
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt engineering and finetuning aim to maximize language model performance
on a given metric (like toxicity reduction). However, these methods do not optimally
elicit a model’s capabilities. To reduce this gap, we introduce a form of activation
engineering: the inference-time modification of activations in order to control (or
steer) model outputs. Specifically, we introduce the Activation Addition (ActAdd)
technique, which contrasts the intermediate activations on prompt pairs (such as
“Love” versus “Hate”) to compute a steering vector (Subramani et al., 2022). By
tactically adding in e.g. the “Love”−“Hate” steering vector during the forward
pass, ActAdd can perform many tasks like topic steering, sentiment steering,
and detoxification. ActAdd yields inference-time control over high-level output
properties (like topic and sentiment) while preserving performance on off-target
tasks. ActAdd is lightweight: it does not require any machine optimization and
works with a single pair of data points, which enables rapid iteration over steering.

1 INTRODUCTION

LLMs contain hidden capabilities we do not know how to fully elicit (Korinek, 2023). Naively
prompting a model with a question does not maximize the probability of the correct response. For
example, consider how prompting a model to think “step-by-step” (Wei et al., 2022) massively
improves performance on a range of benchmarks. Similarly, “few-shot” prompting a model with
correct answers to unrelated in-distribution questions allows “in-context learning” for e.g. stronger
performance on NLP tasks (Brown et al., 2020). Importantly, these interventions do not supply
the LLM with extra task-relevant information or update the algorithm implemented by the LLM’s
computational graph. Even though the model is initially able to score higher on these benchmarks,
those capabilities do not emerge without a specific intervention. We therefore hypothesize an
elicitation overhang: we do not know how to elicit all relevant abilities and information from models.

Prompt engineering is the most obvious way to steer a model, but prompting has limited reliability
(Ye & Durrett, 2022; Wang et al., 2024). Therefore, to reduce the elicitation overhang, we explore a
new modality for steering language model outputs. By strategically perturbing activations during the
forward pass, we hope to more reliably and effectively steer models compared to prompt engineering.
We call this methodology activation engineering.

We suspect that compared to prompt engineering, activation engineering can elicit a wider range of
model capabilities. Consider, for example, a model optimized to imitate the text outputs of eloquent
poets and awkward mathematicians. The model may contain the internal mechanisms required to
output text which is both eloquent and mathematical. However, if the model is an accurate estimator
of the training distribution, it will (correctly) assign low probability to eloquent mathematical prose.
Because nothing in the training data was both eloquent and mathematical, there may exist no prompt
which elicits mathematical prose. In contrast, activation engineering might be able to simultaneously
activate the circuitry for eloquent speech and for mathematical content.

To demonstrate the power of activation engineering, we introduce Activation Addition (ActAdd).
Suppose we want to achieve negative-to-positive sentiment control (Li et al., 2018; Dathathri et al.,
2020). To achieve this, ActAdd first compares the model’s activations on a contrast pair of prompts,
such as the prompts “Love” and “Hate.” The otherwise-similar prompts differ along the target
dimension of sentiment. ActAdd then computes the difference of these activations in order to
compute steering vectors. These vectors act like “virtual bias terms” because ActAdd directly adds

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

the steering vectors to the forward pass at inference time. By shifting the inference-time activations
along the direction of the steering vector, ActAdd steers the model to generate positive sentiment
completions (Table 1).

Table 1: Example impact of ActAdd. The steering vectors are computed from (“Love” - “Hate”) and
(“I talk about weddings constantly” - “I do not talk about weddings constantly”). Appendix Table 6
shows more examples.

Prompt + steering = completion

I hate you because...
[None] ...you are the most disgusting thing I have ever seen.

ActAdd
(love) ...you are so beautiful and I want to be with you forever.

I went up to my
friend and said...

[None]
...“I’m sorry, I can’t help you.”

“No,” he said. “You’re not.”

ActAdd
(weddings)

...“I’m going to talk about the wedding in this episode of
Wedding Season. I think it’s a really good episode.

It’s about how you’re supposed to talk about weddings.”

Contributions. We unify past literature on related topics to introduce activation engineering. To
better elicit the full capabilities of models, we introduce the ActAdd steering method. ActAdd
achieves substantial (but not SOTA) control on toxicity reduction and sentiment control. We thor-
oughly test ActAdd’s generality and effects on general capabilities. We therefore show the promise
of ActAdd as an effective and cheap method for steering LLM outputs.

