0.075 ± 0.26 -0.445 ± 0.35

Llama-3.1-8B-Instruct
Random 1.073 ± 0.10 -0.267 ± 0.21 -0.024 ± 0.08 0.180 ± 0.49 -0.321 ± 0.24 -0.108 ± 0.25
Prefix 0.567 ± 0.13 0.015 ± 0.18 -0.092 ± 0.07 0.271 ± 0.47 -0.457 ± 0.22 -0.066 ± 0.23
IP-M 0.981 ± 0.08 -0.160 ± 0.17 0.012 ± 0.06 0.280 ± 0.37 -0.262 ± 0.16 -0.032 ± 0.19

Table 1: Accuracy and perplexity difference across three optimization strategies, averaged over
different quantization configurations from high-precision (BF16) to low-precision (FP8).

In LAMBADA using the 8B model (Figure 8(g)subfigure), Prefix yields higher accuracy, but
IP-ET achieves lower perplexity (Figure 8(i)subfigure), highlighting that loss-based optimization
(which is correlated to perplexity) doesn’t necessarily translate to accuracy gains.

In Winogrande on the 1B model (Figure 8(e)subfigure) is particularly noisy, as reflected by
large standard deviations in Table 1 which can explain the reason IP-ET shows no clear advantage.

15



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

However, the rapid rise of the blue line indicates that IP-ET, achieves good accuracy by not quantizing
only a few layers.

D.6. Gained time based on number of MACs

Figure 9 shows the tradeoff between accuracy and theoretical compute time, measured by MACs.
The x-axis denotes the theoretical time gain based on the number of MAC operations as defined in
Sec. C.0.1. While the y-axis reports accuracy difference relative to BF16, averaged across tasks. Our
IP-TT (blue) consistently outperforms Random (orange) and Prefix (green) strategies, achieving a
smaller accuracy degradation on both model sizes.

(a) 1B

(b) 8B

Figure 9: Average accuracy difference [%] vs. time based on number of MACs [cycles], across Hel-
laSwag, LAMBADA, Winogrande, and PIQA. Comparing layer selection strategies for quantization
(IP-TT, Random, Prefix).

16



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

(a) 1B - HellaSwag (b) 8B - HellaSwag

(c) 1B - PIQA (d) 8B - PIQA

(e) 1B - Winogrande (f ) 8B - Winogrande

(g) 1B - LAMBADA accuracy (h) 8B - LAMBADA accuracy

(i) 1B - LAMBADA perplexity (j) 8B - LAMBADA perplexity

Figure 8: Per task accuracy/perplexity difference vs. TTFT. Comparing layer selection strategies for
quantization (IP-ET, Random, Prefix

17



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

D.7. Gained memory

Figure 10 shows the tradeoff between accuracy and total model’s memory. The x-axis values were
calculated by subtracting BF16 model’s total memory and the memory gain (defined in Sec. C.0.1)
of each configuration. While the y-axis reports accuracy difference relative to BF16, averaged across
tasks.

For the 1B model (Figure 10(a)subfigure), IP-TT (blue) consistently outperforms Random
(orange) and Prefix (green) strategies, achieving lower accuracy loss for a given memory budget.

For the 8B model (Figure 10(b)subfigure), IP-TT also performs better than other strategies, though
the margin is small; notably, the initial FP8 configuration results in less than 0.2% accuracy difference
range, since only linear layers are quantized in these experiments. All 8B’s MP configurations yield
averaged accuracy difference close to zero.

(a) 1B

(b) 8B

Figure 10: Average accuracy difference [%] vs. total memory across HellaSwag, LAMBADA,
Winogrande, and PIQA. Comparing layer selection strategies for quantization (IP-M, Random,
Prefix).

18



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

Appendix E. Loss MSE metric

The model comprises a set of standard linear layers, denoted by Llin, and a set of BGEMM layers,
denoted by LBGEMM. A linear layer ℓ ∈ Llin is defined by the operation:

Yℓ = XℓW
T
ℓ + 1N×1b

T
ℓ (13)

where the dimensions of the matrices are as follows: Xℓ ∈ RN×Cℓ , Wℓ ∈ RKℓ×Cℓ , Yℓ ∈ RN×Kℓ ,
and bℓ ∈ RKℓ×1. Here, N represents the number of input samples.

