
Learning to Play Like Humans: A Framework for LLM Adaptation in
Interactive Fiction Text-Based GAMEs

Anonymous ACL submission

Abstract

Interactive Fiction text-based adventure games001
(IF games) are where players interact through002
natural language commands. While recent ad-003
vances in Artificial Intelligence agents have004
reignited interest in IF games as a domain for005
studying decision-making, existing approaches006
prioritize task-specific performance metrics007
over human-like comprehension of narrative008
context and gameplay logic. This work presents009
a cognitively inspired framework that guides010
Large Language Models (LLMs) to learn and011
play IF games systematically. Our proposed012
Learning to Play Like Humans (LPLH) frame-013
work integrates three key components: (1)014
structured map building to capture spatial and015
narrative relationships, (2) action learning to016
identify context-appropriate commands, and017
(3) feedback-driven experience analysis to re-018
fine decision-making over time. By aligning019
agent behavior with narrative intent and com-020
monsense constraints, LPLH moves beyond021
purely exploratory strategies to deliver more022
interpretable, human-like performance. Cru-023
cially, this approach draws on cognitive science024
principles to more closely simulate how hu-025
man players read, interpret, and respond within026
narrative worlds. As a result, LPLH reframes027
the IF games challenge as a learning problem028
for LLMs-based agents, offering a new path029
toward robust, context-aware gameplay in com-030
plex text-based environments.031

1 Introduction032

Interactive Fiction games (IF games), originating in033

the 1970s (Spring, 2015; Aarseth, 1995), demand034

abstract reasoning, implicit world inference, and035

narrative reconstruction from textual cues alone.036

Unlike visual or auditory games, IF games rely037

solely on language and imagination. Successful038

play involves iterative exploration, learning, and039

adaptation, guided by intuition, pattern recognition,040

and experience-driven generalization (Zander et al.,041

2016). Consequently, IF games offer a rich testbed042

Figure 1: Example of RL approach, Basic LLM ap-
proach, our learning to Play Like Humans (LPLH) ap-
proach