2 RELATED WORK

Latent space arithmetic. Computer vision researchers have long demonstrated the ability to steer
image generation using derived vectors, including steering latent variables – most famously, shifting
activations along a direction that corresponds to smiling in images (Larsen et al. 2016; White 2016).
Similarly, in the text domain, classic results on the word2vec embedding show that arithmetic on
word vectors can capture some parts of semantic reasoning (for instance, analogies: Mikolov et al.
2013b;a). Our work focuses on steering generative language models.

LLM steering. Many approaches attempt to affect the output of a pretrained LLM, whether:

• Intervening on weights, as with supervised finetuning, RLHF, steerable layers, and weight editing
(that is, targeted fine-tuning) (Ranzato et al. 2016; Ziegler et al. 2019; Dathathri et al. 2020; Meng
et al. 2023; Ilharco et al. 2023). However, naive RLHF, finetuning, and weight editing have known
side-effects on overall model performance (Hase et al. 2023; Qi et al. 2023; Brown et al. 2023);

• Intervening at decoding, as with guided or trainable decoding (Gu et al. 2017; Grover et al. 2019;
see Zhang et al. 2022a for an overview of controlled generation and Jin et al. 2022 for textual style
transfer);

• Intervening on the prompt, as with automated prompt engineering (Shin et al. 2020; Zhou et al.
2022);

• Intervening on token embeddings, as with ‘soft prompting’ (Li & Liang 2021; Lester et al. 2021;
Khashabi et al. 2022);

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• Intervening on activations, for instance by freezing the weights of the LLM and searching for a
‘steering vector’ of activations, e.g. using gradient descent (Subramani et al. 2022; Hernandez
et al. 2023). These optimized extraction methods, which search for a steering vector, differ from
extraction methods which directly compute it (present work and Li et al. 2023b). In our work, we
do not use gradient descent or other optimization methods.

Table 2: Locating our work in the steering literature.

Vector intervenes on model ...

Intervention vectors obtained via ... weights ... activations

Differences after fine-tuning Ilharco 2023 N/A

Per-query gradient-based search
Meng 2022,

Orgad 2023

Dathathri 2020

Subramani 2022

Hernandez 2023

Differences between prompt pairs N/A
ActAdd (present work),

Li et al., 2023b

Activation engineering. Activation engineering involves creating vectors of activations which
cause desired changes to output text when added to the forward passes of a frozen LLM (Dathathri
et al. 2020). Table 2 organizes prior work by intervention type. An early antecedent is the Plug-
and-Play Language Model of Dathathri et al. 2020. This uses a separate classifier (one classifier per
attribute to steer towards) to perturb the model’s activations to generate text that accords more closely
with the classifier’s target. Subramani et al. 2022 extract latent steering vectors from a frozen LLM,
successfully discovering sentence-specific vectors which steer completions to near-perfect BLEU
scores (i.e, control of the LLM’s generation) and unsupervised style transfer. However, the method
requires running gradient descent for each new steering vector. Hernandez et al. 2023 locate and
edit an LLM’s knowledge through learning an encoding of facts in its activation space. Ablating
attention heads can also be seen as activation engineering, though the technique is mostly used for
model interpretation rather than steering (Michel et al. 2019; Olsson et al. 2022).

Independently of our work, Li et al. 2023b developed a similar method called ITI which computes
steering vectors which are selectively applied according to trained linear probes. They use these
probes to find attention heads with different activation distributions for true and false statements. They
steer the model toward truthful outputs, where our experiments cover a range of goals. In addition,
ITI adds the same vector at all sequence positions during inference and requires dozens of samples.
In contrast, ActAdd we add steering vectors to a subset of sequence positions and require as few as 2
samples. Similar work on ‘in-context vectors’ also followed ours (Liu et al. 2023). Lastly, Zou et al.
2023’s “representation engineering” also followed our work. They develop a range of techniques
for deriving steering vectors and for steering models using activation-space edits and optimization.
In comparison to Zou et al. 2023, we steer different models (primarily LLAMA-3.1-8B, but also
LLAMA-3, OPT, GPT-2, and GPT-J) on different tasks (detoxification and sentiment control).

Dekoninck et al. 2024’s Language Model Arithmetic (LMA) combines multiple models’ output
characteristics by solving an optimization problem involving KL-divergences. LMA allows an
impressive and flexible control over model steering, although it requires having trained multiple
models.

