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ABSTRACT

With the rapid evolution of autonomous driving technology and intelligent trans-
portation systems, semantic segmentation has become increasingly critical. Precise
interpretation and analysis of real-world environments are indispensable for these
advanced applications. However, traditional semantic segmentation approaches
frequently face challenges in balancing model performance with computational
efficiency, especially regarding the volume of model parameters. To address these
constraints, we propose SegRet, a novel model employing the Retentive Network
(RetNet) architecture coupled with a lightweight residual decoder that integrates
zero-initialization. SegRet offers three distinctive advantages: (1) Lightweight
Residual Decoder: by embedding a zero-initialization layer within the residual
network structure, the decoder remains computationally streamlined without sacri-
ficing essential information propagation; (2) Robust Feature Extraction: adopting
RetNet as its backbone enables SegRet to effectively capture hierarchical image
features, thereby enriching the representation quality of extracted features; (3)
Parameter Efficiency: SegRet attains state-of-the-art (SOTA) segmentation per-
formance while markedly decreasing the number of parameters, ensuring high
accuracy without imposing additional computational burdens. Comprehensive
empirical evaluations on prominent benchmarks, such as ADE20K, Citycapes, and

COCO-Stuff, highlight the effectiveness and superiority of our method.

1 INTRODUCTION

Semantic segmentation, which assigns semantic

labels to every pixel in an image, constitutes a

fundamental problem in computer vision (La-
teef & Ruichekl, 2019)). It serves as the founda- 50
tion for critical applications such as autonomous
driving, urban scene analysis, and intelligent
transportation systems, where accurate percep-
tion of dynamic environments is indispensable
for safety and efficiency (Hao et al.,|2020; Zhao
et al.). Despite remarkable advances, achieving
a favorable balance between segmentation ac-
curacy and computational efficiency remains an 40
open challenge.

Classical deep learning approaches, including
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Net) (Zhao et al, 2017), have significantly ad-  Fjgure 1: Performance comparison on ADE20K.
vanced the state of the art by introducing power-  Multi-scale inference is used for all results.

ful encoder—decoder paradigms. More recently,
Transformer-based architectures, such as the Vi-

sion Transformer (ViT) (Dosovitskiy et al.l 2021, Swin Transformer (Liu et al.,2021)), and Detection
Transformer (DETR) (Carion et al.,|2020), have demonstrated outstanding capabilities in modeling
long-range dependencies. Nevertheless, their reliance on quadratic-complexity self-attention, coupled
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with large parameter counts, severely limits their practicality in real-time and resource-constrained
scenarios. To mitigate these drawbacks, a line of efficient architectures has been proposed, includ-
ing ReViT (Diko et al., [2024), ExMobileViT (Yang et al., [2023), and EfficientFormer (L1 et al.,
2022)), which reduce computational redundancy by introducing localized attention mechanisms or
lightweight convolutions. However, these methods often entail a compromise between efficiency and
accuracy.

Concurrently, state-space models have emerged as competitive alternatives to Transformers. Notable
examples include Mamba (Gu & Dao, 2023), RWKYV (L1 et al., 2024b), and RetNet (Sun et al.,
2023)), which achieve linear scalability while retaining the ability to capture long-range dependencies.
Their successful adaptation to the visual domain has led to a new family of architectures, such
as VMamba (Liu et al., 2024b), VM-UNet (Ruan & Xiang, 2024), and RSMamba (Chen et al.,
20244), which demonstrate promising results across a variety of vision tasks. Nevertheless, within
the semantic segmentation domain, most encoder—decoder frameworks still rely on parameter-heavy
decoders. Architectures such as UperNet (Xiao et al., 2018) and MaskFormer (Cheng et al., [2021)
exemplify this issue, introducing substantial computational overhead that hinders deployment in
real-time scenarios.

In this paper, we present SegRet, an efficient semantic segmentation framework that integrates Vision
RetNet (Sun et al.|; 2023)) as a hierarchical encoder with a lightweight zero-initialized residual decoder.
Specifically, Vision RetNet, pre-trained on ImageNet1K (Deng et al., 2009)), provides robust multi-
scale feature extraction without the computational burden of global self-attention. Complementarily,
our decoder introduces a novel zero-initialized residual design that enables effective hierarchical
feature fusion with minimal parameter overhead.

Our contributions can be summarized as follows:

* We leverage Vision RetNet as a hierarchical encoder to capture rich multi-scale features
efficiently, mitigating the computational limitations of Transformer-based backbones.

* We propose a lightweight residual decoder with zero-initialization that achieves effective
feature fusion while significantly reducing the parameter count compared to conventional
decoders.

