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Abstract

Machine learning methods are increasingly applied in medical imaging, yet many
reported improvements lack statistical robustness: recent works have highlighted
that small but significant performance gains are highly likely to be false positives.
However, these analyses do not take underspecification into account—the fact
that models achieving similar validation scores may behave differently on unseen
data due to random initialization or training dynamics. Here, we extend a recent
statistical framework modeling false outperformance claims to include underspecifi-
cation as an additional variance component. Our simulations demonstrate that even
modest seed variability (~ 1%) substantially increases the evidence required to
support superiority claims. Our findings underscore the need for explicit modeling
of training variance when validating medical imaging systems.

1 Introduction

Machine learning is experiencing a reproducibility and validation crisis, and medical imaging is
particularly affected [1} 2, 3]]. Recently, Christodoulou et al. [4] estimated a high probability (> 5%)
of false outperformance claims in 86% of classification and 53% of segmentation papers.

However, this framework does not model underspecification [5]]: models trained to similar validation
accuracy can differ substantially out of distribution. In practice, this often appears as run-to-run
variability across random seeds, leading to fluctuations in segmentation or classification scores [6}
7. While averaging across seeds can stabilize estimates, it remains a source of uncertainty when
comparing single models (rather than distributions of models): if statistically significant differences
can occur across different seeds of the same model, what does it entail for the statistical comparison
of different models?

This work. We extend the false-claim probability model of Christodoulou et al. [4] by introducing an
underspecification term that captures seed-induced variance estimated from recent reproducibility
studies. Through simulation, we quantify how this additional variance inflates the evidence threshold
needed to claim outperformance using estimated magnitudes of underspecification from the litera-
ture [6L [7]. While preliminary, we hope that this work will help raise awareness about underspecifica-
tion to the medical imaging community, and encourage its integration as a factor in model validation.
Our code and is available at https://anonymous.4open.science/r/underspecification_
false_claims-7135/

2 Methods

We provide a very brief overview of the Bayesian model used by Christodoulou et al. [4] to estimate
the probability of false outperformance claims. Following their framework, a false claim occurs when
the true performance ordering is reversed despite the observed ranking. Given two methods A and B
with observed mean performances [i4 and ip (Where {14 > jip) and a testing set of size n, there is a
concerning probability of a false claim if:

P(false outperformance claim) = P(pa < pplfia, fiz,n) > 0.05,
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this means that there is a probability above 5% that the true means p 4, up have actually the reverse
relationship than the one estimated empirically.

Segmentation. For segmentation using Dice Score Coefficient (DSC), the probability of false
outperformance claim is defined as

ey

i — fia 9 $4 + 8% — 254SBT AR
——— |, SEip=
SEAB n

where n is the test set size, s 4, sp are the standard deviations of method A and B and r 4  the model
congruence (correlation between predictions), and ¢,,_1 is the quantile of the Student distribution
with n — 1 degrees of freedom. This model simulates a t-test comparing samples with means /i 4,
[ip given the standard error SE 5. To account for underspecification, we modify the standard
error SEA g inderspec. = SEAp + 0% + 0. This additive term represents global variability induced
by random seed initializations. This formulation assumes: (1) independence of seed effects across
methods, justified by independent training with different random seeds, and (2) approximate normality
of performance across seeds, supported by empirical observations [0, [7].

P(pa < pBlita, fip,n) =th_1 (

Classification. For classification, Christodoulou et al. [4] modeled the joint predictions of two
classifiers as a 2x2 multinomial table with Dirichlet prior. As the derivation of this model is more
involved, we refer the reader to the description in Christodoulou et al. [4]. Because only marginal
accuracies are usually reported, they also made used of model congruence (p11 = P(both correct)) to
impute the off-diagonal counts, clamped to feasible bounds. Given the posterior Dirichlet distribution,
the false outperformance probability is computed through Monte Carlo sampling. To account for
underspecification, we model the reported accuracies as random variables: pa4 ~ N (pa,d%) and
P ~ N (PB, 5%), where 4 denotes the standard deviation due to seed variability.

Model parameter estimation. Christodoulou et al. [4] ] reported median model congruence values
of rap = 0.67 (Q1: 0.44; Q3: 0.82) for segmentation and p;; = 0.67 (Q1: 0.47; Q3: 0.83) for
classification. We used a grid search to estimate the values of s = s4 = sp for both models, and
obtained s = 0.197 and s¢js = 0.737.

