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ABSTRACT

Prompt engineering and finetuning aim to maximize language model performance
on a given metric (like toxicity reduction). However, these methods do not optimally
elicit a model’s capabilities. To reduce this gap, we introduce a form of activation
engineering: the inference-time modification of activations in order to control (or
steer) model outputs. Specifically, we introduce the Activation Addition (ActAdd)
technique, which contrasts the intermediate activations on prompt pairs (such as
“Love” versus “Hate”) to compute a steering vector (Subramani et al., 2022). By
tactically adding in e.g. the “Love”−“Hate” steering vector during the forward
pass, ActAdd can perform many tasks like topic steering, sentiment steering,
and detoxification. ActAdd yields inference-time control over high-level output
properties (like topic and sentiment) while preserving performance on off-target
tasks. ActAdd is lightweight: it does not require any machine optimization and
works with a single pair of data points, which enables rapid iteration over steering.

1 INTRODUCTION

LLMs contain hidden capabilities we do not know how to fully elicit (Korinek, 2023). Naively
prompting a model with a question does not maximize the probability of the correct response. For
example, consider how prompting a model to think “step-by-step” (Wei et al., 2022) massively
improves performance on a range of benchmarks. Similarly, “few-shot” prompting a model with
correct answers to unrelated in-distribution questions allows “in-context learning” for e.g. stronger
performance on NLP tasks (Brown et al., 2020). Importantly, these interventions do not supply
the LLM with extra task-relevant information or update the algorithm implemented by the LLM’s
computational graph. Even though the model is initially able to score higher on these benchmarks,
those capabilities do not emerge without a specific intervention. We therefore hypothesize an
elicitation overhang: we do not know how to elicit all relevant abilities and information from models.

Prompt engineering is the most obvious way to steer a model, but prompting has limited reliability
(Ye & Durrett, 2022; Wang et al., 2024). Therefore, to reduce the elicitation overhang, we explore a
new modality for steering language model outputs. By strategically perturbing activations during the
forward pass, we hope to more reliably and effectively steer models compared to prompt engineering.
We call this methodology activation engineering.

We suspect that compared to prompt engineering, activation engineering can elicit a wider range of
model capabilities. Consider, for example, a model optimized to imitate the text outputs of eloquent
poets and awkward mathematicians. The model may contain the internal mechanisms required to
output text which is both eloquent and mathematical. However, if the model is an accurate estimator
of the training distribution, it will (correctly) assign low probability to eloquent mathematical prose.
Because nothing in the training data was both eloquent and mathematical, there may exist no prompt
which elicits mathematical prose. In contrast, activation engineering might be able to simultaneously
activate the circuitry for eloquent speech and for mathematical content.

To demonstrate the power of activation engineering, we introduce Activation Addition (ActAdd).
Suppose we want to achieve negative-to-positive sentiment control (Li et al., 2018; Dathathri et al.,
2020). To achieve this, ActAdd first compares the model’s activations on a contrast pair of prompts,
such as the prompts “Love” and “Hate.” The otherwise-similar prompts differ along the target
dimension of sentiment. ActAdd then computes the difference of these activations in order to
compute steering vectors. These vectors act like “virtual bias terms” because ActAdd directly adds
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the steering vectors to the forward pass at inference time. By shifting the inference-time activations
along the direction of the steering vector, ActAdd steers the model to generate positive sentiment
completions (Table 1).

Table 1: Example impact of ActAdd. The steering vectors are computed from (“Love” - “Hate”) and
(“I talk about weddings constantly” - “I do not talk about weddings constantly”). Appendix Table 6
shows more examples.

Prompt + steering = completion

I hate you because...
[None] ...you are the most disgusting thing I have ever seen.

ActAdd
(love) ...you are so beautiful and I want to be with you forever.

I went up to my
friend and said...

[None]
...“I’m sorry, I can’t help you.”

“No,” he said. “You’re not.”

ActAdd
(weddings)

...“I’m going to talk about the wedding in this episode of
Wedding Season. I think it’s a really good episode.

It’s about how you’re supposed to talk about weddings.”