Not all activation-focused works aim to control model outputs. Some interpretability techniques, like
activation patching, simply resample activations instead of adding a vector (Heimersheim & Nanda
2024). Vig et al., 2020 use a related method, causal mediation analysis, to locate the components of a
trained model that mediate gender bias.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

embed forward
pass

record
activations

diff
activations

prompt &
inject 

Prompt 2:
e.g. "I hate talking
about weddings"

Steered
output

User
prompt

Steering
vector

Activations
1

Activations
2

Prompt 1:
e.g. "I love talking
about weddings"

find
contrasting 

prompts

Figure 1: Schematic of the Activation Addition (ActAdd) method. = natural language text;• = vectors of activations just before a specified layer. In this example, the output is heavily biased
towards discussing weddings, regardless of the topic of the user prompt. (See Algorithm 1 for the
method’s parameters: intervention strength, intervention layer, and sequence alignment.)

3 HOW ACTIVATION ADDITION WORKS

We use decoder-only Transformer neural networks (Vaswani et al. 2017). The LLMs in this work con-
tain a stack of Transformer layers, each consisting of multi-head attention (MHA) and a feedforward
network (FFN). We focus on its “residual streams” (Elhage et al. 2021), the sequences (x0, ...,xn)
of intermediate activation vectors processed by each layer. ActAdd manipulates the residual stream
values hl input to layer l. Each layer performs MHA and FFN computations on xi, adding xi+1 to
the stream. The final vector xn in the stream can then be decoded into the next-token prediction. At
inference time, the residual stream is initialized h1 with the embedding of the tokenized prompt.

Activation addition. Our method takes a pair of natural-language prompts (p+, p−), where p+
represents the property we wish output text to emphasise (e.g. love) and p− represents its opposite
(e.g. hate or indifference). hl

+ is the activation vector for the prompt p+ at layer l. The difference
hl
+−hl

− is a new activation vector which (intuitively) captures the difference between a prompt with
the target property, and a prompt without it. The steering vector is computed before inference time.

Algorithm 1 ActAdd, optimization-free activation addition

Input: (p+, p−) = steering prompt pair, tokenized
p∗ = user prompt
l = target layer
c = injection coefficient
a = sequence position to align hA and hp∗

M = pretrained language model
Output: S = steered output

(p′+, p
′
−) ← pad right same token len(p+, p−)

hl
+ ← M .forward (p′+) .activations [l]

hl
− ← M .forward (p′−) .activations [l]

hl
A ← hl

+ − hl
−

hl ← M .forward (p∗) .activations [l]
S ← M .continue_forward (chl

A + hl [a])

To obtain a steering vector, we perform a forward pass on each prompt, record the activations at the
given location in each pass, take the difference hl

+ − hl
−, and then finally rescale this difference in

activations by an ‘injection coefficient’ c. To steer, we add the resulting activation vector to the input
of layer l and allow the forward pass to continue, and so obtain our steered output. c represents the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

intervention strength, since it multiplies the steering vector’s contribution to the residual stream.1
We perform hyperparameter tuning to select c and also the injection layer l. As expected from past
work (Subramani et al. 2022; Mini et al. 2023), intervening at the middle layers is most effective. See
Appendix C for implementation details.

Algorithm 1 and Figure 1 depict the resulting ActAdd method. In the appendix, Figure 6 illustrates
a figurative example of steering a model with ActAdd if that model had one-dimensional residual
streams (rather than e.g. GPT-2-XL’s 1600 dimensions). A runnable notebook can be found at
tinyurl.com/actadd.

We test whether 1) steering vectors are effective at eliciting the desired behavioral shift, and 2)
whether they preserve the general capabilities of the model. We run perplexity-based experiments on
GPT-2-XL (1.5B parameters, Radford et al. 2019). We then run toxicity and sentiment experiments
on LLAMA-3.1-8B.2

4 RESULTS: ACTIVATION ADDITION WORKS

4.1 ACTADD INTUITIVELY MODIFIES NEXT-TOKEN PROBABILITIES

We consider the OpenWebText corpus (Peterson et al. 2018). Our running example is the “wedding”
topic vector produced by setting p+ = weddings, p− = ‘ ’, l = 16, c = 1.

4.1.1 ACTADD REDUCES PERPLEXITY ON A TARGET TOPIC

Figure 2: The perplexity ratio compares the rel-
ative predictive performance of ActAdd and an
unmodified model. Lower is better. Adding the
wedding steering vector improves performance on
wedding-related text while preserving performance
on unrelated text.

0.0% 1.0% 2.0% 3.0%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

Wedding word frequency

Pe
rp

le
xi

ty
 ra

tio
 (a

ct
-a

dd
 / 

ba
se

lin
e)

For each document di ∈ D in OpenWebText
(Peterson et al. 2018), we first calculate the fre-
quency of wedding-related words.3 If a doc-
ument contains one of these words, the docu-
ment is considered wedding-related. We ran-
domly sample 300k documents, half of which
are wedding-related.