* We conduct extensive experiments on three benchmark datasets—ADE20K (Zhou et al.,
2017), Cityscapes (Cordts et al.,[2016), and COCO-Stuff (Caesar et al.| 2018)—demonstrat-
ing that SegRet achieves favorable performance with superior parameter efficiency, thereby
offering a practical solution for real-world deployment.

2 RELATED WORK

2.1 SEMANTIC SEGMENTATION.

Traditional semantic segmentation approaches primarily depend on manually engineered features and
classifiers for pixel-level classification. These methods typically employ low-level features such as
color, texture, and shape, coupled with algorithms like graph cuts and random forests, to perform
segmentation tasks (Zheng et al.,[2012; |Arbelaez et al.| 2010} Zhang et al.,[2016). However, due to
the inherent complexity and variability of real-world scenarios, traditional approaches often fail to
adequately manage challenges such as occlusion and varying illumination, resulting in inaccurate
segmentation outcomes.

The advent of deep learning has notably enhanced the performance of semantic segmentation. Deep
learning models facilitate mapping from pixel-level features to semantic labels through upsampling
and skip connections, markedly improving both accuracy and computational efficiency (Paszke
et al, [2016; [Yu et al., 2017; |[He et al., 2019aib). Contemporary models predominantly utilize
Transformer-based architectures, incorporating self-attention mechanisms to effectively capture
global pixel dependencies, thereby improving the understanding and representation of semantic
information within images (Zheng et al.| [2021} |Xie et al.| [2021; |(Cheng et al.| [2022; [Zhang et al.,
2022). Recent advancements integrate zero-shot learning and prompt learning strategies into se-
mantic segmentation, enabling the identification of new object classes without relying on annotated
datasets and offering additional contextual guidance. These innovative approaches exhibit significant
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advantages in addressing challenges associated with data scarcity and further enhancing segmentation
performance (Kirillov et al.,[2023}; |Zhang et al., 2023} |2024b).

2.2 STATE SPACE MODEL

Given the limitations of the self-attention mechanism in effectively handling long text sequences,
researchers have turned their attention toward alternative architectures to address this challenge.
In particular, state-space models such as Mamba (Gu & Daol [2023)) and RetNet (Sun et al., [2023)
have attracted considerable interest. Unlike Transformers, these architectures employ state-space
modeling mechanisms tailored explicitly for sequence processing. Specifically, Mamba utilizes a
selective state-space approach that achieves linear computational complexity, while RetNet employs
recurrent state aggregation combined with three computational paradigms to robustly capture long-
range dependencies. These advancements offer significant improvements in both efficiency and
performance for long-sequence processing tasks compared to Transformer-based models.

Extending the proven efficacy of state-space models into visual domains, researchers have introduced
several visual architectures based on these principles. These visual models not only inherit the
capacity of state-space methods to manage extended sequences but also integrate distinctive aspects
of visual data processing, enabling them to effectively handle complex visual information from
images and videos. Prominent among these are Vmamba (Liu et al., 2024b), Vision Mamba (Zhu
et al.,2024), and Vision RetNet (Fan et al.,[2023)). These models have demonstrated notable success
across various tasks, including image classification and object detection. Additionally, they offer
innovative approaches for addressing intricate visual tasks such as video comprehension in dynamic
contexts, medical image analysis involving multi-modal data fusion, and the detection of small
infrared targets in low-contrast scenarios (Li et al.| 2024a; [Liu et al.|,2024a} |Chen et al., [2024b).

3 METHOD

This section presents the SegRet model, initially providing an overview of its foundational architec-
ture. Following this, we delve into a comprehensive discussion of Vision RetNet, highlighting its
effectiveness as a hierarchical feature extractor for robust feature representation. We then thoroughly
examine the lightweight residual decoder, underscoring its crucial role in maintaining model accuracy
while significantly reducing the number of parameters.

As illustrated in Figure [2| the SegRet model adopts an encoder-decoder structure. The encoder
employs Vision RetNet to extract hierarchical features at four distinct resolutions. These multi-scale
features are subsequently processed by the residual decoder, which comprises a linear mapping
block and a zero-initialized residual block. After feature fusion within this decoder, the output is
transformed into a semantic segmentation mask.

3.1 VISION RETNET BACKBONE
3.1.1 RETNET

Firstly, we revisit the self-attention mechanism of the Transformer. For each input vector X, by
multiplying matrices Wg, Wg and Wy, with X, we obtain the Q (Query), K (Key) and V' (Value)
vectors respectively. Therefore, the self-attention is defined as:

Attention(Q, K, V) = Softmax (QKT> V, e
) ) - \/@ b

where dy, is the dimension of the K vectors.

