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Abstract

Self-supervised Vision Transformers (ViTs) such as DINOv2 achieve robust holistic
shape processing, but the transformations that support this ability remain unclear.
Probing with visual anagrams, we find that DINOv2’s intermediate layers constitute
a necessary stage for holistic vision. Our analyses reveal a structured sequence of
computations. First, attention heads progressively extend their range, producing
a systematic local-to-global transition. Second, content information of patches
becomes more contextually enriched with depth. Third, positional signals are not
merely lost with depth but are retained in mid-level layers. Models without these
properties, such as supervised ViTs, fail on holistic tasks. Finally, when register
tokens are present, high-norm global activations are redirected into these tokens
rather than overwriting low-information patch embeddings, allowing patches to
maintain their positional identity, also leading to improvements on holistic tasks.
Together, these findings show that holistic vision in ViTs emerges from a structured
progression of representational transformations that preserve both content and
spatial information while enabling global integration.

1 Introduction

Vision Transformers (ViTs) [ 1] have demonstrated a range of impressive capabilities that distinguish
them from their convolutional counterparts. Studies have shown they have a stronger shape bias,
greater resilience to severe occlusions and a more flexible attention mechanism [2, 3, 4, 5]. However,
while these properties are broadly true, a significant performance gap emerges on tasks requiring
holistic processing [6, 7, 8, 9]. Recent work [7] using visual anagrams [10], images that depict
different object categories but are built from the same set of local patches just merely rearranged (Fig.
1), revealed that strong holistic understanding is not a universal feature of ViTs but is particularly
emergent in self-supervised models like DINOv2 [11]. This capability dissociated from object recog-
nition and the classic shape-vs-texture bias, with the critical computations found in the intermediate
transformer blocks of these ViTs.

This finding presents a puzzle when viewed through the lens of prior mechanistic work [12, 13]
which concluded that intermediate layers of supervised ViTs were surprisingly redundant: their
representations remained highly correlated through the blocks, and removing intermediate blocks
had minimal effect on recognition performance. Nonetheless, other work has shown that, ViTs in
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Visual Anagram example
The same puzzle pieces can be configured to either look like a wolf or an elephant
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Figure 1: An example of a visual anagram pair. The same set of local image patches can be rearranged
to form images of a wolf and an elephant.
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Figure 2: (A) Comparing representations of anagram images between transformer blocks. (B)
Ablating intermediate transformer blocks and measuring impact on Configural Shape Scores.

principle, can still learn structured algorithms: when fine-tuned on specific relational tasks, they
learned distinct "perceptual" and "relational" processing stages [5, 14].

This leads to our central question: what computations in DINOv2 give rise to holistic vision? We
address this through mechanistic analyses of self-supervised ViTs, with three main findings:

* Intermediate layers are indispensable. Unlike supervised ViTs, whose mid-layers are func-
tionally redundant, ablating DINOv2’s intermediate blocks sharply reduces holistic performance,
indicating that these stages implement non-trivial transformations.

* Attention shifts from local to global. DINOv2 maintains short-range attention deeper into the
network than supervised ViTs, before gradually extending to long-range links. This staged transi-
tion preserves local content while enabling global integration leading to contextually enriched
local representations.

* Positional signals are better preserved deep into the network. In contrast to supervised ViTs
where positional information rapidly degrades, DINOv2 maintains the positional information of
patches through its intermediate layers.

Together, these results indicate that DINOv2 forms holistic percepts through a structured progression:
early layers preserve local content, intermediate layers enrich that content with contextual information
and make positional identity more distinct, and later layers assemble global representations.

2 Background: Probing Holistic Vision with Visual Anagrams

To quantitatively measure a model’s capacity for holistic processing, recent work introduced the
Configural Shape Score (CSS) using the "visual anagram" stimulus set [7]. Visual anagrams are pairs
of images that depict two different object categories (e.g., a wolf vs. an elephant) but are constructed
from the exact same set of local image patches, merely rearranged [10]. Because local textural cues
are matched between the two images in the anagram pair, to correctly classify both images in a pair, a
model can only succeed by processing the configural arrangement of the patches. While standard
supervised ViTs performed poorly, self-supervised models like DINOv2 showed high CSS scores.
Further representational similarity analysis (RSA) using carefully controlled image pairs revealed
a distinct transition within the intermediate layers. Early-layer representations were dominated by
local puzzle piece similarity, whereas later layer representations were dominated by the global object
category, suggesting that a critical transition from part-based to category-based representations occurs
in the intermediate transformer blocks.



3 Intermediate Layers in DINOv2 are Causally Critical for Holistic
Processing

While prior work has established that the intermediate layers of supervised ViTs are functionally
redundant [12, 13], we first investigated if the same holds for the DINOv2 which is one of the highest
performing model class on CSS. We ran two analyses: first, we traced the flow of representations
through the network, and second, we performed a causal ablation study to measure each layer’s direct
contribution to the CSS.

Following the approach by [ 13], we extracted the activations of all anagram images in each transformer
block and then measured similarity between all block pairs (Fig. 2A). For a standard supervised ViT-
B/16, the off-diagonal similarities remained high after the initial layers, keeping the representations
largely similar. This confirmed the redundancy hypothesis for standard ViTs. In DINOv2-B/14,
however, the similarity matrix showed a sharp representational change in the intermediate layers
(approx. blocks 8-9). To further test if this drastic change in representation was causally critical, we
performed an ablation study where we bypassed each transformer block individually during inference
[12] and measured the downstream impact on CSS (Fig. 2B). For the supervised ViT-B/16, ablating
any intermediate block had negligible effect on CSS but for DINOv2-B/14, the same intervention,
especially in blocks 4-10, collapsed the CSS performance to near chance. These results provide
evidence that the intermediate layers in DINOv2-B/14 are causally critical for holistic processing.

