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ABSTRACT

Modeling realistic pedestrian trajectories requires accounting for both social in-
teractions and environmental context, yet most existing approaches largely em-
phasize social dynamics. We propose EnvSocial-Diff: a diffusion-based crowd
simulation model informed by social physics and augmented with environmen-
tal conditioning and individual–group interaction. Our structured environmental
conditioning module explicitly encodes obstacles, objects of interest, and lighting
levels, providing interpretable signals that capture scene constraints and attractors.
In parallel, the individual–group interaction module goes beyond individual-level
modeling by capturing both fine-grained interpersonal relations and group-level
conformity through a graph-based design. Experiments on multiple benchmark
datasets demonstrate that EnvSocial-Diff outperforms the latest state-of-the-art
methods, underscoring the importance of explicit environmental conditioning and
multi-level social interaction for realistic crowd simulation.

1 INTRODUCTION

Group
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Figure 1: Environmental factors are important
in crowd simulation. The target pedestrian
is influenced by nearby neighbors, obstacles,
objects of interest (OOI), and lighting condi-
tions. The scene image is divided into grids to
calculate lighting information.

Crowd simulation plays an important role in model-
ing and predicting the collective behavior of pedes-
trians in dynamic environments, with applications
ranging from virtual reality and digital twin systems
to public safety management and urban planning
(Musse et al., 2021). A central goal is to gener-
ate realistic walking trajectories for multiple agents
while accounting for social interactions and envi-
ronmental constraints. Over the years, numerous
methods have been proposed to address this task,
ranging from rule-based approaches (Reynolds,
1987) and force-based models (Helbing & Molnar,
1995; Kolivand et al., 2021; Chraibi et al., 2011) to
data-driven learning-based approaches (Alahi et al.,
2016; Gupta et al., 2018; Lee et al., 2018; Char-
alambous et al., 2023). Among them, the Social
Force Model (SFM) (Helbing & Molnar, 1995) and
its extensions have been widely adopted for their
interpretable and physically grounded structure. More recently, physics-informed generative ap-
proaches have emerged. In particular, the Social Physics Informed Diffusion Model (SPDiff) (Chen
et al., 2024) integrates a conditional diffusion process into the Social Force Model, where the dif-
fusion module refines predicted accelerations based on historical motion and individual-level social
interactions. While SFM inherently accounts for basic obstacle avoidance through repulsive forces,
SPDiff does not explicitly incorporate structured environmental conditioning (e.g., objects of in-
terest or lighting), nor does it capture group-level conformity, leaving important behavioral factors
underexplored.

A core challenge in crowd simulation lies in capturing the diverse factors that shape pedestrian be-
havior, including social interactions such as collision avoidance, group coherence, and route choice.

1
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While most existing approaches (Mohamed et al., 2020; Xu et al., 2022; Kim et al., 2024; Itatani &
Pelechano, 2024; Pascoli et al., 2025) have primarily focused on modeling these interactions through
graph-based, recurrent, or probabilistic frameworks, they typically exhibit two major limitations.
First, social modeling is often restricted to individual-level interactions, overlooking higher-level
group conformity that strongly influences collective motion. Second, the treatment of the environ-
ment is oversimplified: most methods, including physics-informed models such as SPDiff, primarily
account for obstacles through repulsive forces or binary traversable maps, but do not explicitly en-
code richer contextual cues. This abstraction neglects influences such as attractive objects of interest
(OOI) (e.g., stores, kiosks), which act as behavioral attractors guiding route choice (Tong & Bode,
2022), and perceptual cues like lighting (as illustrated in Figure 1), which have been shown in
psychology and urban design studies to affect safety perception, comfort, and walking preferences
(Warren et al., 2001; Hao et al., 2022; Liu et al., 2022). Addressing these gaps motivates the need for
a unified framework that explicitly integrates structured environmental conditioning with multi-level
social modeling.

To overcome these limitations, we propose EnvSocial-Diff (see Figure 2), a social physics-informed
diffusion model that jointly models structured environmental conditioning and individual-group in-
teraction. On the environment side, we encode obstacles, objects of interest (OOI), and lighting as
conditional signals that guide the generative denoising process. On the social side, an Individual–
Group Interaction module captures both individual-level relations and group-level conformity via
a graph-based design. These two pillars are fused with historical trajectories and a destination at-
traction term, forming four complementary components that jointly condition the diffusion model to
produce socially compliant, context-aware, and realistic trajectory predictions.

In summary, the paper’s contributions are as follows.

• We propose EnvSocial-Diff, a diffusion-based crowd simulation model informed by so-
cial physics, which unifies structured environmental conditioning with social interaction
modeling.

• We design structured environmental encoders that explicitly model obstacles, objects of
interest, and lighting, and integrate them with an Individual–Group Interaction (IGI) mod-
ule that captures both fine-grained interpersonal relations and group-level conformity. This
unified design enables physically interpretable trajectory predictions.

• Experiments on GC and UCY benchmarks show that EnvSocial-Diff outperforms state-of-
the-art baselines across multiple trajectory metrics, validating the effectiveness of explicit
environmental conditioning and multi-level social interaction modeling.

2 RELATED WORK

Physics-based Crowd Simulation. Early approaches relied on handcrafted rules and physics-
inspired models. The Boids model (Reynolds, 1987) simulated collective animal motion through
simple rules of separation, alignment, and cohesion. A milestone, the Social Force Model (SFM)
(Helbing & Molnar, 1995), introduced psychological forces such as goal attraction and social re-
pulsion, enabling realistic simulation of pedestrian interactions. Other approaches include Cellular
Automata (CA) (Sarmady et al., 2010), which discretize time and space for efficient simulation but
lack motion continuity, and Velocity Obstacle (VO) methods (Fiorini & Shiller, 1998) and their
variants (RVO (Van den Berg et al., 2008), ORCA (Snape et al., 2010), HRVO (Van Den Berg
et al., 2011)), which use geometric constraints for collision avoidance. Inspired by fluid dynamics,
continuum-based models (Hughes, 2002; Huang et al., 2009; Liang & Du, 2021) treat crowds as
continuous media, capturing macroscopic flow in dense settings. While these methods laid founda-
tional groundwork, their reliance on predefined rules and physical simplifications limits their ability
to model complex, context-aware human behaviors.

Data-driven Social Modeling. Recent methods leverage learning-based frameworks to capture
pedestrian interactions. Early works such as Social LSTM (Alahi et al., 2016) and Social GAN
(Gupta et al., 2018) employed recurrent and generative models for individual-level interaction mod-
eling, while STGCNN (Mohamed et al., 2020) introduced spatio-temporal graphs for relational rea-
soning. Subsequent approaches, including SocialCircle (Wong et al., 2024), HighGraph (Kim et al.,
2024), and RSBS (Sun et al., 2020), enhance modularity and temporal dynamics. Other directions

2
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Table 1: Summary of main notations used in EnvSocial-Diff.

Symbol Meaning Symbol Meaning

i, j Pedestrian indices t Time step index
St
i State of i at t, [p⃗ti, v⃗

t
i , a⃗

t
i] H Prediction horizon (number of future steps)

p⃗ti Position of i at time t v⃗ti Velocity of i at time t
a⃗t
i Acceleration of i at time t fθ Denoising network in acceleration space

F⃗ dest
i Destination-driving force of i cti Conditioning signals [F⃗ env

i ⊕F⃗ social
i ⊕F⃗ hist

i ]

F⃗ env
i Environment-induced force on i F⃗ social

i Social interaction force on i

F⃗ hist
i History-based force on i k Diffusion step index (1, . . . ,K)

yi,k Noisy acceleration at step k yt
i,0 Clean target acceleration of i at time t

O Set of obstacles I Set of objects of interest
L Set of lighting cells M Environment entities, M = O ∪ I ∪ L
fsc Global scene feature f raw

light Spatial lighting vector
f obs
l Feature of the l-th obstacle f ooi

m Feature of the m-th object-of-interest (OOI)
sim1

ij Approach tendency sim2
ij Motion alignment

sim3
i Group conformity rij Relative motion descriptor [∆p⃗ij⊕∆v⃗ij ]

explore interpretable latent modeling (SocialVAE (Xu et al., 2022)), endpoint conditioning (PECNet
(Mangalam et al., 2020)), and multimodal diffusion-based prediction (MID (Gu et al., 2022)).