To overcome challenges associated with training parallelism, efficient inference, and performance op-
timization commonly encountered by Transformers in complex task scenarios, the Retentive Network
(RetNet) architecture has been introduced. RetNet establishes a novel foundational framework that
theoretically elucidates the relationship between recurrence and attention mechanisms. Central to
RetNet is the innovative retention mechanism tailored specifically for sequence modeling, facilitating
three distinct computational modes: parallel, recurrent, and block-recurrent.
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Figure 2: An overview of the proposed SegRet model. We use Vision RetNet (RMT) as a
hierarchical feature extractor to introduce RetNet into semantic segmentation (Section [3.1). For
more efficient feature fusion, a zero-initialization residual decoder is applied to predict semantic
segmentation masks (Section [3;2[)

The retention mechanism is the core of RetNet, with the following fundamental principles:

On = Z S (Qneme) (Kmeime)T Um, 2
m=1

where () and K are input-derived vectors generated through affine transformations. ¢’ and ¢*™?
serve as rotational factors that encode positional information using complex exponential forms, where
n and m represent the positional indices within the sequence, and 6 denotes the learnable parameters
employed to model relative phase differences for the purpose of capturing sequential dependencies.
vy, stands for the value vector at position 7, y represents an exponential decay factor, and T signifies

the conjugate transpose.

Building upon this foundation, the parallel form is deduced as:

Q=XWq) ©6,K = (XWgk)®0,V=XWy, (3)
. n—m >m

_ in6 D _ aé , N2 4

@n € b) nm {07 n < m bl ( )

Retention(X) = (QK" ® D)V, 5)

where O is the complex conjugate of ©, ® denotes the Hadamard product, D € RI#I*I# repre-
sents causal masking and exponential decay, indicating relative distances within a one-dimensional
sequence. RetNet’s exceptional performance, training parallelism, cost-effective deployment, and effi-
cient inference collectively enable it to successfully mitigate the challenge of excessive computational
complexity associated with Transformer.

3.1.2 VISION RETNET

Vision RetNet (Fan et al.| |2023) is among the pioneering visual state-space models introduced
specifically for CV tasks. It enhances the original RetNet architecture by modifying the matrix
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D, adapting it from a unidirectional form utilized in NLP to a bidirectional form tailored for CV
applications. This adaptation effectively manages causal masking and exponential decay, aligning the
model’s design with the distinct requirements of CV tasks.

Formally, the BiRetention operator is defined as follows:

BiRetention(X) = (QK " ® D)V, (6)
Dy, =Am, ™

where BiRetention denotes the retention with bidirectional modeling ability.

Specifically, for the two-dimensional spatial attributes of images, the matrix D is modified to its
two-dimensional version to better capture spatial relationships, expressed as:

D?]ffn — ,ylxn_znl"'l"yn_ynLl’ (8)

where z and y are two-dimensional coordinates in the image.

Moreover, the high resolution typical of visual images generates an extensive number of tokens,
significantly increasing computational complexity. To effectively mitigate this issue, Vision RetNet
introduces a computational strategy that decomposes processing along both horizontal and vertical im-
age axes. Specifically, it calculates attention mechanisms and distance matrices independently in these
two directions, thereby considerably reducing computational overhead. The detailed computational
procedure is described as follows:

QH,KH _ (Q7K)B,L,C~>B,W,H,C7 (9)
QW7KW — (Q7K)B,L,C’—>B,H,W,C’ (10)
Attng = Softmaz(QyKyT) © DH, (an
Attny = Softmaz(QwKw') @ DV, (12)
Dfm — ,Ylyn—ym\’ DZ‘:” — ,ylﬂﬂn—ﬂcm\7 (13)
ReSAgeo(X) = Attng (Attny V)T, (14)

where B denotes the batch size, H and W indicate the number of non-overlapping patches along the
height and width of the input image, respectively, C is the feature dimensionality of each token, and
L = H x W corresponds to the total number of visual tokens obtained by partitioning the image and
flattening the patches into one-dimensional embeddings.

As shown in Fig|2] the proposed SegRet model consists of Vision RetNet, which combines the output
features of Vision RetNet blocks after each downsampling step into hierarchical feature matrices and
feeds them into the decoder for further processing.

