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Abstract

Minimax optimization problems have attracted significant attention in recent years due to
their widespread application in numerous machine learning models. To solve the minimax
problem, a wide variety of stochastic optimization methods have been proposed. However,
most of them ignore the distributed setting where the training data is distributed on multiple
workers. In this paper, we developed a novel decentralized stochastic gradient descent ascent
method for the finite-sum minimax problem. In particular, by employing the variance-
reduced gradient, our method can achieve O(

√
nκ3

(1−λ)2ϵ2 ) sample complexity and O( κ3

(1−λ)2ϵ2 )
communication complexity for the nonconvex-strongly-concave minimax problem. As far
as we know, our work is the first one to achieve such theoretical complexities for this kind
of minimax problem. At last, we apply our method to optimize the AUC maximization
problem, and the experimental results confirm the effectiveness of our method.

1 Introduction

In this paper, we consider the following decentralized finite-sum minimax problem:

min
x∈Rd

max
y∈Rd′

F (x, y) ≜ 1
K

K∑
k=1

( 1
n

n∑
i=1

f
(k)
i (x, y)

)
. (1)

It is assumed that there are totally K workers in a decentralized training system. Each worker has its own
dataset and objective function f (k)(x, y) = 1

n

∑n
i=1 f

(k)
i (x, y) where f

(k)
i (x, y) is the loss function for the

i-th sample on the k-th worker and n is the total number of samples on each worker. In this paper, f
(k)
i (x, y)

is assumed to be nonconvex in x and µ-strongly-concave in y. Under this kind of decentralized setting, all
workers collaboratively optimize Eq. (1) to learn the model parameter x and y.

The minimax optimization problem in Eq. (1) covers numerous machine learning models, such as adversarial
training Goodfellow et al. (2014a;b); Madry et al. (2017), distributionally robust optimization Lin et al.
(2020); Luo et al. (2020), AUC maximization Ying et al. (2016); Liu et al. (2019a), etc. Recently, many efforts
have been devoted to developing efficient optimization algorithms to solve the minimax optimization problem.
For instance, Lin et al. (2020) proposed a stochastic gradient descent ascent method and investigated its
convergence rate. Afterwards, several accelerated methods Luo et al. (2020); Xu et al. (2020); Qiu et al.
(2020) have been proposed to improve the convergence speed by utilizing the variance reduction technique
or momentum strategy. However, these methods only focus on the single-machine setting. It’s unclear how
these methods converge under the decentralized setting and how large their communication complexities are.

To handle the large-scale minimax optimization problem, some distributed methods have been proposed in
recent years. In Deng & Mahdavi (2021), a communication-efficient local stochastic gradient descent ascent
method was proposed, whose convergence rate was further improved in Xie et al. (2021) by resorting to
the variance reduction technique. Guo et al. (2020) deveoped CoDA for the AUC maximization problem.
However, these methods are based on the parameter-server setting so that they are not applicable to our
decentralized setting. Recently, Liu et al. (2019b) developed a decentralized optimistic stochastic gradient
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method and established the convergence rate for the nonconvex-nonconcave problem. Xian et al. (2021)
developed a decentralized stochastic variance-reduced gradient descent ascent method for the nonconvex-
strongly-concave problem based on the STORM gradient estimator Cutkosky & Orabona (2019). However,
it has a large communication complexity O(1/ϵ3) to achieve the ϵ-accuracy solution 1. On the contrary,
the decentralized algorithm for minimization problems can achieve the O(1/ϵ2) communication complexity.
Moreover, Xian et al. (2021) only studied the stochastic setting, failing to handle the finite-sum optimization
problem. Recently, Zhang et al. (2021b) reformulated the policy evaluation problem in reinforcement learning
as a finite-sum minimax problem and then proposed the decentralized GT-SRVR method to solve it. However,
this method requires to compute the full gradient periodically, incurring large computation overhead.

To overcome aforementioned issues, we developed a novel decentralized stochastic gradient descent ascent
(DSGDA) method for optimizing Eq. (1) efficiently. In detail, on each worker, DSGDA computes the
variance-reduced gradient based on the local dataset and then employs the gradient tracking communication
scheme to update the local model parameters x and y. Furthermore, we established the convergence rate of
DSGDA for the finite-sum nonconvex-strongly-concave problem. Specifically, our theoretical analysis shows
that DSGDA can achieve O( κ3

(1−λ)2ϵ2 ) communication complexity, which is better than O( κ3

(1−λ)2ϵ3 ) of Xian
et al. (2021) and matches O( κ3

(1−λ)2ϵ2 ) of Zhang et al. (2021b) in terms of the order of the solution accuracy ϵ,
where 1−λ represents the spectral gap of the communication network and κ denotes the condition number of
the loss function. Moreover, our method can achieve O(

√
nκ3

(1−λ)2ϵ2 ) sample complexity on each worker, which
is better than O(n +

√
nκ3

(1−λ)2ϵ2 ) of Zhang et al. (2021b)2 in terms of n because our method does not need
to periodically compute the full gradient as Zhang et al. (2021b). To the best of our knowledge, there is
no existing literature achieving such a favorable sample complexity. This confirms the superiority of our
method. The detailed comparison between our method and existing methods is demonstrated in Table 1. At
last, we apply our method to optimize the decentralized AUC maximization problem and the experimental
results confirm the superior empirical performance of our method. Finally, we summarize the contribution
of our work in the following.

• We developed a novel decentralized stochastic gradient descent ascent method for optimizing finite-
sum nonconvex-strongly-concave minimization problems without periodically computing the full
gradient as existing methods Luo et al. (2020); Zhang et al. (2021b). Therefore, our method is
efficient in computation.

• We established the convergence rate for our proposed decentralized optimization method, which
demonstrates that our method can achieve a better sample complexity than existing decentralized
minimax optimization methods. This is the first work achieving such a theoretical result for the
decentralized minimax problem.

• We conducted extensive experiments on the AUC maximization problem, which confirms the effec-
tiveness of our method in practical applications.

Methods Sample Complexity Communication Complexity Category
DM-HSGD Xian et al. (2021) O( κ3

(1−λ)2ϵ3 ) O( κ3

(1−λ)2ϵ3 ) Stochastic
GT-SRVR Zhang et al. (2021b) O(n +

√
nκ3

(1−λ)2ϵ2 ) O( κ3

(1−λ)2ϵ2 ) Finite-sum
Ours O(

√
nκ3

(1−λ)2ϵ2 ) O( κ3

(1−λ)2ϵ2 ) Finite-sum

Table 1: The comparison in sample and communication complexities between our method and baseline
methods. Here, κ is the condition number, 1 − λ is the spectral gap, and n is the number of samples on each
worker.

1Here, we omit the spectral gap and condition number for simplification.
2The first term is ignored in Zhang et al. (2021b).
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2 Related Work

2.1 Minimax Optimization

Minimax optimization has attracted a surge of attention in the machine learning community in the past few
years due to its widespread application in many machine learning models. To this end, a line of research is
to develop efficient optimization methods Sanjabi et al. (2018); Nouiehed et al. (2019); Jin et al. (2020); Yan
et al. (2020); Zhang et al. (2021a); Chen et al. (2020); Yang et al. (2020); Tran-Dinh et al. (2020) to solve
the minimax optimization problem. In particular, under the stochastic setting, Lin et al. (2020) developed a
single-loop stochastic gradient descent ascent (SGDA) method, which updates x and y for only one step with
stochastic gradients in each iteration. The sample complexity of SGDA for the nonconvex-strongly-concave
minimax problem is O(κ3/ϵ4). Later, Qiu et al. (2020); Guo et al. (2021) combined the momentum technique
with SGDA to accelerate the empirical convergence speed. Moreover, Qiu et al. (2020); Huang et al. (2020b)
utilized the variance reduction technique STORM Cutkosky & Orabona (2019) to accelerate the convergence
speed for nonconvex-strongly-concave minimax problems.

As for the finite-sum setting, Luo et al. (2020) proposed a double-loop (SREDA) method, which updates x for
one step with the variance-reduced gradient estimator SPIDER Fang et al. (2018) and solves the maximization
problem about y with multiple gradient ascent steps. As such, it can achieve the O(n + n1/2κ2/ϵ2) sample
complexity for the finite-sum nonconvex-strongly-concave minimax problem. However, SREDA requires
to periodically compute the full gradient, which is not practical for large-scale real-world applications. In
addition, its step size should be as small as ϵ, which also limits its application for real-world tasks. Recently,
Xu et al. (2020) resorted to the SpiderBoost Wang et al. (2019) variance reduction technique to tolerate a
large step size. But it still needs to compute the full gradient periodically so that it has the same sample
complexity with SREDA.