for agent problem-solving, shedding light on core 043

mechanisms of exploration and learning. 044

DRRN (He et al., 2016) sparked a growing in- 045

terest in RL settings where states and actions are 046

expressed in natural language. Consequently, IF 047

games have become a core testbed for integrat- 048

ing RL and natural language understanding (NLU) 049

(Guo et al., 2020; Hausknecht et al., 2020). Early 050

RL agents rely heavily on action filters and sim- 051

plistic policies (Yao et al., 2020; Guo et al., 2020; 052

Ammanabrolu et al., 2020). Although subsequent 053

RL approaches include more sophisticated tech- 054

niques (Ammanabrolu et al., 2020; Yao et al., 2021; 055

Peng et al., 2022), their score-centric objectives 056

still constrain nuanced narrative reasoning. Recent 057

works have begun leveraging large language mod- 058

1



els (LLMs) (Tsai et al., 2023; Ma et al., 2024), but059

no system LLMs work on playing IF games yet.060

Human intuition underpins how players navi-061

gate IF games, shaping engagement with complex062

systems. Bartle (1996) taxonomy highlights dis-063

tinct player motivations that drive varied strategic064

and imaginative play, while Koster (2013) posi-065

tions “fun” as the joy of pattern recognition—an in-066

trinsically intuitive process of mapping challenges067

to learned solutions. Tekinbas and Zimmerman068

(2003) further show that well-crafted rules and ex-069

ploratory freedom foster creative problem-solving,070

underscoring the pivotal role of intuitive, context-071

aware reasoning in game design and analysis.072

In contrast to prior work using IF games pri-073

marily for RL-based NLU assessment, we pro-074

pose leveraging LLMs’ context-aware reasoning075

and decision-making to play them systematically.076

LLMs have demonstrated remarkable progress in077

multi-step reasoning and context management in078

other domains, showcasing advanced narrative un-079

derstanding capabilities (Huang et al., 2024; Zhang080

and Long, 2025). And, IF games’ narrative-rich,081

text-based design resonates with human intuition082

and demands more robust reasoning than score-083

centric RL paradigms, exposing gaps in current RL084

strategies. This language-driven setting thus pro-085

vides a fertile ground for developing more context-086

aware and adaptable agents (Tsai et al., 2023).087

Motivated by these insights, we introduce a088

novel LLMs-driven external-knowledge-training-089

free framework, the Learning to Play Like Humans090

(LPLH) framework. The LPLH framework simu-091

lates human playing trends to play IF game dy-092

namically. It combines three key modules: 1) The093

dynamic map building provides a high-accuracy094

game map to guild agents to follow the correct loca-095

tion, just like most human players do when drawing096

a map. 2) Action space learning indicates learn-097

ing all verbs and intractable objects once they are098

verified to be valid as long-term memory of a hu-099

man. 3) Every time the agents solve the puzzle100

or fail, the LPLH will automatically summarize101

the helpful experience and fallback saving for102

the future, toward human players’ reflection. So,103

for decision-making, the LPLH uses the current104

game’s information and combines the previous re-105

lated experiences to predict the next step, aligning106

with human players’ behaviors.107

By integrating these key modules, the LPLH108

framework entirely forgoes reliance on external109

knowledge to pre-train agents. Instead, it fosters110

a self-innovative learning process that closely mir- 111

rors how human players approach new games: con- 112

structing detailed maps, incrementally exploring 113

valid actions, and reflecting on experience to in- 114

form future decisions. We apply this approach to 115

various IF games from Jercho dataset (Guo et al., 116

2020). The main contributions are as follows: 1) 117

We propose the LPLH framework, designed to 118

simulate human players’ behaviors, which, to our 119

knowledge, is the first system to work to leverage 120

LLMs for playing IF games. 2) We demonstrate the 121

robustness and efficiency of LPLH framework by 122

playing games on different baselines. 3) Empirical 123

results confirm that modeling human-like decision- 124

making processes enhances LLM performance on 125

IF game tasks, indicating the effectiveness of our 126

human-player simulation strategy. 127

2 Related Work 128

IF games provide a structured environment that 129

drives research on language-based agents. These 130

text-based simulations (Hausknecht et al., 2020) 131

integrate challenges. Many studies adapt RL 132

methods to handle their vast, partially observ- 133

able state-action spaces. KG-A2C (Ammanabrolu 134

and Hausknecht, 2020) builds a knowledge graph 135

(KG) to represent game states and constrain ac- 136

tion spaces, addressing the complexity of natural 137

language actions. Guo et al., 2020 reformulates 138

gameplay as a multi-passage reading comprehen- 139

sion task, using context-query attention and struc- 140

tured prediction to enhance action generation and 141

mitigate partial observability. 142

Another strand of research targets the explo- 143

ration challenges unique to IF games. Q*BERT 144

and MC!Q*BERT (Ammanabrolu et al., 2020) em- 145

ploy knowledge-graph-based intrinsic motivation 146

and strategic exploration to overcome bottlenecks 147

in sparse-reward environments. Complementing 148

these efforts, Tuyls et al., 2022 dissects the explore- 149

vs.-exploit dilemma by decomposing each episode 150

into distinct exploitation and exploration phases, 151

achieving notable improvements in normalized 152

game scores across multiple environments. 153

In parallel to the RL-centric approaches, recent 154

works have explored integrating pre-trained lan- 155

guage models to enhance agents’ semantic under- 156

standing and action generation capabilities. The 157

CALM (Yao et al., 2020) is trained on human game- 158

play data to produce a compact set of action can- 159

didates. CALM significantly improves in-game 160
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Figure 2: LPLH framework. The Dynamic KG-map builds a knowledge-graph map dynamically by extracting the
key items in observation. The Action Space split valid action into verb and object phases, then pares the possible
verbs with objects to the agent. The Experience Lib automatically grape worth steps and summarizes them as
’experience’ for future guides.