3.2 LIGHTING RESIDUAL DECODER

Currently, most widely adopted decoders rely heavily on intricate CNN or Transformer architectures,
leading to substantial parameter counts and compromised real-time performance. To overcome
these limitations, we introduce a lightweight residual decoder. As depicted in Figure[2] the decoder
comprises two main components: a linear mapping block and a zero-initialized residual structure.
The detailed architecture of our decoder is presented as follows:

The decoder accepts as input a set of features derived from various layers, represented by F' =
[f1, f2, .-, fn], Where each f; corresponds to features extracted from the i-th layer and exhibits
different channel dimensions. The primary goal of the decoder is to consolidate these multi-scale
features into a coherent output with dimensions n.;s x H x W, where n.;s denotes the total number
of classes, and H and W specify the output image’s height and width, respectively. The decoding
procedure is formally described as follows:
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Initially, each input feature f; is subjected to a linear transformation to unify its channel dimension to
a common size C, yielding the transformed feature F;. This step can be formulated as:

F; = Linear(f;). (15)

To preserve the original information while enhancing feature representation, we apply a residual
connection between the original feature f; and its linearly transformed counterpart F;. This residual
connection is realized through a 1 x 1 convolutional layer initialized with zeros, ensuring that the
output feature map maintains the same channel dimension as f;. Formally, the output of the residual
connection layer is defined as:

F! = f; + Zero-initialized Conv(F}), (16)

where zero-initialized Conv denotes a 1 X 1 convolution operation with zero initialization. All
features F/ are upsampled to 1/4 of the image size. The upsampled feature can be represented as

F; = Upsample(F}). The upsampled features F; are then concatenated to obtain the output image.
Assuming the merged feature is M, the concatenation operation can be represented as:

M = Concat(Fy, ..., F,). (17)

The dimensions of M are [4C, H, W]. Finally, the merged feature M undergoes a convolution
mapping to adjust the channel size to the required number of classes n.;s. This process can be
expressed as:

Output = Conv(M). (18)

4 EXPERIMENTS

We conducted comprehensive comparisons with recent SOTA methods on the ADE20K, Cityscapes,
and COCO-Stuff datasets, demonstrating the effective integration of RetNet into the semantic
segmentation domain through our SegRet model. By evaluating model parameters alongside mean
Intersection over Union (mloU) scores, our experiments substantiate that SegRet is a robust and
competitive solution for semantic segmentation tasks.

Datasets ADE20K (Zhou et al.,|2017), Cityscapes (Cordts et al.,[2016), and COCO-Stuff (Caesar
et al.,[2018)) are widely recognized semantic segmentation benchmarks. ADE20K is a large-scale
scene parsing dataset comprising over 20,000 high-resolution images that span a diverse range of
scenes and environments. Each image is densely annotated with 150 distinct semantic categories,
encompassing objects, environments, and parts. Cityscapes focuses on the analysis and understanding
of urban scenes. It includes 5,000 finely annotated high-resolution images captured from 50 cities
across Germany. Each image provides pixel-level annotations across 19 semantic categories, covering
typical urban elements such as roads, vehicles, and pedestrians. COCO-Stuff is a curated subset
of the Microsoft COCO dataset, containing more than 10,000 images. Each image is annotated
with 171 categories, including common objects, scenes, and background elements. Distinguished by
its rich and fine-grained annotations, COCO-Stuff serves as a robust benchmark for evaluating the
performance of semantic segmentation models.

4.1 IMPLEMENTATION DETAILS

To enhance the model’s adaptability across diverse application scenarios, we introduce four SegRet
variants of varying capacities: Tiny, Small, Base, and Large. The corresponding decoder parameter
counts are 0.814M, 0.814M, 0.871M, and 2.607M, respectively. Each variant employs the same
backbone as Vision RetNet (Fan et al., [2023)), pre-trained on the ImageNet1K dataset (Deng et al.,
2009). The decoder’s channel dimensions C for the four configurations are set to [256, 256, 256, 512],
respectively. The SegRet model is implemented based on the MMSegmentation framework (MMSeg-
mentation Contributors, [2020) and trained using four NVIDIA A40 GPUs. For data preprocessing,
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images from the ADE20K and COCO-Stuff datasets are randomly flipped and cropped to a resolution
of 512 x 512, while Cityscapes images are processed to 512 x 1024. Specifically, for the ADE20K
dataset, the inputs of the Large variant are randomly cropped to 640 x 640. To ensure a fair compari-
son, we refrain from employing advanced training strategies such as OHEM (Shrivastava et al., 2016).
Instead, we adopt the cross-entropy loss function in conjunction with the AdamW optimizer, using a
learning rate of 0.0001 and a weight decay of 0.01. Batch sizes are configured as 16 for ADE20K
and COCO-Stuff, and 8 for Cityscapes. Training is conducted for 160,000 iterations on ADE20K and
Cityscapes, and 80,000 iterations on COCO-Stuff. Evaluation protocols are aligned with those used
in Mask2Former(Cheng et al.| |2022) to ensure consistency and comparability.