4 Dissecting the Intermediate Computations

“What” and “Where” Does a Head Attend? Having established that DINOv2’s intermediate
layers are necessary, we ask what computations they implement. We separate the analysis into “where”
and “what”. Where. For each head in layer (i.e. the transformer block) ¢, we compute the Mean
Attention Head Distance (MAHD) following [13]: the attention-weighted Euclidean distance (in
pixel coordinates) between a query patch and all key patches, averaged over N=3925 Imagenette
images (CLS excluded). Within each layer, heads are sorted by MAHD and visualized as a heatmap
to reveal the depth-wise transition from short- to long-range links. What. A short-range MAHD
is only meaningfully “local” if the attended patch still carries local content. To investigate this, we
separate content from global and positional structure using a principled decomposition. Let x € D
denote an input image with patch set Q@ = {1,... , W} x {1,...,H}, h,(f) (z) € R? the layer-/
embedding of patch p and z,(zo) (z) be the input (layer-0) patch embedding at position ¢ with p, ¢ € 2.
We now formally introduce our decomposition method:

Definition 1 (Vision Transformer Spatial-Content Decomposition). For any vision transformer layer
{ and dataset D, every patch embedding admits the unique additive decomposition:
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To measure spatial localization of content, we define the localization score between patch p at layer ¢
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The field ¢ — sp4(x) measures spatial localization: higher concentration near g=p indicates that
content at patch p remains tied to its original spatial coordinate through layer £.
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Applying our decomposition to both supervised ViT-B/16 and DINOv2-B/14 reveals striking dif-
ferences in their computational strategies (Fig. 3). In the supervised ViT, MAHD increases rapidly

't has zero expectation covariance with them, in expectation over data and patches.
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Figure 3: (A) Mean distance in each attention head for all layers of the ViT. (B) Cosine similarity
between the content residual representation of the selected patch and the input patch embedding.

in early layers: most attention heads transition to long-range interactions (MAHD > 100 pixels) by
layer 3. In contrast, DINOv2 maintains a heterogeneous mixture of short-range (MAHD < 50 pixels)
and long-range heads throughout the first half of the network, with the transition occurring gradually
between layers 4-8 (see Appendix A.1 for MAHD in DINOv2 S/L/G variants).

Fig. 3B shows the content localization of a selected patch by measuring the cosine similarity of
that patch’s content residual in a selected layer with the intial content representation (i.e. the patch
representation) of all patches. In the supervised ViT, the content residual remains sharply localized
throughout the network. DINOv2 preserves the localization through the early and intermediate
layers, with concentrated localization scores maintained through layer 6-7. After this point, the
similarity diffuses across the grid, meaning patches no longer carry information specific to their
original location. This indicates that while attention heads transition to long-range interactions (as
seen in Fig. 3A), this global communication could primarily involve the model’s positional signals in
the supervised ViT, leaving the patch content itself largely local, while the interactions in the DINOv2
model would be content-specific, progressively enriching local representations with global context,
as reflected in their superior holistic processing.

To causally test this hypothesis of contextual enrichment, we performed an ablation study where
we explicitly limited the range of patch-to-patch interactions in the intermediate layers (see Ap-
pendix A.2). Specifically, we cumulatively constrained the attention mechanism in the first n blocks to
a local neighborhood (mask radius of 2), effectively preventing the integration of long-range context.
We then measured the resulting change in the content residual of the final block by measuring the
final block’s content representation before and after ablation. The results show that DINOv2’s repre-
sentations are significantly more disrupted by this local constraint than those of the supervised ViT.
This provides strong evidence that DINOv2 actively uses long-range, content-specific interactions in
its intermediate layers to build a holistic representation.
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Figure 4: (A) Mean cosine similarity of estimated positional signal
with learned positional embeddings. (B) Configural Shape Scores
of DINOvV2 models with and without registers



in the final blocks. This indicates that DINOv2 maintains the “where” information deeper into the
network, while the supervised model steadily forgets this location information.

This greater preservation of positional information appears to be functionally important. To test
this, we compared the performance of DINOv2 models trained with and without register tokens,
a mechanism proposed to help maintain the positional integrity of patch tokens [15]. Figure 4B
shows that models with registers consistently achieved higher configural shape scores, indicating that
preserving the "where" information of local patches is critical for holistic processing. Whether this
benefit directly arises from register tokens acting as dedicated “attention-sinks™ [15, 16, 17, 18, 19],
thereby absorbing the high-norm signal that might otherwise overwrite the positional information in
the patch tokens, remains an open question.

5 Conclusion

Overall, we asked how self-supervised DINOv2 ViTs arrive at an object’s global shape and charac-
terized the computations underlying holistic processing. We found that mid-layers matter: ablating
these layers sharply lowers CSS in DINOv2, whereas the same manipulation in a supervised ViT
has little impact; representation structure also changes drastically in these layers. We observed
three key signatures in these intermediate stages of processing: (i) a large mixture of heads that
maintain short-range attention while also drawing from distant patches, (ii) patch content remains
local but more contextually-enriched with (iii) positional information being strongly retained in the
intermediate layers.
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A Appendix

A.1 Mean Attention Head Distance for DINOv2 ViTs
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Figure 5: Mean distance in each attention head for all layers of Dinov2-S/14, Dinov2-L/14, and
Dinov2-G/14..

A.2 Contexual Enrichment of content residuals
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Figure 6: Causal impact of restricting context using attention ablation. Long-range attention in the
first n blocks is cumulatively ablated by enforcing a local attention mask. The impact is measured
using cosine similarity of the content residual in the final layer with and without this ablation.
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