In parallel, some methods attempt to integrate scene context. Scene-aware approaches leverage se-
mantic maps or global embeddings (Manh & Alaghband, 2018; Mangalam et al., 2021; Ngiam et al.,
2022; Bae et al., 2025; Yuan et al., 2021), which provide high-level semantic awareness but lack be-
havioral modeling. NSP (Yue et al., 2022), which we also include as a baseline in our experiments,
introduces a physics-inspired framework that fuses social interactions with environmental cues. In
NSP, the environment is represented by segmenting scenes into walkable and non-walkable regions,
where non-walkable areas in a pedestrian’s field of view exert repulsive forces. However, this binary
abstraction overlooks richer environmental roles such as attractive objects of interest (OOI) or per-
ceptual cues like lighting, and its social modeling remains limited to the individual level. UniTraj
(Feng et al., 2024) further proposes a unified environmental network for short-horizon trajectory
prediction, but it similarly relies on global semantic context rather than structured environmental
conditioning. Overall, these environment-aware approaches are confined to short-term forecasting
and do not integrate multi-level social modeling, leaving factors underexplored.

Physics-informed Generative Approaches. To improve long-term prediction, physics-informed
generative methods combine physical priors with data-driven learning. PCS (Zhang et al., 2022)
integrates physical constraints with trajectory forecasting, while SPDiff (Chen et al., 2024) intro-
duces a diffusion model conditioned on social forces derived from the Social Force Model (SFM).
In SPDiff, the diffusion process refines accelerations based on historical motion and individual-
level interactions. While the SFM formulation inherently includes obstacle avoidance, SPDiff does
not explicitly incorporate structured environmental conditioning (e.g., OOI, lighting) or group-level
conformity, leaving important behavioral influences underexplored.

In contrast, our work introduces structured environmental conditioning—decomposing the environ-
ment into obstacles, OOI, and lighting—and complements it with an Individual–Group Interactions
module, enabling unified modeling of environmental and social influences for realistic long-horizon
crowd simulation.

3 METHOD

We propose EnvSocial-Diff (see Figure 2), a diffusion-based crowd simulation model informed
by social physics. Following SPDiff (Chen et al., 2024), the destination attraction force is applied
outside the diffusion process, thereby preserving long-term intent, while historical trajectories are
encoded via a unidirectional LSTM. Unlike SPDiff, which incorporates environmental condition-
ing only implicitly via the classical Social Force Model (SFM) formulation, we explicitly model
structured environmental factors through obstacles, objects of interest, and lighting. Further-
more, we introduce an Individual–Group Interaction (IGI) module that captures both individual-
level relations and group-level conformity. Together, these components—environment, IGI, and
history—constitute the conditioning signals cti to the diffusion model, while the destination force

3
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Figure 2: EnvSocial-Diff pipeline. Pedestrian motion is modeled as in the Social Force Model
(SFM), where the destination force F⃗ dest

i is applied outside the diffusion process to preserve long-
term intent. The conditioning signals cti = [F⃗ env

i ⊕ F⃗ social
i ⊕ F⃗ hist

i ] aggregate three interactive
components: (1) Environmental Conditioning — obstacle and OOI features are encoded via cross-
attention with pedestrians, while lighting features are extracted from grid-based scene brightness;
(2) Individual–Group Interactions — GNNs encode individual-level (sim1

ij , sim2
ij), group-level

(sim3
i ), and relative motion (rij) to produce the social force F⃗ social

i ; and (3) Historical Trajectories
— short-term motion trends are encoded from recent states using an LSTM. Given cti and Gaussian
noise ϵ ∼ N (0, 1), the denoiser fθ performs reverse diffusion to recover clean accelerations ŷ t

i,0,
which are then combined with the destination force to yield the final prediction ˆ⃗a t

i .

is injected during rollout. This design enables trajectory forecasts that are context-aware, socially
compliant, and physically interpretable.

The model takes as input the 2D start and destination coordinates of each pedestrian, together with
the scene environment information. The environment consists of the BEV image and its textual
description, together with structured environment entities M (summarized in Table 1). For obstacles
O and objects of interest I, each entity is represented by its cropped image patch, textual description,
and 2D position in the BEV frame. For the lighting factor L, we extract the V-channel from the BEV
image in HSV space to form a global lighting map, which serves as the lighting input. Given these
inputs, the model generates full trajectories for all pedestrians by predicting their accelerations over
time.

3.1 OVERALL MODEL

As shown in Eq. (1), pedestrian motion follows the SFM (Helbing & Molnar, 1995), where multiple
interactive forces jointly govern pedestrian dynamics:

F⃗i = F⃗ dest
i +

(
F⃗ hist
i +

∑
j∈Neighi

F⃗ social
ij +

∑
h∈M

F⃗ env
ih

)
︸ ︷︷ ︸

conditioning signals

. (1)

Here, F⃗ dest
i drives pedestrian i toward its destination and is defined following SFM as F⃗ dest

i =

mi
v
′
ini−vi

µ , where vi is the current velocity, v
′

i is the desired walking speed, and ni is the direction
towards the destination. mi is a coefficient for individuals while µ is a global coefficient. Unlike
the other forces, this term is applied outside the diffusion process during rollout to preserve long-
term intent. The remaining terms constitute the conditioning signals: F⃗ hist

i encodes short-term
motion trends from recent trajectories,

∑
j∈Neighi

F⃗ social
ij models individual–group interactions, and

4
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∑
h∈M F⃗ env

ih incorporates structured scene context (M = O∪I∪L for obstacles, objects of interest,
and lighting).

As acceleration is proportional to the net force (F⃗ = ma⃗), we predict future accelerations rather
than positions. This yields a physically grounded representation of motion dynamics. To model this
process, we employ a diffusion model (Ho et al., 2020) within the acceleration space. Specifically,
the conditioning signals in Eq. (1) are modeled by the denoiser output. The destination force is then
added outside the diffusion process to obtain the final acceleration. The state of pedestrian i at time
t is denoted as St

i =[p⃗ti, v⃗
t
i , a⃗

t
i] denote position, velocity, and acceleration, respectively. Our goal is

to generate the sequence of predicted accelerations {ˆ⃗at+1
i ,. . ., ˆ⃗at+H

i } over the prediction horizon H .

In the forward process, we progressively add Gaussian noise to the ground-truth accelerations yt
i,0,

forming a Markov chain that transforms the clean accelerations into approximately pure noise:

q(yi,k | yi,k−1) = N
(√

1− βk yi,k−1, βkI
)
, (2)

where βk denotes the variance at step k in the noise schedule, with k = 1, . . . ,K.

During inference, the reverse process starts from Gaussian noise and iteratively denoises it into
accelerations conditioned on cti = [F⃗ env

i ⊕ F⃗ social
i ⊕ F⃗ hist

i ]. A neural network fθ parameterizes this
process by predicting clean accelerations at each step conditioned on cti.

pθ(yi,k−1 |yi,k,c
t
i)=q

(
yi,k−1 |yi,k,fθ(yi,k, k, c

t
i)
)
. (3)

To encode F⃗ hist
i , we use the recent trajectory sequence {St−L+1

i , . . . , St
i} over an observation win-

dow of length L. The sequence is passed through linear projections and a unidirectional LSTM
encoder, and the final hidden state provides a compact temporal feature for conditioning the de-
noiser (see Figure 2, Historical Trajectories block).