2.2 Decentralized Optimization

In recent years, decentralized optimization methods have been applied to optimize large-scale machine learn-
ing models. In particular, Lian et al. (2017) proposed a decentralized stochastic gradient descent (DSGD)
method based on the gossip communication scheme, while Pu & Nedić (2020); Lu et al. (2019) used the
gradient tracking communication scheme for DSGD. Yu et al. (2019) applied the momentum technique to
DSGD to accelerate the convergence speed. Afterwards, the variance reduction technique has been utilized
to further accelerate the convergence speed of DSGD. For example, Sun et al. (2020) combines SPIDER Fang
et al. (2018) with the gradient-tracking-based DSGD, achieving the near-optimal sample and communication
complexity. Besides, there are some works focusing on the communication-efficient methods by compressing
gradients Koloskova et al. (2019) or skipping communication rounds Li et al. (2019). However, all these
methods are designed for the minimization problem. Hence, they are not applicable to optimize Eq. (1).

A few efforts have been made to optimizing the decentralized minimax problem in the past two years.
For example, Liu et al. (2019b) developed a decentralized optimistic stochastic gradient method to train the
nonconvex-nonconcave generative adversarial nets Goodfellow et al. (2014a). Rogozin et al. (2021) focused on
the strongly-convex-strongly-concave problem. Recently, Beznosikov et al. (2021) proposed a communication-
efficient method based on the stochastic extragradient algorithm. Xian et al. (2021) developed a decentralized
stochastic gradient descent ascent method based on the STORM Cutkosky & Orabona (2019) gradient
estimator for the stochastic minimax problem, rather than the finite-sum problem. Zhang et al. (2021b)
proposed GT-SRVR based on the SPIDER gradient estimator Zhang et al. (2021b) for finite-sum problems,
which requires to periodically compute the full gradient.

3 Efficient Decentralized Stochastic Gradient Descent Ascent Method

3.1 Problem Setup

In this paper, the communication network in the decentralized training system is represented by G = {P, W}.
Here, P = {p1, p2, · · · , pK} represents K workers. W = [wij ] ∈ RK×K is the adjacency matrix, denoting
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Algorithm 1 Efficient Decentralized Stochastic Gradient Descent Ascent (DSGDA)
Require: x(k)

0 = x(k)
−1 = x0, y(k)

0 = y(k)
−1 = y0, v(k)

−1 = a(k)
−1 = 0, u(k)

−1 = b(k)
−1 = 0,

1: g(k)
i,−1 = 0, h(k)

i,−1 = 0 for i ∈ {1, 2, · · · n}.
2: for t = 0, · · · , T − 1 do
3: Randomly select samples St with |St| = st and then compute v(k)

t and u(k)
t as Eq. (2) and Eq. (4)

4: Update x:
a(k)

t =
∑

j∈Nk
wkja(j)

t−1 + v(k)
t − v(k)

t−1

x(k)
t+ 1

2
=
∑

j∈Nk
wkjx(j)

t − γ1a(k)
t

x(k)
t+1 = x(k)

t + η(x(k)
t+ 1

2
− x(k)

t )
5: Update y:

b(k)
t =

∑
j∈Nk

wkjb(j)
t−1 + u(k)

t − u(k)
t−1

y(k)
t+ 1

2
=
∑

j∈Nk
wkjy(j)

t + γ2b(k)
t

y(k)
t+1 = y(k)

t + η(y(k)
t+ 1

2
− y(k)

t )
6: Update g and h:

g(k)
i,t =

{
∇xfi(x(k)

t , y(k)
t ), for i ∈ St

g(k)
i,t−1, otherwise

h(k)
i,t =

{
∇yfi(x(k)

t , y(k)
t ), for i ∈ St

h(k)
i,t−1, otherwise

7: end for

the connection among these K workers. When wij > 0, the workers pi and pj are connected. Otherwise,
they are disconnected and then cannot communicate to each other. In addition, for the adjacency matrix,
we have the following assumption.
Assumption 1. The adjacency matrix W satisfies following properties:

• W is nonnegative, i.e., wij ≥ 0.

• W is symmetric, i.e., W T = W .

• W is doubly stochastic, i.e., W1 = 1 and 1T W = 1T .

• The eigenvalues {λi}n
i=1 of W satisfy |λn| ≤ · · · ≤ |λ2| < |λ1| = 1.

This assumption is also used in existing works Lian et al. (2017); Koloskova et al. (2019); Liu et al. (2019b).
In this paper, the spectral gap is represented by 1 − λ where λ ≜ |λ2|.

3.2 Method

In Algorithm 1, we developed a novel efficient descentralized stochastic gradient descent ascent (DSGDA)
method. Specifically, each worker computes the stochastic gradient with its local dataset and then updates
its local model parameters. In detail, at the t-th iteration, the k-th worker samples a mini-batch of samples
St to compute the variance-reduced gradient regarding x as follows:

v(k)
t = 1

st

∑
i∈St

(
∇xfi(x(k)

t , y(k)
t ) − ∇xfi(x(k)

t−1, y(k)
t−1)

)
+ (1 − ρt)v(k)

t−1 + ρt

( 1
st

∑
i∈St

(∇xfi(x(k)
t−1, y(k)

t−1) − g(k)
i,t−1) + 1

n

n∑
j=1

g(k)
j,t−1

)
,

(2)

where ρt ∈ [0, 1] is a hyperparameter, x(k)
t and y(k)

t denote the model parameters on the k-th worker in
the t-th iteration, ∇xfi(x(k)

t , y(k)
t ) denotes the stochastic gradient regarding x, v(k)

t is the corresponding
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variance-reduced gradient, g(k)
i,t stores the stochastic gradient of the i-th sample on the k-th worker, which

is updated as follows:

g(k)
i,t =

{
∇xfi(x(k)

t , y(k)
t ), for i ∈ St

g(k)
i,t−1, otherwise .

(3)

Similarly, to update y, the k-th worker uses the same mini-batch of samples St to compute the variance-
reduced gradient regarding y as follows:

u(k)
t = 1

st

∑
i∈St

(
∇yfi(x(k)

t , y(k)
t ) − ∇yfi(x(k)

t−1, y(k)
t−1)

)
+ (1 − ρt)u(k)

t−1 + ρt

( 1
st

∑
i∈St

(∇yfi(x(k)
t−1, y(k)

t−1) − h(k)
i,t−1) + 1

n

n∑
j=1

h(k)
j,t−1

)
,

(4)

where u(k)
t is the variance-reduced gradient for the variable y, h(k)

i,t stores the stochastic gradient of the i-th
sample on the k-th worker for the variable y. Similar to g(k)

i,t , h(k)
i,t is updated as follows:

h(k)
i,t =

{
∇yfi(x(k)

t , y(k)
t ), for i ∈ St

h(k)
i,t−1, otherwise .

(5)

After obtaining the variance-reduced gradient, the k-th worker employs the gradient tracking communication
scheme to communicate with its neighboring workers:

a(k)
t =

∑
j∈Nk

wkja(j)
t−1 + v(k)

t − v(k)
t−1 , b(k)

t =
∑

j∈Nk

wkjb(j)
t−1 + u(k)

t − u(k)
t−1 , (6)

where Nk is the neighboring workers of the k-th worker, a(k)
t and b(k)

t are the gradients after communicating
with the neighboring workers.

Then, the k-th worker updates its local model parameter x(k)
t as follows:

x(k)
t+ 1

2
=
∑

j∈Nk

wkjx(j)
t − γ1a(k)

t , x(k)
t+1 = x(k)

t + η(x(k)
t+ 1

2
− x(k)

t ) , (7)

where γ1 > 0 and 0 < η < 1 are two hyperparameters. Similarly, y(k)
t is also updated as follows:

y(k)
t+ 1

2
=
∑

j∈Nk

wkjy(j)
t + γ2b(k)

t , y(k)
t+1 = y(k)

t + η(y(k)
t+ 1

2
− y(k)

t ) , (8)

where γ2 > 0 and 0 < η < 1 are two hyperparameters.

All workers in the decentralized training system repeat the aforementioned steps to update x and y until it
converges.

The variance-reduced gradient estimator in Eq. (2) was first proposed in Li & Richtárik (2021). But they
only focus on the minimization problem and ignore the decentralized setting. In fact, it is nontrivial to apply
this variance-reduced gradient estimator to the decentralized minimax problem. Especially, it is challenging
to establish the convergence rate, which is shown in the next section.