A BGEMM layer ℓ′ is defined as:

Yℓ′ = X0,ℓ′ ⊗X1,ℓ′ (14)

where X0,ℓ′ and X1,ℓ′ ∈ RN×Cℓ′ , and the output Yℓ′ ∈ RN×1. The operator ⊗ is defined such that
the n-th element of Yℓ′ is computed by Yℓ′,n,0 ≜

(
eTnX0,ℓ′

) (
eTnX1,ℓ′

)T with the selection vector
en ∈ RN×1 defined as eTn ≜ [01×n−1, 1,01×N−n] and is used to extract the n-th row of a matrix.

Let zℓ represent the extended input of layer ℓ, obtained by vectorizing the possibly quantized
inputs. It is defined as:

zℓ ≜

 [
xT
ℓ ,w

T
ℓ

]T
; ℓ ∈ Llin[

xT
0,ℓ,x

T
1,ℓ

]T
; ℓ ∈ LBGEMM

 . (15)

Define the vectorized representations as:

xℓ ≜vec (Xℓ) (16a)

wℓ ≜vec (Wℓ) (16b)

x0,ℓ ≜vec (X0,ℓ) (17a)

x1,ℓ ≜vec (X1,ℓ) (17b)

with dimensions xℓ ∈ RNCℓ×1, wℓ ∈ RCℓKℓ×1 and x0,ℓ,x1,ℓ ∈ RNCℓ×1.
We now respectively derive expressions for the noisy loss arising from model quantization and

the quantized extended input:

ĝ ≜ g + g̃, (18) ẑℓ ≜ zℓ + z̃ℓ (19)

where z̃ℓ is the quantization noise for layer ℓ ∈ Llin
⋃
LBGEMM. And since f represents a floating-

point format with mf mantissa bits, the noise, modeled as a scaled Uniform random variable, and its
respective variance are given by:

z̃ℓ,k ∼ |zℓ,k| 2−mf U[±1/2] (20) E
[
z̃2ℓ,k

]
= |zℓ,k|2 αf (21)

for k ∈ [0, |zℓ|], where U[±1/2] is a Uniform random distribution over [−0.5, 0.5], and |zℓ| denotes
the number of elements in zℓ with αf ≜ 2

−2mf

12 for f ∈ [0, F − 1].
Considering the r-th input sample and (18), the noisy loss is expressed as ĝr ≜ gr+g̃r. Assuming

that the quantization noise is small compared to the full-precision values, a first-order Taylor series
approximation yields:

19



AMP FOR OPTIMIZING GAINED TIME WITH CONSTRAINED LOSS MSE

ĝr ≈ gr+
∑

ℓ∈Llin
⋃

LBGEMM

(z̃rℓ)
T żrℓ (22) żrℓ ≜

∂g

∂zℓ

∣∣∣∣
zrℓ

(23)

where żrℓ is the gradient of the loss with respect to the extended input zℓ of sample r.
The sensitivity of layer ℓ and its corresponding loss MSE for numerical format f and sample r

are respectively defined as:

srℓ ≜ ∥zrℓ ⊙ żrℓ∥2 (24) d
layer,r
ℓ,f ≜ srℓαf . (25)

The variance of the contributions to the loss MSE which correspond to the elements of the extended
input are added in super-position, and with ⊙ denoting the element-wise product. Averaging over R
input samples yields the average sensitivity and corresponding loss MSE component:

sℓ ≜
1

R

∑
r

srℓ (26) d
layer
ℓ,f ≜ sℓαf . (27)

For the p-th quantization configuration, and under the assumption that quantization noise is statisti-
cally independent across layers, the loss MSE component which corresponds to the j-th group is
given by the sum of per-layer contributions:

dj,p ≜

Lj−1∑
l=0

sℓj,lαQj,lp
. (28)

20


	Introduction
	Proposed method
	Formulation
	Performance metric
	Empirical Time Gain cT̂


	Experimental results
	Loss MSE vs. empirical time gain curve
	Accuracy vs. performance curve

	Conclusions
	Proposed method summary
	Model Partitioning into sequential groups of layers
	Alternative Optimization Metrics
	Theoretical time gain cT̂C
	Memory Gain cM̂


	Additional experimental results
	Experimental setup details
	Layer-wise quantization patterns
	Time gain and loss MSE model validation
	Per task accuracy
	Per task: gained time based on measurements
	Gained time based on number of MAC
	Gained memory

	Loss MSE metric