After obtaining the denoised conditioning accelerations ŷt
i,0, we add the destination force F⃗ dest

i to
produce the final predicted accelerations ˆ⃗a t

i . These accelerations are then used to recursively update
the velocity and position of each pedestrian via standard kinematic equations.

v⃗ t+τ
i = v⃗ t+τ−1

i + ˆ⃗at+τ
i ∆t, (4)

p⃗ t+τ
i = p⃗ t+τ−1

i + v⃗ t+τ−1
i ∆t+ 1

2
ˆ⃗a t+τ
i ∆t2, (5)

where τ = 1, . . . ,H and ∆t denotes the time step.

3.2 STRUCTURED ENVIRONMENTAL CONDITIONING

The environmental conditioning module explicitly encodes structured scene elements—including
obstacles, objects of interest (OOI, e.g., stores, kiosks, benches), and lighting—as in the Environ-
mental Conditioning block of Figure 2. Obstacle and OOI features are first enhanced with global
scene context, after which they interact with pedestrians via cross-attention, while lighting features
are extracted from grid-based brightness in the HSV space. Together, these features provide repul-
sive, attractive, and contextual cues that influence pedestrian motion.

For obstacles and objects of interest (OOI), GPT is first used to produce concise textual descriptions.
The scene-level BEV image and the cropped image patches are encoded using ResNet-50 to obtain
visual embeddings, while the textual descriptions are encoded using BERT. The resulting visual and
textual embeddings are then concatenated and projected to respectively form the global scene feature
fsc, the obstacle features f obs

l , and the OOI features f ooi
m .

Obstacles. We model obstacle influence in two stages of cross-attention. First, each obstacle feature
f obs
l is enhanced using the global scene feature fsc:

Qobs
l = ProjQ(f

obs
l ⊕ pobs

l ), Ksc = ProjK(fsc), V sc = ProjV (f
sc), (6)

f̃ obs
l = Attention(Qobs

l ,Ksc, V sc), (7)

where pobs
l is the obstacle position. This produces context-enhanced obstacle features f̃ obs

l .

5
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Second, pedestrians attend to the enhanced obstacle features to capture obstacle–pedestrian interac-
tions:

f ped-obs
i =

∑
l∈O

softmaxl

(
Q⊤

i K
obs
l√

d1
+ b(p⃗ rel

i,l )

)
V obs
l , (8)

where Qi = WQS
t
i encodes pedestrian i’s state St

i = [p⃗ti, v⃗
t
i , a⃗

t
i], K

obs
l = WK f̃ obs

l , V obs
l = WV f̃

obs
l ,

p⃗ rel
i,l = p⃗ obs

l − p⃗ t
i is the relative position, b(·) is a small neural network, and d1 is the feature

dimensionality for scaling.

Objects of Interest (OOI). OOI serves as a semantic attractor that influences route choice. Unlike
obstacles, which require fine-grained avoidance behavior, OOI primarily provides global semantic
cues. Therefore, each OOI feature f ooi

m is enhanced by concatenating its positional encoding pooi
m and

the global scene feature fsc, followed by a projection:

f̃ ooi
m = Proj(f ooi

m ⊕ pooi
m ⊕ fsc). (9)

The interaction with pedestrians is then modeled via cross-attention:

f ped-ooi
i =

∑
m∈I

softmaxm

(
Q⊤

i K
ooi
m√

d2
+ b(p⃗ rel

i,m)

)
V ooi
m , (10)

where Qi = WQS
t
i , Kooi

m = WK f̃ ooi
m , V ooi

m = WV f̃
ooi
m , p⃗ rel

i,m = p⃗ ooi
m − p⃗ t

i , b(·) is a small neural
network, and d2 is the feature dimensionality for scaling.

Lighting. We treat lighting as a global contextual factor rather than localized entities. The scene
image is divided into grids, and the average value of the V-channel in HSV space within each cell is
pooled to form a spatial lighting vector f raw

light, which is then encoded by a lightweight MLP, resulting
into the lighting feature f enc

light:
f enc

light = MLP(f raw
light). (11)

This design is supported by prior psychophysical evidence showing that lighting strongly influences
pedestrian movement (Rahm & Johansson, 2018), which reports that outdoor lighting improves
walkability and facilitates obstacle detection.

Pedestrian–Environment Feature Aggregation. Finally, the influences from obstacles, OOI, and
lighting are aggregated into a unified environment-aware feature for pedestrian i by concatenation
followed by an MLP:

F⃗ env
i = MLP

(
f ped-obs
i ⊕ f ped-ooi

i ⊕ f enc
light

)
. (12)

3.3 INDIVIDUAL–GROUP INTERACTION (IGI)

The IGI module encodes social influences at two levels, as illustrated in the IGI block of Figure 2. At
the individual level, similarity measures capture approach tendency and motion alignment between
pedestrian i and its neighbors j ∈ Neighi. At the group level, a conformity measure models the
alignment of i with the surrounding group conformity. In addition, relative motion descriptors rij =
∆p⃗ij⊕∆v⃗ij provide complementary spatial and velocity cues. These descriptors are aggregated by a
multi-layer GNN to produce the social force feature F⃗ social

i , which serves as part of the conditioning
input.

Individual-level similarities. We introduce two measures to capture pairwise relations between
pedestrian i and neighbor j:

• Approach tendency sim1
ij quantifies whether j is moving toward i, reflecting potential

collision risk:
sim1

ij =
1
2

(
∆p⃗ij

∥∆p⃗ij∥ · v⃗j
∥v⃗j∥ + 1

)
, (13)

where ∆p⃗ij = p⃗j−p⃗i. This is the cosine similarity between the normalized relative position
and the neighbor’s velocity, mapped to [0, 1]. Larger values indicate that j is approaching i
more directly.

6
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• Motion alignment sim2
ij measures the directional consistency of their velocities:

sim2
ij =

1
2

(
v⃗i

∥v⃗i∥ · v⃗j
∥v⃗j∥ + 1

)
. (14)

Higher values indicate stronger velocity alignment.

Group-level similarity. Beyond individual relations, pedestrians are influenced by the collective
motion of surrounding neighbors. We define a group conformity similarity sim3

i by comparing the
motion state of pedestrian i with the neighborhood average:

sim3
i = 1

2

(
wi

∥wi∥ · gi
∥gi∥ + 1

)
, (15)

where wi= v⃗i⊕ a⃗i encodes the velocity and acceleration of i, and gi =
1

|Neighi|
∑

j∈Neighi
(v⃗j ⊕

a⃗j) denotes the average motion of its neighbors, and |Neighi| is the number of neighbors. This
similarity, normalized to [0, 1], reflects the degree to which pedestrian i conforms to the surrounding
group dynamics; larger values indicate stronger conformity.

GNN Aggregation. To instantiate the social force F⃗ social
i in Eq. (1), we employ a multi-layer

graph neural network (GNN) that aggregates the individual-level and group-level similarities de-
fined above. Each pedestrian i is represented as a node, initialized as:

h0
i = MLPinit(S

t
i ⊕ ϵti ⊕ gi), (16)

where St
i = [p⃗ti, v⃗

t
i , a⃗

t
i] is the pedestrian’s state, ϵti denotes sampled noise, and gi encodes the neigh-

borhood average motion. At each GNN layer lg , the edge feature between pedestrian i and neighbor
j incorporates relative motion and the similarity measures:

eij = rij ⊕ sim1
ij ⊕ sim2

ij ⊕ sim3
i , (17)

where rij denotes the relative motion descriptor. These edge features capture spatial proximity,
motion cues, and social affinity, and are transformed by a shared edge-level multilayer perceptron
MLPedge to generate messages.

