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Abstract

The success of large language models (LLMs)001
has attracted many individuals to fine-tune002
them for domain-specific tasks by uploading003
their data. However, in sensitive areas like004
healthcare and finance, privacy concerns of-005
ten arise. One promising solution is to sample006
synthetic data with Differential Privacy (DP)007
guarantees to replace private data. However,008
these synthetic data contain significant flawed009
data, which are considered as noise. Exist-010
ing solutions typically rely on naive filtering011
by comparing ROUGE-L scores or embedding012
similarities, which are ineffective in addressing013
the noise. To address this issue, we propose014
RewardDS, a novel privacy-preserving frame-015
work that fine-tunes a reward proxy model and016
uses reward signals to guide the synthetic data017
generation. Our RewardDS introduces two key018
modules, Reward Guided Filtering and Self-019
Optimizing Refinement, to both filter and re-020
fine the synthetic data, effectively mitigating021
the noise. Extensive experiments across med-022
ical, financial, and code generation domains023
demonstrate the effectiveness of our method.024

1 Introduction025

The remarkable capabilities of Large Language026

Models (LLMs) in general tasks have motivated027

many individuals and organizations to customize028

their own LLMs for domain-specific applications,029

such as medical diagnosis, financial analysis, etc.030

(Wu et al., 2023; Chen et al., 2023). While do-031

main adaptation through fine-tuning is attractive,032

high computational costs make local fine-tuning033

impractical for most users. Currently, most LLM034

service providers (Achiam et al., 2023; Yang et al.,035

2024a; Doubao, 2024) offer fine-tuning services,036

allowing users to customize LLMs for their needs037

by preparing and uploading their domain-specific038

data. However, these data may contain sensitive039

information, and directly transferring it to the LLM040
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Figure 1: Illustration of how RewardDS overcome the
dilemma of traditional synthetic data methods. The syn-
thetic data directly sampled from the generation proxy
model contain significant flaws, such as incoherent text
or incomplete storylines, which are considered noise.

service provider can lead to significant privacy con- 041

cerns (Zeng et al., 2024; Abdelnabi et al., 2023). 042

Under the client-server context, we consider in- 043

dividuals and organizations seeking to customize 044

LLMs as the clients, the LLM service providers as 045

servers, and the model to be fine-tuned as the tar- 046

get LLM. It remains a critical challenge to develop 047

privacy-preserving fine-tuning methods in such a 048

client-server scenario. 049

Prior works proposed data synthesis as a promis- 050

ing solution to the challenge (Yue et al., 2023; Ku- 051

rakin et al., 2023; Yu et al., 2023; Mattern et al., 052

2022; Flemings and Annavaram, 2024). This ap- 053

proach generates synthetic data to replace the pri- 054

vate data used for fine-tuning, thus ensuring privacy 055

protection. Specifically, a generation proxy model 056

is first trained on the private data, optimized by DP- 057

SGD (Abadi et al., 2016) to safeguard privacy. The 058

generation proxy model then generates synthetic 059

data for subsequent LLM training. However, due to 060

the inherent randomness of the sampling process, 061

the synthetic data inevitably contains significant 062

flawed data, including text incoherence or storyline 063

incompleteness, which is considered as noise and 064

leads to less effective LLM fine-tuning, as illus- 065

trated in Figure 1 We also provide an example in 066

Figure 7. 067
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To mitigate the noise, existing methods (Wang068