We split the documents into sentences and
measure GPT-2-XL’s perplexity on both the
wedding-related and wedding-unrelated sen-
tences. If the model is effectively steered to gen-
erate wedding-related text, it should assign that
text higher probability (and thus achieve lower
perplexity). For more details, see Appendix C.3.

Figure 2 shows the ActAdd perplexity relative
to the unmodified model. In sentences where
the injected topic (weddings) is more relevant,
ActAdd’s perplexity is lower and predictive per-
formance increases.

4.1.2 ACTADD’S IMPACT ON TOKEN PROBABILITIES

To test if the intervention is affecting relevant tokens or reducing perplexity in some spurious way,
we observe the shift in the distribution of token log probabilities. We do this by randomly sampling
500 documents from the above OpenWebText sample and recording the log-probabilities assigned
by the baseline and steered models. This results in a dataset of about 500k tokens, of which 29k are
unique. We then group by token, filter for tokens with >20 instances in the dataset, and calculate the
mean perplexity difference between the ActAdd and baseline models. By displaying these as a Q-Q
plot (Gnanadesikan & Wilk 1968), we can inspect outlier shifts in token probability.

1It’s typical for the intervention strength c to have a magnitude less than 15.
2A summary of all experiments can be found in Table 5. Code repository for our experiments: https:

//zenodo.org/records/14177088.
3wedding, weddings, wed, marry, married, marriage, bride, groom, and honeymoon.

5

https://tinyurl.com/actadd
https://zenodo.org/records/14177088
https://zenodo.org/records/14177088


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Appendix Figure 9 shows the resulting mean log-probability difference distribution. We see that is
approximately normal for the bulk of the tokens, with clearly heavy tails. The positive tail is generally
wedding-related and is significantly heavier than the negative tail, suggesting that one set of tokens
are reliably increased in probability, with a smaller set of tokens reliably decreased to a lesser extent.
Outlier tokens can be found in Appendix Table 11. The probabilities most increased on average are
primarily wedding-related. The bottom tokens share no obvious theme and show a significantly lower
absolute change in probability.

4.1.3 ACTADD STEERS THE MODEL TO DISCUSS WEDDINGS

At what layer are steering vectors most effective? Sweeping over GPT-2-XL injection layers for the
wedding vector, we measure the average count of wedding-related words given a steering vector
injected at each layer.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Layer

N
on

-z
er

o 
w

ed
di

ng
 w

or
d 

co
un

t f
ra

ct
io

n

baseline

Figure 3: P(steered completion contains wedding-
related words) as a function of injection layer; i.e.
the fraction of completions that contain at least
one of the hand-picked words {wedding, weddings,
wed, marry, married, marriage, bride, groom, and
honeymoon}.

The intervention is already effective at the very
first layer, rises in effectiveness until layer 6, and
then declines. For the optimal injection site, we
see >90% success in topic steering (compared
to a ∼2% baseline). Figure 3 shows the results
of the layer sweep.

4.2 ACTADD CAN
CONTROL WHAT THE MODEL TALKS ABOUT

Method. Steering vectors can elicit generations
on a range of topics – not just weddings. Starting
from a generic prompt, we use GPT-4o-mini to
score whether the generations are about a target
topic. Specifically, we generate 1000 comple-
tions from the unsteered model and 1000 for
each target single-token ActAdd intervention
(where each token is about a different topic).
Compared to the baseline generations, we record
how much more frequently the steered model
discusses the target topic. See Appendix C.2 for
full details.

Results. Figure 4 records a large boost in relevance (5-25%) on all topics at injection coefficient
c = 2.

4.3 ACTADD CAN REDUCE TOXICITY

Method. We benchmark toxicity reduction by generating steered continuations on the /pol/ dataset
(Papasavva et al., 2020) and RealToxicityPrompts (Gehman et al., 2020). Following Dekoninck et al.
2024 we use a random subset n = 2000 and the same sampling parameters of temperature T = 1 and
nucleus p = 1.0. We repeat this sampling 5 times to obtain p-values (t-test against SOTA), bolding
rows which are better with p < 0.05. We use the ‘love’− ‘hate’ ActAdd vector, l = 6, c = 3. We use
the Perspective API to score toxicity. We use a conventional quality control, conditional perplexity,
to score (dis)fluency, obtained from LLaMA-3.1-8B logprobs. To establish a common scale, we used
the baselines from Dekoninck et al. 2024. This yields 6 baselines to compare ActAdd against. (We
also considered Gu et al. 2022 which reported 0.043 toxicity, but we could not reproduce the results;
also, their 54.6 disfluency is too high for practical use.)