scores, even on unseen games, when combined161

with an RL agent for action re-ranking. Similarly,162

Singh et al., 2022 leverages transformer-based mod-163

els to inject rich semantic priors.164

In contrast to approaches that integrate RL with165

NLU, a notable study (Tsai et al., 2023) investigates166

the performance of LLMs on text games without167

additional RL components. It evaluated ChatGPT168

(OpenAI, November 30, 2022) and GPT-4 (Ope-169

nAI et al., 2024) on Zork1—the only work to focus170

on leveraging LLMs in this context. Their findings171

reveal that, although ChatGPT performs competi-172

tively with existing systems, it exhibits significant173

limitations: it fails to construct a coherent model174

and struggles to incorporate pre-existing world175

knowledge. These shortcomings highlight criti-176

cal open questions at the intersection of IF game177

agents and LLMs, suggesting that further research178

is needed to fully realize the potential of LLM-179

only approaches in interactive fiction environments.180

Thus, our LPLH framework attempts to fill this gap181

by simulating human playing behaviors.182

3 LPLH Framwork183

This section will go through the overall LPLH184

framework and each key module in LPLH. Fig-185

ure 2 shows the architecture of LPLH framework.186

3.1 Problem Define 187

The interaction between an autonomous agent and 188

a text-based game environment can be formulated 189

as a Partially Observable Markov Decision Process 190

(POMDP) (Spaan, 2012), represented as a tuple 191

(S, T,A,O,R) as follows: The agent issues text 192

commands a ∈ A, selecting from a space of natu- 193

ral language actions; It receives text-based obser- 194

vations o ∈ O describing the environment state in 195

a limited scope; The environment provides scalar 196

rewards r = R(s, a), often sparse, to guide learn- 197

ing; The underlying game state s ∈ S encodes 198

KG-map G but is partially observable through tex- 199

tual feedback; The transition function s′ = T (s, a) 200

updates the game state based on the agent’s action, 201

following the game’s internal logic. 202

Unlike the existing RL approaches (He et al., 203

2016), which learns a value function by selecting 204

from a predefined set of actions to maximize game 205

rewards, our LPLH framework more closely mim- 206

ics human decision-making by integrating multi- 207

ple sources of information when generating the 208

next command. Specifically, LPLH introduces 209

a structured method for semantic understanding 210

and decision-making in text-based games. At each 211

time step k, LPLH receives the current game ob- 212

servation ok and the previous action ak−1 and up- 213

3



dates the knowledge graph G through the dynamic214

knowledge-graphs map module. Suppose the last215

action is valid (i.e., the game state changes from s216

to s′); the action space module stores that action217

by splitting it into its constituent verb and objects.218

Meanwhile, by evaluating the reward rk at each219

step, LPLH summarizes the current game state sk220

in conjunction with historical information Kj , thus221

producing a helpful experience Ei, where j denotes222

the history length and i indicates experience index.223

For the generation part, our LLM-based agent224

LLM will put the map G, confirmed action list for225

each object in the current state objv, and retrieved226

experience E to predict the best suitable action.227

Following sections are details of LPLH frame-228

work integrating Dynamic knowledge-graphs229

(KG) map, Action Space, and Experience Lib230

enables adaptive and robust learning in interactive231

fiction environments. This can potentially enhance232

agent in complex, language-driven tasks.233

3.2 Dynamic knowledge-graphs map234

Creating a KG to store information is widely used235

for long-term memory solutions in LLM research236

(Tsai et al., 2023; Zhu et al., 2024). In the IF237

game task, the KG-map serves as a continually238

updated map of in-game entities and their relations,239

thereby guiding the RL agent’s action selection240

(Ammanabrolu and Hausknecht, 2020). However,241

while previous approaches often treat the KG-map242

as a static structure or update it only when new ob-243

ject relations are discovered, our dynamic KG-map244

module continuously modifies the graph after each245

change.246

Concretely, as the agent interacts with the en-247

vironment, the textual observations are parsed to248

capture newly discovered objects, places, or enti-249

ties and any relationship changes (e.g., “the key is250

now inside the box”). These updates ensure that251

the KG-map aligns with the evolving state of the252

game world. The LLMs-based agent can more253

accurately retrieve relevant information when con-254

structing its following action by maintaining a syn-255

chronized, real-time representation of the current256

environment. This dynamic process resolves in-257

consistencies (such as outdated item locations) and258

enriches the agent’s contextual awareness, allow-259

ing for more robust decision-making in text-based260

games.261

We employ a verb & object extraction, a fine-262

tuned model fmre, to identify relational triples263

(location and objects) from the observation ok as264

relation extraction. Formally, we define: 265

Iok = fmre(ak−1, ok) (1) 266

where ak−1 is the action taken at the previous step, 267

and Iok denotes the set of extracted relations. 268

Subsequently, the module integrates these newly 269

extracted relations Iok along with the preceding ac- 270

tion ak−1 to update the knowledge graph G: 271

Gk = kg(Gk−1, ak−1)⊕ kg(Gk−1, I
o
k) (2) 272

where kg(·) is a dynamic function that incremen- 273

tally updates the knowledge graph based on the pro- 274

vided information, and the operator ⊕ combines 275

the updated states from both the action and the 276

newly extracted relations. 277

3.3 Action Space Learning 278

LPHP framework learns all valid actions within a 279

dedicated action space to emulate human player be- 280

havior. This space is decomposed into two phases: 281

verb and object. The valid actions learned in 282

this manner are retained as executable commands. 283

Specifically, after observing the last action ak−1, a 284

verb & object extraction model fmvo determines 285

whether it remains valid based on the updated obser- 286

vation ok. If ak−1 is valid, the model decomposes 287

it into a set of verbs and objects: 288

vobj
ak−1

k = fmvo(ak−1) iff ak−1 is valid,

AS = AS ∪ vobj
ak−1

k

(3) 289

where AS ∈ R{n,m} denotes the recognized action 290

space, and n and m represent the maximum num- 291

bers of verbs and objects, respectively, in the game 292

environment. The term vobj
ak−1

k contains exactly 293

one verb (e.g., “put * in *”) followed by a list of 294

corresponding objects. 295

In the subsequent reasoning phase, the frame- 296

work then employs an object & verb pairing pro- 297

cedure to integrate objects in the current location 298

(objloc) with candidate actions: 299

objvlock = pairing
(
objloc, AS

)
(4) 300

where the function pairing(·) searches the recog- 301

nized action space to find all actions compatible 302

with current location’s objects. The objvlock is a list 303

of viable action–object pairs for decision-making. 304
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3.4 Experience Lib305

The experience library serves as a crucial compo-306

nent for simulating human player behavior. Prior307

research demonstrates that humans can draw in-308

sights from multiple past trajectories to improve309

performance in subsequent attempts (Fazey et al.,310

2005). To model this process, we introduce an expe-311

rience summarization module, denoted by LLMes,312

which condenses critical information from a fixed313

number of historical steps Kj and the correspond-314

ing reward changes rk, given the current game state315

sk. Formally, the summarized experience Ei is gen-316

erated as follows:317

Ei = LLMes(Kj , rk, sk),318

where j indicates the fixed length of the history, i319

indexes the summarized experience, and LLMes is320

a LLM prompted in a one-shot template.321

Then, each summarized experience is stored in a322

vector database D to guide future decision-making323

and facilitate long-term policy optimization. Sub-324

sequently, we employ a simple retrieval-augmented325

generation (RAG) strategy (Lewis et al., 2020),326

which takes a query q as input and retrieves rele-327

vant information Eq from the stored experiences.328

We employ RAG to efficiently leverage relevant329

contextual knowledge from the vector database,330

thereby improving both factual accuracy and over-331

all robustness in the model’s decision-making pro-332

cess. This integration of historical insights allows333

the model to refine its actions and adapt its policy334

updates based on accumulated knowledge.335

3.5 Zore-shot Decision-making336

To generate the next command ak at step k, LPLH337

use an LLMs-based agent, denoted by LLMa, in a338

zero-shot prompting setup. Specifically, the agent339

first constructs a query q based on the current game340

context and uses it to retrieve a relevant experience341

set Eq. It then aggregates the current observation342

ok, the retrieved experiences Eq, the structured KG-343

map representation G, and the confirmed action344

set objvlock . This combined context is provided as345

input to the LLMs-based agent, which produces the346

next command ak:347

ak = LLMa

(
[G, objvlock , Eq], ok

)
(5)348

By integrating observations and relevant knowl-349

edge, LPLH framework enables the agent to issue350

commands in a flexible, zero-shot (Kojima et al.,351

2022) way without task-specific fine-tuning.352

The proposed LPLH framework integrates zero- 353

shot prompting, retrieval of relevant experiences, 354

action parings, and KG-map structures to guide an 355

LLMs-based agent in command generation. This 356

approach offers a robust and adaptable solution 357

that can seamlessly accommodate diverse contexts 358

by eliminating the need for fine-tuning. In doing 359

so, it is the first system methodologies attempt for 360

IF game environments through LLMs-driven tech- 361

niques, starting the way for more human-behavior- 362

aligned agent interactions. 363

4 Experiment 364

This section will briefly introduce our chosen 365

Dataset, Baselines, and Experiment setup. 366

4.1 Dataset 367

We evaluate our method on a collection of IF games 368

made available through Jericho, an open-source 369

Python-based environment (Guo et al., 2020). The 370

games in Jericho cover diverse genres (e.g., dun- 371

geon crawl, mystery, horror) and include both clas- 372

sic Infocom titles (like Zork1) and community- 373

developed works (such as Afflicted). Most IF games 374

employ a point-based scoring system, which serves 375

as the primary reward signal for learning agents. 376

While Jericho natively supports scoring detection 377

for a curated set of games, it also offers the flexibil- 378

ity to run unsupported games without these features. 379

While all games run under ’verbose’ model, which 380

always gives the maximum observation of room. 381

4.2 Baselines 382

We choose some previous RL models to compare 383

with LLMs approaches. These models represent 384

advancements in integrating structured knowledge 385

representations and natural language processing 386

techniques to improve agent performance and in- 387

terpretability in complex environments. The cho- 388

sen RL models are DRRN (He et al., 2016), KG- 389

A2C (Ammanabrolu and Hausknecht, 2020) and 390

DBERT-DRRNL (Singh et al., 2022). 391

Also, several LLM models will be the base- 392

line and foundation for the LPLH framework: 393

Qwen2.5-7B-Instruct (Team, 2024; Yang et al., 394

2024), Qwen2.5-14B-Instruct (Team, 2024; Yang 395

et al., 2024), GPT-4o-mini (OpenAI, 2025a) and 396

GPT-o3-mini (OpenAI, 2025b). 397

Noticeably, RL approaches select the possible 398

action candidates supported by the game engine. 399

Meanwhile, all LLM approaches will generate ac- 400
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tion, the processes of which are more complicated401