et al., 2022; Yu et al., 2024; Xie et al., 2024) pro-069

posed to filter out flawed data by measuring its070

similarity to private data. Wang et al. (2022) use071

ROUGE-L similarity, while Yu et al. (2024); Xie072

et al. (2024) compute embedding similarity. How-073

ever, these metrics fail to evaluate the synthetic074

data’s effectiveness for domain-specific tasks. Al-075

ternative methods (Li et al., 2024b; Wang et al.,076

2024) sample synthetic data directly from the tar-077

get LLM on the server to improve quality. But the078

target LLM is not fine-tuned on domain-specific079

tasks, so the sampled synthetic data does not help080

improve model performance on those tasks.081

To mitigate the noise in synthetic data while pro-082

tecting privacy, we propose RewardDS (Reward-083

driven Data Synthesis), a novel privacy-preserving084

framework that improves synthetic data quality for085

the target LLM’s privacy-preserving fine-tuning.086

RewardDS implements a two-stage quality control087

process, i.e., filtering and refinement, as illustrated088

in Figure 1. Specifically, we first train a reward089

proxy model on private data to assess data qual-090

ity for domain-specific tasks, using DP-SGD to091

safeguard privacy. Through Reward Guided Fil-092

tering, we apply the reward proxy model to assess093

synthetic data generated by the generation proxy094

model and remove samples with low reward scores.095

Filtering alone may remove a large amount of data,096

leaving only a small fraction. Therefore, we aim to097

further refine the synthetic data to obtain more high-098

quality data. Our Self-Optimizing Refinement099

module generates multiple candidate responses for100

each synthetic query and computes their rewards.101

The generation proxy model analyzes the highest102

and lowest scoring responses and then generates103

improvement feedback. Based on this feedback,104

the target LLM refines the synthetic data following105

a refinement instruction. The resulting high-quality,106

filtered, and refined synthetic data is then used to107

fine-tune the target LLM for domain-specific tasks.108

We conduct extensive experiments across var-109

ious domain-specific generation tasks, including110

Medical Question Answering (QA), Legal QA, and111

Code Generation tasks. The results consistently112

demonstrate the effectiveness of our method in im-113

proving the quality of the synthetic data, achieving114

better performance while preserving privacy. Our115

main contributions are summarized as follows:116

• We propose RewardDS, a novel privacy-117

preserving fine-tuning framework that im-118

proves the quality of synthetic data by training 119

a Reward Proxy Model on the client side to 120

guide synthetic data generation. 121

• We introduce the Reward Guided Filtering 122

and Self-Optimizing Refinement modules to 123

filter and refine the synthetic data, thereby 124

enhancing its quality. 125

• We conducted extensive experiments across 126

Medical QA, Legal QA, and Code Genera- 127

tion tasks to validate the effectiveness of our 128

proposed framework. 129

2 Related Work 130

2.1 Privacy Preserving Fine-tuning Methods. 131

Domain-specific data, such as medical diagnoses 132

and financial reports, often contain sensitive infor- 133

mation, and directly fine-tuning LLMs on such data 134

raises privacy concerns (Mokhtarabadi et al., 2024; 135

Wang et al., 2023; Jang et al., 2023). Differentially 136

Private Stochastic Gradient Descent (DP-SGD) in- 137

jects noise into gradients during fine-tuning, en- 138

suring the model does not memorize private data 139

(Abadi et al., 2016; McMahan et al., 2017). Al- 140

ternatively, data anonymization methods, such as 141

k-anonymity and adversarial anonymization, detect 142

and remove private information to prevent privacy 143

leakage while maintaining model utility (Sweeney, 144

1997; Romanov et al., 2019; Staab et al., 2024). An- 145

other promising approach is generating synthetic 146

data with Differential Privacy (DP) guarantees as a 147

substitute for private data (Yue et al., 2023; Flem- 148

ings and Annavaram, 2024). This synthetic data 149

is protected by the DP mechanism, contains no 150

user privacy, and can be freely used for further 151

fine-tuning. 152

2.2 Privacy-Preserving Synthetic Text 153

Generation. 154

Recent studies have explored synthetic data with 155

differential privacy guarantees as a substitute for 156

private data in LLM fine-tuning, achieving a bal- 157

ance between data utility and privacy protection 158

(Yue et al., 2023; Yu et al., 2024; Kurakin et al., 159

2023). A series of work has been proposed to re- 160

duce computational costs and achieve high-quality 161

synthetic data. Lin et al. (2024); Xie et al. (2024) 162

use APIs and zero-shot learning to generate syn- 163

thetic data without fine-tuning. Du et al. (2024) 164

combine the strengths of multiple models to gener- 165

ate synthetic data, mitigating the risks associated 166
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with relying on a single model. Zou et al. (2025) in-167

tegrate knowledge from pre-trained language mod-168

els and generate differentially private synthetic data.169

Wang et al. (2024) integrates differential privacy170

with knowledge distillation from professional mod-171

els, leveraging both local and professional models172

to generate high-quality synthetic data. However,173

these methods overlook the noise introduced dur-174

ing the synthetic data sampling process, which can175

degrade performance. To mitigate this, Yu et al.176

(2024); Wang et al. (2022) compute the similarity177

between synthetic and private data to filter out those178

with low similarity. However, these similarity mea-179

sures are too surface-level to effectively capture the180

quality of synthetic data for domain-specific tasks.181

Therefore, a more robust framework is needed to182

address the noise in synthetic data and enhance its183

quality for domain-specific tasks.184

3 Problem Statement185

We consider a scenario where the client holds186

domain-specific data, such as patient’s medi-187

cal records, which contain sensitive information.188

Hence, directly transmitting those data to servers189

for LLM fine-tuning is not allowed. This pri-190

vate data typically is structured as Query-Response191

pairs, with both query and response containing con-192

fidential private information (Wang et al., 2024).193

The server, which hosts the target LLM, offers only194

API access while keeping model weights confiden-195

tial, preventing clients from accessing or locally196

fine-tuning the model. While clients can fine-tune197

lightweight LLMs within their computational con-198

straints, these models have inherently weaker capa-199

bilities than the target LLMs. This creates a critical200

challenge: how to leverage a client’s private data201

to improve the server-hosted LLM’s performance202

on domain-specific tasks while preserving privacy,203

given that clients cannot locally fine-tune the target204

LLM due to inaccessibility of model weights.205

Existing methods utilize a lightweight Genera-206

tion Proxy Model on the client side to generate207

safe synthetic data for fine-tuning the target LLM208

on the server (Yue et al., 2023; Yu et al., 2024).209

However, the randomness of the sampling process210

may introduce noise in the synthetic data, poten-211

tially causing performance degradation. Therefore,212

our main goal is to explore a more effective method213

for mitigating the noise in synthetic data, enabling214

better fine-tuning performance while maintaining215

user privacy.216

4 Method 217

To address the performance degradation caused by 218

noise in synthetic data, we propose a novel frame- 219

work, RewardDS (Reward-driven Data Synthesis), 220

as shown in Figure 2. Our approach additionally 221

trains a Reward Proxy Model on the client side. 222

Then the reward proxy model filters and refines the 223

synthetic data sampled from the generation proxy 224

model through Reward Guided Filtering and Self- 225

Optimizing Refinement modules on the server 226

side. Both modules collaborate to enhance the 227

quality of the synthetic data, driven by the reward 228

signal from the reward model. We will introduce 229

the training process of the generation proxy model 230

and reward proxy model in § 4.1 and the details of 231

reward guided filtering and self-optimizing refine- 232

ment module are provided in § 4.2. 233

4.1 Client Side 234

Generation Proxy Model Training. The gen- 235

eration proxy model is responsible for generat- 236

ing safe synthetic data as a substitute for private 237

data. Following (Yue et al., 2023; Yu et al., 2024, 238

2022; Kurakin et al., 2023), we fine-tune a gen- 239

eration proxy model on the client’s private data 240

using the DP-SGD algorithm (Abadi et al., 2016). 241

The backbone of generation proxy model should 242

be lightweight due to limited computational re- 243

sources on the client side, e.g., Qwen2.5-0.5B- 244

Instruct (Yang et al., 2024b). The DP-SGD al- 245

gorithm protects the privacy of the training data 246

by injecting noise into the gradients during model 247

training. This noise ensures that the inclusion or 248

exclusion of any individual training sample has 249

minimal impact on the fine-tuned model, thereby 250

providing privacy protection. 251

Reward Proxy Model Training. The reward 252

model is responsible for evaluating the quality of 253

the synthetic data. It should provide higher rewards 254

for high-quality data while lower rewards for poor- 255

quality data. Following standard reward model 256

training practices Liu et al. (2024), we train the 257

reward proxy model using paired comparison data. 258

Let W0 denote the initial backbone model, Wgen 259

the fine-tuned generation proxy model, and Wrwd 260

the fine-tuned reward proxy model. For each query 261

Q from the private dataset with its gold response 262

Agold, we generate two responses: A0 from W0 263

and Agen from Wgen. We then create preference 264

pairs by selecting either Agen or Agold as the cho- 265

sen response Ac, with A0 serving as the rejected 266
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Figure 2: The overview of our RewardDS framework. The client uses DP-SGD to fine-tune two lightweight proxy
models on privacy-sensitive data: the Generation Proxy Model Wgen and the Reward Proxy Model Wrwd. Both proxy
models are then sent to the server. The Generation Proxy Model is used to sample raw synthetic data, consisting of
queries and responses. The Reward Proxy Model supports the Reward Guided Filtering and Self-Optimizing
Refinement modules, which filter and refine the raw synthetic data to produce fine synthetic data. Finally, the target
LLM Wtarget is fine-tuned on the fine synthetic data and provides service to the client for domain-specific tasks.