Contributions. We unify past literature on related topics to introduce activation engineering. To
better elicit the full capabilities of models, we introduce the ActAdd steering method. ActAdd
achieves substantial (but not SOTA) control on toxicity reduction and sentiment control. We thor-
oughly test ActAdd’s generality and effects on general capabilities. We therefore show the promise
of ActAdd as an effective and cheap method for steering LLM outputs.

2 RELATED WORK

Latent space arithmetic. Computer vision researchers have long demonstrated the ability to steer
image generation using derived vectors, including steering latent variables – most famously, shifting
activations along a direction that corresponds to smiling in images (Larsen et al. 2016; White 2016).
Similarly, in the text domain, classic results on the word2vec embedding show that arithmetic on
word vectors can capture some parts of semantic reasoning (for instance, analogies: Mikolov et al.
2013b;a). Our work focuses on steering generative language models.

LLM steering. Many approaches attempt to affect the output of a pretrained LLM, whether:

• Intervening on weights, as with supervised finetuning, RLHF, steerable layers, and weight editing
(that is, targeted fine-tuning) (Ranzato et al. 2016; Ziegler et al. 2019; Dathathri et al. 2020; Meng
et al. 2023; Ilharco et al. 2023). However, naive RLHF, finetuning, and weight editing have known
side-effects on overall model performance (Hase et al. 2023; Qi et al. 2023; Brown et al. 2023);

• Intervening at decoding, as with guided or trainable decoding (Gu et al. 2017; Grover et al. 2019;
see Zhang et al. 2022a for an overview of controlled generation and Jin et al. 2022 for textual style
transfer);

• Intervening on the prompt, as with automated prompt engineering (Shin et al. 2020; Zhou et al.
2022);

• Intervening on token embeddings, as with ‘soft prompting’ (Li & Liang 2021; Lester et al. 2021;
Khashabi et al. 2022);
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• Intervening on activations, for instance by freezing the weights of the LLM and searching for a
‘steering vector’ of activations, e.g. using gradient descent (Subramani et al. 2022; Hernandez
et al. 2023). These optimized extraction methods, which search for a steering vector, differ from
extraction methods which directly compute it (present work and Li et al. 2023b). In our work, we
do not use gradient descent or other optimization methods.

Table 2: Locating our work in the steering literature.

Vector intervenes on model ...

Intervention vectors obtained via ... weights ... activations

Differences after fine-tuning Ilharco 2023 N/A

Per-query gradient-based search
Meng 2022,

Orgad 2023

Dathathri 2020

Subramani 2022

Hernandez 2023

Differences between prompt pairs N/A
ActAdd (present work),

Li et al., 2023b

Activation engineering. Activation engineering involves creating vectors of activations which
cause desired changes to output text when added to the forward passes of a frozen LLM (Dathathri
et al. 2020). Table 2 organizes prior work by intervention type. An early antecedent is the Plug-
and-Play Language Model of Dathathri et al. 2020. This uses a separate classifier (one classifier per
attribute to steer towards) to perturb the model’s activations to generate text that accords more closely
with the classifier’s target. Subramani et al. 2022 extract latent steering vectors from a frozen LLM,
successfully discovering sentence-specific vectors which steer completions to near-perfect BLEU
scores (i.e, control of the LLM’s generation) and unsupervised style transfer. However, the method
requires running gradient descent for each new steering vector. Hernandez et al. 2023 locate and
edit an LLM’s knowledge through learning an encoding of facts in its activation space. Ablating
attention heads can also be seen as activation engineering, though the technique is mostly used for
model interpretation rather than steering (Michel et al. 2019; Olsson et al. 2022).

Independently of our work, Li et al. 2023b developed a similar method called ITI which computes
steering vectors which are selectively applied according to trained linear probes. They use these
probes to find attention heads with different activation distributions for true and false statements. They
steer the model toward truthful outputs, where our experiments cover a range of goals. In addition,
ITI adds the same vector at all sequence positions during inference and requires dozens of samples.
In contrast, ActAdd we add steering vectors to a subset of sequence positions and require as few as 2
samples. Similar work on ‘in-context vectors’ also followed ours (Liu et al. 2023). Lastly, Zou et al.
2023’s “representation engineering” also followed our work. They develop a range of techniques
for deriving steering vectors and for steering models using activation-space edits and optimization.
In comparison to Zou et al. 2023, we steer different models (primarily LLAMA-3.1-8B, but also
LLAMA-3, OPT, GPT-2, and GPT-J) on different tasks (detoxification and sentiment control).