To estimate underspecification variance, we leverage reproducibility studies that trained multiple
models with different random seeds (Table @ We set § = ojngiy = 0.01 for both tasks,representing a
median across observed variabilities (range: 0.002-0.024). This approximated the expected variability
of a model for brain tumour or prostate segmentation using a single model. For classification, this
approximated the variability observed in prostate cancer or 3D lymph node metastases classification
using a single model, or pancreatic cancer classification using an ensemble.

3 Results

Our main results are presented on Figure[I] First, on the left column, we see our reproduction of the
results of Christodoulou et al. [4], generally showing an agreement with their findings, even though
some variability was observed at extreme values.

Our contribution is presented in the right column, where we see that the probability of false claims
substantially increases even with a relatively minor variability introduced across methods. With a
variability as little as 1% across seeds, the threshold for confidently avoiding false claims is further

Table 1: Reported run-to-run standard deviations (o) of performance metrics across random seeds in
reproducibility studies, with corresponding dataset sizes.

Task Task / Dataset Ntrain  Dtest  Oindiv (Tensemb)
S . Brain tumor [7, 8] 387 97 ~0.01 (N/A)
?gmentatlon Prostate [6,(9,/10] 32 16 0.017 (0.006)
Dice Score Pancreas [6, 11] 281 82 0.002 (0001)
Prostate cancer [6} (12] 417 157  0.010 (0.008)
Classification Pancreatic cancer [|6,|11]] 537 188  0.022 (0.012)
AUROC Lymph node metast. (2D) [6,(13]] 274 91 0.024 (0.005)

Lymph node metast. (3D) [6}|13] 274 91 0.012 (0.005)
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Figure 1: Accounting for underspecification drastically increases the probability of false claims.
(Top left) Reproduction of the results of Christodoulou et al. for segmentation. (Top right)
Simulation of the impact of underspecification on segmentation using 6 = 0.01. The dashed line
shows the trajectory of false claim probabilities above 0.05 without underspecification. (Bottom left)
Reproduction of the results of Christodoulou et al. [4]] for classification. (Bottom right) Simulation
of the impact of underspecification on classification using § = 0.01.

raised to an extent where one requires large differences (> 3% in DSC or accuracy) to be confident
that an outperformance claim is valid. Differences between methods in the order of 1% are highly
likely to yield false claims with an underspecification strength § = 0.01 independetly of the size of
the test set.

4 Discussion and conclusion

Our results show how underspecification affects false claim probabilities: it further raises the bar
for being able to properly discriminate between methods. For classification, a variability across
seeds of 1% would mean that any testing set with fewer than 300 samples and differences across
methods of 6% Accuracy would have a probability of producing false claims above 5%. Similarly, for
segmentation, testing sets below 100 samples should have differences above 0.04 DSC to achieve a
low probability of false claims. Most existing papers fall below these differences or test set sizes and
would then be subject to a high probability of false claims exacerbated by underspecification [2} 4].

A key limitation is that our simulations rely on variability estimates from datasets with only a few
hundred samples (Table[T). Underspecification on larger test sets remains uncertain; we expect the
overall variability to decrease, although subgroup-specific variability may remain substantial [5]].
This means that our estimate of false claims might be overestimated on large testing sets. This is why
we need a proper large-scale experimental validation to assess the extent of underspecification on
medical imaging tasks.

Finally, while this work discussed underspecification as a variance on the global reported metrics, its
effect is more evident when considering sub-groups (such as acquisition site, sex, age, etc.) [14}[15}
[5]]. We hypothesize that studying false claim probability not only at the global level but at the group
level might reveal even more worrying trends and that many outperformance claims might not hold
when averaging performance across groups rather than globally, where a good overall performance
might hide poor systematic performance on some sub-groups [[15]]. These findings motivate more
extensive stress testing of models across varied testing sets to better understand the extent of the
problem caused by underspecification in medical imaging [16].
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Potential Negative Societal Impacts

While mostly positive societal impacts would stem from improving the validation Al models in
healthcare, a potential risk would stem from a misuse of the results in this paper. This is a simulation
study using estimated quantities, and thus should not serve as a basis for decision making, but as a
call to further research on the topic.
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