4.2 MAIN RESULTS

We quantitatively analyze SegRet’s results on ADE20K, CityScape, and COCO-stuff, showcasing
its remarkable performance in semantic segmentation tasks. It should be noted that all FLOPs are
calculated at an input resolution of 512 x 2048.

ADE20K Table|l|presents a comparative analysis of SegRet-Tiny against recent SOTA methods
in terms of parameter count and mloU. The results demonstrate that SegRet achieves superior
performance among models with comparable parameter scales, attaining an mloU of 49.39 with only
14.01M parameters. For example, SegRet matches the performance of Mask2Former (Swin-T) while
using less than one-third of the parameters. Moreover, when compared to Vision Mamba (Vim-Ti),
which has a similar parameter count, SegRet surpasses it by 9.7% in mloU. Additional experimental
results across various model scales are included in the Appendix for further reference.

Table 1: Comparison of the proposed SegRet-Tiny model on the ADE20K validation dataset. In
comparison to SOTA methods, our Tiny variant exhibits notable advantages in both parameter
efficiency and mloU performance. ”’SS” and "MS” denote single-scale and multi-scale inference,
respectively. The best-performing results are highlighted in bold for clarity.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS) FLOPs
SenFormer (Bousselham et al.|[2021) R50 512*512 55M 44 4 452 179G
SenFormer (Bousselham et al.|{2021) R101 512#512 79M 46.9 479 199G
SegFormer (Xie et al.|[2021) MiT-B1 512512 13.7M 4221 43.1 15.9G
SegFormer (Xie et al.|2021) MiT-B2 512%512 27.5M 46.5 47.5 62.4G
Vision Mamba (Zhu et al.|[2024) Vim-Ti UperNet 512#512 13M - 40.2 -
Vision Mamba (Zhu et al.|2024) Vim-S UperNet 512%512 46M - 449 -
SeMask (Jain et al.|[2023) SeMask Swin-T  FPN 512%512 35M 42.06 43.36 40G
SeMask (Jain et al.|[2023) SeMask Swin-S  FPN 512%512 56M 45.92 47.63 63G
Swin (Liu et al.|{[2021) Swin-T UperNet 512%512 60M - 46.1 236G
Swin (Liu et al.|2021) Swin-S UperNet 512%512 81IM - 49.3 259G
RMT (Fan et al.|[2023) RMT-T FPN 512%512 17M - 46.4 33.7G
RMT (Fan et al.|2023) RMT-S FPN 512#512 30M - 49.4 180G
SenFormer (Bousselham et al.{2021)  Swin-T 512#%512 59M 46 - 179G
MaskFormer (Cheng et al.[[2021) Swin-T 512*512 42M 46.7+0.7 48.8+0.6 55G
Vmamba (Liu et al.|[2024b) VMamba-T UperNet 512*512 55M 47.3 48.3 939G
Mask2Fromer (Cheng et al.|2022) Swin-T 512%512 47M 47.7 49.6 74G
SegRet-Tiny RMT-T 512%512 14.01M 48.76 49.39 72.28G

Cityscapes As presented in Table[2] our SegRet-Tiny model demonstrates strong performance on
the Cityscapes dataset. In comparison with methods such as EFCD-Small (R101) and SegFormer
(MiT-B1), SegRet achieves notable improvements in both SS and MS inference, attaining 81.75%
and 82.17%, respectively, while maintaining a comparable parameter count. Furthermore, when
contrasted with larger models such as SeMask and Segmenter(ViT-L/16 with Seg-L-Mask/16), SegRet
delivers superior mloU(MS) scores, highlighting its robust generalization capability in MS settings.
Additional performance metrics for other model scales are provided in the Appendix.-