Dekoninck et al. 2024’s Language Model Arithmetic (LMA) combines multiple models’ output
characteristics by solving an optimization problem involving KL-divergences. LMA allows an
impressive and flexible control over model steering, although it requires having trained multiple
models.

Not all activation-focused works aim to control model outputs. Some interpretability techniques, like
activation patching, simply resample activations instead of adding a vector (Heimersheim & Nanda
2024). Vig et al., 2020 use a related method, causal mediation analysis, to locate the components of a
trained model that mediate gender bias.
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Figure 1: Schematic of the Activation Addition (ActAdd) method. = natural language text;• = vectors of activations just before a specified layer. In this example, the output is heavily biased
towards discussing weddings, regardless of the topic of the user prompt. (See Algorithm 1 for the
method’s parameters: intervention strength, intervention layer, and sequence alignment.)

3 HOW ACTIVATION ADDITION WORKS

We use decoder-only Transformer neural networks (Vaswani et al. 2017). The LLMs in this work con-
tain a stack of Transformer layers, each consisting of multi-head attention (MHA) and a feedforward
network (FFN). We focus on its “residual streams” (Elhage et al. 2021), the sequences (x0, ...,xn)
of intermediate activation vectors processed by each layer. ActAdd manipulates the residual stream
values hl input to layer l. Each layer performs MHA and FFN computations on xi, adding xi+1 to
the stream. The final vector xn in the stream can then be decoded into the next-token prediction. At
inference time, the residual stream is initialized h1 with the embedding of the tokenized prompt.

Activation addition. Our method takes a pair of natural-language prompts (p+, p−), where p+
represents the property we wish output text to emphasise (e.g. love) and p− represents its opposite
(e.g. hate or indifference). hl

+ is the activation vector for the prompt p+ at layer l. The difference
hl
+−hl

− is a new activation vector which (intuitively) captures the difference between a prompt with
the target property, and a prompt without it. The steering vector is computed before inference time.

Algorithm 1 ActAdd, optimization-free activation addition

Input: (p+, p−) = steering prompt pair, tokenized
p∗ = user prompt
l = target layer
c = injection coefficient
a = sequence position to align hA and hp∗

M = pretrained language model
Output: S = steered output

(p′+, p
′
−) ← pad right same token len(p+, p−)

hl
+ ← M .forward (p′+) .activations [l]

hl
− ← M .forward (p′−) .activations [l]

hl
A ← hl

+ − hl
−

hl ← M .forward (p∗) .activations [l]
S ← M .continue_forward (chl

A + hl [a])

To obtain a steering vector, we perform a forward pass on each prompt, record the activations at the
given location in each pass, take the difference hl

+ − hl
−, and then finally rescale this difference in

activations by an ‘injection coefficient’ c. To steer, we add the resulting activation vector to the input
of layer l and allow the forward pass to continue, and so obtain our steered output. c represents the
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intervention strength, since it multiplies the steering vector’s contribution to the residual stream.1
We perform hyperparameter tuning to select c and also the injection layer l. As expected from past
work (Subramani et al. 2022; Mini et al. 2023), intervening at the middle layers is most effective. See
Appendix C for implementation details.

Algorithm 1 and Figure 1 depict the resulting ActAdd method. In the appendix, Figure 6 illustrates
a figurative example of steering a model with ActAdd if that model had one-dimensional residual
streams (rather than e.g. GPT-2-XL’s 1600 dimensions). A runnable notebook can be found at
tinyurl.com/actadd.

We test whether 1) steering vectors are effective at eliciting the desired behavioral shift, and 2)
whether they preserve the general capabilities of the model. We run perplexity-based experiments on
GPT-2-XL (1.5B parameters, Radford et al. 2019). We then run toxicity and sentiment experiments
on LLAMA-3.1-8B.2

4 RESULTS: ACTIVATION ADDITION WORKS

4.1 ACTADD INTUITIVELY MODIFIES NEXT-TOKEN PROBABILITIES

We consider the OpenWebText corpus (Peterson et al. 2018). Our running example is the “wedding”
topic vector produced by setting p+ = weddings, p− = ‘ ’, l = 16, c = 1.