Results. We compare ActAdd against its predecessor and successor methods using LLaMA-3-8B as
the steered model (Meta 2024).4 As shown in Table 3, we see mixed effects. On RealToxicityPrompts,
ActAdd makes a 20% improvement over an unsteered baseline – but the best method (LMA+C) sees
29% improvement. On /pol/ ActAdd improves 6% over an unsteered baseline where the best method
(LMA+C) improves 37%. ActAdd’s disfluency is much worse than other methods on /pol/.

4We do not compare against finetuning because we wish to consider lighter-weight interventions which
require minimal gradient updates.

6

https://perspectiveapi.com/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: The increase in relevance (as scored by GPT-4o-mini) of ActAdd completions over baseline
on a range of generic topics.

Table 3: Detoxification results on RealToxicityPrompts and /pol/ (Gehman et al. 2020; Papasavva
et al. 2020), a random n=2000. All results newly measured with identical evaluation settings; all are
steering LLaMA-3-8B. Bold is p < 0.05 against second-best. Toxicity is the Perspective API score.
Disfluency is the perplexity as measured by LLaMA-3.1-8B. Sources: Pei et al. 2023 (PreADD),
Yang & Klein 2021 (FUDGE), Schick et al. 2021 (SelfDebias), Dekoninck et al. 2024 (LMA).

Method RealToxPrompt ↓ Disfluency ↓ /pol/ ↓ Disfluency ↓
Unsteered .127 16.0 .323 19.3
ActAdd (ours) .101 20.4 .305 48.0
FUDGE .103 16.2 .269 20.5
LMA .104 15.8 .232 17.9
LMA + Classifier .090 16.1 .205 18.7
SelfDebias .123 18.2 .299 22.8
PreADD .099 16.7 .234 19.3

4.4 ACTADD CAN CONTROL SENTIMENT

Method. To evaluate sentiment, we use the Stanford IMDb dataset (Maas et al., 2011). Our goal is
for the model to continue each review but with the opposite sentiment. We compute the proportion of
generated outputs with the desired sentiment, as classified by a model finetuned on sentiment data,
Twitter-roBERTa (Loureiro et al. 2022). We evaluate sentiment changes from positive to negative
and vice versa on a random subset n = 1000 and repeat to obtain p-values. Our hyperparameters are
l = 6 and c = 3.

Results. Table 4 shows that our method can control sentiment on one conventional measure (Maas
et al. 2011), though it falls short of SOTA.

4.5 ACTADD PRESERVES THE MODEL’S GENERAL KNOWLEDGE

Method. We use ConceptNet from the LAMA benchmark, a general knowledge dataset (Petroni et al.
2019, n = 29, 774 sentences, see Appendix Table 10). The model is given a prompt and then has
to predict a factual completion. The task is intended for both causal and masked models, so some
examples are difficult for causal-attention models due to the extremely limited context.

For each sentence, we run the model on its prompt with and without the wedding activation
addition. P@K is the probability that the expected label is among the model’s top-K predicted

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Sentiment steering results on the Stanford IMDb dataset. “Success” denotes the probability
of the steering method changing how the output’s sentiment gets classified, thus higher better. ‘Pos-
to-neg’ is the probability of shifting a positive classification to a negative one, and vice versa for
‘neg-to-pos’. Bold results represent p < 0.05 compared to the second-best. Fluency is usually worse
under steering.

Success at steering sentiment
Method Pos-to-neg ↑ Disfluency ↓ Neg-to-pos ↑ Disfluency ↓
Unsteered 0.207 17.23 0.200 18.49
ActAdd (ours) 0.395 29.18 0.349 29.30
Prompted 0.265 17.94 0.246 18.36
LMA 0.423 16.74 0.378 16.69
LMA + Classifier 0.471 17.01 0.459 17.51
SelfDebias 0.275 18.46 0.236 20.35
FUDGE 0.367 17.93 0.302 19.75
PreADD 0.420 19.30 0.339 19.05

tokens, conditioned on the prompt. We score the baseline and modified models by calculating mean
P@K values for a range of K. Finally we plot these for both modified and unmodified models over
a range of K values.

Results. Figure 5 shows that on the ConceptNet benchmark of factual questions, our method has a
negligible impact on off-target answer probabilities (i.e. domain is unrelated to the steering vector).

1 2 5 10 20 50 100

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 model
baseline
with act-add

K

m
ea

n 
P@

K

Figure 5: Testing side effects ofActAdd with the ConceptNet benchmark (Petroni et al. 2019).
‘P@K’ is the probability of the correct answer being in the model’s top K answers. Our method has
a negligible impact on off-target probabilities across a range of top-K values.

