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Abstract
Self-supervised Vision Transformers (ViTs) such as DINOv2 achieve robust holistic1

shape processing, but the transformations that support this ability remain unclear.2

Probing with visual anagrams, we find that DINOv2’s intermediate layers constitute3

a necessary stage for holistic vision. Our analyses reveal a structured sequence of4

computations. First, local content representations remain spatially anchored deeper5

into the network than in supervised ViTs. Second, attention heads progressively6

extend their range, producing a systematic local-to-global transition, facilitating7

local representations that are contextually enriched. Third, positional signals are not8

merely lost with depth but become more sharply aligned with the model’s learned9

positional embeddings in mid-level layers. Models without these properties, such10

as supervised ViTs, rapidly lose spatially specific content and fail on holistic11

tasks. Finally, when register tokens are present, high-norm global activations12

are redirected into these tokens rather than overwriting low-information patch13

embeddings, allowing patches to maintain their positional identity, also leading to14

improvements on holistic tasks. Together, these findings show that holistic vision in15

ViTs emerges from a structured progression of representational transformations that16

preserve both content and spatial information while enabling global integration.17

1 Introduction18

Vision Transformers (ViTs) [1] have demonstrated a range of impressive capabilities that distinguish19

them from their convolutional counterparts. Studies have shown they have a stronger shape bias,20

greater resilience to severe occlusions and a more flexible attention mechanism [2, 3, 4, 5]. However,21

while these properties are broadly true, a significant performance gap emerges on tasks requiring22

holistic processing [6, 7, 8, 9]. Recent work [7] using visual anagrams [10], images that depict23

different object categories but are built from the same set of local patches just merely rearranged (Fig.24

1), revealed that strong holistic understanding is not a universal feature of ViTs but is particularly25

emergent in self-supervised models like DINOv2 [11]. This capability dissociated from object recog-26

nition and the classic shape-vs-texture bias, with the critical computations found in the intermediate27

transformer blocks of these ViTs.28

Figure 1: An example of a visual anagram pair. The same set of local image patches can be rearranged
to form images of a wolf and an elephant.

This finding presents a puzzle when viewed through the lens of prior mechanistic work [12, 13]29

which concluded that intermediate layers of supervised ViTs were surprisingly redundant: their30



Figure 2: (A) Comparing representations of anagram images between transformer blocks. (B)
Ablating intermediate transformer blocks and measuring impact on Configural Shape Scores.

representations remained highly correlated through the blocks, and removing intermediate blocks31

had minimal effect on recognition performance. Nonetheless, other work has shown that, ViTs in32

principle, can still learn structured algorithms: when fine-tuned on specific relational tasks, they33

learned distinct "perceptual" and "relational" processing stages [5, 14].34

This leads to our central question: what computations in DINOv2 give rise to holistic vision? We35

address this through mechanistic analyses of self-supervised ViTs, with three main findings:36

• Intermediate layers are indispensable. Unlike supervised ViTs, whose mid-layers are func-37

tionally redundant, ablating DINOv2’s intermediate blocks sharply reduces holistic performance,38

indicating that these stages implement non-trivial transformations.39

• Attention shifts from local to global. DINOv2 maintains short-range attention deeper into40

the network than supervised ViTs, before gradually extending to long-range links. This staged41

transition preserves local content while enabling global integration.42

• Positional signals become more distinct mid-network. Rather than fading with depth, positional43

information becomes more separable (quasi-orthogonal) from content in the intermediate layers.44

With register tokens present, global activations are absorbed by registers instead of overwriting45

patch embeddings, allowing patches to maintain their positional identity.46

Together, these results indicate that DINOv2 forms holistic percepts through a structured progression:47

early layers preserve local content, intermediate layers enrich that content with contextual information48

and make positional identity more distinct, and later layers assemble global representations.49

2 Background: Probing Holistic Vision with Visual Anagrams50

To quantitatively measure a model’s capacity for holistic processing, recent work introduced the51

Configural Shape Score (CSS) using the "visual anagram" stimulus set [7]. Visual anagrams are pairs52

of images that depict two different object categories (e.g., a wolf vs. an elephant) but are constructed53

from the exact same set of local image patches, merely rearranged [10]. Because local textural cues54

are matched between the two images in the anagram pair, to correctly classify both images in a pair, a55

model can only succeed by processing the configural arrangement of the patches. While standard56

supervised ViTs performed poorly, self-supervised models like DINOv2 showed high CSS scores.57