Each node updates its representation by concatenating its current hidden state h
lg
i , the mean-

aggregated messages from neighbors, and the normalized local group feature N i
g = Norm(gi),

followed by a node-level transformation:

h
lg+1
i =MLPnode

hlg
i ⊕

1

|Neighi|
∑

j∈Neighi

MLPedge(eij)⊕N i
g

 . (18)

This updated hidden state is progressively refined through Lg layers within the IGI module. Finally,
a task-specific output MLP predicts the social interaction force for pedestrian i:

F⃗ social
i = MLPout(h

Lg

i ). (19)

3.4 DENOISING AND MULTI-FRAME ROLLOUT TRAINING

After reverse diffusion, the denoised conditioning acceleration ŷti,0 is combined with the destination
term to obtain the final acceleration ˆ⃗a t

i . We train the model under a multi-frame rollout strategy
(Chen et al., 2024), and optimize a weighted mean-squared error over accelerations and positions:

L =
1

NH

N∑
i=1

H∑
τ=1

(
λa ∥ˆ⃗a t+τ

i − a⃗ t+τ
i ∥22 + λp ∥ ˆ⃗p t+τ

i − p⃗ t+τ
i ∥22

)
, (20)

where a⃗ t+τ
i , p⃗ t+τ

i are ground truth, ˆ⃗a t+τ
i , ˆ⃗p t+τ

i are predictions, N is the number of pedestrians, and
λa, λp are loss weights.
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Table 2: Quantitative comparison on GC and UCY datasets. Results for baselines are directly re-
ported from SPDiff (Chen et al., 2024), except for E-V 2-SC and Ours, which are reproduced under
the same experimental settings. Here, Ours corresponds to our proposed EnvSocial-Diff model.

Group Models GC UCY
MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓

Physics-based CA 2.7080 5.4990 - 0.0620 - 1492 8.3360 79.4200 - 2.0220 - 4504
SFM 1.2590 2.1140 - 0.0150 - 622 2.5390 6.5710 - 0.1290 - 434

Data-driven

STGCNN 8.1608 15.8372 - 0.5296 5.1438 2076 7.5121 18.7721 - 0.5149 5.1695 1348
PECNet 2.0669 4.3054 - 0.0397 0.7431 1142 3.9674 16.1412 - 0.1504 2.0986 1348
MID 8.4257 35.1797 - 0.3737 4.2773 1620 8.2915 47.8711 - 0.4384 4.7109 1076
E-V 2-SC 8.8816 52.5596 7.2464 1.8844 8.8851 >9999 8.8591 60.5391 9.5011 1.1427 8.8972 >9999

Physics-informed

PCS 1.0320 1.5963 - 0.0126 0.4378 764 2.3134 6.2336 - 0.1070 0.9887 238
NSP 0.9884 1.4893 - 0.0106 0.3329 734 2.4006 6.3795 - 0.1199 0.9965 380
SPDiff 0.9116 1.3925 - 0.0092 0.3332 810 1.8760 4.0564 - 0.0671 0.7541 372
Ours 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8656 0.0598 0.7249 522

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. This paper evaluates the model on two public real-world crowd datasets, GC (Yi et al.,
2015) and UCY (Lerner et al., 2007). These two datasets have significant differences in scene type,
scale (indoor scene/outdoor scene), pedestrian density, behavior pattern, etc., which can effectively
verify the generalization performance of the model in different environments. Specifically, we fol-
low the experimental settings in PCS (Zhang et al., 2022) and SPDiff(Chen et al., 2024): select the
same 5-minute trajectory data containing rich pedestrian interactions from the GC dataset for train-
ing and testing; select the same 216-second labeled trajectory data (Students003) from the UCY
dataset for training and testing. We split the datasets into training and testing sets, using a training-
to-testing ratio of 4:1 for the GC dataset and 3:1 for the UCY dataset.

Implementation Details. We train EnvSocial-Diff using Adam with a learning rate of 1e−5 and
a batch size of 32. The diffusion process uses 70 steps, and the first 25 frames of each sequence
are skipped to estimate the desired walking speed. The model integrates a UNet denoiser with three
conditioning modules: a 3-layer GNN for Individual–Group Interaction (IGI), pretrained ResNet-50
and BERT for Environmental Conditioning, and an LSTM encoder for up to 8 historical frames.
All conditioning features are fused before predicting 2D accelerations. Additional architectural and
computational details are provided in the Appendix.

Comparison Methods. We compare with classic physics-based and state-of-the-art data-driven and
physics-informed crowd simulation methods. We choose the widely used Physics-based methods,
Social Force Model (SFM) (Helbing & Molnar, 1995) and Cellular Automaton (CA) (Sarmady
et al., 2010). We also compare with approaches recently published data-driven methods, including
STGCNN (Mohamed et al., 2020), PECNet (Mangalam et al., 2020), MID (Gu et al., 2022), and
E-V 2-SC (Wong et al., 2024). For physics-informed comparisons, we choose PCS (Zhang et al.,
2022), NSP (Yue et al., 2022), and SPDiff (Chen et al., 2024).

Evaluation Metrics. We adopt the same evaluation settings and metrics as SPDiff. At the micro
level, we use mean absolute error (MAE) and dynamic time warping (DTW) to assess point-wise
accuracy and temporal alignment. At the macro level, we evaluate distribution similarity using
optimal transport (OT) and maximum mean discrepancy (MMD). Additionally, collision count (Col)
reflects how frequently predicted trajectories enter a predefined safety radius. We also introduce the
final displacement error (FDE) to capture long-term prediction stability.

Visualization results. We present both qualitative and quantitative results on the UCY dataset in
Figure 3. Panel (A) shows trajectory visualizations: in (a) and (b), the target pedestrian adjusts
their path to avoid a nearby obstacle, reflecting the importance of environmental constraints; in (c),
the pedestrian moves in close synchrony with familiar individuals, highlighting the effect of pair-
wise familiarity; in (d), the pedestrian aligns with the surrounding group flow while simultaneously
avoiding oncoming pedestrians, demonstrating the need to model both group-level conformity and
collision avoidance. Panel (B) further reports error curves (MAE and OT) across prediction hori-
zons, where our method consistently maintains lower errors than SPDiff, especially in long-term
predictions. These results confirm that explicitly modeling environmental cues and individual–group
interactions improves both trajectory plausibility and long-horizon accuracy.
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(a) (b)

(c) (d)

GT

SPDiff

Ours

SFM

Target 
Pedestrian

Obstacle

(A) (B)
Figure 3: Comparison with baselines on UCY. (A) Predicted trajectories: our method (cyan) follows
the ground truth (blue) more closely than SFM (magenta) and SPDiff (orange). (B) Error curves
over time: our method consistently achieves lower MAE and OT, especially at longer horizons.

Table 3: Ablation study on structured environmental factors. The first two rows report results of
the baseline SPDiff (Chen et al., 2024) and its variant extended with an explicit lighting module
(SPDiff+Lighting). The lower block corresponds to our proposed EnvSocial-Diff (Ours), where
obstacles, objects of interest (OOI), and lighting are progressively added. Results are reported on
GC and UCY datasets across six metrics, with checkmarks indicating the included factors.

