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Abstract
Machine learning methods are increasingly applied in medical imaging, yet many1

reported improvements lack statistical robustness: recent works have highlighted2

that small but significant performance gains are highly likely to be false positives.3

However, these analyses do not take underspecification into account—the fact4

that models achieving similar validation scores may behave differently on unseen5

data due to random initialization or training dynamics. Here, we extend a recent6

statistical framework modeling false outperformance claims to include underspecifi-7

cation as an additional variance component. Our simulations demonstrate that even8

modest seed variability (∼ 1%) substantially increases the evidence required to9

support superiority claims. Our findings underscore the need for explicit modeling10

of training variance when validating medical imaging systems.11

1 Introduction12

Machine learning is experiencing a reproducibility and validation crisis, and medical imaging is13

particularly affected [1, 2, 3]. Recently, Christodoulou et al. [4] estimated a high probability (> 5%)14

of false outperformance claims in 86% of classification and 53% of segmentation papers.15

However, this framework does not model underspecification [5]: models trained to similar validation16

accuracy can differ substantially out of distribution. In practice, this often appears as run-to-run17

variability across random seeds, leading to fluctuations in segmentation or classification scores [6,18

7]. While averaging across seeds can stabilize estimates, it remains a source of uncertainty when19

comparing single models (rather than distributions of models): if statistically significant differences20

can occur across different seeds of the same model, what does it entail for the statistical comparison21

of different models?22

This work. We extend the false-claim probability model of Christodoulou et al. [4] by introducing an23

underspecification term that captures seed-induced variance estimated from recent reproducibility24

studies. Through simulation, we quantify how this additional variance inflates the evidence threshold25

needed to claim outperformance using estimated magnitudes of underspecification from the litera-26

ture [6, 7]. While preliminary, we hope that this work will help raise awareness about underspecifica-27

tion to the medical imaging community, and encourage its integration as a factor in model validation.28

Our code and is available at https://anonymous.4open.science/r/underspecification_29

false_claims-7135/30

2 Methods31

We provide a very brief overview of the Bayesian model used by Christodoulou et al. [4] to estimate32

the probability of false outperformance claims. Following their framework, a false claim occurs when33

the true performance ordering is reversed despite the observed ranking. Given two methods A and B34

with observed mean performances µ̂A and µ̂B (where µ̂A > µ̂B) and a testing set of size n, there is a35

concerning probability of a false claim if:36

P (false outperformance claim) = P (µA ≤ µB |µ̂A, µ̂B , n) ≥ 0.05,
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this means that there is a probability above 5% that the true means µA, µB have actually the reverse37

relationship than the one estimated empirically.38

Segmentation. For segmentation using Dice Score Coefficient (DSC), the probability of false39

outperformance claim is defined as40

P (µA ≤ µB |µ̂A, µ̂B , n) = tn−1

(
µ̂B − µ̂A

SEAB

)
, SE2

AB =
s2A + s2B − 2sAsBrAB

n
(1)

where n is the test set size, sA, sB are the standard deviations of method A and B and rAB the model41

congruence (correlation between predictions), and tn−1 is the quantile of the Student distribution42

with n − 1 degrees of freedom. This model simulates a t-test comparing samples with means µ̂A,43

µ̂B given the standard error SEAB . To account for underspecification, we modify the standard44

error SE2
AB,underspec. = SE2

AB + δ2A + δ2B . This additive term represents global variability induced45

by random seed initializations. This formulation assumes: (1) independence of seed effects across46

methods, justified by independent training with different random seeds, and (2) approximate normality47

of performance across seeds, supported by empirical observations [6, 7].48

Classification. For classification, Christodoulou et al. [4] modeled the joint predictions of two49

classifiers as a 2×2 multinomial table with Dirichlet prior. As the derivation of this model is more50

involved, we refer the reader to the description in Christodoulou et al. [4]. Because only marginal51

accuracies are usually reported, they also made used of model congruence (p11 = P (both correct)) to52

impute the off-diagonal counts, clamped to feasible bounds. Given the posterior Dirichlet distribution,53

the false outperformance probability is computed through Monte Carlo sampling. To account for54

underspecification, we model the reported accuracies as random variables: p̃A ∼ N (p̂A, δ
2
A) and55

p̃B ∼ N (p̂B , δ
2
B), where δA denotes the standard deviation due to seed variability.56