response Ar. The reward proxy model maintains267

a lightweight architecture for client-side deploy-268

ment and is fine-tuned using differential privacy269

(DP-SGD) to prevent privacy leakage.270

Following Rafailov et al. (2023), we define the271

training loss as:272

L = − log σ (frwd(Q,Ac)− frwd(Q,Ar)) , (1)273

where frwd(·) represents the reward predicted by274

Wrwd. This training loss encourages the reward275

model to assign higher scores to responses from276

the generation proxy model and gold responses277

compared to those from the initial backbone model.278

After training, both generation proxy model and279

reward proxy model are sent to the server.280

4.2 Server Side281

Synthetic Data Generation. Following Yu et al.282

(2024); Wang et al. (2024), we use Wgen to gener-283

ate both synthetic queries and their corresponding284

responses, collectively referred to as raw synthetic285

data. Although the generation proxy model Wgen is286

trained on private data and learns domain-specific287

knowledge, the generation process of raw synthetic288

data is random and unstable. As a result, the raw289

synthetic data inevitably contains noisy samples,290

and fine-tuning the LLM directly on this data can291

lead to performance degradation.292

Reward Guided Filtering. We leverage the re- 293

ward proxy model Wrwd to evaluate each synthetic 294

data and filter out those with low rewards. A lower 295

reward indicates a higher likelihood of the synthetic 296

data being noisy. We select only the top ⌊L/k⌋ 297

data, where L is the total number of synthetic data 298

and k is the partition fold (Line 10 in Alg. 1). To 299

compensate for the reduced synthetic dataset size 300

after filtering, we replicate the high-reward data 301

to maintain the total data volume during the target 302

LLM fine-tuning (Line 11 in Alg. 1). 303

Self-Optimizing Refinement. While filtering 304

mitigates noise, it selects only a small subset of 305

samples, potentially leading to overfitting on lim- 306

ited data. Building on LLMs’ self-reflection ca- 307

pabilities (Madaan et al., 2023), we implement a 308

dynamic data refinement strategy to improve low- 309

reward samples, enhancing overall data quality. Ini- 310

tially, for each synthetic query, we generate N can- 311

didate responses rather than only one response us- 312

ing the generation proxy model (Line 3 in Alg. 1). 313

The reward proxy model then selects the response 314

with the highest reward score as the chosen re- 315

sponse (Line 5 in Alg. 1). We directly fine-tune the 316

target LLM Wtarget on the chosen response (Line 317

16 in Alg. 1). 318

After fine-tuning the target LLM Wtarget for each 319

epoch, we dynamically refine the synthetic data for 320
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Algorithm 1 RewardDS based LLM Fine-tuning
Input: Synthetic query setQquery, number of synthetic query L, num-

ber of candidate responses N , partition fold k, generation
proxy model Wgen, reward proxy model Wrwd, target LLM
Wtarget, training epoch T

Output: The fine-tuned LLM WT
target

1 // Before Fine-tuning LLM
2 for each query q ∈ Qquery do
3 Generate candidate response set: {Aj}Nj=1 ←Wgen(q)

4 Predict the reward score: {sj}Nj=1 ←Wrwd(q,Aj)

5 Select the best and the worst response:

(Ac, Ar)←
(
Aargmaxj sj , Aargminj sj

)
6 Record the best reward score: sc ← maxj sj
7 Gather the initial synthetic dataset: D0 ← {(qi, Ai

c, A
i
r, s

i
c)}Li=1

8 Sort D0 by reward: Dsorted
0 ← {(qi, Ai

c, A
i
r, s

i
c)}Li=1, where

s1c ≥ · · · ≥ sLc
9 Partition Dsorted

0 into k folds: {Dm
0 }km=1 ← split(Dsorted

0 , k)

10 Extract top-⌊L/k⌋ samples: Dhigh ← D1
0

11 Replicate subset to obtain the train set: T0 ←
⊕

⌈L/|Dhigh|⌉Dhigh

12 Determine score threshold τ : τ ← minsc∈Dhigh sc

13 // During Fine-tuning LLM
14 Initialize target LLM: W 0

target ←Wtarget

15 for iteration t = 1 to T do
16 Fine-tune target LLM W t−1

target on {(q,Ac) ∈ Tt−1} and get
W t

target
17 for each query q ∈ Qquery do
18 Generate feedback ϕ: ϕ←Wgen(q,Ac, Ar)

19 Re-generate the candidate response set:
{Aj}Nj=1 ←W t

target(q, ϕ)

20 Predict the reward score, select the best and worst re-
sponses, and record the highest reward score to update
Dt−1, yielding Dt.