but closer to the human player’s ways.402

4.3 Experiment setup403

We assess the proposed LPLH framework on 10404

games of varying difficulty levels (Guo et al., 2020).405

Each LLM-based agent runs for 10 epochs (250406

steps per epoch). At every step, only the observa-407

tion from the Jericho game engine is provided to408

the agent1. We record both the average and max-409

imum score after all epochs for each game. As a410

comparison, we also implement an LHLP frame-411

work under the same experimental conditions but412

designate only the final three epochs as “learning413

outcomes,” with all preceding epochs serving as414

intermediate training phases. Please see Appendix415

C for hyper-parameters and prompt details.416

For the fine-tuned model fm used in our LHLP417

framework (Section 3), we adopt a smaller model,418

Qwen2.5-1.5B-Instruction (Team, 2024), to ad-419

dress three specific tasks: (1) validating actions,420

(2) extracting relations from observations, and (3)421

decomposing actions into verbs and objects. We422

begin by collecting game actions and observations423

from the LLM baseline. Next, we employ carefully424

crafted prompts for GPT-4, obtaining hundreds of425

annotated samples, which we subsequently refine426

manually to create the training datasets for each427

task. Details of the fine-tuned model fm are pro-428

vided in Appendix A. While the experience sum-429

marizing model LLMes is using GPT-o3-mini.430

5 Result and Analyzes431

This section assesses how the LPLH framework432

advances performance in IF games. First, we il-433

lustrate learning behaviors through the learning434

curves (Section 5.1), compare game scores across435

various baselines (Section 5.2), and conduct an ab-436

lation study (Section 5.3). These analyses highlight437

LPLH’s adaptive, human-like language acquisition438

capacity and robust performance.439

5.1 Learning curves440

The learning curve in Figure 3 illustrates how441

a good LPLH framework progresses in Zork1,442

mimicking human learning behaviors. The max443

score (blue) follows a stepwise trajectory, reflect-444

ing human players’ learning patterns, where break-445

1For all RL agents, they receive completed observation and
inventory at each step. However, LLMs-based agent needs
to decide when to call the command ’look’ or ’i’ to get such
information by themselves.

throughs occur after discovering key actions. Pe- 446

riods of stagnation suggest moments of trial-and- 447

error exploration before achieving the next mile- 448

stone. The learned actions (green) curve steadily 449

increases, indicating continuous vocabulary acqui- 450

sition. Initially, actions are learned rapidly, but the 451

pace slows over time, mirroring human language 452

acquisition, where easy-to-learn words are picked 453

up early, and complex concepts require more expe- 454

rience. The visited rooms (orange) curve represents 455

the agent’s exploration behavior. A sharp rise at the 456

beginning suggests an initial discovery phase, simi- 457

lar to human players actively navigating a new en- 458

vironment. As the curve flattens, it indicates fewer 459

new rooms are available, paralleling how human 460

players shift from exploration to problem-solving.

Figure 3: Zork1 learning curve in scaled steps. For
reference, human player’s best trajectory gets 350 scores
in 412 steps with 48 verbs, 57 objects (total 105 unique
words), and 63 rooms.

461

5.2 Game Scores 462

Table 1 summarizes score performance of various 463

agents on multiple IF games, comparing previous 464

RL approaches with LLMs-based methods. LPLH 465

framework markedly improves the performance of 466

LLM-based agents by enabling dynamic adaptation 467

and iterative learning during playing. 468

Across the board, we observe consistent and sub- 469

stantial gains when integrating LPLH into LLMs- 470

based agents. For example, in Detective, Qwen-7B 471

(LPLH) achieves a surprising 68/100 compared to 472

the base model’s 10/10, representing a 6.8× im- 473

provement on raw. Similarly, in Spellbrkr, Qwen- 474

14B (LPLH) attains 41.7/60, outperforming both 475

its base version and the RL agent DBERT-DRRN 476

(D-D). These results highlight LPLH’s capacity to 477

leverage learned experiences akin to human players 478

refining their strategies through trial and error. 479

Notably, LPLH agents match or exceed RL base- 480

lines in maximum achievable scores in some games. 481

For instance, in Omniquest and Balances, GPT-o3- 482
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DRRN* KG-A2G* D-D* Qwen-7B Qwen-14B GPT-4o-mini GPT-o3-mini Max

base LPLH base LPLH base LPLH base LPLH

omniquest 5 / - 3 / - 4.9 / 5 1 / 5 5 / 5 1.5 / 5 5 / 5 2 / 5 5 / 5 4 / 5 5 / 5 50

detective 197.8 / - 207.9 / - - / - 10 / 10 68 / 100 36 / 70 72 / 90 22 / 30 30 / 60 20 / 20 50 / 60 360

zork1 32.6 / - 34 / - 44.7 / 55 0 /0 9 / 15 9 / 35 39.7 / 45 6 / 10 10 / 15 30 / 35 33.8 / 45 350

zork3 0.7 / - 0.1 / - 0.2 / 4 0 / 0 0.6 / 1 2.0 / 3 2.6 / 3 1.8 / 3 2.8 / 3 3 / 3 3 / 3 7

ludicorp 13.8 / - 17.8 / - 12.5 / 18 1 / 1 1/ 1 10.5 / 12 11.7 / 13 1 / 1 2.6 / 3 4.4 / 7 8 / 11 150

balances 10 / - 10 / - - / - 0 / 0 5 / 5 8.75 / 10 10 / 10 5 / 5 5 / 5 8.3 / 10 10 / 10 51

spellbrkr 37.8 / - 21.3 / - 38.2 / 40 0 / 0 25 / 25 25 / 40 41.7 / 60 18 / 40 38.3 / 50 31.3/ 50 47.5 / 60 600

Table 1: Game score results running on IF games. The DRRN*, KG-A2G*, and D-D* (DBERT-DRRNL) are RL
agent; results are from their papers. base in LLMs-based agent generates action directly with some previous history,
and LPLH is our approach. For the scores ’-/-,’ the first represents a raw score of the end, and the second represents
the max score. In LLMs-based agents, the raw on base computes the average score in all runs, while the raw on
LPLH computes the last three runs as "learning outcomes." Scores with blue mean the highest score in raw, and
scores with underline are the highest score in max. The Max is the game’s maximum score.