4 Theoretical Analysis

4.1 Convergence Rate

To establish the convergence rate of Algorithm 1, we introduce the following assumptions, which are com-
monly used in existing works.
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Assumption 2. (Smoothness) Each function f
(k)
i (·, ·) is L-smooth. i.e., for any (x1, y1) and (x2, y2), there

exists L > 0, such that

∥∇f
(k)
i (x1, y1) − ∇f

(k)
i (x2, y2)∥2 ≤ L2∥x1 − x2∥2 + L2∥y1 − y2∥2 . (9)

Assumption 3. (Strong concavity) The function f (k)(x, y) is µ-strongly concave with respect to y, i.e., for
any (x, y1) and (x, y2), there exists µ > 0, such that

f (k)(x, y1) ≤ f (k)(x, y2) + ⟨∇yf (k)(x, y2), y1 − y2⟩ − µ

2 ∥y1 − y2∥2 . (10)

Here, we denote the condition number by κ = L/µ. Throughout this paper, we denote c̄ = 1
K

∑K
k=1 ck,

where ck is the variable on the k-th worker. Based on these assumptions, we establish the convergence rate
of our method for nonconvex-strongly-concave problems in Theorem 1.
Theorem 1. Given Assumptions 1-3, if setting γ1 ≤ min{γ1,1, γ1,2, γ1,3}, γ2 ≤ min{γ2,1, γ2,2, γ2,3} where

γ1,1 ≤ (1 − λ)2
√

12ρ1κL

/√
212 + 3

(1019
s1ρ1

+ 4104ρ1n2

s3
1

)
, γ1,2 ≤ 1

8κL

/√
1019
s1ρ1

+ 4104ρ1n2

s3
1

, γ1,3 ≤ γ2

20κ2 ,

γ2,1 ≤ 3
2κL

/(1019
s1ρ1

+ (4104ρ1n2

s3
1

)
, γ2,2 ≤ 1

6L
, γ2,3 ≤ (1 − λ)2

√
2ρ1L

/√
212 + 3

(1019
s1ρ1

+ 4104ρ1n2

s3
1

)
,

(11)

and η < min{1, 1
2γ1LΦ

, 1√
12

/√
1019
s1ρ1

+ 4104ρ1n2

s3
1

}, st = s1 for t > 0, ρt = ρ1 = s1
2n for t > 0, ρ0 = 1, our

algorithm is able to achieve the following convergence rate:

1
T

T −1∑
t=0

(E[∥∇Φ(x̄t)∥2] + L2E[∥ȳt − y∗(xt)∥2]) ≤ 2(Φ(x̄0) − Φ(x∗))
γ1ηT

+ 12κL

γ2ηT
E[∥ȳ0 − y∗(x0)∥2]

+

(
4κ2(n − s0)

s0s1

(
7 + 15369L2γ2

1 + 424γ2
1L2

(1 − λ2)2

)
+ 28(s0 − s2

0/n)
2s0s1

)
1

T K

K∑
k=1

1
n

n∑
i=1

E[∥∇xfi(x(k)
0 , y(k)

0 )∥2]

+

(
4κ2(n − s0)

s0s1

(
258 + 50L2 + 15369L2γ2

2 + 424γ2
2L2

(1 − λ2)2

)
+ 2024κ2(s0 − s2

0/n)
2s0s1

)
1

T K

K∑
k=1

1
n

n∑
i=1

E[∥∇yfi(x(k)
0 , y(k)

0 )∥2] ,

(12)
where y∗(x̄) = arg maxy

1
K

∑K
k=1 f (k)(x̄, y), Φ(x) = 1

K

∑K
k=1 Φ(k)(x) = 1

K

∑K
k=1 f (k)(x, y∗(x)) and it is

LΦ = 2κL smooth.
Corollary 1. Given Assumptions 1-3, by setting s0 = s1 =

√
n, ρ1 = s1

2n , we can get γ1 = O((1 − λ)2/κ3),
γ2 = O((1 − λ)2/κ), and η = O(1) under the worst case. Then, by setting T = O( κ3

(1−λ)2ϵ2 ), our algorithm
can achieve the ϵ-accuracy solution:

1
T

T −1∑
t=0

(E[∥∇Φ(x̄t)∥2] + L2E[∥ȳt − y∗(xt)∥2]) ≤ ϵ2 . (13)

Remark 1. From Corollary 1, it is easy to know that the communication complexity of our method is
O( κ3

(1−λ)2ϵ2 ) and the sample complexity is T ×
√

n = O(
√

nκ3

(1−λ)2ϵ2 ).

Remark 2. Compared with Xian et al. (2021) whose step sizes are O((1 − λ)2ϵ/κ3) and O((1 − λ)2ϵ/κ),
our step sizes, i.e., γ1, γ2, and η, are independent of ϵ. In addition, our communication complexity is better
than O( κ3

(1−λ)2ϵ3 ) of Xian et al. (2021).

Remark 3. The step sizes of Zhang et al. (2021b) are also independent of ϵ and have the same order
dependence on the spectral gap and condition number as our γ1 and γ2. But its sample complexity O(n +√

nκ3

(1−λ)2ϵ2 ) is worse than ours because it needs to periodically compute the full gradient.
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4.2 Proof Sketch

In this subsection, we present the proof sketch of our Theorem 1. The detailed proof can be found in
supplementary materials.

To investigate the convergence rate of our method, we propose a novel potential function as follows:

Ht = E[Φ(x̄t)] + 6γ1L2

γ2µ
E[∥ȳt − y∗(xt)∥2] + 106γ1κ2L2

(1 − λ2)
1
K

K∑
k=1

E[∥x̄t − x(k)
t ∥2]

+ (1 − λ2)γ1η

6ρ1

1
K

K∑
k=1

E[∥āt − a(k)
t ∥2] + (1 − λ2)ηγ1L2

ρ1µ2
1
K

K∑
k=1

E[∥b̄t − b(k)
t ∥2]

+ 3γ1η

ρ1

1
K

K∑
k=1

E[∥∇xf(x(k)
t , y(k)

t ) − v(k)
t ∥2] + 250ηγ1L2

ρ1µ2
1
K

K∑
k=1

E[∥∇yf(x(k)
t , y(k)

t ) − u(k)
t ∥2]

+ 14nρ1γ1η

s2
1

1
K

K∑
k=1

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] + 106γ1κ2L2

(1 − λ2)
1
K

K∑
k=1

E[∥ȳt − y(k)
t ∥2]

+ 1012nρ1ηγ1L2

s2
1µ2

1
K

K∑
k=1

E[ 1
n

n∑
j=1

∥∇yfj(x(k)
t , y(k)

t ) − h(k)
j,t ∥2] .

(14)

In the potential function Ht, 1
K

∑K
k=1 ∥x̄t − x(k)

t ∥2, 1
K

∑K
k=1 ∥ȳt − y(k)

t ∥2, 1
K

∑K
k=1 ∥āt − a(k)

t ∥2, and
1
K

∑K
k=1 ∥b̄t − b(k)

t ∥2 are the consensus error with respect to the variables and tracked gradients. The
last four terms characterise the gradient variance. Then, we can investigate how the potential function
evolves across iterations by studying each item in this potential function. In particular, we can get

Ht+1 − Ht ≤ −γ1η

2 E[∥∇Φ(x̄t)∥2] − γ1ηL2

2 E[∥ȳt − y∗(xt)∥2] . (15)

Then, based on this inequality, we can complete the proof. The detailed proof can be found in Supplementary
Materials.

5 Experiments

In this section, we present experimental results to demonstrate the empirical performance of our method.

5.1 AUC Maximization

AUC maximization is a commonly used method for the imbalanced data classification problem. Recently,
Ying et al. (2016) reformulated the AUC maximization problem as an minimax optimization problem to
facilicate stochastic training for large-scale data. In our experiment, we employ our method to optimize the
AUC maximization problem, which is defined as follows:

min
θ,θ̂1,θ̂2

max
θ̃

ℓ(θ, θ̂1, θ̂2, θ̃) = (1 − p)(θT a − θ̂1)2I[b=1] + p(θT a − θ̂2)2I[b=−1]

+ 2(1 + θ̃)(pθT aI[b=−1] − (1 − p)θT aI[b=1]) − p(1 − p)θ̃2 + γ

d∑
j=1

θ2
j

1 + θ2
j

,
(16)

where θ ∈ Rd denotes the model parameter of the classifier, θ̂1 ∈ R, θ̂2 ∈ R are two auxiliary model
parameters for the minimization subproblem, θ̃ ∈ R is the model parameter for the maximization subproblem,
{a, b} denotes training samples, γ > 0 is a hyperparameter for the regularization term. In our experiments,
we set γ to 0.001. Obviously, this is a nonconvex-strongly-concave optimization problem. Then, we can use
our Algorithm 1 to optimize this problem.
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5.2 Experimental Settings

In our experiments, we employ three binary classification datasets: a9a, w8a, and ijcnn1. All of them
are imbalanced datasets. The detailed information about these datasets can be found in LIBSVM 3. We
randomly select 20% samples as the testing set and the left samples as the training set. Throughout our
experiments, we employ ten workers. Then, the training samples are randomly distributed to all workers.