4.1.1 ACTADD REDUCES PERPLEXITY ON A TARGET TOPIC

Figure 2: The perplexity ratio compares the rel-
ative predictive performance of ActAdd and an
unmodified model. Lower is better. Adding the
wedding steering vector improves performance on
wedding-related text while preserving performance
on unrelated text.

0.0% 1.0% 2.0% 3.0%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

Wedding word frequency

Pe
rp

le
xi

ty
 ra

tio
 (a

ct
-a

dd
 / 

ba
se

lin
e)

For each document di ∈ D in OpenWebText
(Peterson et al. 2018), we first calculate the fre-
quency of wedding-related words.3 If a doc-
ument contains one of these words, the docu-
ment is considered wedding-related. We ran-
domly sample 300k documents, half of which
are wedding-related.

We split the documents into sentences and
measure GPT-2-XL’s perplexity on both the
wedding-related and wedding-unrelated sen-
tences. If the model is effectively steered to gen-
erate wedding-related text, it should assign that
text higher probability (and thus achieve lower
perplexity). For more details, see Appendix C.3.

Figure 2 shows the ActAdd perplexity relative
to the unmodified model. In sentences where
the injected topic (weddings) is more relevant,
ActAdd’s perplexity is lower and predictive per-
formance increases.

4.1.2 ACTADD’S IMPACT ON TOKEN PROBABILITIES

To test if the intervention is affecting relevant tokens or reducing perplexity in some spurious way,
we observe the shift in the distribution of token log probabilities. We do this by randomly sampling
500 documents from the above OpenWebText sample and recording the log-probabilities assigned
by the baseline and steered models. This results in a dataset of about 500k tokens, of which 29k are
unique. We then group by token, filter for tokens with >20 instances in the dataset, and calculate the
mean perplexity difference between the ActAdd and baseline models. By displaying these as a Q-Q
plot (Gnanadesikan & Wilk 1968), we can inspect outlier shifts in token probability.

1It’s typical for the intervention strength c to have a magnitude less than 15.
2A summary of all experiments can be found in Table 5. Code repository for our experiments: https:

//zenodo.org/records/14177088.
3wedding, weddings, wed, marry, married, marriage, bride, groom, and honeymoon.
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Appendix Figure 9 shows the resulting mean log-probability difference distribution. We see that is
approximately normal for the bulk of the tokens, with clearly heavy tails. The positive tail is generally
wedding-related and is significantly heavier than the negative tail, suggesting that one set of tokens
are reliably increased in probability, with a smaller set of tokens reliably decreased to a lesser extent.
Outlier tokens can be found in Appendix Table 11. The probabilities most increased on average are
primarily wedding-related. The bottom tokens share no obvious theme and show a significantly lower
absolute change in probability.

4.1.3 ACTADD STEERS THE MODEL TO DISCUSS WEDDINGS

At what layer are steering vectors most effective? Sweeping over GPT-2-XL injection layers for the
wedding vector, we measure the average count of wedding-related words given a steering vector
injected at each layer.
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Figure 3: P(steered completion contains wedding-
related words) as a function of injection layer; i.e.
the fraction of completions that contain at least
one of the hand-picked words {wedding, weddings,
wed, marry, married, marriage, bride, groom, and
honeymoon}.

The intervention is already effective at the very
first layer, rises in effectiveness until layer 6, and
then declines. For the optimal injection site, we
see >90% success in topic steering (compared
to a ∼2% baseline). Figure 3 shows the results
of the layer sweep.

4.2 ACTADD CAN
CONTROL WHAT THE MODEL TALKS ABOUT

Method. Steering vectors can elicit generations
on a range of topics – not just weddings. Starting
from a generic prompt, we use GPT-4o-mini to
score whether the generations are about a target
topic. Specifically, we generate 1000 comple-
tions from the unsteered model and 1000 for
each target single-token ActAdd intervention
(where each token is about a different topic).
Compared to the baseline generations, we record
how much more frequently the steered model
discusses the target topic. See Appendix C.2 for
full details.