mini (LPLH) reaches the game’s maximum score483

as same as RL agent, which both enter bottle-484

neck stage (Ammanabrolu et al., 2020; Tuyls et al.,485

2022). For those LPLH agents beyond RL agents,486

it underscores LPLH’s potential to discover opti-487

mal strategies without explicit reward engineering.488

Nonetheless, RL agents can achieve better scores489

when game engine’s provided action candidates are490

tightly integrated with the game, enabling more pre-491

cise decision-making in discrete action spaces—a492

stark contrast to the generative approach used by493

LLMs.494

Our results suggest that LPLH framework en-495

hances agents by fostering deeper contextual under-496

standing and dynamic strategy adjustments beyond497

static priors. Moreover, LLMs-based agents with498

LPLH typically require fewer steps than RL meth-499

ods to achieve comparable or higher scores (Guo500

et al., 2020), all without relying on additional ex-501

ternal knowledge. As shown in Figure 1, LPLH502

agents exhibit human-like reasoning steps, provid-503

ing a clear, self-explanatory rationale for their ac-504

tions. Future work may focus on further optimiz-505

ing LPLH to reinforce adaptive behavior in more506

complex IF settings, potentially bridging the gap507

between fine-grained RL solutions and the flexible,508

learned knowledge of LLMs-based approaches.509

5.3 Ablation Study510

In this section, we provide a more in-depth anal-511

ysis of LPLH framework and evaluate contribu-512

tion of each component. As shown in Table 2,513

we report both the raw and max scores, as well514

as their standard deviations (σ) to assess perfor-515

mance stability across different model variants. We516

Model raw max σ

LPLH14B 39.7 45.0 4.2
LPLH14B − CoT 41.6 45.0 2.4
KG-map only 11.0 15.0 2.0
KG-map + exp 11.0 35.0 13.1
KG-map + as 27.8 35.0 6.8
exp only 25.6 34.0 9.0
exp + as 32.0 40.0 4.0
as-only 26.6 35.0 6.6

Qwen2.5-14B-Instruct 9.0 25.0 9.2
14B-select one 14.5 30.0 11.6

Table 2: Ablation results on ’Zork1.’ Where σ is the
standard deviation; ’exp’ represents the experience sum-
marization; and ’as’ represents the action space.

take LPLH14B
2 as our backbone model and observe 517

that fine-tuning it with chain-of-thought reasoning 518

(LPLH14B-CoT3) boosts the raw score from 39.7 to 519

41.6, while maintaining a relatively small standard 520

deviation, 2.4. However, this improvement comes 521

at a higher computational cost. 522

Next, we examine the effects of adding a knowl- 523

edge graph mapping component (KG-map). Al- 524

though this variant exhibits a slightly lower maxi- 525

mum score, its standard deviation is reduced, sug- 526

gesting improved stability. The model achieves 527

a higher maximum score when additional expe- 528

riential data are introduced and exhibits a larger 529

σ. Finally, incorporating an action-space mecha- 530

nism provides further performance gain by reduc- 531

ing wasted actions. Combining this mechanism 532

2The backbone model is Qwen2.5-14B-Instrction.
3We use DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI

et al., 2025) as the CoT distillation model for this task.
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with experiential data leads to the most substantial533

overall results, demonstrating the effectiveness of534

a multi-faceted approach to enhancing LPLH.535

We also compare against a Qwen2.5-14B-536

Instruct baseline (9 raw, 25 max, 9.17 σ) and ob-537

serve further gains by incorporating a selective538

mechanism (14B-select one4). Each module in-539

dependently boosts performance, and their synergy540

yields even stronger results. Future work includes541

exploring how transitioning from generating to se-542

lecting actions may further enhance reasoning.543

6 Discussion on the significance of544

experiences in LPLH framework545

This section discusses two examples in Zork1 to546

show how experiences are essential for the LPLH547

framework to simulate humans. Both are how548

LPLH framework plays like humans with expe-549

rience reflection to achieve higher scores and avoid550

failure, where we will use ’player’ to represent the551

game character and ’agent’ for LPLH framework.552

6.1 Learning from Failure553

In the case of how the LPLH framework learns554

from failure, the player meets the dark environ-555

ment for the first time. The agent would not fig-556

ure out what was going on and then try to take557

any new action, but a death followed anyway. Af-558

ter the player’s death, the agent will automatically559

start summarizing this experience. During the sum-560

marization, agent will also focus on any partially561

missing events and suggestions for future reference.562

After the first attempt, the agent calms that ‘You563

may need lights to avoid death in the dark...‘. How-564

ever, the agent suggests finding lights since the565

player never finds light resources. After several566

attempts, the player finally finds a ’lantern’ in the567

’living room’ and takes it. When a player goes to568

dark again, the experience will let the agent know569

that the light needs to be turned on first.570

6.2 Learning from Success571

Learning from success is more straightforward to572

analyze. Once the player solves a puzzle, the per-573

tinent steps are captured and organized to guide574

future decision-making. Consequently, when the575

player encounters a similar situation, the agent re-576

trieves these validated experiences and follows the577

proven trajectory of actions. Once the player ob-578

tains an “egg” at “Up a Tree,” they earn five points579

4The selective mechanism is choosing one action from
game engines’ action candidates same as RL approaches.