21 Filter and get new training set Tt:
Tt ← {(q,Ac, Ar, sc) ∈ Dt | sc ≥ τ}

22 return Mt
target

the next epoch’s training. For each query’s N can-321

didate responses, we identify the lowest-reward re-322

sponses and combine them with the highest-reward323

responses to form the rejected (Ar) and chosen (Ac)324

response pairs. The generation proxy model Mgen325

analyzes these responses and provides feedback,326

highlighting the strengths of Ac and weaknesses of327

Ar (Line 18). This feedback, along with the origi-328

nal query, guides the target LLM Wtarget to generate329

N refined candidate responses (Line 19). Finally,330

the reward proxy model selects the highest-reward331

response from these refined candidates for the next332

epoch’s LLM fine-tuning (Line 20).333

The collaborative process between the reward-334

guided filtering and self-optimizing refinement335

modules is presented in Alg. 1. The refinement336

instruction templates are provided in Appendix H.337

After the LLM is fine-tuned on the refined synthetic338

data, it can provide service to the client for those339

domain-specific tasks.340

5 Privacy Analysis341

The only transmitted content between the client342

and server are the generation proxy model and343

the reward proxy model. Both models are fine- 344

tuned on the private dataset using the DP-SGD 345

algorithm (Abadi et al., 2016). According to the 346

definition of differential privacy (DP) (Dwork and 347

Roth, 2014), adversaries cannot infer any private 348

data from the fine-tuned proxy models. Addition- 349

ally, based on the post-processing property of the 350

DP framework (Dwork and Roth, 2014), any fur- 351

ther operations on the two proxy models will not 352

cause privacy leakage. All subsequent operations 353

on the server, including synthetic data generation, 354

reward-guided filtering, and self-optimizing refine- 355

ment, are privacy-preserving. 356

We have fine-tuned two proxy models on the 357

private dataset and the privacy budget of each fine- 358

tuning is (ϵ, δ). According to the sequential com- 359

position law of DP mechanism (Dwork and Roth, 360

2014), the total privacy budget of our framework is 361

(2ϵ, 2δ). 362

6 Experiments 363

6.1 Experiments Setup 364

Datasets. We evaluate our method across three 365

domain-specific generation tasks using established 366

datasets: Medical QA using HealthCareMagic- 367

100k (Li et al., 2023), Financial QA using fingpt- 368

fiqa_qa (Zhang et al., 2023), and Code Generation 369

using opc-sft-stage2 (Huang et al., 2024). 370

Evaluation Metrics. For the evaluation of the 371

QA task, we employ the ROUGE-1 (R1), ROUGE- 372

L (RL) (Lin, 2004), and Perplexity (PPL) (Hu et al., 373

2024) as metrics. While automated metrics focus 374

on lexical overlap and fluency, LLM-Judge (Zheng 375

et al., 2023) provides a more comprehensive assess- 376

ment of semantic accuracy and response quality. 377

Hence, we also use LLM-Judge as a metric. For the 378

code generation task, we use Pass@1 and Pass@10 379

as evaluation metrics (Chen et al., 2021). 380

Implementation Details. We use the Qwen2.5- 381

0.5B-Instruct model (Yang et al., 2024b) as the 382

backbone for the generation/reward proxy model, 383

and the Qwen2.5-7B-Instruct model as the target 384

LLM on the server. During each DP-SGD fine- 385

tuning process of both proxy models, we set the 386

privacy budget to (8, 1e−5). As a result, the total 387

privacy budget for our method is (16, 2e−5), ac- 388

cording to the sequential composition law of the 389

DP mechanism (Abadi et al., 2016). For a fair 390

comparison, we set the same privacy budget for 391

all compared methods. The size of the synthetic 392
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Methods
Medical QA Financial QA Code Generation

R1 ↑ RL ↑ PPL ↓ R1 ↑ RL ↑ PPL ↓ Pass@1 ↑ Pass@10 ↑

Vanilla LLM 21.60 11.50 1.34 23.91 11.72 1.38 18.82 42.06
Locally Fine-tuning 23.82 15.46 1.71 13.26 10.19 1.67 28.34 43.99

DP-Generation (Kurakin et al., 2023) 16.22 10.94 1.06 14.97 11.20 1.05 25.51 42.75
DP-Instruct (Yu et al., 2024) 11.94 8.44 1.04 14.06 10.76 1.04 26.27 48.06
KnowledgeSG (Wang et al., 2024) 20.28 10.74 1.31 24.14 12.33 1.21 23.93 49.58
RewardDS 27.78 17.02 1.17 24.42 14.96 1.02 32.41 49.99
w/o Reward Guided Filtering 20.38 13.11 1.28 17.93 12.52 1.25 23.03 34.96
w/o Self-Optimizing Refinement 22.70 13.42 1.36 14.14 11.07 1.18 22.27 33.17

Table 1: Comparisons of our method with baselines across three domain-specific tasks: Medical QA, Financial
QA, and Code Generation. Higher values of ROUGE-1 (R1) and ROUGE-L (RL), and lower values of Perplexity
(PPL) indicate better performance on the QA generation task. Higher values of Pass@1 and Pass@10 reflect better
performance in the code generation task. Numbers in bold and underlined represent the best and second-best results,
respectively.

dataset is always kept to twice that of the client’s393

private data across all baselines. These settings394

align with established DP deployments such as Ap-395

ple’s QuickType and Google’s models, as noted by396

Lukas et al. (2023).397

More details on the datasets used and the im-398

plementation are provided in Appendix A and Ap-399

pendix C, respectively.400

6.2 Compared Methods.401

To demonstrate the effectiveness of our method, we402

consider several baselines for comparison:403

Vanilla LLM refers to using a general-purpose404

LLM for domain-specific tasks without any domain405

adaptation or fine-tuning. Locally Fine-tuning406

refers to training a lightweight model locally on407

clients’ private data.408

DP-Generation (Kurakin et al., 2023) fine-tunes409

the generation proxy model on the client side us-410

ing DP-SGD. This proxy model is then used to411

generate synthetic data, which is subsequently uti-412

lized to fine-tune the target LLM on the server.413

DP-Instruct (Yu et al., 2024) introduces additional414

filtering operations based on the similarity of syn-415

thetic queries before LLM fine-tuning; Knowl-416

edgeSG (Wang et al., 2024) utilizes the synthetic417

data to enhance the generation proxy model for418

domain-specific tasks instead of fine-tuning the tar-419

get LLM.420

More details of the compared method are pro-421

vided in Appendix B.422

6.3 Main Results423

As shown in Table 1, RewardDS outperforms all424

other baselines across the three domain-specific425

tasks, except for the PPL on the Medical QA task. 426

DP-Instruct achieves marginally lower PPL in med- 427

ical QA. This is possibly due to the filtering by 428

similarity, leading the target LLM to overfit on 429

these highly similar samples. 430

The Vanilla LLM exhibits suboptimal perfor- 431

mance across medical QA, financial QA, and code 432

generation tasks, primarily due to the lack of 433

domain-specific fine-tuning on private data. While 434

Locally Fine-tuning a lightweight proxy model 435

(with only 0.5B parameters) mitigates privacy con- 436

cerns, the small model’s limited capacity hinders its 437

ability to effectively learn domain-specific knowl- 438

edge, leading to subpar performance. 439

DP-Generation samples synthetic training data 440

to fine-tune the target LLM on the server. How- 441

ever, due to the randomness inherent in the sam- 442

pling process, the resulting synthetic data contains 443

significant noise, which severely impairs the fine- 444

tuning performance of the LLM on the server. Al- 445

though DP-Instruct attempts to filter the synthetic 446

data by computing the similarity between the syn- 447

thetic query and the private query, it still does not 448

perform well. Similarity alone cannot accurately 449

reflect the quality of synthetic data, where higher 450

similarity does not necessarily indicate better data 451

quality. 452

KnowledgeSG utilizes synthetic data to fine-tune 453

the lightweight proxy model on the server, enhanc- 454

ing it with the assistance of the target LLM. How- 455

ever, the quality of the synthetic data is highly 456

dependent on the target LLM’s capacity for the 457

specific domain task. If the target LLM performs 458

poorly, the synthetic data will likely contain more 459
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Win Tie Lose

(a). Medical QA Task (b). Financial QA Task

vs Vanilla LLM

vs Locally Fine-tuning

vs DP-Generation

vs DP-Instruct

vs KnowledgeSG

RewardDS

Figure 3: Using LLM-Judge (Zheng et al., 2023) to compare the outputs generated by our method with those of
other baselines. Win means our method outperformed the baselines, Tie means the results were similar, and Lose
means our method performed worse than the baselines.