To evaluate the performance of our method, we compare it with the state-of-the-art decentralized opti-
mization algorithm: DM-HSGD Xian et al. (2021), GT-SRVR Zhang et al. (2021b), and GT-SRVRI Zhang
et al. (2021b). As for their step sizes, we set them in terms of Remarks 2 and 3. Specifically, since we
employed the Erdos-Renyi random graph with the edge probability being 0.5 to generate the communication
network, whose spectral gap is in the order of O(1) Ying et al. (2021), we assume the spectral gap as 0.5.
Additionally, the solution accuracy ϵ is set to 0.01. Then, the step sizes of two variables of DM-HSGD
are set to (1 − λ)2ϵ = 0.52 × 0.01 and the coefficient for the variance-reduced gradient estimator is set to
ϵ min{1, nϵ} = 0.01 × 10 × 0.01 according to Theorem 1 in Xian et al. (2021). As for GT-SRVR and GT-
SRVRI, the step sizes of two variables are set to 0.52 based on Remark 3 4. As for our method, the step
sizes γ1 and γ2 are set to (1 − λ)2 = 0.52 in terms of Remark 1. Note that we omit the condition number for
all step sizes since they are the same for all methods and it is difficult to obtain. As for our method, since
η is independent of the spectral gap and the solution accuracy, we set it to 0.9 throughout our experiments.
Additionally, ρ1 is set to 0.5/

√
n. Moreover, the batch size is set to

√
n for GT-SRVR and our method

according to Corollary 1, and that is set to 64 for DM-HSGD.
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Figure 1: The test AUC versus the number of iterations when using the random communication graph.
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Figure 2: The test AUC versus the number of gradient evaluation when using the random communication
graph.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4Since GT-SRVR’s theoretical step size leads to divergence for a9a dataset, we scaled it by 0.01 for the random graph and

0.5 for the line graph, respectively.
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Figure 3: The test AUC when using the line communication graph for a9a dataset.

5.3 Experimental Results

To compare our method with baseline methods, we plot test AUC versus the number of iterations in Figure 1
and that versus the number of gradient evaluation in Figure 2 5. From Figure 1, it can be observed that our
method converges much faster than all baseline methods in terms of the number of iterations, which confirms
the efficacy of our method. Additionally, from Figure 2, it can be observed that our method converges faster
than GT-SRVR and GT-SRVRI in terms of the number of gradient evaluation, which confirms the sample
complexity of our method is much smaller than theirs.
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Figure 4: The test AUC on different η when using the random communication graph for a9a dataset.

Moreover, we verify the performance of our method on the line communication network. In particular, in a
line communication network, each worker connects with only two neighboring workers. Its spectral gap is in
the order of O(1/K2) Ying et al. (2021) where K = 10 in our experiments. Accordingly, we set the step size
to (1 − λ)2ϵ = 0.012 × 0.01 for DM-HSGD, (1 − λ)2 = 0.012 for other methods. The other hyperparameters
are the same with the random communication network. In Figure 3, we plot the test AUC score versus the
number of iterations and the number of gradient evaluation for a9a dataset. It can be observed that our
method still converges much faster than two baseline methods, which further confirms the efficacy of our
method.

5We didn’t plot the gradient evaluation of DM-HSGD since it is for the stochastic setting, rather than the finite-sum setting.
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Finally, we demonstrate the performance of our method with different values of η in Figure 4. It can be
observed that our method with different η still converges much faster than baseline methods in terms of the
number of iterations and gradient evaluation.

6 Conclusion

In this paper, we developed a novel decentralized stochastic gradient descent ascent method for the finite-
sum optimization problems. We also established the convergence rate of our method, providing the sample
complexity and communication complexity. Importantly, our method can achieve the better communication
or computation complexity than existing decentralized methods. Finally, the extensive experimental results
confirm the efficacy of our method.
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A Appendix

Throughout this paper, we denote Ct = [c(1)
t , · · · , c(K)

t ] and C̄t = [c̄t, · · · , c̄t] where [c(k)
t denotes the variable

on the k-th device in the t-th iteration.
Lemma 1. Given Assumption 2-3, by setting η ≤ 1

2γ1LΦ
, we have

Φ(x̄t+1) ≤ Φ(x̄t) − γ1η

2 ∥∇Φ(x̄t)∥2 − γ1η

4 ∥v̄t∥2 + γ1ηL2∥ȳt − y∗(x̄t)∥2 + 2γ1ηL2

K

K∑
k=1

∥x̄t − x(k)
t ∥2

+ 2γ1ηL2

K

K∑
k=1

∥ȳt − y(k)
t ∥2 + 2γ1η

K

K∑
k=1

∥∇xf(x(k)
t , y(k)

t ) − v(k)
t ∥2 .

(17)

Proof.

Φ(x̄t+1) ≤ Φ(x̄t) + ⟨∇Φ(x̄t), x̄t+1 − x̄t⟩ + LΦ

2 ∥x̄t+1 − x̄t∥2

= Φ(x̄t) − γ1η⟨∇Φ(x̄t), v̄t⟩ + γ2
1η2LΦ

2 ∥v̄t∥2

= Φ(x̄t) − γ1η

2 ∥∇Φ(x̄t)∥2 +
(γ2

1η2LΦ

2 − γ1η

2

)
∥v̄t∥2 + γ1η

2 ∥∇Φ(x̄t) − v̄t∥2

≤ Φ(x̄t) − γ1η

2 ∥∇Φ(x̄t)∥2 +
(γ2

1η2LΦ

2 − γ1η

2

)
∥v̄t∥2

+ γ1η∥∇Φ(x̄t) − 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ)∥2 + γ1η∥ 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ) − v̄t∥2

≤ Φ(x̄t) − γ1η

2 ∥∇Φ(x̄t)∥2 +
(γ2

1η2LΦ

2 − γ1η

2

)
∥v̄t∥2

+ γ1η∥∇Φ(x̄t) − 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ)∥2 + 2γ1η∥ 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ) − 1
K

K∑
k=1

∇xf(x(k)
t , y(k)

t )∥2

+ 2γ1η∥ 1
K

K∑
k=1

∇xf(x(k)
t , y(k)

t ) − v̄t∥2

≤ Φ(x̄t) − γ1η

2 ∥∇Φ(x̄t)∥2 − γ1η

4 ∥v̄t∥2 + γ1ηL2∥ȳt − y∗(x̄t)∥2

+ 2γ1ηL2

K

K∑
k=1

∥x̄t − x(k)
t ∥2 + 2γ1ηL2

K

K∑
k=1

∥ȳt − y(k)
t ∥2 + 2γ1η

K

K∑
k=1

∥∇xf(x(k)
t , y(k)

t ) − v(k)
t ∥2 ,

(18)

where the last inequality holds due to η ≤ 1
2γ1LΦ

and the following inequality.

∥∇Φ(x̄t) − 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ)∥2

= ∥ 1
K

K∑
k=1

∇xf (k)(x̄t, y∗(x̄t)) − 1
K

K∑
k=1

∇xf (k)(x̄t, ȳ)∥2

≤ L2

K

K∑
k=1

(∥x̄t − x̄t∥2 + ∥y∗(x̄t) − ȳ∥2)

= L2∥y∗(x̄t) − ȳ∥2 .

(19)
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Lemma 2. Given Assumption 2-3, by setting γ2 ≤ 1
6L and η < 1, we have

∥ȳt+1 − y∗(xt+1)∥2 ≤ (1 − ηγ2µ

4 )∥ȳt − y∗(xt)∥2

− 3γ2
2η2

4 ∥ūt∥2 + 25ηγ2L2

3µ

1
K

K∑
k=1

∥ȳt − y(k)
t ∥2

+ 25ηγ2
1κ2

6γ2µ
∥v̄t∥2 + 25ηγ2L2

3µ

1
K

K∑
k=1

∥x̄t − x(k)
t ∥2

+ 25ηγ2

3µ

1
K

K∑
k=1

∥∇yf (k)(x(k)
t , y(k)

t ) − u(k)
t ∥2 .