COCO-Stuff The proposed SegRet-Tiny model exhibits substantial performance advantages on
the COCO-Stuff dataset. As shown in Table[3] SegRet-Tiny outperforms several SOTA methods, in-
cluding MaskFormer, SenFormer, SeMask, and APPNet, achieving higher mloU scores. Specifically,
the model attains mIoU scores of 42.22 and 43.32 under SS and MS inference settings, respectively.
These results underscore SegRet-Tiny’s strong performance and parameter efficiency. Additional
performance comparisons across different model scales are provided in the Appendix.
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Table 2: Comparison of the proposed SegRet-Tiny model on Cityscapes dataset.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS) FLOPs
SenFormer (Bousselham et al.|[2021) R50 512*%1024 55M 78.8 80.1 179G
SenFormer (Bousselham et al.![2021) R101 512*1024 9M 79.9 81.4 199G
ECFD-tiny (Zhang et al.[|2024a) R50 512%1024 41M 79.91 81.18 206G
ECFD-small (Zhang et al.[[2024a) R50 512%1024 S5IM 80.14 81.32 222G
ECFD-tiny (Zhang et al.[|2024a) R101 512%1024 60M 80.5 81.48 245G
ECFD-small (Zhang et al.[|[2024a) R101 512%1024 70M 80.74 82 261G
SeMask (Jain et al.|[2023) SeMask Swin-T ~ FPN 768%768 34M 74.92 76.56 84G
SegFormer (Xie et al.{[2021) MiT-B1 1024*1024  13.7M 78.5 80 243.7G
Segmenter (Strudel et al.|[2021) DeiT-B/16 Seg-B*/16 768*768 - - 80.5 -
Segmenter (Strudel et al.|[2021) DeiT-B/16 Seg-B*-Mask/16 768*768 - - 80.6 -
Segmenter (Strudel et al.|[2021) ViT-L/16 Seg-L/16 768*768 - - 80.7 -
Segmenter (Strudel et al.|[2021) ViT-L/16 Seg-L-Mask/16 768*768 - 79.1 81.3 -
SegRet-Tiny RMT-T 512*%1024  14.01M 81.75 82.17 72.28G

Table 3: Comparison of the proposed SegRet-Tiny model on COCO-Stuff dataset.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS)
MaskFormer (Cheng et al.|[2021) R50 640%640 - 37.1£0.4 38.9+0.2
SenFormer (Bousselham et al.[[2021) R50 512%512 55M 40 41.3
SeMask (Jain et al.|[2023) SeMask Swin-T ~ FPN 512%512 35M 37.53 38.88
APPNet (Zhu et al.|[2023) HRNet-W48 APPNet+HRNet  520%520 69.7M 36.9 -
APPNet (Zhu et al.||2023) HRNet-W48 APPNet+OCR 520%520 72.3M 40.3 -
SegRet-Tiny RMT-T 512%512 14.01M 42.22 43.32

Qualitative analysis  As illustrated in Figure[3] we performed a qualitative analysis on the ADE20K
validation set, conducting a detailed comparison between our SegRet-Tiny model and the Mask-
Former (Swin-T) model. The results reveal that SegRet-Tiny consistently outperforms MaskFormer,
particularly in capturing fine details and reducing classification errors. This performance advantage
can be largely attributed to the robust feature extraction capabilities of Vision RetNet, combined with
the simplicity and effectiveness of our proposed lightweight decoder architecture.

4.3 ABLATION STUDIES

In this section, we present a series of ablation studies designed to evaluate the effectiveness of the
proposed residual structure in the decoder, with particular emphasis on the role of zero-initialized
residual layers. Furthermore, we investigate the influence of the decoder’s channel size C' on model
performance. All experiments were conducted using the ADE20K dataset.

Zero-initialized residual layer Table 4| presents an investigation into the effect of incorporating
zero-initialized residual (ZIR) layers within the proposed decoder architecture. The experiments were
conducted using the SegRet-Small variant, with all configurations kept consistent with the standard
training setup. Results indicate that the inclusion of the ZIR layer yields a 0.79% improvement in
mloU, while introducing only a modest parameter increase of 0.25M These findings underscore the
efficacy of the SegRet decoder design.

Table 4: Influence of zero-initialized residual layers on SegRet

Method ZIR Layer #params mloU(SS)
26.27TM 49.9
SegRet-Small v 26.52M  50.69

The impact of the decoder channel size C' We examined the influence of the decoder channel size
C on the performance of the proposed model. As shown in Table 5} increasing C' generally leads to
improved model performance, with the highest mloU achieved when C' = 512. However, further
increasing C' to 768 results in both increased model complexity and a decline in mIoU, suggesting
diminishing returns beyond a certain capacity. Based on empirical validations, we adopted C' = 256
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Ground truth MaskFormer Ours

Figure 3: Qualitative analysis on the ADE20K. The first column displays the ground truth values,
while the outputs of MaskFormer and our proposed SegRet model are presented in the second and
third columns, respectively.

for the Tiny, Small, and Base variants, and C' = 512 for the Large model in our formal experimental
settings.