Further representational similarity analysis (RSA) using carefully controlled image pairs revealed58

a distinct transition within the intermediate layers. Early-layer representations were dominated by59

local puzzle piece similarity, whereas later layer representations were dominated by the global object60

category, suggesting that a critical transition from part-based to category-based representations occurs61

in the intermediate transformer blocks.62

3 Intermediate Layers in DINOv2 are Causally Critical for Holistic63

Processing64

While prior work has established that the intermediate layers of supervised ViTs are functionally65

redundant [12, 13], we first investigated if the same holds for the DINOv2 which is one of the highest66

performing model class on CSS. We ran two analyses: first, we traced the flow of representations67

through the network, and second, we performed a causal ablation study to measure each layer’s direct68

contribution to the CSS.69

Following the approach by [13], we extracted the activations of all anagram images in each transformer70

block and then measured similarity between all block pairs (Fig. 2A). For a standard supervised ViT-71
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B/16, the off-diagonal similarities remained high after the initial layers, keeping the representations72

largely similar. This confirmed the redundancy hypothesis for standard ViTs. In DINOv2-B/14,73

however, the similarity matrix showed a sharp representational change in the intermediate layers74

(approx. blocks 8-9). To further test if this drastic change in representation was causally critical, we75

performed an ablation study where we bypassed each transformer block individually during inference76

[12] and measured the downstream impact on CSS (Fig. 2B). For the supervised ViT-B/16, ablating77

any intermediate block had negligible effect on CSS but for DINOv2-B/14, the same intervention,78

especially in blocks 4-10, collapsed the CSS performance to near chance. These results provide79

evidence that the intermediate layers in DINOv2-B/14 are causally critical for holistic processing.80

4 Dissecting the Intermediate Computations81

“What” and “Where” Does a Head Attend? Having established that DINOv2’s intermediate82

layers are necessary, we ask what computations they implement. We separate the analysis into “where”83

and “what”. Where. For each head in layer (i.e. the transformer block) ℓ, we compute the Mean84

Attention Head Distance (MAHD) following [13]: the attention-weighted Euclidean distance (in85

pixel coordinates) between a query patch and all key patches, averaged over N=3925 Imagenette86

images (CLS excluded). Within each layer, heads are sorted by MAHD and visualized as a heatmap87

to reveal the depth-wise transition from short- to long-range links. What. A short-range MAHD88

is only meaningfully “local” if the attended patch still carries local content. To investigate this, we89

separate content from global and positional structure using a principled decomposition. Let x ∈ D90

denote an input image with patch set Ω = {1, . . . ,W} × {1, . . . ,H}, h(ℓ)
p (x) ∈ Rd the layer-ℓ91

embedding of patch p and z
(0)
q (x) be the input (layer-0) patch embedding at position q with p, q ∈ Ω.92

We now formally introduce our decomposition method:93

Definition 1 (Vision Transformer Spatial-Content Decomposition). For any vision transformer layer94

ℓ and dataset D, every patch embedding admits the unique additive decomposition:95

h(ℓ)
p (x) = µ(ℓ) + µ(ℓ)

p + c(ℓ)p (x)

where:96 
µ(ℓ) = Ex∼D,p∼Ω(h

(ℓ)
p (x)) (global mean)

µ
(ℓ)
p = Ex∼D(h

(ℓ)
p (x)) (positional effect)

c
(ℓ)
p (x) = h

(ℓ)
p (x)− µ(ℓ) − µ

(ℓ)
p (content residual)

The content residual c(ℓ)p (x) isolates input-specific semantic information and is statistically orthogo-97

nal1 to both global and positional components by construction.98

To measure spatial localization of content, we define the localization score between patch p at layer ℓ99

and initial position q:100

s(ℓ)p,q(x) =
⟨c(ℓ)p (x), z

(0)
q (x)⟩

∥c(ℓ)p (x)∥ ∥z(0)
q (x)∥

, q ∈ Ω (1)

The field q 7→ s
(ℓ)
p,q(x) measures spatial localization: higher concentration near q=p indicates that101

content at patch p remains tied to its original spatial coordinate through layer ℓ.102