5 DISCUSSION

Limitations Initially, ActAdd achieved SOTA on detoxification and on one kind of sentiment
steering (Appendix Tables 13 and 14). However, stronger methods have since been released, and our
above standardized tests on a new dataset show that our method does not robustly outperform across
datasets. Table 3 shows that ActAdd substantially increases perplexity, which we find somewhat
perplexing. On models older than LLAMA-3.1 and on other tasks, the method did not cause a
significant increase in perplexity. Perhaps ActAdd faces challenges when scaling to larger and newer
models, and so refinements are needed.

To steer the model using an ActAdd vector, the user supplies the injection coefficient c and the
intervention layer l. So far we have had success with fixing the sequence alignment a = 1. Over-
all, these free hyperparameters make ActAdd less user-friendly than simple prompt engineering.
Thankfully, the user does not have to perform a fresh hyperparameter sweep for each use case; in
practice, intervention hyperparameters are stable. We include examples of failed steering vectors in
Appendix Table 7. We also have not examined ActAdd’s potential impact on reasoning. ActAdd is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

not immediately applicable given only API access to a model. The model must both cache and expose
intermediate activations at the given layer (Bloom & Nanda 2022). Most APIs do not allow this.

Activation engineering vs finetuning Finetuning is better understood and more flexible – we doubt
that activation engineering can e.g. teach a model a new skill. However, finetuning is significantly
more costly and may not be able to elicit the same kinds of capabilities which activation engineering
can elicit. The first advantage of ActAdd is efficiency: the method requires no backward passes and
can thus run on any machine that can perform inference rather than training. Implementation effort
is also greatly reduced; only forward passes are required to find a suitable (p+, p−) and minimal
labeled data is required - just the steering prompt pair. We discovered most of the example contrast
pairs in Appendix Table 6 in minutes. All things considered, even nontechnical users can benefit
from rapid feedback and relatively easy iteration.

Activation engineering vs prompt engineering Activation additions can be continuously weighted,
while prompts are discrete – a token is either present, or not. To more intensely steer the model
to generate wedding-related text, our method does not require any edit to the prompt, but instead
just increasing the injection coefficient. See Appendix B for suggestive experiments on ActAdd vs
prompting. Unlike system prompts, activation additions do not take up token space in the model’s
context window, although this is a small benefit in the era of multi-million token context windows.
While prompting is more flexible and even cheaper than ActAdd, activation additions may elicit
capabilities which prompting cannot.

Algebraic combination of forward passes ActAdd can be viewed as composition of separate
forward passes. For example, we compose h+, h− and h∗ to produce steered output. We were
surprised that forward passes can “compose” in this way, despite the model not being trained to
allow this operation. The composability of forward passes is itself evidence for compositional
representations (Olah 2023), independent of the evidence from task-composition arithmetic on
weights (Ilharco et al. 2023).

Interpretability In most programs, adding values to imprecisely targeted intermediate memory
locations would not yield sensible results. Why expect this from Transformers? An LLM’s activation
space might have direction which represent high-level variables causally involved in what is generated
(Burns et al. 2022; Moschella et al. 2023; Li et al. 2023a; Nanda 2023; Li et al. 2023b). More
specifically, we think that neural networks represent features of the input as directions in activation
space (Park et al. 2023). We think that the direction in activation space that corresponds to (say) a
love-hate latent variable stays approximately the same across a broad class of inputs.

Alain & Bengio 2018 use linear probes on residual streams to infer that LLM representations are
at least partially linear; if a linear probe can predict some feature of text output from the residuals
with high accuracy, this forms evidence that the feature is represented linearly (i.e. as a simple
direction) (Nanda 2023). The success of activation addition gives stronger, experimental evidence
of feature linearity, demonstrating that models use feature-related information. Steering vectors
establish causality, at least in the limited set of contexts examined.

Value alignment of LLMs Activation engineering is a promising way to control LLMs. Successor
methods may be able to provide general steering methods (e.g. through some analogue of a Be
helpful vector). Alongside contemporaneous work (Li et al. 2023b; Liu et al. 2023), our exper-
iments suggest that activation engineering can flexibly retarget LLM behavior without damaging
general performance. We speculate that ActAdd changes the model’s currently active mixture of
goals and priorities. Suitably developed, the activation engineering approach could enable safety
progress while preserving overall capabilities.