Table 5: The Impact of Decoder Channel Size C on SegRet

Method C  #params mloU(SS)
256  94.26M 50.9

SegRet-Large 512 95.81M 52
768  98.54M 51.57

5 CONCLUSION

We introduce SegRet, a semantic segmentation model that integrates Vision RetNet as the encoder
and employs a zero-initialized residual decoder. In this architecture, RetNet is leveraged for hierar-
chical feature extraction, while the decoder incorporates zero-initialized layers within its residual
connections to enhance efficiency. Experimental results reveal that SegRet achieves remarkable
performance across four variants and two benchmarks, maintaining or even improving segmentation
accuracy despite a substantial reduction in parameter count. Nonetheless, a current limitation of
SegRet lies in its underperformance on more specialized tasks such as medical image segmentation
and remote sensing image analysis.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the SegRet architecture and training details in Section[3|and[4] with
additional analyses in Appendix. An anonymous repository containing the full source code, dataset
preprocessing scripts, and trained model configurations is available at https://anonymous |
4open.science/r/segret-D86C, enabling reproduction of all reported results.
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A ADDITIONAL RESULTS

In this section, we present a comprehensive analysis of the experimental results achieved by the
SegRet-Small, Base, and Large variants on the ADE20K, Cityscapes, and COCO-Stuff datasets.
Furthermore, we examine the effect of input resolution scaling on overall model performance.

A.1 ADE20K

Table [6] summarizes the performance of models across different scales and architectural designs on
the ADE20K validation set. Among smaller models, SenFormer and SegFormer deliver competitive
results; however, our SegRet-Small variant surpasses both, achieving an mloU of 50.7. In the
mid-sized category, Swin and Mask2Former perform strongly, yet our SegRet-Base model attains a
higher mloU of 51.63. For large-scale models, MaskFormer and VMamba demonstrate commendable
performance, with our SegRet-Large variant delivering results on par with these leading approaches.

Table 6: The results of various model sizes on the ADE20K dataset. * Indicates pretraining on
ImageNet22K.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS) FLOPs
SenFormer Swin-S 512*512 81M 49.2 - 202G
RMT RMT-S UperNet 512#512 56M - 49.8 937G
RMT RMT-B FPN 512%512 57M - 504 294G
SegFormer MiT-B3 512%512 47.3M 49.4 50 79G
VMamba VMamba-S UperNet 512*%512 76M 49.5 50.5 1037G
VMamba VMamba-S UperNet 640%640 76M 50.8 50.8 1620G
MaskFormer Swin-S 512*%512 63M 49.8+0.4 51.0+£0.4 79G
SegFormer MiT-B4 512*512 64.1M 50.31 51.1 95.7G
SegRet-Small RMT-S 512%512 26.52M 50.7 51.29 117.1G
Swin Swin-B* UperNet 640%640 121M - 51.6 471G
SegFormer MiT-B5 640*640 84.7M 51 51.8 183.3G
RMT RMT-B UperNet 512#512 83M - 52 1051G
Mask2Former ~ Swin-S 512#512 69M 51.3 524 98G
SegRet-Base = RMT-B 512*512 53.05M 51.63 52.13 229.66G
SeMask SeMask Swin-B* FPN 512*512 96M 49.35 50.98 107G
VMamba VMamba-B UperNet 512%512 110M 50 51.3 1167G
RMT RMT-L FPN 512*512 98M - 514 482G
MaskFormer Swin-B 640*640 102M  51.1x0.2  52.3+0.4 195G
SegRet-Large RMT-L 640640  95.81M 52 52.23 478.54G

A.2 CITYSCAPES

Table[7] provides a detailed comparison of model performance across various configurations on the
Cityscapes dataset. In the small model category, our SegRet-Small model achieves mloU scores of
82.59% (SS) and 83.26% (MS), outperforming other small-scale counterparts. For the base model
group, SegRet-Base records 83.17% in SS and 83.8% in MS, delivering superior accuracy while
maintaining moderate computational complexity. In the large model category, SegRet-Large attains
an mloU of 83.36% (SS), marginally outperforming comparable models. While it slightly trails
Mask2Former (Swin-B*) in MS performance (84.5%), SegRet-Large maintains a parameter count of
just 95.81M, offering a favorable balance between performance and computational efficiency.