during the initial exploration. In subsequent rounds, 580

the agent consistently instructs the player to col- 581

lect this “egg” at the start of the game. “egg” and 582

“Up a Tree” are automatically stored in the kg-map, 583

facilitating quick retrieval for future scenarios. 584

In LPLH framework, each interaction, success 585

or failure, provides essential feedback that informs 586

subsequent decisions (Schaul, 2015; Browne et al., 587

2012). By systematically archiving and reflecting 588

on these experiences, the agent refines its under- 589

standing of the environment, thereby improving 590

strategic behavior and adaptability over time (Bion 591

and Hinshelwood, 2023; Boyd and Fales, 1983). 592

Additionally, as observed in our example (Sec- 593

tion 5.2) and further confirmed through our manual 594

playing, many IF games feature “special” com- 595

mands or specific actions that are crucial for pro- 596

gressing or scoring points, which also has pointed 597

in (Tuyls et al., 2022; Ammanabrolu et al., 2020). 598

Such demands challenge RL and LLMs-based 599

agents—even with long-term memory—since they 600

require expert knowledge and creativity that come 601

more naturally to humans. Addressing this gap 602

remains a crucial direction for future work, under- 603

scoring the need to align agents with the intuition 604

and imagination that guide human players. 605

7 Conclusion 606

In this work, we introduced Learning to Play Like 607

Humans framework LPLH, a novel framework de- 608

signed to guide LLMs to play IF games by simulat- 609

ing human player behaviors. To our knowledge, 610

this is the first systemized approach leveraging 611

LLMs to tackle well-known text-based IF games. 612

This cognitively inspired approach for LLMs-based 613

IF game agents integrates dynamic map building, 614

action space learning, and experience-driven mem- 615

ory. LPLH framework balances narrative com- 616

prehension, exploration, and puzzle-solving by 617

simulating human play processes without relying 618

on external pre-training. Although our approach 619

still falls short of specialized RL agents in certain 620

games and cannot match human-level scores, it 621

yields more interpretable, human-like behaviors 622

and enables more context-aware decision-making 623

in interactive fiction game domains. Furthermore, 624

according to the performance of LLMs in IF games, 625

we believe that IF games are a considerable chal- 626

lenge for LLMs in many aspects. 627
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Limitation628

To our knowledge, our proposed LPLH framework629

is the first attempt to enable LLMs to play IF games630

by simulating human players as a system works. Al-631

though we incorporate multiple modules for long-632

term memory, effectively managing and navigating633

that memory remains challenging. Currently, our634

approach uses a simple experience summarization635

that is only triggered when the agent loses or gains636

points. In contrast, human players naturally inte-637

grate relevant information into their memory at any638

point during gameplay, suggesting that a more dy-639

namic summarization strategy could yield better640

results.641

Furthermore, the framework relies on a JSON-642

structured kg-map as input. The consistency and643

clarity of this representation can influence the644

model’s reasoning, indicating that further inves-645

tigation is needed to determine the optimal rep-646

resentation method for LLM-based agents in IF647

tasks. We also attempted to evaluate the LPLH648

framework across different models; however, we649

could not perform extensive tests on a wide range650

of LLMs due to resource constraints. Future work651

should include more comprehensive experimenta-652

tion and exploring adaptive memory-management653

techniques to address these limitations. Also, we654

only test a few IF games to show our framework655

performance, which may not be fully adopted for656

all IF game types. During the game, the learning657

process is still affected by many factors that could658

dramatically lead to score increases or decreases,659

which we have not found.660
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A Fine-tuned model fm977

Before we use the fine-tuned model fm in LPLH978

framework. We collect the data through three differ-979

ent games (not in our test game): ’Dragon,’ ’Karn’,980

and ’Night.’981

In both games, we run with random pick action982

provided by the game engine and generate the ac-983

tion through LLMs. Then, we pair the action and984

sequenced observation as the basic training dataset.985

For this basic training dataset, we manually delete986

those repeat parts. Following that, we create differ-987

ent prompt templates for three task: (1) validating988

actions (Prompt in Table 4), (2) extracting relations989

from observations(Prompt in Table 5), and (3) de-990

composing actions into verbs and objects (Prompt991

in Table 6). After getting the results generated from992

GPT-4o, we manually selected the correct parts and993

then passed them to the train. We use LoRA (Hu994

et al., 2021) to train the model on LLaMA-Factory995

(Zheng et al., 2024). The training details are shown996

in Table 3.997

We evaluate the model performance by running998

’Zork1’ with ’walk-thought’5. For the task of vali-999

dating actions, the accuracy is 90%. For relations1000

extraction, the error rate is like 15%. And for split-1001

ting the actions, the accuracy is 98%.1002

B Baseline Details1003

DRRN (He et al., 2016) models the relevance be-1004

tween the state and possible actions to navigate1005

large action spaces effectively.1006

KG-A2C (Ammanabrolu and Hausknecht,1007

2020) integrates dynamically constructed KG into1008

the Advantage Actor-Critic framework to constrain1009

the action space and improve decision-making.1010

DBERT-DRRNL (Singh et al., 2022) enhances1011

the traditional DRRN architecture by incorporating1012

DistilBERT (Sanh et al., 2020), a pre-trained lan-1013

guage model, to provide richer text representations,1014

thereby improving the agent’s performance.1015

5the human player’s best trajectory

Qwen2.5-7B-Instruct (Team, 2024; Yang et al., 1016

2024): A 7B open-source model from Alibaba, de- 1017

signed for general-purpose natural language under- 1018

standing and generation, optimized for efficiency 1019

and broad-domain applicability. 1020

Qwen2.5-14B-Instruct (Team, 2024; Yang 1021

et al., 2024): A larger 14B version of Qwen, of- 1022

fering improved reasoning, generation quality, and 1023

contextual understanding. 1024

GPT-4o-mini (OpenAI, 2025a): A lightweight 1025

version of GPT-4o, optimized for efficiency while 1026

maintaining strong reasoning capabilities, making 1027

it suitable for scalable applications. 1028

GPT-o3-mini (OpenAI, 2025b): A compact ver- 1029

sion of OpenAI’s third-generation model, designed 1030

for high-speed inference with reasonable perfor- 1031

mance in various NLP tasks, especially in con- 1032

strained computational environments. 1033

Parameter name Value
lora_rank 16

lora_alpha 32

lora_dropout 0.1

lora_target all

learing rate 2e− 5

epoches 3

Table 3: hyper-parameters of fine-tuning

C Hyper-parameters and Prompts 1034

C.1 Hyper-parameters 1035

All experiences were running at 2 RTX4090 GPUs 1036

with torch type of bf16. ALL none-trained LLMs 1037

(LLMes and LLMa) run with the same temper- 1038

ature of 0.6. The fine-tuned model (fm uses a 1039

temperature of 0.1. 1040

C.2 Prompt templates 1041

Here, we show some essential prompt templates, 1042

which all models followed CoT reasoning. Table 7 1043

shows how the baseline model generates the next 1044

command. Table 8 shows a prompt template of how 1045

to summarize the experience. The prompt template 1046

of action generation of the LPLH framework is 1047

showing Table 9. In our study, no any game name 1048

or specific game commands appear in all prompts. 1049

According to research done by (Tsai et al., 2023), 1050

the Chat-GPT knows IF game Zork1. When Chat- 1051

GPT knows the specific games, it will do well. 1052
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Instruction:
You are evaluating the outcome of a text-based game action based on the game’s observation (feedback message) after the
player’s previous action. Your task is to determine if the action was successful or not.
<START OF INSTRUCTIONS>
- You will be given an observation text that follows the player’s attempted action.
- If the observation indicates that the action was carried out successfully (e.g., it provides new information, describes the
environment, or gives a positive confirmation), respond with:
<ais> True </ais>
- If the observation indicates that the action could not be performed (e.g., includes phrases like "You can’t..." or "You
cannot..."), respond with:
<ais> False </ais>
Note:
- An unsuccessful action usually explicitly states that the player cannot do something, or that the action fails.
<END OF INSTRUCTIONS>

Table 4: Prompt template: Action Validation.