Model Environment GC UCY
Obs OOI Light MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓

SPDiff ✓ ✗ ✗ 0.9718 1.5450 0.9538 0.0100 0.3418 942 1.8853 4.2221 1.9000 0.0699 0.7496 634
✓ ✗ ✓ 0.9359 1.4345 0.9404 0.0099 0.3395 958 1.8395 3.8602 1.9463 0.0669 0.7357 622

Ours

✗ ✗ ✗ 0.9127 1.3909 0.9246 0.0087 0.3261 946 1.8597 3.8945 1.9948 0.0626 0.7353 738
✓ ✗ ✗ 0.8990 1.3727 0.9162 0.0087 0.3253 1000 1.8337 3.8550 1.9987 0.0604 0.7259 730
✓ ✓ ✗ 0.8873 1.3455 0.9037 0.0087 0.3279 910 1.8271 3.8541 1.9671 0.0586 0.7212 648
✓ ✓ ✓ 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8656 0.0598 0.7249 522

4.2 EXPERIMENT RESULTS

In Table 2, we report the results of our proposed EnvSocial-Diff (‘Ours’) and comparison methods
on two real-world datasets (GC and UCY). Except for E-V 2-SC and Ours, which are reproduced
under the same experimental settings, all other results are directly cited from SPDiff (Chen et al.,
2024). On the GC dataset, our approach achieves state-of-the-art performance on the MAE, OT,
FDE, MMD, and DTW metrics. Since GC is an indoor subscene cropped from a larger environment,
with limited environmental variation and relatively simple pedestrian behaviors, existing physics-
informed models (e.g., PCS, SPDiff) already fit this dataset well, leading to performance saturation.
Consequently, the improvements on GC are relatively limited, yet our method still consistently out-
performs all comparisons across key metrics, demonstrating its stability and applicability.

On the more challenging UCY outdoor dataset, our method achieves relative improvements of 3.1%,
8.1%, 10.9%, and 3.9% on MAE, OT, MMD, and DTW, respectively, surpassing all comparison
approaches and establishing new state-of-the-art results. The substantial gains on long-horizon
metrics such as OT and MMD highlight the effectiveness of our environment factor modeling and
Individual–Group Interaction mechanism in capturing complex crowd dynamics and reducing long-
term prediction errors in outdoor scenarios.

4.3 ABLATION STUDY

Ablations on Environmental Factors. The ablation study on the effectiveness of structured envi-
ronmental factors is presented in Table 3. The first two rows report results of SPDiff (Chen et al.,
2024) and a variant (SPDiff+Lighting) that we reproduced with an additional explicit lighting mod-
ule. The lower block corresponds to our proposed EnvSocial-Diff (Ours), where obstacles (Obs),
objects of interest (OOI), and lighting (Light) are progressively added. As shown in the table,
incorporating each factor consistently improves performance on both GC and UCY, with the full
model achieving the best results across most metrics (MAE, OT, FDE, MMD, DTW). This demon-
strates the effectiveness of explicitly modeling structured environment cues in crowd simulation.
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Table 4: Ablation on the IGI module. Starting from relative motion rij , we incrementally add
individual-level similarities (sim1

ij : approach tendency; sim2
ij : motion alignment) and the group-

level similarity (sim3
i : group conformity). Results on GC and UCY show consistent gains on most

metrics, with the full configuration yielding the strongest overall performance.

Model Variant GC UCY
rij sim1

ij sim2
ij sim3

i MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓
✓ ✗ ✗ ✗ 0.9066 1.3897 0.9192 0.0093 0.3272 990 1.9055 4.0101 2.0525 0.0628 0.7730 580
✓ ✓ ✗ ✗ 0.8946 1.3570 0.9194 0.0086 0.3303 1000 1.8846 3.8502 2.0139 0.0588 0.7720 752
✓ ✓ ✓ ✗ 0.9208 1.4137 0.9242 0.0087 0.3404 1024 1.8725 3.7937 2.0262 0.0575 0.7761 614
✓ ✓ ✓ ✓ 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8656 0.0598 0.7249 522

It is noteworthy that, on the UCY dataset, adding Lighting slightly increases MMD and DTW in
our model, likely due to the weaker correlation between lighting and local pedestrian dynamics in
outdoor scenes. However, other key metrics (MAE, OT, FDE) continue to decrease, indicating that
Lighting still contributes positively to overall prediction quality. This trend is also observed in the
SPDiff baseline, where adding explicit lighting yields consistent improvements, further validating
the general effectiveness of lighting as an environmental cue in trajectory prediction.

Ablations on Similarity Terms. The ablation study on the effectiveness of similarity terms in the
Individual–Group Interaction (IGI) module is presented in Table 4. The first row corresponds to
using only the relative motion descriptor rij , which is analogous to the interaction formulation in
SPDiff (Chen et al., 2024), where social forces are conditioned purely on relative position and ve-
locity without explicit similarity measures. The following rows progressively incorporate the three
similarity terms—sim1

ij (approach tendency), sim2
ij (motion alignment), and sim3

i (group confor-
mity). As shown in the table, adding each similarity term improves performance on both GC and
UCY datasets, and the full configuration achieves the best overall results across most metrics (MAE,
OT, FDE, DTW). Notably, sim3

i alone achieves a lower MMD on GC, but the absence of sim1
ij or

sim2
ij weakens other metrics, confirming that group conformity alone is insufficient. These re-

sults demonstrate that modeling complementary aspects of pedestrian interactions through explicit
similarity measures leads to more accurate and socially compliant trajectory forecasts. See more
experiments in the Appendix.

5 CONCLUSION

This paper presents an Env–Social Physics-Informed Crowd Simulation framework that integrates
environmental conditioning—including obstacles, objects of interest, and lighting—with an Individ-
ual–Group Interaction (IGI) module into diffusion-based Social Force models. By modeling these
elements as physical forces and embedding them into learning architectures, our framework enables
more realistic and context-aware trajectory predictions. Experiments demonstrate that incorporating
environmental conditioning and the proposed IGI module significantly improves simulation accu-
racy, particularly in complex outdoor scenes. Our approach highlights the critical role of environ-
mental cues in crowd motion modeling while simultaneously achieving effective social interaction
modeling. Beyond trajectory simulation, future work will extend to video-level generation based
on predicted trajectories, further enhancing the framework’s utility for real-world crowd simulation,
safety planning, and intelligent infrastructure systems.

ETHICS STATEMENT

Our work focuses on modeling pedestrian dynamics for crowd simulation and trajectory prediction.
The proposed EnvSocial-Diff framework is designed for research and practical applications such as
urban planning, public safety analysis, and intelligent transportation systems. It does not rely on per-
sonally identifiable information; all datasets (GC and UCY) used in this study are publicly available
and contain only anonymized pedestrian trajectories without facial or biometric data. Nevertheless,
we acknowledge that predictive models of human motion could potentially be misused for privacy-
invasive surveillance or crowd control. We encourage researchers and practitioners to employ such
models responsibly, respect individual privacy, and comply with relevant data protection and ethical
guidelines when deploying these systems in real-world scenarios.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure that our results are reproducible. All code and configuration
files, together with the datasets used in this study (GC and UCY), will be made publicly available in
an anonymous repository. Our paper provides detailed descriptions of the model architecture, train-
ing procedure, experimental setup, and evaluation metrics, enabling other researchers to replicate
and build upon our work.

LLM USAGE STATEMENT

Large Language Models (LLMs), such as ChatGPT, were used to assist with language polishing,
grammar correction, and improving the clarity of the manuscript. All technical ideas, model designs,
experiments, and analyses were conceived and executed by the authors. The LLM did not generate
novel research content or influence the reported scientific results.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Social perception range. The social perception range is defined as the set of nearby pedestrians
that are considered when modeling individual interactions. In our framework, for each pedestrian i,
we identify their topk = 6, meaning that each pedestrian interacts with their 6 closest neighbors.