(20)

Proof. By setting γ2 ≤ 1
6L and η < 1, we have

∥ȳt+1 − y∗(xt+1)∥2

≤ (1 − ηγ2µ

4 )∥ȳt − y∗(xt)∥2 − 3γ2
2η

4 ∥ūt∥2 + 25ηγ2
1κ2

6γ2µ
∥v̄t∥2 + 25ηγ2

6µ
∥∇yf(x̄t, ȳt) − ūt∥2

≤ (1 − ηγ2µ

4 )∥ȳt − y∗(xt)∥2 − 3γ2
2η

4 ∥ūt∥2 + 25ηγ2
1κ2

6γ2µ
∥v̄t∥2

+ 25ηγ2

3µ
∥∇yf(x̄t, ȳt) − 1

K

K∑
k=1

∇yf (k)(x(k)
t , y(k)

t )∥2

+ 25ηγ2

3µ

1
K

K∑
k=1

∥∇yf (k)(x(k)
t , y(k)

t ) − u(k)
t ∥2

≤ (1 − ηγ2µ

4 )∥ȳt − y∗(xt)∥2 − 3γ2
2η

4 ∥ūt∥2 + 25ηγ2
1κ2

6γ2µ
∥v̄t∥2

+ 25ηγ2L2

3µ

1
K

K∑
k=1

∥x̄t − x(k)
t ∥2 + 25ηγ2L2

3µ

1
K

K∑
k=1

∥ȳt − y(k)
t ∥2

+ 25ηγ2

3µ

1
K

K∑
k=1

∥∇yf (k)(x(k)
t , y(k)

t ) − u(k)
t ∥2 ,

(21)

where the first step follows from (Huang et al., 2020a).

Lemma 3. Given Assumption 1-3, for t > 0, by setting st = s1, ρt = ρ1, we have
K∑

k=1
E[∥a(k)

t+1 − āt+1∥2] ≤ 1 + λ2

2

K∑
k=1

E[∥a(k)
t − āt∥2]

+ 6L2

(1 − λ2)s1

K∑
k=1

E[∥x(k)
t+1 − x(k)

t ∥2]

+ 6L2

(1 − λ2)s1

K∑
k=1

E[∥y(k)
t+1 − y(k)

t ∥2]

+ 6ρ2
1

1 − λ2

K∑
k=1

E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2]

+ 6ρ2
1

(1 − λ2)s1

K∑
k=1

1
n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] .

(22)
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Proof. Based on the gradient tracking scheme in Algorithm 1,we have
K∑

k=1
E[∥a(k)

t+1 − āt+1∥2] = E[∥At+1 − Āt+1∥2
F ]

= E[∥AtW + Vt+1 − Vt − (Āt + V̄t+1 − V̄t)∥2
F ]

≤ (1 + a)E[∥AtW − Āt∥2
F ] + (1 + 1

a
)E[∥Vt+1 − Vt − V̄t+1 + V̄t∥2

F ]

≤ (1 + a)λ2E[∥At − Āt∥2
F ] + (1 + 1

a
)E[∥Vt+1 − Vt∥2

F ]

= 1 + λ2

2 E[∥At − Āt∥2
F ] + 2

1 − λ2E[∥Vt+1 − Vt∥2
F ]

= 1 + λ2

2

K∑
k=1

E[∥a(k)
t − āt∥2] + 2

1 − λ2

K∑
k=1

E[∥v(k)
t+1 − v(k)

t ∥2] ,

(23)

where the second to last step holds due to a = 1−λ2

2λ2 . In the following, we bound E[∥v(k)
t+1 − v(k)

t ∥2].

E[∥v(k)
t+1 − v(k)

t ∥2]

= E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t )
)

+ (1 − ρt+1)v(k)
t

+ ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t

)
− v(k)

t ∥2]

= E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t )
)

− ρt+1v(k)
t + ρt+1∇xf(x(k)

t , y(k)
t )

+ ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )
)

∥2]

≤ 3E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t )
)

∥2]

+ 3E[∥ − ρt+1v(k)
t + ρt+1∇xf(x(k)

t , y(k)
t )∥2]

+ 3E[∥ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )
)

∥2]

≤ 3L2

st+1
E[∥x(k)

t+1 − x(k)
t ∥2] + 3L2

st+1
E[∥y(k)

t+1 − y(k)
t ∥2] + 3ρ2

t+1E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2]

+
3ρ2

t+1
st+1

1
n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] .

(24)

Then, by setting st = s1, ρt = ρ1 and combining above two inequalities, we have
K∑

k=1
E[∥a(k)

t+1 − āt+1∥2] ≤ 1 + λ2

2

K∑
k=1

E[∥a(k)
t − āt∥2] + 6L2

(1 − λ2)s1

K∑
k=1

E[∥x(k)
t+1 − x(k)

t ∥2]

+ 6L2

(1 − λ2)s1

K∑
k=1

E[∥y(k)
t+1 − y(k)

t ∥2] + 6ρ2
1

1 − λ2

K∑
k=1

E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2]

+ 6ρ2
1

(1 − λ2)s1

K∑
k=1

1
n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] .

(25)
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Lemma 4. Given Assumption 1-3, for t > 0, by setting st = s1, ρt = ρ1, we have

K∑
k=1

E[∥b(k)
t+1 − b̄t+1∥2] ≤ 1 + λ2

2

K∑
k=1

E[∥b(k)
t − b̄t∥2]

+ 6L2

(1 − λ2)s1

K∑
k=1

E[∥x(k)
t+1 − x(k)

t ∥2]

+ 6L2

(1 − λ2)s1

K∑
k=1

E[∥y(k)
t+1 − y(k)

t ∥2]

+ 6ρ2
1

1 − λ2

K∑
k=1

E[∥u(k)
t − ∇yf(x(k)

t , y(k)
t )∥2]

+ 6ρ2
1

(1 − λ2)s1

K∑
k=1

1
n

n∑
j=1

E[∥∇yfj(x(k)
t , y(k)

t ) − h(k)
j,t ∥2] .

(26)

Similarly, we can prove the inequality with respect to E[∥b(k)
t+1 − b̄t+1∥2] by following Lemma 3.

Lemma 5. Given Assumption 1-3, for t > 0, by setting st = s1, and ρt = ρ1, we have

E[∥v(k)
t+1 − ∇xf(x(k)

t+1, y(k)
t+1)∥2]

≤ 2L2

s1
E[∥x(k)

t+1 − x(k)
t ∥2] + 2L2

s1
E[∥y(k)

t+1 − y(k)
t ∥2]

+ 2ρ2
1

s1

1
n

n∑
i=1

E[∥∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ∥2]

+ (1 − ρ1)2E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2] .

(27)

When t = 0, ρ0 = 1, we have

E[∥v0 − ∇xf(x(k)
0 , y(k)

0 )∥2]

= n − s0

(n − 1)s0

1
n

n∑
i=1

∥∇xfi(x(k)
0 , y(k)

0 )∥2 .
(28)

Proof. When t = 0, ρ0 = 1, we can get

E[∥v0 − ∇xf(x(k)
0 , y(k)

0 )∥2]

= E[∥ 1
s0

∑
i∈S0

(∇xfi(x(k)
0 , y(k)

0 ) − ∇xf(x(k)
0 , y(k)

0 )∥2]

= n − s0

(n − 1)s0

1
n

n∑
i=1

∥∇xfi(x(k)
0 , y(k)

0 )∥2 .

(29)
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For t > 0, we set the batch size to st = s1 and ρt = ρ1. We can get

E[∥v(k)
t+1 − ∇xf(x(k)

t+1, y(k)
t+1)∥2]

= E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t )
)

+ (1 − ρt+1)v(k)
t

+ ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t

)
− ∇xf(x(k)

t+1, y(k)
t+1)∥2]

= E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t ) − ∇xf(x(k)

t+1, y(k)
t+1) + ∇xf(x(k)

t , y(k)
t )
)

+ ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )
)

+ (1 − ρt+1)(v(k)
t − ∇xf(x(k)

t , y(k)
t ))∥2]

≤ E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t ) − ∇xf(x(k)

t+1, y(k)
t+1) + ∇xf(x(k)

t , y(k)
t )
)

+ ρt+1

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )
)

∥2]

+ (1 − ρt+1)2E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2]

≤ 2E[∥ 1
st+1

∑
i∈St+1

(
∇xfi(x(k)

t+1, y(k)
t+1) − ∇xfi(x(k)

t , y(k)
t ) − ∇xf(x(k)

t+1, y(k)
t+1) + ∇xf(x(k)

t , y(k)
t )
)

∥2]

+ 2ρ2
t+1E[∥

( 1
st+1

∑
i∈St+1

(∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ) + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )
)

∥2]

+ (1 − ρt+1)2E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2]

≤ 2
s2

t+1

∑
i∈St+1

E[∥∇xfi(x(k)
t+1, y(k)

t+1) − ∇xfi(x(k)
t , y(k)

t ) − ∇xf(x(k)
t+1, y(k)

t+1) + ∇xf(x(k)
t , y(k)

t )∥2]

+
2ρ2

t+1
s2

t+1

∑
i∈St+1

E[∥∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )∥2]

+ (1 − ρt+1)2E[∥(v(k)
t − ∇xf(x(k)

t , y(k)
t ))∥2]

≤ 2
s2

t+1

∑
i∈St+1

E[∥∇xfi(x(k)
t+1, y(k)

t+1) − ∇xfi(x(k)
t , y(k)

t )∥2] +
2ρ2

t+1
s2

t+1

∑
i∈St+1

E[∥∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ∥2]

+ (1 − ρt+1)2E[∥(v(k)
t − ∇xf(x(k)

t , y(k)
t ))∥2]

≤ 2L2

st+1
E[∥x(k)

t+1 − x(k)
t ∥2] + 2L2

st+1
E[∥y(k)

t+1 − y(k)
t ∥2] +

2ρ2
t+1

st+1

1
n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2]

+ (1 − ρt+1)2E[∥v(k)
t − ∇xf(x(k)

t , y(k)
t )∥2] ,

(30)

where the second to last step follows from Eq. (31), the last step follows from Assumption 2.