noise, which could harm the performance of the460

proxy model. KnowledgeSG performs relatively461

better on the financial QA task compared to the462

other two tasks, primarily because the Vanilla LLM463

performs well on financial QA, whereas it does not464

on the other tasks. Only in the financial QA task,465

the performance of the Vanilla LLM surpasses that466

of the Locally Fine-tuned model, whereas this is467

not the case for the other tasks.468

We also present results after removing the Re-469

ward Guided Filtering and Self-Optimizing Refine-470

ment modules respectively. We observe the decline471

in performance across all tasks when either mod-472

ule is removed, which highlights the effectiveness473

of these modules. Without these modules, more474

noisy synthetic samples are included during LLM475

fine-tuning, resulting in performance degradation.476

6.4 Evaluation using LLM-Judge477

We also use LLM-Judge (Zheng et al., 2023) for a478

more reliable evaluation of the medical QA and fi-479

nancial QA tasks. While ROUGE metrics measure480

lexical similarity to references and PPL captures481

fluency, these metrics often fail to assess deeper482

aspects of response quality. Inspired by Zheng et al.483

(2023), we fine-tune an LLM judger to assess the484

quality of generated outputs across different base-485

lines. We provide the judger with both the user486

query and the generated outputs from our method487

and the baselines, allowing it to determine which is488

better or declare a tie. Details of the judger training489

and evaluation process are shown in Appendix D.490

As shown in Figure 3, our method outperforms491

other baselines in both the medical QA and finan-492

cial QA tasks. DP-Generation and KnowledgeSG493

struggle with noisy samples from synthetic data,494

leading to poor performance. Although DP-Instruct 495

filters synthetic data by comparing with private data 496

and removing low-similarity samples, it achieves 497

only limited performance gains compared to DP- 498

Generation. This shows that simple similarity mea- 499

sures do not fully capture the quality of synthetic 500

data. Locally Fine-tuning avoids synthetic data 501

noise by fine-tuning a lightweight proxy model on 502

private data locally, but it still underperforms our 503

method due to the limited learning capacity of the 504

lightweight model for domain-specific knowledge. 505

6.5 Hyperparameter Analysis 506

ROUGE-L ROUGE-1

1 2 5 6 8 10
k folds

15
19
23
27
31

RL
/R

1 
Sc

or
e

1 2 3 6 9 12
N candidate responses

15
19
23
27
31

RL
/R

1 
Sc

or
e

Figure 4: Analysis of hyperparameters including the
number of folds k and the number of candidate re-
sponses N in Alg. 1 on the medical QA task. To analyze
k, we set N = 3; To analyze N , we set k = 6.

We analyze the effect of hyperparameters on our 507

method described in Alg. 1. As shown in Alg. 1, 508

the number of folds k controls the amount of se- 509

lected synthetic data. A smaller k means more 510

synthetic data is included, but it may also introduce 511

more noise. As illustrated in Figure 4(a), when 512

k = 1 (using all the synthetic data), performance 513

decreases. Using a larger k can help exclude noisy 514

data, improving performance. However, setting k 515

too large and excluding too much synthetic data 516

can slightly degrade performance. Therefore, we 517

set k = 6 for the medical QA task. 518
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Noisy CleanNoisy Clean Noisy Clean Noisy Clean

(a). Different Allocations 

for Two Proxy Models 

(b). Data Quality Change on 

Medical QA Task

(c). Data Quality Change on 

Financial QA Task

(d). Data Quality Change on 

Code Generation Task

Figure 5: Effectiveness of RewardDS design. (a): Performance on medical QA with different privacy budget
allocations for generation and reward proxy model training. The allocation of ‘x + (16-x)’ means the privacy budget
for training the generation proxy model is set to x, while the reward proxy model is set to (16-x); (b)/(c)/(d): Quality
improvement of the synthetic data, on the Medical QA/Financial QA/Code Generation tasks, after applying the
Self-Optimizing Refinement module multiple times.

The hyperparameter N controls the number of519

candidate responses. As shown in Figure 4(b), in-520

creasing N slightly improves performance because521

a larger number of candidates increases the chance522

of selecting better synthetic data. However, gener-523

ating more candidates incurs additional time and524

computational costs. Therefore, for the medical525

QA task, we set N = 3.526

Further hyperparameter analyses for the legal527

QA task and code generation task can be found in528

Appendix E.529

6.6 In-depth Analysis of RewardDS Design530

Here, we provide more detailed analysis on the531

design and effectiveness of RewardDS.532

Analysis 1: The impact of different privacy bud-533

get allocations.534

Although the total privacy budget is controlled535

at (16, 2e−5), we can allocate more privacy budget536

to the generation reward model or the reward proxy537

model. We will investigate the impact of different538

privacy budget allocations in Figure 5(a). The re-539

sults indicate that even a small privacy budget for540

reward model fine-tuning (e.g., “15+1”, with only541

1 allocated to the reward model) outperforms the542

case where no privacy budget is allocated to the re-543

ward model (“16+0”). No privacy budget allocated544

for reward model means that we do not train the545

reward proxy model on the client for data filtering546

or refinement. This suggests that even a marginal547

privacy cost for reward model training can yield548

substantial benefits. Furthermore, allocating more549

privacy budget to the reward model will bring only550

marginal performance improvements.551

Analysis 2: Impact of Self-Optimizing Refine-552

ment on Synthetic Data Quality.553

As shown in Alg. 1, we use the self-optimizing 554

refinement module to re-generate synthetic re- 555

sponses and improve quality during each training 556

epoch. To assess the effectiveness of our self- 557

optimizing refinement module (Alg. 1), we track 558

reward scores of synthetic responses across multi- 559

ple refinement iterations. A higher reward score in- 560

dicates better synthetic data quality. Figures 5(b-d) 561

demonstrate that synthetic data quality improves 562

gradually through iterative refinement, explain- 563

ing our method’s superior performance. 564

Analysis 3: Generalizability across different 565

LLM backbones. 566

We have evaluated our method with different 567

backbones as the target LLM, including Llama- 568

2-7B-chat-hf (MetaAI, 2023) and Qwen2.5-14B- 569

Instruct (Yang et al., 2024b). Table 3 shows that our 570

method maintains superior performance across vari- 571

ous backbones, confirming its backbone-agnostic 572

effectiveness. More analysis is in Appendix F. 573

7 Conclusion 574

We propose a novel privacy-preserving framework, 575

RewardDS, to mitigate noise in synthetic data dur- 576

ing LLM privacy-preserving fine-tuning. Specif- 577

ically, RewardDS fine-tunes a reward model and 578

leverages the reward signal to guide the synthetic 579

data generation process. During the data synthe- 580

sis process, RewardDS employs the collaboration 581

of Reward Guided Filtering and Self-Optimizing 582

Refinement modules to filter and refine synthetic 583

data, mitigating noise. We conduct extensive ex- 584

periments across medical QA, legal QA, and code 585

generation tasks. The results consistently demon- 586

strate the effectiveness of RewardDS for privacy- 587

preserving LLM fine-tuning. 588
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Limitations589