6 CONCLUSION

While methods like prompt engineering, controlled decoding, and finetuning have benefits, they
fail to elicit full capabilities from language models. To more reliably elicit these abilities, activa-
tion engineering strategically perturbs activations at inference time. In particular, we introduced
Activation Addition to steer models by shifting their inference-time activations along a certain direc-
tion (like the “Love”−“Hate” vector). ActAdd is lightweight and sometimes effective; we achieve
good results on topic steering and mixed results on toxicity reduction and sentiment shift. ActAdd
demonstrates the potential promise of activation engineering. We look forward to future work
realizing this promise and making activation engineering more robust.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

Our code is available here: https://zenodo.org/records/14177088. The following is
an exhaustive list of models used, sampling strategies used, and searches run:

Data processing To curate a wedding-related subset of OpenWebText, we retained documents
with wedding-related words (see Section 4.1.1). The only pre-processing performed is to remove
sequences of null characters. Each document is split into sentences sj ∈ di using the Punkt tokenizer
(Strunk 2013).

Sampling hyperparameters We use nucleus sampling with p = 1.0 and temperature T = 1.0. We
do not use top-k sampling. We use a frequency penalty of 1.0.

Models In earlier versions of this work, we demonstrated strong results with Llama-1-13B (Touvron
et al. 2023), GPT-J-6B (Wang & Komatsuzaki 2021), OPT (Zhang et al. 2022b), and LLaMA-3-8B
Meta 2024. These results are now less prominent. See Appendix E for details. For the success score,
we use the Twitter-roBERTa (Loureiro et al. 2022).

Model scoring For scoring toxicity, we use https://www.perspectiveapi.com/. For
scoring fluency, we use LLama-3.1-8B.

Seed We ran all generations on seed 0. After collecting all other data, we validated that our
qualitative results transfer to seeds 1 and 2.

Reporting the best of K completions We generated K = 3 completions for each qualitative
demonstration, for both normal and steered forward-passes. Appendix Table 6, shows the subjectively
most compelling completion pair out of the first three seed-0 completion-pairs. You can see all top-3
completions for the entries in this notebook: tinyurl.com/actadd3.

ActAdd hyperparameters (l, c) We performed simple grid search, usually between c ∈ [3, 20]
and l ∈ [6, 24].

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018.

Joseph Bloom and Neel Nanda. TransformerLens: A library for mechanistic interpretability of
generative language models. https://neelnanda-io.github.io/TransformerLens/, 2022.

Davis Brown, Charles Godfrey, Cody Nizinski, Jonathan Tu, and Henry Kvinge. Robustness of edited
neural networks, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision, 2022.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation, 2020.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled text generation
via language model arithmetic, 2024. URL https://arxiv.org/abs/2311.14479.

10

https://zenodo.org/records/14177088
https://www.perspectiveapi.com/
https://tinyurl.com/actadd3
https://arxiv.org/abs/2311.14479


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition, 2022.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Ramanathan Gnanadesikan and Martin B Wilk. Probability plotting methods for the analysis of data.
Biometrika, 55(1):1–17, 1968.

Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth Tran, Ashish Kapoor, Eric Horvitz, and
Stefano Ermon. Bias correction of learned generative models using likelihood-free importance
weighting, 2019.

Jiatao Gu, Kyunghyun Cho, and Victor O.K. Li. Trainable greedy decoding for neural machine
translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1968–1978, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1210. URL https://aclanthology.org/D17-1210.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan Zhang, Heng Gong, Weihong Zhong, and Bing
Qin. Controllable text generation via probability density estimation in the latent space. arXiv
preprint arXiv:2212.08307, 2022.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models,
2023.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas. Inspecting and editing knowledge representations
in language models, 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. Deep learning for text style
transfer: A survey. Computational Linguistics, 48(1):155–205, March 2022. doi: 10.1162/coli_a_
00426. URL https://aclanthology.org/2022.cl-1.6.

Daniel Khashabi, Xinxi Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sean Welleck, Han-
naneh Hajishirzi, Tushar Khot, Ashish Sabharwal, Sameer Singh, and Yejin Choi. Prompt
waywardness: The curious case of discretized interpretation of continuous prompts. In Pro-
ceedings of the 2022 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 3631–3643, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.266. URL
https://aclanthology.org/2022.naacl-main.266.

Anton Korinek. Language models and cognitive automation for economic research. Technical report,
National Bureau of Economic Research, 2023.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric, 2016.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021.

11

https://aclanthology.org/D17-1210
https://aclanthology.org/2022.cl-1.6
https://aclanthology.org/2022.naacl-main.266


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: A simple approach to
sentiment and style transfer, 2018. URL https://arxiv.org/abs/1804.06437.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task,
2023a.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model, 2023b.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing continuous prompts for generation, 2021.