Lighting features. To extract lighting features, we first convert the static scene image to the HSV
color space and use the V channel to represent pixel-level brightness. The image is then divided into
uniform grids, and for each grid, we compute the average, maximum, and minimum light intensities.
The grid size varies by dataset based on the scene’s spatial scale: For the UCY dataset (720× 576),
we use a grid size of 110 pixels, resulting in an 8 × 6 grid. For the GC dataset (1920 × 1060), we
use a grid size of 220 pixels, resulting in a 8× 4 grid.

Model parameters. Our model has 58.2M parameters in total, including a ResNet50 backbone
(37.8M), a lightweight BERT encoder (12.6M), and a diffusion module (7.9M). Among them, 42.6M
parameters participate in the forward computation.

Training configurations: We use Adam (lr = 1e-5, weight decay = 1e-5) with a mild StepLR decay
(γ = 0.999 every 10 epochs). The batch size is 32 and the diffusion process uses 70 steps. The invalid
positions are masked as NaN. For each sequence, we skip the first 25 frames and compute each
pedestrian’s average velocity over these skipped frames; this value is used as the desired walking
speed in the destination driving term. Training runs for 160 epochs, with each epoch taking about
69 seconds.

Model architecture: The model consists of three components. (1) Diffusion backbone: A
UNet-based denoiser predicts accelerations, conditioned on Environmental Conditioning, Individ-
ual–Group Interaction (IGI) and Historical Trajectories. (2) IGI: A 3-layer GNN operates on a
6-nearest neighbor graph constructed at each vaild timestep, encoding relative geometry and motion
cues. (3) Environmental Conditioning: Scene information is extracted using pretrained ResNet-50
(resnet50-0676ba61) and BERT (bert-base-uncased); visual and textual embeddings are concate-
nated to form obstacle, OOI, and global scene features. (4) The Historical Trajectories up to 8
past frames are encoded using an LSTM. All conditioning signals are projected and fused into the
diffusion network, followed by a lightweight MLP that outputs 2D accelerations.

Computational setup: On a single NVIDIA Quadro P6000 (PyTorch 1.13.1, CUDA 11.7, FP32,
batch size = 32, lr=1e-5, DDIM with 50 denoising steps), our full model (42.6M parameters) requires
approximately 27 FLOPs per forward pass and 2.5–9.4GB of GPU memory, with each training
epoch taking 69s. For a 651-Frame sequence, inference took 349 seconds (≈ 0.54s per frame), the
allocated GPU memory ranges from 1519MB to 2047MB.

A.2 EVALUATION METRICS

We evaluate the quality of predicted trajectories using six standard metrics: Mean Absolute Error
(MAE), Final Displacement Error (FDE), Optimal Transport (OT), Maximum Mean Discrepancy
(MMD), Dynamic Time Warping (DTW), and Collision Count (COL). Below are their formal defi-
nitions.

Mean Absolute Error (MAE). MAE computes the average ℓ2 displacement error over all predicted
positions. Given predicted trajectories { ˆ⃗pti} and ground-truth {p⃗ti} for N pedestrians over T time
steps, the MAE is defined as:

MAE =
1

NT

N∑
i=1

T∑
t=1

∥∥∥ ˆ⃗p t
i − p⃗ t

i

∥∥∥
2
. (21)

Optimal Transport (OT). OT measures the distributional discrepancy between predicted and
ground-truth pedestrian positions using the entropy-regularized Wasserstein distance. At each time
t, the Sinkhorn distance is computed between predicted positions P̂ t = { ˆ⃗pt1, . . . , ˆ⃗ptN} and ground-
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truth P t = {p⃗t1, . . . , p⃗tN}:

OT =
1

T

T∑
t=1

Wϵ

(
P̂ t, P t

)
, (22)

where Wϵ denotes the Sinkhorn approximation of the Wasserstein distance with regularization co-
efficient ϵ.

Final Displacement Error (FDE). FDE measures the error between the predicted and true positions
at the final step. Let T denote the final time step, then

FDE =
1

N

N∑
i=1

∥∥∥ ˆ⃗pT
i − p⃗T

i

∥∥∥
2
. (23)

Maximum Mean Discrepancy (MMD). MMD compares the distributions of pairwise distances
among pedestrians in predicted and ground-truth trajectories. Let Dpred

t and Dgt
t be the intra-

pedestrian distance sets at time t, then

MMD =
1

T

T∑
t=1

MMD
(
Dpred

t , Dgt
t

)
, (24)

where MMD(·, ·) denotes the kernel-based two-sample test using Gaussian kernels.

Dynamic Time Warping (DTW). DTW measures the similarity between two temporal sequences
by computing the minimal cumulative alignment cost under temporal warping. For each pedestrian
i, DTW distance is defined as the minimum total cost path that aligns predicted trajectory { ˆ⃗pti}Tt=1

with the ground-truth trajectory {p⃗ti}Tt=1, allowing for non-linear time alignment:

DTW(ˆ⃗pi, p⃗i) = min
π

∑
(t,s)∈π

∥∥∥ ˆ⃗p t
i − p⃗ s

i

∥∥∥
2
, (25)

where π denotes a warping path satisfying boundary, continuity, and monotonicity constraints. The
final DTW metric is computed by averaging over all pedestrians:

DTW =
1

N

N∑
i=1

DTW(ˆ⃗pi, p⃗i). (26)

Collision Count (COL). COL measures the sum number of collisions among pedestrians during
prediction. A collision is counted if two pedestrians i and j are within a certain threshold dthres at
any time t:

COL =

T∑
t=1

N∑
i=1

N∑
j=i+1

I
(∥∥∥ ˆ⃗pti − ˆ⃗ptj

∥∥∥
2
< dthres

)
, (27)

where I(·) is the indicator function.

A.3 ADDITIONAL EXPERIMENTS

Performance on Full GC scene. To further evaluate the generalizability of our method, we conduct
an additional experiment on the full GC scene. While the original GC benchmark restricts evaluation
to a manually selected subregion, we apply our model to the entire scene without spatial cropping or
manual filtering (see Figure 4). This setting introduces greater variability in pedestrian density, lay-
out complexity, and environmental interactions, posing a significant challenge to prediction models.

As shown in Table 5, although SPDiff uses its own social interaction module and an obstacle-only
environment treatment, replacing the interaction module with our IGI design (✓) yields consistent
improvements across all metrics. Furthermore, by additionally integrating richer environmental
cues (✓)—including obstacles, objects of interest, and lighting—our model achieves further gains,
notably reducing OT by 11.7% (4.6824 → 4.1334), MMD by 11.4% (0.0044 → 0.0039), and COL
by over 10% (1910 → 1710). These results confirm the effectiveness of our IGI-based interaction
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GC Full GC
Figure 4: Comparison between the original GC subregion and the full GC scene. The left image
highlights the cropped subarea (blue box) used in prior work, which limits spatial and interaction
diversity. The right image shows the complete GC scene, covering a broader area with higher pedes-
trian density and environmental complexity, used in our extended evaluation.

GT SPDiff Ours

Figure 5: Qualitative comparisons on the GC dataset. Each subplot shows the predicted trajectory
of a target pedestrian within the marked evaluation area (blue rectangle). Ground-truth (GT) fu-
ture trajectories are depicted in black, while predictions from SPDiff and our method are shown in
orange and cyan, respectively. Our approach produces more accurate and socially plausible predic-
tions, particularly in scenarios involving sharp turns, long-range navigation, or subtle environmental
conditioning.

modeling and demonstrate the robustness of our environment-aware framework under complex real-
world conditions.