While RewardDS has demonstrated its effective-590

ness in medical QA, legal QA, and code genera-591

tion tasks, it incurs additional training costs for592

the reward proxy model. Although the model is593

lightweight, it still requires extra computational594

resources.595

Additionally, due to computational resource596

constraints, we applied LoRA fine-tuning on597

the Qwen2.5-14B-Instruct model to validate our598

method, as discussed in Appendix F. Full-599

parameter fine-tuning may yield even better perfor-600

mance. Future work will explore larger LLM back-601

bones and additional categories to further demon-602

strate the effectiveness of our method as computa-603

tional resources allow.604

In the future, we aim to expand our experiments605

to include more domain-specific tasks and a wider606

range of LLM backbones. Furthermore, we plan607

to optimize the local fine-tuning process of the608

lightweight proxy models on the client side to re-609

duce computational burdens, enhancing the scala-610

bility and feasibility of our method.611

8 Ethics Statement612

We adhere to the ACL Ethics Policy and all of our613

research is based on publicly available reposito-614

ries and datasets. In the RewardDS framework, we615

uphold strict ethical standards to protect user pri-616

vacy and ensure data security. The datasets used,617

covering medical QA, financial QA, and code gen-618

eration domains, are publicly available and free619

of personally identifiable information, minimizing620

privacy risks. Our methodology does not access or621

reconstruct identifiable data, safeguarding individ-622

ual privacy rights.623

However, as our study involves multiple LLMs,624

such as Llama and Qwen, the findings may be in-625

fluenced by the inherent biases, linguistic patterns,626

and assertiveness of these models.627
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A Details of Datasets936

To evaluate the performance of the compared meth-937

ods on domain-specific tasks, we focus on three938

tasks: Medical Question-Answering (QA), Finan-939

cial QA, and Code Generation. For the medical QA940

task, we use the HealthCareMagic-100k dataset (Li941

et al., 2023); for the financial QA task, we use the942

fingpt-fiqa_qa dataset (Zhang et al., 2023); and for943

the code generation task, we use the opc-sft-stage2944

dataset (Huang et al., 2024).945

As Dong et al. (2024) points out, these public946

datasets suffer from a “data contamination” issue,947

where some of the data may have been used to train948

LLMs on the server, causing the models to memo-949

rize it and leading to unnaturally high performance.950

Moreover, the initial datasets are highly redundant,951

containing many similar samples. To accurately952

assess the domain-specific performance of differ-953

ent baselines, we should pre-process these datasets.954

To be specific, firstly, we evaluate the dataset us-955

ing the Qwen2.5-7B-Instruct model (Yang et al.,956

2024b) and exclude samples with high accuracy, as957

higher accuracy suggests these samples may have958

been part of the LLM’s training data and are thus959

contaminated.960

After addressing the contamination issue, we use961

the Sentence-T5-Base model (Ni et al., 2022a) to962

compute embeddings for each sample and calculate963

their similarity. This allows us to remove highly964

similar samples, ensuring deduplication. The pre-965

processed dataset is then split into private train set,966

dev set, and test set, with the detailed statistics967

shown in Table 2. For fair comparison across all968

methods, we control the size of our sampled syn-969

thetic dataset to be twice the size of the private970

training set, as shown in Table 2.971

B Compared Methods972

Here, we will provide more detailed introductions973

to all compared methods:974

Vanilla LLM: Vanilla LLM directly transmits 975

the original private datasets to the server and uses 976

Qwen2.5-7B-Instruct model (Yang et al., 2024b) to 977

generate the answer without any privacy protection. 978

Locally Fine-tuning: Locally Fine-tuning im- 979

plements full-parameter fine-tuning (Ding et al., 980

2023) of the client-side lightweight Qwen2.5-0.5B- 981

Instruct model (Yang et al., 2024b) across individ- 982

ual domain-specific datasets. The optimized model 983

is subsequently used for inference tasks on three 984

benchmark datasets. 985

DP-Generation: As proposed by Kurakin et al. 986

(2023), DP-Generation first uses DP to full- 987

parameter fine-tune Qwen2.5-0.5B-Instruct model 988

as Generation Proxy Model on the client side. Then 989

transmit the Generation Proxy Model to the server 990

for synthetic data sampling. Then, the synthetic 991

data is used to fine-tune the Qwen2.5-7B-Instruct 992

model on the server for inference service. 993

DP-Instruct: On the basis of DP-Generation, 994

DP-Instruct (Yu et al., 2024) introduces an addi- 995

tional step to filter the synthetic data. After sam- 996

pling synthetic data through the Generation Proxy 997

Model, it clusters synthetic instruction datasets us- 998

ing K-means clustering on the Sentence-T5-base 999

(Ni et al., 2022b) embeddings. For each real instruc- 1000

tion, find the nearest centroid and resample initial 1001

synthetic instructions through the privatized his- 1002

togram. Then, use the resampled synthetic instruc- 1003

tions to fine-tune the Qwen2.5-7B-Instruct model 1004

on the server. 1005

KnowledgeSG: Proposed by Wang et al. (2024), 1006

KnowledgeSG first fine-tune a client-side the 1007

Qwen2.5-0.5B-Instruct model WLoc with DP. 1008

Then transmit the model WDP to the server and 1009

generate synthetic data with the model. Next, it fil- 1010

ters the synthetic data with BLEU metrics between 1011

the synthetic data and original private datasets. The 1012

filtered synthetic instructions are fed into the pro- 1013

fessional model WPro, which is the Qwen2.5-7B- 1014

Task Dataset Private Train Set Dev Set Test Set Sampling Synthetic Data

Medical QA HealthCareMagic-100k 3364 112 1683 6728

Financial QA fingpt-fiqa_qa 1693 18 1711 3386

Code Generation opc-sft-stage2 1497 79 1449 2994

Table 2: The dataset statistics of the medical QA, financial QA and code generation task. All train set is hold by the
client and is regard as the private data. The size of sampling synthetic data is two times of the size of the private
train set.
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Instruct in our reproduction, to generate prefer-1015