Results. Figure 4 records a large boost in relevance (5-25%) on all topics at injection coefficient
c = 2.

4.3 ACTADD CAN REDUCE TOXICITY

Method. We benchmark toxicity reduction by generating steered continuations on the /pol/ dataset
(Papasavva et al., 2020) and RealToxicityPrompts (Gehman et al., 2020). Following Dekoninck et al.
2024 we use a random subset n = 2000 and the same sampling parameters of temperature T = 1 and
nucleus p = 1.0. We repeat this sampling 5 times to obtain p-values (t-test against SOTA), bolding
rows which are better with p < 0.05. We use the ‘love’− ‘hate’ ActAdd vector, l = 6, c = 3. We use
the Perspective API to score toxicity. We use a conventional quality control, conditional perplexity,
to score (dis)fluency, obtained from LLaMA-3.1-8B logprobs. To establish a common scale, we used
the baselines from Dekoninck et al. 2024. This yields 6 baselines to compare ActAdd against. (We
also considered Gu et al. 2022 which reported 0.043 toxicity, but we could not reproduce the results;
also, their 54.6 disfluency is too high for practical use.)

Results. We compare ActAdd against its predecessor and successor methods using LLaMA-3-8B as
the steered model (Meta 2024).4 As shown in Table 3, we see mixed effects. On RealToxicityPrompts,
ActAdd makes a 20% improvement over an unsteered baseline – but the best method (LMA+C) sees
29% improvement. On /pol/ ActAdd improves 6% over an unsteered baseline where the best method
(LMA+C) improves 37%. ActAdd’s disfluency is much worse than other methods on /pol/.

4We do not compare against finetuning because we wish to consider lighter-weight interventions which
require minimal gradient updates.
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Figure 4: The increase in relevance (as scored by GPT-4o-mini) of ActAdd completions over baseline
on a range of generic topics.

Table 3: Detoxification results on RealToxicityPrompts and /pol/ (Gehman et al. 2020; Papasavva
et al. 2020), a random n=2000. All results newly measured with identical evaluation settings; all are
steering LLaMA-3-8B. Bold is p < 0.05 against second-best. Toxicity is the Perspective API score.
Disfluency is the perplexity as measured by LLaMA-3.1-8B. Sources: Pei et al. 2023 (PreADD),
Yang & Klein 2021 (FUDGE), Schick et al. 2021 (SelfDebias), Dekoninck et al. 2024 (LMA).

Method RealToxPrompt ↓ Disfluency ↓ /pol/ ↓ Disfluency ↓
Unsteered .127 16.0 .323 19.3
ActAdd (ours) .101 20.4 .305 48.0
FUDGE .103 16.2 .269 20.5
LMA .104 15.8 .232 17.9
LMA + Classifier .090 16.1 .205 18.7
SelfDebias .123 18.2 .299 22.8
PreADD .099 16.7 .234 19.3

4.4 ACTADD CAN CONTROL SENTIMENT

Method. To evaluate sentiment, we use the Stanford IMDb dataset (Maas et al., 2011). Our goal is
for the model to continue each review but with the opposite sentiment. We compute the proportion of
generated outputs with the desired sentiment, as classified by a model finetuned on sentiment data,
Twitter-roBERTa (Loureiro et al. 2022). We evaluate sentiment changes from positive to negative
and vice versa on a random subset n = 1000 and repeat to obtain p-values. Our hyperparameters are
l = 6 and c = 3.

Results. Table 4 shows that our method can control sentiment on one conventional measure (Maas
et al. 2011), though it falls short of SOTA.

4.5 ACTADD PRESERVES THE MODEL’S GENERAL KNOWLEDGE

Method. We use ConceptNet from the LAMA benchmark, a general knowledge dataset (Petroni et al.
2019, n = 29, 774 sentences, see Appendix Table 10). The model is given a prompt and then has
to predict a factual completion. The task is intended for both causal and masked models, so some
examples are difficult for causal-attention models due to the extremely limited context.