Sheng Liu, Lei Xing, and James Zou. In-context Vectors: Making in context learning more effective
and controllable through latent space steering, 2023.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves, Luis Espinosa Anke, and Jose Camacho-
Collados. Timelms: Diachronic language models from twitter, 2022. URL https://arxiv.
org/abs/2202.03829.

Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Keeping llms
aligned after fine-tuning: The crucial role of prompt templates, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT, 2023.

Meta. Meta Llama 3. https://llama.meta.com/llama3, 2024.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013a. URL https://proceedings.neurips.cc/paper_
files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies, pp. 746–751, 2013b.

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander Matt
Turner. Understanding and controlling a maze-solving policy network, 2023. URL https:
//arxiv.org/abs/2310.08043.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
Emanuele Rodolà. Relative representations enable zero-shot latent space communication, 2023.

Neel Nanda. Actually, othello-gpt has a linear emergent world representation.
neelnanda.io/mechanistic-interpretability/othello, 2023.

Christopher Olah. Distributed representations: Composition & superposition. https://transformer-
circuits.pub/2023/superposition-composition/index.html, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

12

https://arxiv.org/abs/1804.06437
https://arxiv.org/abs/2202.03829
https://arxiv.org/abs/2202.03829
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/2310.08043
https://arxiv.org/abs/2310.08043


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Antonis Papasavva, Savvas Zannettou, Emiliano De Cristofaro, Gianluca Stringhini, and Jeremy
Blackburn. Raiders of the lost kek: 3.5 years of augmented 4chan posts from the politically
incorrect board. In Proceedings of the international AAAI conference on web and social media,
volume 14, pp. 885–894, 2020.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Jonathan Pei, Kevin Yang, and Dan Klein. PREADD: prefix-adaptive decoding for controlled text
generation. arXiv preprint arXiv:2307.03214, 2023.

Joshua Peterson, Stephan Meylan, and David Bourgin. Openwebtext.
https://github.com/jcpeterson/openwebtext, 2018.

F. Petroni, T. Rocktäschel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu, and S. Riedel. Language
models as knowledge bases? In In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019, 2019.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks, 2016.

Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in nlp. Transactions of the Association for Computational Linguistics,
9:1408–1424, 12 2021. ISSN 2307-387X. doi: 10.1162/tacl_a_00434. URL https://doi.
org/10.1162/tacl_a_00434.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.346. URL https://aclanthology.org/2020.emnlp-main.346.

Aaron Sloman. The irrelevance of turing machines to artificial intelligence. In Matthias Scheutz
(ed.), Computationalism: New Directions. MIT Press, 2002.

Jan Strunk. nltk.tokenize.punkt module. https://www.nltk.org/api/nltk.tokenize.punkt.html, 2013.

Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
pretrained language models. In Findings of the Association for Computational Linguistics:
ACL 2022, pp. 566–581, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-acl.48. URL https://aclanthology.org/2022.
findings-acl.48.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

13

https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2022.findings-acl.48
https://aclanthology.org/2022.findings-acl.48
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: 6B jax-based transformer.
https://github.com/kingoflolz/mesh-transformer-jax#gpt-j-6b, 2021.

Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe You, WeiZhi Liu, Qi Li, and Jian Li. Prompt
engineering in consistency and reliability with the evidence-based guideline for llms. npj Digital
Medicine, 7(1):41, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tom White. Sampling generative networks, 2016.

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and Mingming Sun. Eva-KELLM: A new
benchmark for evaluating knowledge editing of LLMs, 2023.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3511–3535, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.276. URL https://aclanthology.org/
2021.naacl-main.276.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual rea-
soning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 30378–30392. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/c402501846f9fe03e2cac015b3f0e6b1-Paper-Conference.pdf.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable text
generation using transformer-based pre-trained language models. arXiv preprint arXiv:2201.05337,
2022a.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open pre-trained transformer language models, 2022b.

Tianqi Zhong, Quan Wang, Jingxuan Han, Yongdong Zhang, and Zhendong Mao. Air-Decoding:
Attribute distribution reconstruction for decoding-time controllable text generation. arXiv preprint
arXiv:2310.14892, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Steering large language models using APE. In NeurIPS ML Safety Workshop, 2022.
URL https://openreview.net/forum?id=JjvNzMOiBEp.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai
transparency, 2023.

14

https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2021.naacl-main.276
https://proceedings.neurips.cc/paper_files/paper/2022/file/c402501846f9fe03e2cac015b3f0e6b1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c402501846f9fe03e2cac015b3f0e6b1-Paper-Conference.pdf
https://openreview.net/forum?id=JjvNzMOiBEp