Enhanced Features for Environmental Conditioning Modeling. The ablation study evaluates
the impact of enhanced environmental features. We start with a model without enhancement (w/o
Enhance), then apply enhancement only to obstacles (Obs-Only) or only to OOI (OOI-Only), and
finally apply enhancement to both (Full). As shown in Table 6, incorporating either obstacles or OOI
individually improves performance, while the Full setting achieves the best results across nearly all
metrics. These findings indicate that leveraging global scene context for both obstacles and OOI
provides a more comprehensive modeling of environmental effects, thereby improving trajectory
prediction accuracy.

SFM + Environmental Factors. To further assess the effectiveness of the proposed environmental
modeling modules, we perform ablation studies based on the classic Social Force Model (SFM) by
incrementally incorporating our three types of environmental factors: obstacles, lighting, and objects
of interest (OOI). These experiments are conducted on the UCY dataset, focusing on two distinct
scenes: Zara1 and Students03.

Starting from the standard SFM as the baseline, we introduce the environmental components one by
one. As shown in Tables 7 and 8, each added component consistently improves prediction accuracy.
Obstacles reduce collisions and improve short-term precision; lighting enhances motion smoothness;
and OOIs capture higher-level behavioral tendencies.
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GT

SPDiff

Ours

SFM

Target 
Pedestrian

Figure 6: Additional qualitative results for multiple target pedestrians. Each subplot visualizes
one scene with a selected target pedestrian (green triangle). Ground-truth future trajectory (GT) is
shown in blue, while predictions from SFM (magenta), SPDiff (orange), and our method (cyan) are
overlaid. Our approach consistently aligns more closely with the GT across diverse scenarios.

Table 5: Comparison on the full GC dataset. SPDiff uses its own social interaction module and a ba-
sic environment treatment limited to obstacle repulsion. In contrast, our method replaces the social
interaction module with the proposed IGI design (✓) and additionally integrates richer environmen-
tal cues (✓), including obstacles, objects of interest, and lighting. ✗ indicates the corresponding
module is not used. In the table, Social and Env are marked with ‘*‘ for SPDiff’s built-in designs
(social interaction and obstacle-only environment), ✓ when replaced by our modules, and ✗ when
omitted.

Dataset: Full GC
Method Social Env MAE↓ OT↓ FDE↓ MMD↓ DTW↓ COL↓
SPDiff * * 2.4624 4.6824 2.6707 0.0044 0.8873 1910

Ours ✓ ✗ 2.4478 4.4662 2.6683 0.0044 0.8836 1750
✓ ✓ 2.3527 4.1334 2.5891 0.0039 0.8473 1710

Sensitivity Analyses. In addition, we conduct a series of sensitivity analyses on three key hyper-
parameters: the number of cloest neighbors used for individual-level similarity computation Top k
(Table 9), the number of diffusion denoising steps (Table 10), and the spatial grid size (Table 11)
for environmental encoding. The results, show that the model is overall stable under variations of
these hyperparameters. For Top k, values between 2 and 8 yield comparable performance, while
k = 6 provides the most balanced results across all metrics on both GC and UCY. Similarly, diffu-
sion step counts from 50 to 80 exhibit only marginal fluctuations, with 70 steps offering a consistent
balance between accuracy and stability. Finally, the environmental grid size demonstrates moderate
influence on performance, where GC performs best around a resolution of 220 and UCY around
110, reflecting differences in scene scale. These observations indicate that the proposed model is
not highly sensitive to hyperparameter choices, and the selected default settings provide a robust
trade-off across datasets.

Repulsive Force. We implemented a simple repulsive-force variant: ai = aours
i + arep

i , arep
i =

λ
∑

j exp(−dij/σ), nij , where dij is the inter-agent distance and nij is the unit vector from j to
i. As shown in Table 12, adding this repulsive-force term lowers collision counts but consistently
worse MAE and OT on both GC and UCY, indicating that simple additive repulsion does not improve
overall trajectory quality.

Environment-Free Diffusion Variant: To assess the contribution of the environmental condition-
ing within the diffusion process, we further evaluate a simplified variant in which all environmental
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Table 6: Ablation on enhanced environmental features. We compare four settings: no enhancement
(✗, ✗), OOI-only enhancement (✗, ✓), obstacle-only enhancement (✓, ✗), and joint enhancement
with both (✓, ✓). Results on GC and UCY datasets show that the joint enhancement strategy
achieves the most consistent improvements across metrics.

Env GC UCY
Obs OOI MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓
✗ ✗ 0.9320 1.4425 0.9391 0.0094 0.3362 926 1.9320 3.9726 2.0367 0.0609 0.7706 550
✗ ✓ 0.9038 1.3645 0.9164 0.0090 0.3333 898 1.9119 3.7120 2.2160 0.0606 0.7563 688
✓ ✗ 0.8960 1.3562 0.9160 0.0086 0.3277 962 1.8346 4.0420 1.9951 0.0634 0.7042 710
✓ ✓ 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8626 0.0598 0.7249 522

Table 7: Ablation study of adding environmental factors to the SFM method on UCY Students03.
✓ / ✗ indicate whether the corresponding environmental module is enabled. Progressive addition
of obstacle, lighting, and object-of-interest (OOI) cues leads to consistent improvements across all
evaluation metrics.

Dataset: UCY Students03
obstacle lighting OOI MAE ↓ MMD ↓ OT ↓ COL ↓

✗ ✗ ✗ 2.8943 7.9564 0.0954 308
✓ ✗ ✗ 2.7822 7.3759 0.0899 266
✓ ✓ ✗ 2.7324 7.2187 0.0803 216
✓ ✓ ✓ 2.6742 6.7032 0.0708 216

forces are removed from the denoiser inputs and applied only afterward in a post-processing man-
ner. As shown in Table 13, the performance on GC changes only marginally, which is expected
since GC contains stable indoor layouts with limited environmental diversity. In contrast, the gap
becomes substantially larger on UCY, where open spaces and heterogeneous obstacle configurations
make environmental cues more influential. These results confirm that embedding environmental in-
formation directly into the diffusion dynamics is particularly important in complex, environmentally
varied scenes.

Automatic Annotations. To assess the robustness of the method to noisy or automatically gener-
ated annotations, we replace all manually curated boxes with raw GroundSAM detections, which
contain missing and inaccurate objects. As shown in Table 14, the performance degradation on GC
is limited, consistent with the fact that GC is an indoor scene with simple, well-structured geome-
try that remains largely recoverable even under imperfect detections. In contrast, UCY exhibits a
more noticeable drop: several key elements—such as the store façade that provides strong attraction
cues—are missed by GroundSAM, reducing the effectiveness of environmental conditioning. Nev-
ertheless, the errors remain within a reasonable range, indicating that the model retains a degree of
robustness to annotation noise.

ETH Dataset Generalizatio. To further assess cross-dataset generalization, we evaluate our method
on the ETH dataset. As shown in Table 15, our model consistently outperforms SPDiff across all
metrics, demonstrating that the proposed approach generalizes well beyond the original GC and
UCY datasets.

Density Conditioning Variant. To evaluate whether lighting cues can be substituted by other
perceptual representations, we replace the lighting conditioning with a global density feature con-
structed from a K × K density grid (K = 16) and a lightweight CNN encoder. As shown in
Table 16, although density captures congestion levels, the substitution leads to a consistent drop
across most metrics, indicating that density and lighting provide complementary rather than inter-
changeable cues. At the same time, the results demonstrate that our framework can accommodate
alternative perceptual inputs without requiring architectural modifications.