Applying our decomposition to both supervised ViT-B/16 and DINOv2-B/14 reveals striking dif-103

ferences in their computational strategies (Fig. 3). In the supervised ViT, MAHD increases rapidly104

in early layers: most attention heads transition to long-range interactions (MAHD > 100 pixels) by105

layer 3. In contrast, DINOv2 maintains a heterogeneous mixture of short-range (MAHD < 50 pixels)106

and long-range heads throughout the first half of the network, with the transition occurring gradually107

between layers 4-8 (see Appendix A.1 for MAHD in DINOv2 S/L/G variants). Content localization108

exhibits a corresponding pattern. In the supervised model, the content residual c(ℓ)p (x) loses its spatial109

specificity early: by layer 3, the localization score s
(ℓ)
p,q(x) becomes uniformly distributed across the110

spatial grid, meaning patches no longer carry information specific to their original location. DINOv2111

preserves this spatial specificity significantly longer, with concentrated localization scores maintained112

through layer 6-7. Moreover, our spatial-content decomposition reveals another distinction. While113

1It has zero expectation covariance with them, in expectation over data and patches.
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Figure 3: (A) Mean distance in each attention head for all layers of the ViT. (B) Cosine similarity
between the content residual representation of the selected patch and the input patch embedding.

analyses of the full patch representations h
(ℓ)
p (x) show apparent spatial structure in both models114

(Appendix A.2), our decomposition shows that in supervised ViTs, this structure comes primarily115

from the positional component µ(ℓ)
p rather than content. In other words, patches “remember” where116

they are, but not what local visual information they originally contained. Only DINOv2 maintains117

both positional and content-specific spatial information c
(ℓ)
p (x) deep into the network. This dual118

preservation likely enables DINOv2’s superior holistic processing: patches retain knowledge of both119

their spatial location and their local visual content, allowing the model to reason about how local120

parts relate to global structure.121

Figure 4: Mean cosine similarity of estimated
positional signal with learned positional em-
beddings.

Alignment with Learned Positional Embeddings.122

Beyond keeping content local, DINOv2 also showed123

another interesting signature in the encoded posi-124

tional signal (µ(ℓ)
p ). We estimated each patch’s posi-125

tional signal in a specific layer (Def. (1)), computed126

its cosine similarity with that patch’s learned posi-127

tional embedding at the start of the network, and128

averaged over patches to obtain a layer-wise posi-129

tional similarity curve (Fig. 4). In the supervised130

ViT, positional similarity drops steadily from the first131

block. In DINOv2 models, it rises through the early132

blocks, peaks mid-network (blocks 4–10), and then133

drops in the last blocks. In other words, DINOv2134

sharpens a patch’s location information up until the135

middle of the network, keeping the “where” infor-136

mation crisp while it gathers context, whereas the137

supervised model steadily forgets this location infor-138

mation. This increase in alignment also relates to “attention-sinks” and high-norm “outlier” tokens139

reported in large ViTs [15, 16, 17, 18, 19] which occurs when low-information patches are repurposed140

to carry global signals, subsequently degrading the local positional information that they encode.141

Models trained with registers [15], that likely absorb these high-norm activations, showed higher142

CSS and maintained the positional alignment even further into the network (AppendixA.3).143

5 Conclusion144

Overall, we asked how self-supervised DINOv2 ViTs arrive at an object’s global shape and charac-145

terized the computations underlying holistic processing. We found that mid-layers matter: ablating146

these layers sharply lowers CSS in DINOv2, whereas the same manipulation in a supervised ViT147

has little impact; representation structure also changes drastically in these layers. We observed three148

key signatures in these intermediate stages of processing: (i) patch content stays local much deeper149

than in the supervised ViT, (ii) a large mixture of heads that maintain short-range attention while150

also drawing from distant patches, enabling a contextually-enriched local representation, and (iii) an151

increase in alignment to the learned positional embeddings in the intermediate layers.152
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A Appendix205

A.1 Mean Attention Head Distance for DINOv2 ViTs206

Figure 5: Mean distance in each attention head for all layers of Dinov2-S/14, Dinov2-L/14, and
Dinov2-G/14..

A.2 Spatial Localization of content residual vs. full patch representations207

Figure 6: (Top) 2 selected patches in ViT-B/16. (Middle) Cosine similarity between the content
residual representation of the selected patches and the input patch embedding.(Bottom) Cosine
similarity between the full patch representation and the input patch embedding.
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Figure 7: (Top) 2 selected patches in DINOv2-B/14. (Middle) Cosine similarity between the content
residual representation of the selected patches and the input patch embedding.(Bottom) Cosine
similarity between the full patch representation and the input patch embedding.

A.3 Alignment with Learned Positional Embeddings in model with vs. without trained208

registers209

Figure 8
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