E[∥∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t + 1

n

n∑
j=1

g(k)
j,t − ∇xf(x(k)

t , y(k)
t )∥2] ≤ E[∥∇xfi(x(k)

t , y(k)
t ) − g(k)

i,t ∥2]

= E[∥
n∑

j=1
1{i==j}∇xfj(x(k)

t , y(k)
t ) − g(k)

j,t ∥2] = 1
n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] .

(31)
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Lemma 6. Given Assumption 1-3, for t > 0, by setting st = s1 and ρt = ρ1, we have

E[∥u(k)
t+1 − ∇yf(x(k)

t+1, y(k)
t+1)∥2]

≤ 2L2

s1
E[∥x(k)

t+1 − x(k)
t ∥2] + 2L2

s1
E[∥y(k)

t+1 − y(k)
t ∥2]

+ 2ρ2
1

s1

1
n

n∑
i=1

E[∥∇yfi(x(k)
t , y(k)

t ) − h(k)
i,t ∥2]

+ (1 − ρ1)2E[∥u(k)
t − ∇yf(x(k)

t , y(k)
t )∥2] .

(32)

For t = 0, ρ0 = 1, we have
E[∥u(k)

0 − ∇yf(x(k)
0 , y(k)

0 )∥2]

= n − s0

(n − 1)s0

1
n

n∑
i=1

∥∇yfi(x(k)
0 , y(k)

0 )∥2 .
(33)

Lemma 6 can be proved by following Lemma 5. Thus, we ignore it.
Lemma 7. Given Assumption 1-3, for t > 0, by setting st = s1 and αt = α1, we have

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
t+1, y(k)

t+1) − g(k)
j,t+1∥2]

≤ 2L2(1 − s1

n
)(1 + 1

α1
)∥x(k)

t+1 − x(k)
t ∥2

+ 2L2(1 − s1

n
)(1 + 1

α1
)∥y(k)

t+1 − y(k)
t ∥2

+ (1 − s1

n
)(1 + α1) 1

n

n∑
j=1

∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2 .

(34)

For t = 0, we have

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
0 , y(k)

0 ) − g(k)
j,0 ∥2]

= (1 − s0

n
) 1
n

n∑
j=1

∥∇xfj(x(k)
0 , y(k)

0 )∥2 .

(35)

Proof. For t > 0, we have

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
t+1, y(k)

t+1) − g(k)
j,t+1∥2]

= (1 − st+1

n
) 1
n

n∑
j=1

E[∥∇xfj(x(k)
t+1, y(k)

t+1) − g(k)
j,t ∥2]

= (1 − st+1

n
) 1
n

n∑
j=1

E[∥∇xfj(x(k)
t+1, y(k)

t+1) − ∇xfj(x(k)
t , y(k)

t ) + ∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2]

≤ 2L2(1 − st+1

n
)(1 + 1

αt+1
)E[∥x(k)

t+1 − x(k)
t ∥2] + 2L2(1 − st+1

n
)(1 + 1

αt+1
)E[∥y(k)

t+1 − y(k)
t ∥2]

+ (1 − st+1

n
)(1 + αt+1) 1

n

n∑
j=1

E[∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] ,

(36)
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where αt+1 > 0. By setting st = s1 and αt = α1, we complete the proof for the first part.

For t = 0, we have

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
0 , y(k)

0 ) − g(k)
j,0 ∥2] = (1 − s0

n
) 1
n

n∑
j=1

∥∇xfj(x(k)
0 , y(k)

0 )∥2 . (37)

Lemma 8. Given Assumption 1-3, for t > 0, by setting st = s1 and αt = α1, we have

E[ 1
n

n∑
j=1

∥∇yfj(x(k)
t+1, y(k)

t+1) − h(k)
j,t+1∥2]

≤ 2L2(1 − s1

n
)(1 + 1

αt
)∥x(k)

t+1 − x(k)
t ∥2

+ 2L2(1 − s1

n
)(1 + 1

αt
)∥y(k)

t+1 − y(k)
t ∥2

+ (1 − s1

n
)(1 + αt)

1
n

n∑
j=1

∥∇yfj(x(k)
t , y(k)

t ) − h(k)
j,t ∥2 .

(38)

For t = 0, we have

E[ 1
n

n∑
j=1

∥∇yfj(x(k)
0 , y(k)

0 ) − hj,0∥2]

= (1 − s0

n
) 1
n

n∑
j=1

∥∇yfj(x(k)
0 , y(k)

0 )∥2 .

(39)

Lemma 8 can be proved by following Lemma 7. Thus, we do not include it.
Lemma 9. Given Assumption 1-3, we have

K∑
k=1

∥x(k)
t+1 − x̄t+1∥2 ≤

(
1 − η(1 − λ2)

2

) K∑
k=1

∥x(k)
t − x̄t∥2 + 2ηγ2

1
1 − λ2

K∑
k=1

∥a(k)
t − āt∥2 . (40)

Proof.
K∑

k=1
∥x(k)

t+1 − x̄t+1∥2 = ∥Xt+1 − X̄t+1∥2
F

= ∥(1 − η)Xt + ηXt+ 1
2

− (1 − η)X̄t − ηX̄t+ 1
2
∥2

F

≤ (1 + a0)(1 − η)2∥Xt − X̄t∥2
F + η2(1 + 1

a0
)∥Xt+ 1

2
− X̄t+ 1

2
∥2

F

≤ (1 − η)∥Xt − X̄t∥2
F + η∥Xt+ 1

2
− X̄t+ 1

2
∥2

F

≤ (1 − η)∥Xt − X̄t∥2
F + η∥XtW + γ1At − (X̄t + γ1Āt)∥2

F

≤ (1 − η)∥Xt − X̄t∥2
F + η(1 + a1)∥XtW − X̄t∥2

F + ηγ2
1(1 + 1

a1
)∥At − Āt∥2

F

≤ (1 − η)∥Xt − X̄t∥2
F + η(1 + λ2)

2 ∥Xt − X̄t∥2
F + 2ηγ2

1
1 − λ2 ∥At − Āt∥2

F

=
(

1 − η + η(1 + λ2)
2

)
∥Xt − X̄t∥2

F + 2ηγ2
1

1 − λ2 ∥At − Āt∥2
F

=
(

1 − η(1 − λ2)
2

) K∑
k=1

∥x(k)
t − x̄t∥2 + 2ηγ2

1
1 − λ2

K∑
k=1

∥a(k)
t − āt∥2 ,

(41)
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where the second inequality follows from a0 = η
1−η , the last inequality follows from a1 = 1−λ2

2λ2 and ∥XtW −
X̄t∥2

F ≤ λ2∥Xt − X̄t∥2
F .