A.4 EXTRA VISUALIZATIONS

Figure 7 presents a qualitative comparison across three representative scenarios. In panel (A), tra-
jectories generated by SPDiff tend to pass unnaturally close to obstacles, while both the ground
truth and our method maintain safer margins. Panel (B) highlights behavior in dense crowds, where
SPDiff produces multiple near-collision interactions, whereas our predictions remain smooth and
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Table 8: Ablation study of adding environmental factors to the SFM method on UCY Zara1. ✓
/ ✗ indicate whether the corresponding environmental module is enabled. The results show that
incorporating obstacle, lighting, and object-of-interest (OOI) cues progressively improve trajectory
prediction performance in terms of MAE, MMD, and OT.

Dataset: UCY Zara1
Obstacle Lighting OOI MAE↓ MMD↓ OT↓

✗ ✗ ✗ 2.5954 9.2648 1.6676
✓ ✗ ✗ 1.9585 5.2413 1.1437
✓ ✓ ✗ 1.8981 5.1045 1.3224
✓ ✓ ✓ 1.8282 4.7196 1.0968

Table 9: Sensitivity analysis of the hyperparameter Top k on GC and UCY datasets. Top k controls
how many nearest neighbors are used when computing individual-level similarities within the IGI
module. All metrics follow the lower-is-better convention (↓). We adopt k = 6 as it provides the
most balanced overall performance.

GC Dataset UCY Dataset
Top k MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓

2 0.8918 1.3409 0.9088 0.0086 0.3273 902 1.8149 3.6431 1.9209 0.0596 0.7251 588
4 0.8896 1.3321 0.8998 0.0087 0.3284 914 1.8142 3.7501 1.9542 0.0601 0.7007 552

6 (Ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8656 0.0598 0.7249 522
8 0.8921 1.3599 0.9128 0.0089 0.3384 953 1.8154 3.7276 1.8999 0.0595 0.7159 476

socially coherent. Panel (C) further illustrates these differences in more complex configurations,
consistently showing that our model better preserves realistic interpersonal spacing and obstacle-
aware motion.

UCY Dataset. To further evaluate the effectiveness of our model, we present additional qualitative
results on the UCY dataset, as illustrated in Figure 6. Each subplot depicts a different target pedes-
trian (green triangle) across various UCY scenes, with predicted trajectories from SFM (magenta),
SPDiff (orange), and our method (cyan), overlaid against the ground-truth future trajectory (blue).
Across diverse motion patterns and social contexts, our approach consistently produces more ac-
curate and socially plausible predictions. Our method closely follows the ground-truth trajectories,
even in challenging scenarios involving group movement, sharp turns, or interactions with nearby
pedestrians. Compared to existing baselines, our model better anticipates the natural flow of pedes-
trian behavior and adapts more effectively to local dynamics and crowd density variations.

GC Dataset. We further demonstrate the robustness of our approach through qualitative compar-
isons on the GC dataset, as shown in Figure 5. Each subplot shows the predicted trajectory of a
target pedestrian within the blue-marked evaluation area. The ground-truth (GT) trajectory is shown
in black, with predictions from SPDiff and our method rendered in orange and cyan, respectively.
Our model yields trajectories that better align with the GT, especially in scenarios involving long-
distance navigation, abrupt direction changes, and spatial constraints along boundaries. These re-
sults underscore our model’s improved capacity to reason over complex environments and nuanced
spatial cues.
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Table 10: Sensitivity analysis of the diffusion step count on GC and UCY datasets. The diffusion
step controls the number of denoising iterations during sampling. All metrics follow the lower-is-
better convention (↓). We adopt 70 steps as the default, as it provides a stable and well-balanced
performance across all evaluation metrics.

GC Dataset UCY Dataset
Step MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓ MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col↓
50 0.8870 1.3361 0.9019 0.0087 0.3269 984 1.8173 3.7486 1.8596 0.0616 0.7148 486
60 0.8860 1.3355 0.9006 0.0087 0.3273 912 1.8142 3.7358 1.8688 0.0603 0.7124 432

70(Ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906 1.8182 3.7292 1.8656 0.0598 0.7249 522
80 0.8862 1.3449 0.8999 0.0088 0.3285 908 1.8214 3.8168 1.8705 0.0612 0.7118 582

Table 11: Sensitivity analysis of the grid size used to construct the global scene representation on
GC and UCY datasets. The grid size controls the spatial resolution of the environmental encoding,
with lower-is-better metrics (↓). We adopt a grid size of 220 for GC and 110 for UCY, as these
settings yield the most balanced performance across the evaluation metrics for each dataset.

GC Dataset UCY Dataset
Grid Size MAE↓ OT↓ FDE↓ MMD↓ DTW↓ Col ↓ Grid Size MAE↓ OT↓↓ FDE↓ MMD↓ DTW↓ Col↓
220(Ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906 90 1.8277 3.8858 1.8794 0.0608 0.7188 546

250 0.8842 1.3308 0.8999 0.0087 0.3275 914 100 1.8470 3.9977 1.9471 0.0629 0.7254 596
300 0.8848 1.3393 0.8986 0.0086 0.3276 916 110(Ours) 1.8182 3.7292 1.8656 0.0598 0.7249 522
400 0.8840 1.3396 0.9000 0.0086 0.3276 918 120 1.8314 3.8239 1.9613 0.0600 0.7196 561

Table 12: Comparison between our method and the repulsive-force variant.

Dataset MAE↓ OT↓ FDE↓ MMD↓ DTW↓ COL↓
GC (repulsive) 0.8970 1.3827 0.8974 0.0087 0.3370 894.0
GC (ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906
UCY (repulsive) 1.8609 3.8766 1.9302 0.0646 0.7066 510.0
UCY (ours) 1.8182 3.7292 1.8656 0.0598 0.7249 522

Table 13: Comparison between our full model and a simplified variant in which the environmental
conditioning is removed from the diffusion inputs and applied only as forces outside the denoiser.

Dataset MAE↓ OT↓ FDE↓ MMD↓ DTW↓ COL↓
GC (variant) 0.8862 1.3449 0.8999 0.0088 0.3284 908.0
GC (ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906
UCY (variant) 2.0764 4.4494 2.1363 0.0730 0.7854 642.0
UCY (ours) 1.8182 3.7292 1.8656 0.0598 0.7249 522

Table 14: Performance comparison when replacing manually curated annotations with raw Ground-
SAM detections, which introduce missing and inaccurate boxes.

Dataset MAE↓ OT↓ FDE↓ MMD↓ DTW↓ COL↓
GC (auto) 0.8919 1.3440 0.9059 0.0088 0.3365 1034.0
GC (ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906
UCY (auto) 1.9083 3.9220 2.0423 0.0614 0.7466 644.0
UCY (ours) 1.8182 3.7292 1.8656 0.0598 0.7249 522

Table 15: Evaluation on the ETH dataset to assess cross-dataset generalization.

Method MAE↓ OT↓ FDE↓ MMD↓ DTW↓ COL↓
SPDiff 0.4692 0.3153 1.7100 0.0886 0.2302 0.0
Ours 0.4083 0.2454 0.4639 0.0660 0.2162 0.0
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Table 16: Replacing lighting conditioning with a global crowd-density representation constructed
from a K ×K density grid.

Dataset MAE OT FDE MMD DTW COL
GC (density) 0.9132 1.4298 0.9447 0.0092 0.3407 1140
GC (ours) 0.8861 1.3339 0.8997 0.0087 0.3269 906
UCY (density) 1.8542 3.9204 1.9490 0.0606 0.7223 690
UCY (ours) 1.8182 3.7292 1.8656 0.0598 0.7249 522

(A)

(B)

(C)

Figure 7: Qualitative comparison between the GT, Ours, and SPDiff. (A) Near obstacles, SPDiff
trajectories maybe to pass much closer to obstacles, whereas both GT and our method keep a more
reasonable distance. (B) In crowded regions, SPDiff produces several near-collision interactions,
while our predictions remain smoother and more socially consistent. (C)
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