Instruction:
<START OF INSTRUCTIONS>
You’re going to extract triples in the format <subject, relation, object> from an input Observation along with previous actions
you did, originating from a text-based game. Focus solely on where the character (’You’) is located, what objects are in that
location, and their immediate properties. The maximum length for any object name in the triples is three words, where length
of location name has no limit.
Rules:
1. If the observation doesn’t describe an environment or information is insufficient (e.g., "Opened", "Taken"), output |start|
none |end| and skip other points.
2. Always use ’in’ as the relation to represent the character’s location. Convert any spatial descriptions (e.g., ’are facing’, ’are
standing’, ’are behind’) to the ’in’ relation. If the input begins with a Room name (starts with a capital letter and does not end
with a period), use it as the location.
Example:
Input: "Stairwell (First Floor) You’re in the north stairwell."
Triple: <You, in, Stairwell (First Floor)>
3. If the observation doesn’t include a precise location, do not provide any <You, in, *> triple.
4. Use ’have’ as the relation to represent interactive objects present in the location. Focus only on the objects themselves as
the ’obj’ in the triple. Ignore decorative details unless they indicate an interactive object. Limit object names to a maximum
of three words.
Example:
Input: "There is a small mailbox here."
Triple: <[Location], have, mailbox>
5. Do not include additional details or properties of objects. Only extract the objects themselves, ensuring object names are
no longer than three words. But if a object have a relation to another object, such as ’in’ and ’on’, then extract that relation.
Example:
Input: "A buzzing water fountain has been moved."
Triple: "<[Location], have, water fountain>"
Input: "A sock is on th table."
Triple: "<[Location], have, sock>, <[Location], have, table>, <sock, on, table>"
6. If the input specifies a requirement or action needed to continue, use <location/object, need/require, something to action>.
Example:
Input: "Forest. You would need a machete to go further west."
Triple: <Forest, need, machete to go west>
7. For objects or locations mentioned with a direction (e.g., ’to the north’, ’up to’, ’down’), use <current location, direction,
[new location]/to [direction]>.
Example:
Input: "Hall. To the southwest is the entrance to the Computer Site, and you can go east here as well as go up with a stair."
Triples: <Hall, southwest, Computer Site>, <Hall, east, to east>, <Hall, up, to up>
Note: Pay more attention to objects and directions than to objects’ states or other decorative details.
Now, extract the relationships for the input step by step and merge all the results into a single output enclosed within |start| *
|end|, where * represents the list of extracted triples.
<END OF INSTRUCTIONS>

Table 5: Prompt template: Relation Extraction.
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Instruction:
<START OF INSTRUCTIONS>
You wil receive a previous input(step) from a text-based IF game, and please split the input into two parts, action and objs, as
"<verb; [objs]>". Please follow these instructions to complete the task step by step.
Use the following rules:
1. If the action is a simple directional command (e.g., "north" or "n"), the object list should be empty.
For example:
Input: "west"
Response: "<act> <west; []> </act>"
2. If the action is "take all" or another "all" command (e.g., "take all"), treat "take all" as the verb and leave the object list
empty.
For example:
Input: "drop all"
Response: "<act> <drop all; []> </act>"
3. If there are objects following the Verb (e.g., "eat", "take") or Verb phrase (e.g., "drop down", "go around"), list them. If
prepositions (e.g., "on", "at", "with") are present, include them in the verb phrase using "&" as a placeholder, and list each
noun object individually.
Final Output:
Use <act> <verb; [objs]> </act> format for final output where: "verb" represents the action phrase with placeholders "&" for
objects. objs is a list of object nouns.
<END OF INSTRUCTIONS>

Table 6: Prompt template: Splitting Action.

Instruction:
You are playing the classic text-based interactive fiction game. Your goal is to explore, solve puzzles, collect treasures, and
reach the winning end state. Throughout the game, you will:
1. Receive a history of the game’s the action you performed, the new observation representing what you see or experience
after your action. The action will help you understand what led to the new observation.
2. Have access only to the last 10 turns of conversation as your history. You must rely on these 10 turns and your internal
reasoning to keep track of your location, inventory, puzzles, and progress.
3. Receive current new observation based on the last action and the current game states as input.
4. Produce all responses formatted between "|start|" and "|end|".

**Your Task:**
- At each turn, carefully read the provided new observation and the action you performed.
- Use your internal chain-of-thought to determine the best possible action to advance in the game, considering your inventory,
location, known puzzles, and the limited historical context you have.
- Once you have reasoned through your options, produce exactly ONE game command.
- Always Format your command as this at the end of your response:
**Final Command:**
|start| [your chosen command] |end|
**Guidelines:**
- Avoid random or nonsensical actions. Each move should serve a purpose or help solve a puzzle.
- Try to use player (human) logic to guide your decision.
- You can Use ’look’ command to examine the current location. And ’inventory’ command to examine your inventory.
- Maintain continuity by leveraging the last 10 turns of conversation and the last action you performed as a guide. Use your
internal chain-of-thought to continue.
- Always think first, then act. The chain-of-thought is mandatory before producing the final command.

Remember, you are playing a text-based game. Follow these instructions diligently, use your chain-of-thought to reason about
your actions, and only format your final chosen command between "|start|" and "|end|".