Lemma 10. Given Assumption 1-3, we have
K∑

k=1
∥y(k)

t+1 − ȳt+1∥2 ≤
(

1 − η(1 − λ2)
2

) K∑
k=1

∥y(k)
t − ȳt∥2 + 2ηγ2

2
1 − λ2

K∑
k=1

∥b(k)
t − b̄t∥2 . (42)

Similarly, we can prove the second inequality regarding y in Lemma 9.
Lemma 11. Given Assumption 1-3, we have

∥Xt+1 − Xt∥2
F ≤ 12η2

K∑
k=1

∥x(k)
t − x̄t∥2 + 3γ2

1η2
K∑

k=1
∥a(k)

t − āt∥2 + 3γ2
1η2K∥v̄t∥2 , (43)

∥Yt+1 − Yt∥2
F ≤ 12η2

K∑
k=1

∥y(k)
t − ȳt∥2 + 3γ2

2η2
K∑

k=1
∥b(k)

t − b̄t∥2 + 3γ2
2η2K∥ūt∥2 . (44)

Proof.
∥Xt+1 − Xt∥2

F

= η2∥Xt+ 1
2

− Xt∥2
F

= η2∥XtW − γ1At − Xt∥2
F

= η2∥XtW − Xt − γ1At + γ1Āt − γ1Āt∥2
F

≤ 3η2∥XtW − Xt∥2
F + 3γ2

1η2∥At − Āt∥2
F + 3γ2

1η2∥Āt∥2
F

= 3η2∥(Xt − X̄t)(W − I)∥2
F + 3γ2

1η2∥At − Āt∥2
F + 3γ2

1η2∥Āt∥2
F

≤ 12η2∥Xt − X̄t∥2
F + 3γ2

1η2∥At − Āt∥2
F + 3γ2

1η2∥V̄t∥2
F

= 12η2
K∑

k=1
∥x(k)

t − x̄t∥2 + 3γ2
1η2

K∑
k=1

∥a(k)
t − āt∥2 + 3γ2

1η2K∥v̄t∥2 ,

(45)

where the last inequality follows from 1
K

∑K
k=1 a(k)

t = 1
K

∑K
k=1 v(k)

t . Similarly, we can prove the inequality
for ∥Yt+1 − Yt∥2

F .

Based on these lemmas, we prove Theorem 1 in the following.

Proof. We define the potential function

Ht = E[Φ(x̄t)] + C0E[∥ȳt − y∗(x̄t)∥2]

+ C1

K

K∑
k=1

E[∥∇xf(x(k)
t , y(k)

t ) − v(k)
t ∥2] + C2

K

K∑
k=1

E[∥∇yf(x(k)
t , y(k)

t ) − u(k)
t ∥2]

+ C3

K

K∑
k=1

E[ 1
n

n∑
j=1

∥∇xfj(x(k)
t , y(k)

t ) − g(k)
j,t ∥2] + C4

K

K∑
k=1

E[ 1
n

n∑
j=1

∥∇yfj(x(k)
t , y(k)

t ) − h(k)
j,t ∥2]

+ C5

K

K∑
k=1

E[∥x̄t − x(k)
t ∥2] + C6

K

K∑
k=1

E[∥ȳt − y(k)
t ∥2] + C7

K

K∑
k=1

E[∥āt − a(k)
t ∥2] + C8

K

K∑
k=1

E[∥b̄t − b(k)
t ∥2] ,

(46)

where C0 = 6γ1L2

γ2µ , C1 = 3γ1η
ρ1

, C2 = 250ηγ1L2

ρ1µ2 , C3 = 14nρ1γ1η
s2

1
, C4 = 1012nρ1ηγ1L2

s2
1µ2 , C5 = 106γ1κ2

(1−λ2) , C6 =
106γ1κ2L2

(1−λ2) , C7 = (1−λ2)γ1η
6ρ1

, and C8 = (1−λ2)ηγ1L2

ρ1µ2 .
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Then, according to aforementioned lemmas, it is easy to get

Ht+1 − Ht ≤ −γ1η

2 E[∥∇Φ(x̄t)∥2] +
(

γ1ηL2 − ηγ2µ

4 C0

)
E[∥ȳt − y∗(x̄t)∥2]

+
(

+ 25ηγ2
1κ2

6γ2µ
C0 − γ1η

4

)
E[∥v̄t∥2] +

(
− 3γ2

2η

4 C0

)
E[∥ūt∥2]

+
(

2γ1ηL2 + 25ηγ2L2

3µ
C0 − η(1 − λ2)

2 C5

) 1
K

K∑
k=1

E[∥x̄t − x(k)
t ∥2]

+
(

2γ1ηL2 + 25ηγ2L2

3µ
C0 − η(1 − λ2)

2 C6

) 1
K

K∑
k=1

E[∥ȳt − y(k)
t ∥2]

+
(

2γ1η + C1(1 − ρ1)2 + 6ρ2
1

1 − λ2 C7 − C1

) 1
K

K∑
k=1

E[∥∇xf(x(k)
t , y(k)

t ) − v(k)
t ∥2]

+
(25ηγ2

3µ
C0 + C2(1 − ρ1)2 + 6ρ2

1
1 − λ2 C8 − C2

) 1
K

K∑
k=1

E[∥∇yf (k)(x(k)
t , y(k)

t ) − u(k)
t ∥2]

+
(

C3(1 − s1

n
)(1 + α1) + 2ρ2

1
s1

C1 + 6ρ2
1

(1 − λ2)s1
C7 − C3

) 1
K

K∑
k=1

1
n

n∑
i=1

E[∥∇xfi(x(k)
t , y(k)

t ) − g(k)
i,t ∥2]

+
(

C4(1 − s1

n
)(1 + α1) + 2ρ2

1
s1

C2 + 6ρ2
1

(1 − λ2)s1
C8 − C4

) 1
K

K∑
k=1

1
n

n∑
i=1

E[∥∇yfi(x(k)
t , y(k)

t ) − h(k)
i,t ∥2]

+
(4L2

s1
C1 + 4L2

s1
C2 + 2L2(1 − s1

n
)(1 + 1

α1
)C3 + 2L2(1 − s1

n
)(1 + 1

α1
)C4 + 6L2

(1 − λ2)s1
C7

+ 6L2

(1 − λ2)s1
C8

) 1
K

K∑
k=1

E[∥x(k)
t+1 − x(k)

t ∥2]

+
(4L2

s1
C1 + 4L2

s1
C2 + 2L2(1 − s1

n
)(1 + 1

α1
)C3 + 2L2(1 − s1

n
)(1 + 1

α1
)C4 + 6L2

(1 − λ2)s1
C7

+ 6L2

(1 − λ2)s1
C8

) 1
K

K∑
k=1

E[∥y(k)
t+1 − y(k)

t ∥2]

+
( 2γ2

1η

1 − λ2 C5 − 1 − λ2

2 C7

) 1
K

K∑
k=1

E[∥a(k)
t − āt∥2] +

( 2ηγ2
2

1 − λ2 C6 − 1 − λ2

2 C8

) 1
K

K∑
k=1

E[∥b(k)
t − b̄t∥2] .

(47)
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According to the value of {Ci}8
i=0 in Eq. (14) and Lemma 11, it is easy to get

Ht+1 − Ht ≤ −γ1η

2 E[∥∇Φ(x̄t)∥2] − γ1ηL2

2 E[∥ȳt − y∗(x̄t)∥2]

+
[
3γ2

1η2
(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
+ 25ηγ2

1κ2

6γ2µ
C0 − γ1η

4

]
E[∥v̄t∥2]

+
[
3γ2

2η2
(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
− 3γ2

2η

4 C0

]
E[∥ūt∥2]

+
[
12η2

(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
+ 2γ1ηL2 + 25ηγ2L2

3µ
C0 − η(1 − λ2)

2 C5

] 1
K

K∑
k=1

E[∥x̄t − x(k)
t ∥2]

+
[
12η2

(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
+ 2γ1ηL2 + 25ηγ2L2

3µ
C0 − η(1 − λ2)

2 C6

] 1
K

K∑
k=1

E[∥ȳt − y(k)
t ∥2]

+
[
3γ2

1η2
(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
+ 2γ2

1η

1 − λ2 C5 − 1 − λ2

2 C7

] 1
K

K∑
k=1

∥a(k)
t − āt∥2]

+
[
3γ2

2η2
(13γ1ηL2

s1ρ1
+ 1006ηγ1L2

s1ρ1
+ (1 − s1

n
)(1 + 1

α1
)28nρ1γ1ηL2

s2
1

+ (1 − s1

n
)(1 + 1

α1
)2024nρ1ηγ1L2

s2
1

)
+ 2ηγ2

2
1 − λ2 C6 − 1 − λ2

2 C8

] 1
K

K∑
k=1

E[∥b(k)
t − b̄t∥2]

(48)

According to the value of {Ci}8
i=0 in Eq. (14) and the value of γ1, γ2, η in Theorem 1, it is easy to get

Ht+1 − Ht ≤ −γ1η

2 E[∥∇Φ(x̄t)∥2] − γ1ηL2

2 E[∥ȳt − y∗(xt)∥2] . (49)

22



Under review as submission to TMLR

Then, by summing t from 1 to T − 1, we can get

T −1∑
t=1

γ1η

2 E[∥∇Φ(x̄t)∥2] + γ1ηL2

2 E[∥ȳt − y∗(xt)∥2] ≤ H1 − Φ(x∗)

≤ Φ(x̄0) − Φ(x∗) − γ1η

2 ∥∇Φ(x̄0)∥2] +
(

γ1ηL2 + (1 − ηγ2µ

4 )6γ1L2

γ2µ

)
E[∥ȳ0 − y∗(x0)∥2]