For each sentence, we run the model on its prompt with and without the wedding activation
addition. P@K is the probability that the expected label is among the model’s top-K predicted

7
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Table 4: Sentiment steering results on the Stanford IMDb dataset. “Success” denotes the probability
of the steering method changing how the output’s sentiment gets classified, thus higher better. ‘Pos-
to-neg’ is the probability of shifting a positive classification to a negative one, and vice versa for
‘neg-to-pos’. Bold results represent p < 0.05 compared to the second-best. Fluency is usually worse
under steering.

Success at steering sentiment
Method Pos-to-neg ↑ Disfluency ↓ Neg-to-pos ↑ Disfluency ↓
Unsteered 0.207 17.23 0.200 18.49
ActAdd (ours) 0.395 29.18 0.349 29.30
Prompted 0.265 17.94 0.246 18.36
LMA 0.423 16.74 0.378 16.69
LMA + Classifier 0.471 17.01 0.459 17.51
SelfDebias 0.275 18.46 0.236 20.35
FUDGE 0.367 17.93 0.302 19.75
PreADD 0.420 19.30 0.339 19.05

tokens, conditioned on the prompt. We score the baseline and modified models by calculating mean
P@K values for a range of K. Finally we plot these for both modified and unmodified models over
a range of K values.

Results. Figure 5 shows that on the ConceptNet benchmark of factual questions, our method has a
negligible impact on off-target answer probabilities (i.e. domain is unrelated to the steering vector).
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Figure 5: Testing side effects ofActAdd with the ConceptNet benchmark (Petroni et al. 2019).
‘P@K’ is the probability of the correct answer being in the model’s top K answers. Our method has
a negligible impact on off-target probabilities across a range of top-K values.

5 DISCUSSION

Limitations Initially, ActAdd achieved SOTA on detoxification and on one kind of sentiment
steering (Appendix Tables 13 and 14). However, stronger methods have since been released, and our
above standardized tests on a new dataset show that our method does not robustly outperform across
datasets. Table 3 shows that ActAdd substantially increases perplexity, which we find somewhat
perplexing. On models older than LLAMA-3.1 and on other tasks, the method did not cause a
significant increase in perplexity. Perhaps ActAdd faces challenges when scaling to larger and newer
models, and so refinements are needed.

To steer the model using an ActAdd vector, the user supplies the injection coefficient c and the
intervention layer l. So far we have had success with fixing the sequence alignment a = 1. Over-
all, these free hyperparameters make ActAdd less user-friendly than simple prompt engineering.
Thankfully, the user does not have to perform a fresh hyperparameter sweep for each use case; in
practice, intervention hyperparameters are stable. We include examples of failed steering vectors in
Appendix Table 7. We also have not examined ActAdd’s potential impact on reasoning. ActAdd is
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not immediately applicable given only API access to a model. The model must both cache and expose
intermediate activations at the given layer (Bloom & Nanda 2022). Most APIs do not allow this.

Activation engineering vs finetuning Finetuning is better understood and more flexible – we doubt
that activation engineering can e.g. teach a model a new skill. However, finetuning is significantly
more costly and may not be able to elicit the same kinds of capabilities which activation engineering
can elicit. The first advantage of ActAdd is efficiency: the method requires no backward passes and
can thus run on any machine that can perform inference rather than training. Implementation effort
is also greatly reduced; only forward passes are required to find a suitable (p+, p−) and minimal
labeled data is required - just the steering prompt pair. We discovered most of the example contrast
pairs in Appendix Table 6 in minutes. All things considered, even nontechnical users can benefit
from rapid feedback and relatively easy iteration.

Activation engineering vs prompt engineering Activation additions can be continuously weighted,
while prompts are discrete – a token is either present, or not. To more intensely steer the model
to generate wedding-related text, our method does not require any edit to the prompt, but instead
just increasing the injection coefficient. See Appendix B for suggestive experiments on ActAdd vs
prompting. Unlike system prompts, activation additions do not take up token space in the model’s
context window, although this is a small benefit in the era of multi-million token context windows.
While prompting is more flexible and even cheaper than ActAdd, activation additions may elicit
capabilities which prompting cannot.