able responses corresponding to these instructions.1016

Finally, it uses the generated instructions and re-1017

sponses to fine-tune WDP and obtain the final de-1018

sired model for inference.1019

C Implementation Details1020

We use the Qwen2.5-0.5B-Instruct (Yang et al.,1021

2024b) as the backbone for both the generation1022

proxy and reward proxy models, and the Qwen2.5-1023

7B-Instruct as the LLM on the server. For DP fine-1024

tuning of the proxy models, we follow the codebase1025

from Li et al. (2024a), training both models for 31026

epochs with a batch size of 4 and a gradient accu-1027

mulation step of 16. We freeze the embedding layer1028

of the backbone and train the other parameters with1029

a learning rate of 4e-5. The privacy budget for1030

fine-tuning both proxy models is set to (8, 1e−5),1031

leading to a total privacy budget of (16, 2e−5) due1032

to the sequential composition law of the DP mecha-1033

nism (Abadi et al., 2016). These settings align with1034

established DP deployments such as Apple’s Quick-1035

Type and Google’s models, as noted by Lukas et al.1036

(2023).1037

During synthetic data sampling, we use the1038

vLLM framework (Kwon et al., 2023) for fast in-1039

ference, setting the batch size to 32 and sampling 61040

candidate responses for each synthetic query. The1041

sampling templates are detailed in Appendix H. For1042

Reward Guided Filtering, we sort the dataset by re-1043

ward score, split it into k folds, and select the fold1044

with the highest score, setting k to 6 for medical1045

QA, 5 for financial QA, and 8 for code generation.1046

For Self-Optimizing Refinement, we set the num-1047

ber of candidate responses N as 3 for medical QA1048

and code generation, 2 for finanacial QA task. The1049

hyperparameter analysis is provide in Section 6.51050

and Appendix E. The generation temperature is1051

1.0 and top-p is 0.7 to enhance diversity. The tem-1052

plates used for generating feedback are provided in1053

Appendix H.1054

For LLM fine-tuning on the server, we use the1055

standard SGD algorithm and train the model for1056

3 epochs with a learning rate of 4e-5 and a batch1057

size of 64. The maximum sequence length for all1058

fine-tuning processes is set to 768. All training and1059

generation processes are conducted on an A8001060

80G.1061

D Details of LLM-Judger Training and 1062

Evaluation 1063

Since ROUGE-L, ROUGE-1, and PPL metrics do 1064

not fully capture the quality of generated outputs 1065

in QA tasks, we use the LLM-Judge (Zheng et al., 1066

2023) approach to evaluate the generated outputs 1067

for medical QA and financial QA tasks. 1068

First, we fine-tune the LLM-Judgers for these 1069

domain-specific tasks (medical QA and financial 1070

QA). The fine-tuning process is similar to that of 1071

our reward proxy model, where we construct pref- 1072

erence pair data as training data and use Bradley- 1073

Terry loss (Liu et al., 2024) for training. The 1074

key difference is that we use the more powerful 1075

Qwen2.5-13B-Instruct backbone and fine-tune it 1076

with the AdamW optimizer, without adding DP 1077

noise. We fine-tune the LLM-Judger for 3 epochs 1078

with a learning rate of 4e-5. 1079

During evaluation, we provide the LLM-Judger 1080

with both the user query and the generated output, 1081

allowing the judger to score the outputs. The judge 1082

template is provided in Appendix H. We then com- 1083

pare the scores of outputs from our method and 1084

other baselines. If the score difference is less than 1085

1, it is considered a tie. Otherwise, the output with 1086

the higher score is viewed as the winner. 1087

E Hyperparameter Analysis 1088
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Figure 6: Analysis of hyperparameters including the
number of folds k and the number of candidate re-
sponses N in Alg. 1 on the financial QA task and code
generation task. For financial QA task, to analyze k,
we set N = 2 and to analyze N , we set k = 5. For
code generation task, to analyze k, we set N = 3 and
to analyze N , we set k = 8.
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In this section, we conduct additional experi-1089

ments to analyze the effect of hyperparameters on1090

our methods for the financial QA and code genera-1091

tion tasks.1092

For the number of partition folds, k, it controls1093

the amount of data selected as clean data. As shown1094

in Figure 6(a), setting k = 5 yields the best per-1095

formance for the financial QA task. For the code1096

generation task, as shown in Figure 6(c), k = 81097

performs best. Larger values of k lead to the exclu-1098

sion of more synthetic data, which may result in1099

the model overfitting on smaller data subsets and1100

cause performance degradation.1101

For the number of candidate responses, N , a1102

larger N increases the likelihood of selecting better1103

responses from the candidates. However, increas-1104

ing N also adds more computational cost, and the1105

performance gain is marginal, as illustrated in Fig-1106

ure 6(b) and Figure 6(d). Therefore, we set N = 21107

for the financial QA task and N = 3 for the code1108

generation task.1109

F Extension to More LLM Backbones1110

We have evaluated our RewardDS on more LLM1111

backbones, such as Llama-2-7B-chat-hf (MetaAI,1112

2023) and Qwen2.5-14B-Instruct (Yang et al.,1113

2024b). Due to the computational resource con-1114

straints, we conduct the full-parameter fine-tuning1115

for Llama-2-7B-chat-hf on the synthetic data and1116

apply the LoRA fine-tuning (Hu et al., 2022) for1117

Qwen2.5-14B-Instruct. We set the lora rank r as 641118

and α at 16. We add the lora layer for each linear1119

layer in the Qwen2.5-14B-Instruct model.1120

As shown in Table 3, RewardDS outperforms1121

other baselines regardless of whether Llama-2-7B-1122

chat-hf or Qwen2.5-14B-Instruct is used as the1123

LLM backbone. This strongly demonstrates that1124

our method is consistently effective, regardless of1125

the LLM backbone. It is worth noting that al- 1126

though Qwen2.5-14B-Instruct has a larger number 1127

of parameters compared to Llama-2-7B-chat-hf, 1128

our method performs better on the Llama-2-7B- 1129

chat-hf model. This is likely due to the use of LoRA 1130

fine-tuning on Qwen2.5-14B-Instruct, rather than 1131

full-parameter fine-tuning. We believe that apply- 1132

ing full-parameter fine-tuning to the Qwen2.5-14B- 1133

Instruct model would lead to better performance. 1134

G Case studies 1135

Here, we provide an example demonstrating how 1136

our method refines synthetic data to improve its 1137

quality. As shown in Figure 7, the initial synthetic 1138

sample contains noise, with redundant and mean- 1139

ingless content highlighted in red. Directly using 1140

these synthetic sample will do harm to the fine- 1141

tuning process of target LLM. After refinement by 1142

RewardDS, the response becomes more coherent 1143

and informative, as highlighted in green. Then 1144

these refined synthetic sample can be used to fine- 1145

tune target LLM for domain-specific tasks. 1146

H Prompt Template Details 1147

H.1 Sampling Queries 1148

Prompt template shown in Figure 8 instructs GPT 1149

to act as a data creator by generating a new ques- 1150

tion similar to given private data from three private 1151

datasets. GPT synthetic structured task instruc- 1152

tions that align with previous patterns for the sub- 1153

sequently model fine-tuning. 1154

H.2 Sampling Response 1155

Figure 9, 10 and 11 show the prompt templates 1156

we employed to sample responses from Medical 1157

QA, Financial QA and Code Generation datasets, 1158

respectively. 1159

Methods
Llama-2-7b-chat-hf Qwen2.5-14B-Instruct

R1 ↑ RL ↑ PPL ↓ R1 ↑ RL ↑ PPL ↓

Vanilla LLM 22.37 11.47 1.37 23.19 12.26 1.12
Locally Fine-tuning 23.82 15.46 1.71 23.82 15.46 1.71
DP-Generation (Kurakin et al., 2023) 16.46 11.23 1.06 18.07 11.82 1.14
DP-Instruct (Yu et al., 2024) 14.25 10.06 1.04 16.89 11.39 1.15
KnowledgeSG (Wang et al., 2024) 22.75 12.73 1.25 21.05 11.25 1.34
RewardDS 28.19 16.06 1.17 24.15 16.31 1.81

Table 3: Comparisons of our method with baselines on the Medical QA when applied to more LLM backbones:
Llama-2-7b-chat-hf (MetaAI, 2023), Qwen2.5-14B-Instruct (Yang et al., 2024b). Numbers in bold represent
the best performances. Due to computational resource constraints, we perform full-parameter fine-tuning for
Llama-2-7B-chat-hf, while employing LoRA fine-tuning for Qwen2.5-14B-Instruct.
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User Query: I was sitting in class when my pulse suddenly started to 
accelerate and i got light headed my nose started to run I became 
extremely uncomfortable and I wasn’t able to sit still. My hands are 
quaky and I feel like I just got punched in the stomach. What could 
this mean? 