Model parameter estimation. Christodoulou et al. [4] ] reported median model congruence values57

of rAB = 0.67 (Q1: 0.44; Q3: 0.82) for segmentation and p11 = 0.67 (Q1: 0.47; Q3: 0.83) for58

classification. We used a grid search to estimate the values of s = sA = sB for both models, and59

obtained sseg = 0.197 and sclf = 0.737.60

To estimate underspecification variance, we leverage reproducibility studies that trained multiple61

models with different random seeds (Table 1). We set δ ≈ σindiv = 0.01 for both tasks,representing a62

median across observed variabilities (range: 0.002-0.024). This approximated the expected variability63

of a model for brain tumour or prostate segmentation using a single model. For classification, this64

approximated the variability observed in prostate cancer or 3D lymph node metastases classification65

using a single model, or pancreatic cancer classification using an ensemble.66

3 Results67

Our main results are presented on Figure 1. First, on the left column, we see our reproduction of the68

results of Christodoulou et al. [4], generally showing an agreement with their findings, even though69

some variability was observed at extreme values.70

Our contribution is presented in the right column, where we see that the probability of false claims71

substantially increases even with a relatively minor variability introduced across methods. With a72

variability as little as 1% across seeds, the threshold for confidently avoiding false claims is further73

Table 1: Reported run-to-run standard deviations (σ) of performance metrics across random seeds in
reproducibility studies, with corresponding dataset sizes.

Task Task / Dataset ntrain ntest σindiv (σensemb)

Segmentation
Dice Score

Brain tumor [7, 8] 387 97 ∼0.01 (N/A)
Prostate [6, 9, 10] 32 16 0.017 (0.006)
Pancreas [6, 11] 281 82 0.002 (0.001)

Classification
AUROC

Prostate cancer [6, 12] 417 157 0.010 (0.008)
Pancreatic cancer [6, 11] 537 188 0.022 (0.012)
Lymph node metast. (2D) [6, 13] 274 91 0.024 (0.005)
Lymph node metast. (3D) [6, 13] 274 91 0.012 (0.005)
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UnderspecificationNo underspecification

Figure 1: Accounting for underspecification drastically increases the probability of false claims.
(Top left) Reproduction of the results of Christodoulou et al. [4] for segmentation. (Top right)
Simulation of the impact of underspecification on segmentation using δ = 0.01. The dashed line
shows the trajectory of false claim probabilities above 0.05 without underspecification. (Bottom left)
Reproduction of the results of Christodoulou et al. [4] for classification. (Bottom right) Simulation
of the impact of underspecification on classification using δ = 0.01.
raised to an extent where one requires large differences (> 3% in DSC or accuracy) to be confident74

that an outperformance claim is valid. Differences between methods in the order of 1% are highly75

likely to yield false claims with an underspecification strength δ = 0.01 independetly of the size of76

the test set.77

4 Discussion and conclusion78

Our results show how underspecification affects false claim probabilities: it further raises the bar79

for being able to properly discriminate between methods. For classification, a variability across80

seeds of 1% would mean that any testing set with fewer than 300 samples and differences across81

methods of 6% Accuracy would have a probability of producing false claims above 5%. Similarly, for82

segmentation, testing sets below 100 samples should have differences above 0.04 DSC to achieve a83

low probability of false claims. Most existing papers fall below these differences or test set sizes and84

would then be subject to a high probability of false claims exacerbated by underspecification [2, 4].85

A key limitation is that our simulations rely on variability estimates from datasets with only a few86

hundred samples (Table 1). Underspecification on larger test sets remains uncertain; we expect the87

overall variability to decrease, although subgroup-specific variability may remain substantial [5].88

This means that our estimate of false claims might be overestimated on large testing sets. This is why89

we need a proper large-scale experimental validation to assess the extent of underspecification on90

medical imaging tasks.91

Finally, while this work discussed underspecification as a variance on the global reported metrics, its92

effect is more evident when considering sub-groups (such as acquisition site, sex, age, etc.) [14, 15,93

5]. We hypothesize that studying false claim probability not only at the global level but at the group94

level might reveal even more worrying trends and that many outperformance claims might not hold95

when averaging performance across groups rather than globally, where a good overall performance96

might hide poor systematic performance on some sub-groups [15]. These findings motivate more97

extensive stress testing of models across varied testing sets to better understand the extent of the98

problem caused by underspecification in medical imaging [16].99
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Potential Negative Societal Impacts100

While mostly positive societal impacts would stem from improving the validation AI models in101

healthcare, a potential risk would stem from a misuse of the results in this paper. This is a simulation102

study using estimated quantities, and thus should not serve as a basis for decision making, but as a103

call to further research on the topic.104
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