Algebraic combination of forward passes ActAdd can be viewed as composition of separate
forward passes. For example, we compose h+, h− and h∗ to produce steered output. We were
surprised that forward passes can “compose” in this way, despite the model not being trained to
allow this operation. The composability of forward passes is itself evidence for compositional
representations (Olah 2023), independent of the evidence from task-composition arithmetic on
weights (Ilharco et al. 2023).

Interpretability In most programs, adding values to imprecisely targeted intermediate memory
locations would not yield sensible results. Why expect this from Transformers? An LLM’s activation
space might have direction which represent high-level variables causally involved in what is generated
(Burns et al. 2022; Moschella et al. 2023; Li et al. 2023a; Nanda 2023; Li et al. 2023b). More
specifically, we think that neural networks represent features of the input as directions in activation
space (Park et al. 2023). We think that the direction in activation space that corresponds to (say) a
love-hate latent variable stays approximately the same across a broad class of inputs.

Alain & Bengio 2018 use linear probes on residual streams to infer that LLM representations are
at least partially linear; if a linear probe can predict some feature of text output from the residuals
with high accuracy, this forms evidence that the feature is represented linearly (i.e. as a simple
direction) (Nanda 2023). The success of activation addition gives stronger, experimental evidence
of feature linearity, demonstrating that models use feature-related information. Steering vectors
establish causality, at least in the limited set of contexts examined.

Value alignment of LLMs Activation engineering is a promising way to control LLMs. Successor
methods may be able to provide general steering methods (e.g. through some analogue of a Be
helpful vector). Alongside contemporaneous work (Li et al. 2023b; Liu et al. 2023), our exper-
iments suggest that activation engineering can flexibly retarget LLM behavior without damaging
general performance. We speculate that ActAdd changes the model’s currently active mixture of
goals and priorities. Suitably developed, the activation engineering approach could enable safety
progress while preserving overall capabilities.

6 CONCLUSION

While methods like prompt engineering, controlled decoding, and finetuning have benefits, they
fail to elicit full capabilities from language models. To more reliably elicit these abilities, activa-
tion engineering strategically perturbs activations at inference time. In particular, we introduced
Activation Addition to steer models by shifting their inference-time activations along a certain direc-
tion (like the “Love”−“Hate” vector). ActAdd is lightweight and sometimes effective; we achieve
good results on topic steering and mixed results on toxicity reduction and sentiment shift. ActAdd
demonstrates the potential promise of activation engineering. We look forward to future work
realizing this promise and making activation engineering more robust.
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REPRODUCIBILITY STATEMENT

Our code is available here: https://zenodo.org/records/14177088. The following is
an exhaustive list of models used, sampling strategies used, and searches run:

Data processing To curate a wedding-related subset of OpenWebText, we retained documents
with wedding-related words (see Section 4.1.1). The only pre-processing performed is to remove
sequences of null characters. Each document is split into sentences sj ∈ di using the Punkt tokenizer
(Strunk 2013).

Sampling hyperparameters We use nucleus sampling with p = 1.0 and temperature T = 1.0. We
do not use top-k sampling. We use a frequency penalty of 1.0.

Models In earlier versions of this work, we demonstrated strong results with Llama-1-13B (Touvron
et al. 2023), GPT-J-6B (Wang & Komatsuzaki 2021), OPT (Zhang et al. 2022b), and LLaMA-3-8B
Meta 2024. These results are now less prominent. See Appendix E for details. For the success score,
we use the Twitter-roBERTa (Loureiro et al. 2022).

Model scoring For scoring toxicity, we use https://www.perspectiveapi.com/. For
scoring fluency, we use LLama-3.1-8B.

Seed We ran all generations on seed 0. After collecting all other data, we validated that our
qualitative results transfer to seeds 1 and 2.

Reporting the best of K completions We generated K = 3 completions for each qualitative
demonstration, for both normal and steered forward-passes. Appendix Table 6, shows the subjectively
most compelling completion pair out of the first three seed-0 completion-pairs. You can see all top-3
completions for the entries in this notebook: tinyurl.com/actadd3.

ActAdd hyperparameters (l, c) We performed simple grid search, usually between c ∈ [3, 20]
and l ∈ [6, 24].
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