+
(

− 3γ2
2η

4
6γ1L2

γ2µ

)
E[∥ū0∥2] +

(25ηγ2
1κ2

6γ2µ

6γ1L2

γ2µ
− γ1η

4

)
E[∥v̄0∥2

+
(

2γ1η + 3γ1η

ρ1
(1 − ρ1)2 + 6ρ2

1
1 − λ2

(1 − λ2)γ1η

6ρ1

) 1
K

K∑
k=1

E[∥∇xf(x(k)
0 , y(k)

0 ) − v(k)
0 ∥2]

+
(25ηγ2

3µ

6γ1L2

γ2µ
+ 250ηγ1L2

ρ1µ2 (1 − ρ1)2 + 6ρ2
1

1 − λ2
(1 − λ2)ηγ1L2

ρ1µ2

) 1
K

K∑
k=1

E[∥∇yf (k)(x(k)
0 , y(k)

0 ) − u(k)
0 ∥2]

+
(14nρ1γ1η

s2
1

(1 − s1

n
)(1 + α1) + 2ρ2

1
s1

3γ1η

ρ1
+ 6ρ2

1
(1 − λ2)s1

(1 − λ2)γ1η

6ρ1

) 1
K

K∑
k=1

1
n

n∑
i=1

E[∥∇xfi(x(k)
0 , y(k)

0 ) − g(k)
i,0 ∥2]

+
(1012nρ1ηγ1L2

s2
1µ2 (1 − s1

n
)(1 + α1) + 2ρ2

1
s1

250ηγ1L2

ρ1µ2 + 6ρ2
1

(1 − λ2)s1

(1 − λ2)ηγ1L2

ρ1µ2

) 1
K

K∑
k=1

1
n

n∑
i=1

E[∥∇yfi(x(k)
0 , y(k)

0 ) − h(k)
i,0 ∥2]

+
(4L2

s1

250ηγ1L2

ρ1µ2 + 4L2

s1

3γ1η

ρ1
+ 2L2(1 − s1

n
)(1 + 1

α1
)14nρ1γ1η

s2
1

+ 2L2(1 − s1

n
)(1 + 1

α1
)1012nρ1ηγ1L2

s2
1µ2

+ 6L2

(1 − λ2)s1

(1 − λ2)γ1η

6ρ1
+ 6L2

(1 − λ2)s1

(1 − λ2)ηγ1L2

ρ1µ2

) 1
K

K∑
k=1

E[∥x(k)
1 − x(k)

0 ∥2]

+
(4L2

s1

250ηγ1L2

ρ1µ2 + 4L2

s1

3γ1η

ρ1
+ 2L2(1 − s1

n
)(1 + 1

α1
)14nρ1γ1η

s2
1

+ 2L2(1 − s1

n
)(1 + 1

α1
)1012nρ1ηγ1L2

s2
1µ2

+ 6L2

(1 − λ2)s1

(1 − λ2)γ1η

6ρ1
+ 6L2

(1 − λ2)s1

(1 − λ2)ηγ1L2

ρ1µ2

) 1
K

K∑
k=1

E[∥y(k)
1 − y(k)

0 ∥2]

+
( 2γ2

1η

1 − λ2
106γ1κ2L2

(1 − λ2) + 1 + λ2

2
(1 − λ2)γ1η

6ρ1

) 1
K

K∑
k=1

E[∥a(k)
0 − ā0∥2]

+
( 2ηγ2

2
1 − λ2

106γ1κ2L2

(1 − λ2) + 1 + λ2

2
(1 − λ2)ηγ1L2

ρ1µ2

) 1
K

K∑
k=1

E[∥b(k)
0 − b̄0∥2] .

(50)
Additionally, due to

1
K

K∑
k=1

E[∥a(k)
0 − ā0∥2] = 1

K

K∑
k=1

E[∥v(k)
0 − 1

K

K∑
k=1

v(k)
0 ∥2]

= 1
K

K∑
k=1

E[∥v(k)
0 − ∇xf(x(k)

0 , y(k)
0 ) + ∇xf(x(k)

0 , y(k)
0 ) − 1

K

K∑
k=1

∇xf(x(k)
0 , y(k)

0 ) + 1
K

K∑
k=1

∇xf(x(k)
0 , y(k)

0 ) − 1
K

K∑
k=1

v(k)
0 ∥2]

= 1
K

K∑
k=1

E[∥v(k)
0 − ∇xf(x(k)

0 , y(k)
0 )∥2] + 1

K

K∑
k=1

E[∥∇xf(x(k)
0 , y(k)

0 ) − 1
K

K∑
k=1

∇xf(x(k)
0 , y(k)

0 )∥2]

+ 1
K

K∑
k=1

E[∥ 1
K

K∑
k=1

∇xf(x(k)
0 , y(k)

0 ) − 1
K

K∑
k=1

v(k)
0 ∥2]

≤ 2
K

K∑
k=1

E[∥v(k)
0 − ∇xf(x(k)

0 , y(k)
0 )∥2] ,

(51)
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we can get
1
K

K∑
k=1

E[∥x(k)
1 − x(k)

0 ∥2] = 1
K

E[∥X1 − X0∥2
F

≤ 12η2 1
K

K∑
k=1

E[∥x(k)
0 − x̄0∥2] + 3γ2

1η2 1
K

K∑
k=1

E[∥a(k)
0 − ā0∥2] + 3γ2

1η2E[∥v̄0∥2]

= 3γ2
1η2 1

K

K∑
k=1

E[∥a(k)
0 − ā0∥2] + 3γ2

1η2E[∥v̄0∥2]

= 6γ2
1η2 1

K

K∑
k=1

E[∥v(k)
0 − ∇xf(x(k)

0 , y(k)
0 )∥2]] + 3γ2

1η2E[∥v̄0∥2] .

(52)

Similarly, we can get

1
K

K∑
k=1

E[∥y(k)
1 − y(k)

0 ∥2] = 6γ2
2η2 1

K

K∑
k=1

E[∥u(k)
0 − ∇yf(x(k)

0 , y(k)
0 )∥2] + 3γ2

2η2E[∥ū0∥2] . (53)

By plugging the last two inequalities into Eq. 50, we can get

T −1∑
t=1

γ1η

2 E[∥∇Φ(x̄t)∥2] + γ1ηL2

2 E[∥ȳt − y∗(xt)∥2]

≤ Φ(x̄0) − Φ(x∗) − γ1η

2 ∥∇Φ(x̄0)∥2 +
(6γ1L2

γ2µ
− 1

2γ1ηL2
)

∥ȳ0 − y∗(x0)∥2

+ γ1ηκ2 2(n − s0)
s0s1

(
7 + 15369L2γ2

1η2 + 424γ2
1L2

(1 − λ2)2

)
1
K

K∑
k=1

1
n

n∑
i=1

∥∇xfi(x(k)
0 , y(k)

0 )∥2

+ ηγ1κ2 2(n − s0)
s0s1

(
258 + 50L2 + 15369L2γ2

2η2 + 424γ2
2L2

(1 − λ2)2

)
1
K

K∑
k=1

1
n

n∑
i=1

∥∇yfi(x(k)
0 , y(k)

0 )∥2

+ 14γ1η
s0 − s2

0/n

2s0s1

1
K

K∑
k=1

1
n

n∑
j=1

∥∇xfj(x(k)
0 , y(k)

0 )∥2

+ 1012κ2ηγ1
s0 − s2

0/n

2s0s1

1
K

K∑
k=1

1
n

n∑
j=1

∥∇yfj(x(k)
0 , y(k)

0 )∥2 ,

(54)

where the last step follows from ρ1 = s1
2n . By dividing γ1η

2 on both sides, we can get

1
T

T −1∑
t=0

(E[∥∇Φ(x̄t)∥2] + L2E[∥ȳt − y∗(xt)∥2])

≤ 2(Φ(x̄0) − Φ(x∗))
γ1ηT

+ 12κL

γ2ηT
∥ȳ0 − y∗(x0)∥2

+
(

4κ2(n − s0)
s0s1

(
7 + 15369L2γ2

1 + 424γ2
1L2

(1 − λ2)2

)
+ 28(s0 − s2

0/n)
2s0s1

)
1

TK

K∑
k=1

1
n

n∑
i=1

∥∇xfi(x(k)
0 , y(k)

0 )∥2

+
(

4κ2(n − s0)
s0s1

(
258 + 50L2 + 15369L2γ2

2 + 424γ2
2L2

(1 − λ2)2

)
+ 2024κ2(s0 − s2

0/n)
2s0s1

)
1

TK

K∑
k=1

1
n

n∑
i=1

∥∇yfi(x(k)
0 , y(k)

0 )∥2 ,

(55)
which completes the proof.
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