Table 7: Prompt template: Baseline action generation.
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Instruction:
<START OF INSTRUCTIONS>
You are a game engine summarizer. Your task is to read the current log of the game state and produce a concise, cohesive
summary of the player’s progress so far (This happens every time the player gets a score or loses a score). Do NOT reveal any
hidden or undiscovered information. Focus only on details the player already knows or has directly experienced.
A list of "Step" will be provided. Each step includes:
- An observation (what the player sees),
- Info about moves and current score,
- The action taken just before the observation.
**Summary Structure:**
1. "location": where the player is (or what area is described) when the score changes. If the player has died, give the location
name before death.
*1.1* - One Location name Only.
*1.2* - Description of situation.
2. "puzzle_status": what puzzles or obstacles have been solved to earn/lose the points.
*2.1* - ONLY related steps to solve the puzzles directly. Any requirement for solving the puzzles, such as ’player need to
<step>open door<step> at Room1 to enter <loc>Room2<loc>.
*2.2* - Description of the puzzle.
3. "scoring": how the player earned/lost points for the last step. Any action leads to earning/losing points.
*3.1* - Step done to earn/lose points.
*3.2* - How many points are changed?
4. "important_experience": The experience can be used for the future. Only the most notable and valuable clues or items the
player learned about for the global game experience or any warning must be recorded through all previous logs. Only Focus
on confirmed information.
*Earn Points* - ONLY when player earn points, then we only need to know what leads to earn points and ingore other
unchecked information.
- For example: ’player noticed there is a rabbit on the table (unchecked)’ is not experienced. ’Room1. player open a locked
door by a key (The key got from the roof)’ is the experience as’ player need to go to <loc>roof<loc> for a <obj>key<obj> to
open the locked door in <loc>Room1<loc>.
*Lose Points* - ONLY when the player loses points (died usually or lost in the game, where ’lost’ here means the player
earned no points for a long time ), you also need to give suggestions for the future.
- For example: ’player died in Room2. (Player saw a rabbit on table in Room1, but player did nothing with the rabbit)’ you
can now give the suggestion for next time that try to check <obj>rabbit<obj> before going <loc>Room2<loc>.
**Remember**:
- If no related puzzles (solve puzzles to show new location or new environment observations or earn points) are encountered,
the whole ’puzzle_status’ needs to be "No puzzles encountered yet."
- Please focus on how the player scored points with related puzzles and situations that occurred.
- Do not reveal hidden or undiscovered info.
- Keep it concise and factual based on the logs.
- When giving "important_experience", please reflect like an expert player (Always think about why this happened) as the
payer’s ’trace game experience’.
- If player has not died, the ’*Lose Points*’ in ’important_experience’ should be ’none’. If player has died, the ’*Earn
Points*’ in ’important_experience’ should be ’none’.
- In your reasoning, if you find more than one earning or losing points, please ONLY summarize the last one based on
previous steps.
**Final Output Format:**
- In the final output for any ’loc name’, please use <loc> loc name <loc> to mark it, as well as ’step did before’ (which steps
solved the puzzles) by marking in <step> step did <step>, as well as ’interacted obj’ (which player did valid action to obj) by
marking in <obj> interacted obj <obj>; where the ’interacted obj’ in step doesn’t need this marking. And give a structured
output based on points.
- At the end of the response, please outline TAGs (no more than 4) between <tag> * </tag> that are used for retrieval. put
main location in <room> * </room> as one of the tag.
- After TAGs, please also give the difficulty for current puzzles in between <dif> * </dif>. You can combine the history steps
with your expert player’s experience to define the difficulty. - Please think about it first. Then, give your final completed
player experience summary between ’|start|’ and ’|end|’.
<END OF INSTRUCTIONS>

Table 8: Prompt template: experience summarization.
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Instruction:
<START OF INSTRUCTIONS>
**Instructions for Generating a Next Command in Text-Based Interactive Fiction**
—
**Objective** Craft a single, context-aware **next command** with it’s motivation that propels the game forward, based on
the current map, recent actions, and history of attempts. This command should represent one immediate player action.
—
**Principles for Exploration, Puzzle-Solving, and Earning Points**
1. **Analyze the Current Game State**
- **Room & Map Details**: Assess where you are, noting any exits, known layout, and significant objects.
- **Recent Attempts**: Reflect on the previous actions, the motivation of taking that action and observation after this attempt.
- **Inventory Check**: Identify items on hand (keys, tools, etc.) that might solve current puzzles or overcome obstacles.
- **Objects & Interactions**: Focus on confirmed items or directions. If uncertain leads might advance the game, consider
them cautiously.
- **Action Selection**: Only choose to interact with an object (or perform an action) if you’re confident it will move the
story forward.
2. **Use Retrieved Experiences and Past Attempts**
- **Relevance**: Apply past successes or observed clues that align with the current room or situation.
- **Avoid Repetition**: Do not repeat failing commands indefinitely. If a command fails, adjust strategy.
- **Focus on Gains**: Prioritize moves likely to unlock new paths, uncover essential items, or yield valuable information.
3. **Formulate a Single Effective Command**
- **One Action**: Provide exactly one executable command.
- **Purpose**: Briefly ensure it’s the most logical next step, considering both context and success likelihood.
- **Move command**: The full directions are [’north’, ’south’, ’east’, ’west’, ’southeast’, ’southwest’, ’northeast’, ’northwest’,
’up’, ’down’]
4. **Output Format**
- Present the final command and a short motivation in the following format without extra commentary:
“‘
You internal reasoning steps Here.
|start|
<com>[command]</com>
<rea>[short motivation for the decision-making reason]</rea>
|end|
“‘
—
**Adaptation and Fallback Rules**
1. **Priority Usage**
- **Highest Priority**: Items in ‘temp_have‘.
- **Next**: Options in ‘may_direction‘ or ‘may_have‘.
- **Then**: Verified directions (‘direction‘) or items (‘have‘).
2. **Conflict Resolution**
- Disregard prior attempts known to fail at this location or context.
- Validate uncertain (‘may_‘) directions or items before fully committing to them.
- After verify all the exits in one room then you can fully trust the map.
3. **Fallback Strategies**
- If uncertain, explore unvisited areas or re-examine (’look’) the current room.
- Look for overlooked clues or alternative ways forward.
4. **Exploratory Commands**
- If tools are available, think of how to use them on obstacles.
- In case an exploration fails, attempt a different angle—return to a previous room, look around again, or try another approach.
- **Explore the world**: It’s better to try all directions in each room to identify the exit and update the game map. For
‘may_direction‘, consider testing that path (e.g., “north”).
—
**Remember**: You are navigating a text-based world. Combine current observations with past knowledge to decide the
best single move.
<END OF INSTRUCTIONS>

Table 9: Prompt template: LPLH action generation.
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