Noisy Response: Hello. It sounds like you may have suffered a stroke 
or a mild stroke in the brain. In the past 24-48 hours I have had no 
speech, no facial weakness, no arm weakness, no difficulty 
swallowing, no speech impairment, no speech expression, no speech 
motor coordination problems, no urinary incontinence, no vomiting, 
no speech incontinence, no autonomic symptoms, no pain, no 
headache, no nausea, no vomiting, no fever, no cough, no shortness 
of breath, no restlessness, no restlessness, no diarrhea, no 
constipation, no rash, no fever, no pain, no abdominal pain, no chest 
pain, no palpitations, no vomiting, no nausea, no nausea, no 
diarrhea, no pain. I have not had any seizures.  

Response from RewardDS: Hello, Welcome to Chat Doctor, The 
symptoms that you have described may be due to some cause. Such 
type of symptoms can be due to some cause like stress, Anxiety, 
Infection, Reflux, and many others. I would suggest you to consult 
your doctor and get the investigations done like blood work, ECG 
and Ultrasound Chat Doctor.  Thanks and Regards.

Figure 7: A synthetic sample refined by our RewardDS
on the Medical QA task. Text highlighted with a green
background indicates the good and correct response part.
Text highlighted with a red background denotes the bad
and incorrect response part.

H.3 Generate Feedback1160

Prompt templates shown in Figure 12, 13 and1161

14 use LLM-generated feedback to evaluate the1162

strength of chosen responses and the weakness of1163

rejected ones from generation proxy model. The1164

prompt templates are respectively used for Medical1165

QA, Financial QA and Code Generation datasets.1166

H.4 Refine Synthetic Data1167

The prompt template illustrated in Figure 15 is1168

employed to refine synthetic data. User queries and1169

feedback are sent to the target LLM Wtarget, which1170

then generates new candidate responses to achieve1171

data refinement.1172
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[INST] <<SYS>>
You are a data creator and specialist tasked with generating a question based on the provided examples. Your task is to generate
a new question similar with the provided examples. The question should be relevant to real-world scenarios and enhance the 
utility of the content for subsequent model training.
<</SYS>>

Come up with a series of tasks:

## Example:
### Instruction: {INST_1}

## Example:
### Instruction: {INST_2}

## Example:
### Instruction: [INSERT GENERATED OUTPUT HERE] [/INST]

Figure 8: Prompt template for sampling queries

[INST] <<SYS>>
You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of basic and 
clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and modes of therapy, answer 
the following medical question. Base your answer on the current and standard practices referenced in medical guidelines. You 
should always provide responses in as much detail as possible. You can not help with doctor appointments and will never ask 
personal information. You always declines to engage with topics, questions and instructions related to unethical, controversial,
or sensitive issues.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 9: Prompt template for sampling responses in Medical QA dataset

[INST] <<SYS>>
You are a financial expert providing answers to questions based on real-world financial principles and practices. Using your 
understanding of macroeconomics, microeconomics, investment strategies, financial regulations, and market analysis, answer 
the following financial question. Base your response on established financial theories, current market trends, and best practices. 
Your answers should be as detailed as possible. You cannot provide personalized investment advice, draft financial documents,
or handle personal or confidential information. You will always decline to engage with topics, questions, or instructions related 
to unethical, controversial, or sensitive financial matters. You are a financial expert providing answers to questions based on 
real-world financial principles and practices. Using your understanding of macroeconomics, microeconomics, investment 
strategies, financial regulations, and market analysis, answer the following financial question. Base your response on 
established financial theories, current market trends, and best practices. Your answers should be as detailed as possible. You 
cannot provide personalized investment advice, draft financial documents, or handle personal or confidential information. You
will always decline to engage with topics, questions, or instructions related to unethical, controversial, or sensitive financial 
matters.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 10: Prompt template for sampling responses in Financial QA dataset

[INST] <<SYS>>
You are an AI model capable of understanding and generating codes. Your task is to assist in writing, debugging, and 
improving code snippets. You can also provide explanations for code, optimize inefficient solutions, and offer suggestions for 
best practices.
<</SYS>>

[INSERT USER QUERY HERE] [/INST]

Figure 11: Prompt template for sampling responses in Code Generation dataset
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[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the medical question answering task. Based on your 
understanding of basic and clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and 
modes of therapy, give the feedback for training sample. You should always provide evaluations in as much detail as possible.
only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response:
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 12: Prompt template for generating feedback in Medical QA dataset

[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the financial question answering task. Based on your 
understanding of basic financial knowledg, give the feedback for training sample. You should always provide evaluations in as 
much detail as possible. only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response:
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 13: Prompt template for generating feedback in Financial QA dataset

[INST] <<SYS>>
You are a smart language model that evaluates the training sample for the code generation task. Based on your understanding 
of computer science, code knowledge and programming skill, give the feedback for training sample. You should always 
provide evaluations in as much detail as possible. only evaluate existing solutions critically and give very concise feedback.

You are tasked with evaluating a chosen response by comparing it with a rejected response to a user query. Analyze the 
strengths and weaknesses of each response, step by step, and explain why one is chosen or rejected.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response: 
[INSERT REJECTED RESPONSE HERE] 

Do NOT generate a response to the query. Be concise. [/INST]

Figure 14: Prompt template for generating feedback in Code Generation dataset
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[INST] <<SYS>>
You are part of an optimization system that improves the response to the user query.You will be asked to creatively and 
critically improve the response. You will receive some feedback, and use the feedback to improve the response. The feedback 
may be noisy, identify what is important and what is correct. This is very important: You MUST only output the improved 
response. The text you send will directly replace the response.

You are tasked with improve the response to the user query according to the feedback. Here is the user query with response and 
feedback we got for the response. Please output your improved reponse.
<</SYS>>

User Query: [INSERT USER QUERY HERE] 

Chosen Response:
[INSERT CHOSEN RESPONSE HERE] 

Rejected Response: 
[INSERT REJECTED RESPONSE HERE] 

Please improve the given response according to the feedback. Only output the improved response. [/INST]

Figure 15: Prompt template for refining synthetic data
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