A.3 COCO-STUFF

As shown in Table[8] we further evaluated the performance of SegRet models with different sizes on
the COCO-Stuff dataset. The results highlight the clear advantages of our proposed models, which
employ RMT-S, RMT-B, and RMT-L as backbone networks. Specifically, our models achieve high
average loU scores of 44.32, 45.92, and 45.78 under single-scale (SS) inference, and 45.48, 46.06,
and 46.63 under multi-scale (MS) inference, respectively. In contrast, competing models demonstrate
comparatively lower performance across both evaluation settings. These results underscore the strong
segmentation accuracy and generalization capabilities of our SegRet models on the COCO-Stuff
dataset.
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Table 7: The results of various model sizes on the Cityscapes dataset. * Indicates pretraining on
ImageNet22K.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS) FLOPs
Mask2Former  R50 512*1024 44M 79.4 82.2 293G
Mask2Former  R101 512%1024 63M 80.1 81.9 226G
SeMask SeMask Swin-S FPN 768*%768 56M 77.13 79.14 134G
Mask2Former ~ Swin-T 512*%1024 47M 82.1 83 232G
SegFormer MiT-B2 1024*1024  27.5M 81 82.2 717.1G
SegRet-Small RMT-S 512*%1024  26.52M 82.93 83.52 117.1G
SeMask SeMask Swin-B* FPN 768*768 96M 717.7 79.73 217G
SegFormer MiT-B3 1024*%1024  47.3M 81.7 83.3 962.9G
Mask2Former  Swin-S 512%1024 6OM 82.6 83.6 313G
SegRet-Base = RMT-B 512%1024  53.05M 83.28 83.87 229.66G
SeMask SeMask Swin-L*  FPN 768+768 211M 78.53 80.39 455G
SegFormer MiT-B5 1024*%1024  84.7M 82.4 84 1460.4G
Mask2Former ~ Swin-B* 512%1024 107M 83.3 84.5 466G
Mask2Former ~ Swin-L* 512*%1024 215M 83.3 84.3 868G
ECFD-tiny Swin-Large 512%1024 209M 82.67 83.41 473G
ECFD-small Swin-Large 512%1024 218M 83.1 83.61 488G
SegRet-Large RMT-L 512%1024  95.81M 83.36 83.91 478.54G

Table 8: The results of various model sizes on the COCO-Stuff dataset. * Indicates pretraining on
ImageNet22K.

Method Backbone Decoder head Image Size #params mloU(SS) mloUMS)
MaskFormer R101 640%640 - 38.1+£0.3 39.8+0.6
MaskFormer R101c 640%640 - 38.0+0.3 39.3+0.4
SenFormer R101 512%512 79M 41 42.1
SegRet-Small RMT-S 512*%512 26.52M 44.32 45.48
SeMask SeMask Swin-S FPN 512*%512 56M 40.72 42.27
SegRet-Base = RMT-B 512%512 53.05M 45.92 46.06
SeMask SeMask Swin-B* FPN 512%512 96M 44.68 46.3
SegRet-Large RMT-L 512%512 95.81M 45.78 46.63

A.4 INPUT SCALING

We also conducted input scaling experiments using the Cityscapes dataset to examine the effect of
varying image resolutions on model performance. As illustrated in Figure 4} our model consistently
outperformed alternative methods across four different input sizes: 512 x 1024, 768 x 768, 640 x 1280,
and 1024 x 1024. Notably, the model achieved its best performance with an input size of 1024 x 1024,
reaching a peak mloU of 82.02. Despite its competitive accuracy, our model maintains a compact
design with only 14.01M parameters, highlighting its effectiveness in balancing performance and
parameter efficiency.

A.5 THE EFFECTIVENESS OF THE DECODER

As illustrated in Figure[5] we conducted experiments evaluating the performance of different decoder
architectures when integrated with the RMT-T backbone. The results reveal that the RMT-T+UperNet
achieves mloU scores of 47.51 (SS) and 48.84 (MS), while the RMT-T+FPN combination yields 47.20
and 48.13, respectively. Notably, the integration of RMT-T with our proposed decoder achieves the
highest performance, attaining mloU scores of 48.76 (SS) and 49.39 (MS). These findings underscore
the pivotal role of the decoder in enhancing the overall segmentation performance.

A.6 LIMITATIONS

Although SegRet demonstrates robust performance in semantic segmentation of road scenes for
autonomous driving, its generalizability to other domains like medical imaging and remote sensing

14



Under review as a conference paper at ICLR 2026

82 81..75 gL 38 82. 02
%0 80. 34
S8
o
<
=X 76
N’
z
= 74
N
%)
& 72
=1)]
D
wn
70 SegRet-Tiny(14.01M)
Segmenter-VIT-Small(22M)
68 | |—y— SegFormer-B1(13.7M)
SenFormer-R50(55M)
66

512*1024 768*768 640*1280 1024*1024

Image Size

Figure 4: A Comparative Study of Scaling Input Sizes on Cityscapes. We examined the impact
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Figure 5: Performance Insights of Vision RetNet with Different Decoders.

remains limited. In medical image analysis, the model’s ability to segment small structures is
hindered by inadequate modeling of fine-grained features and cross-modal relationships. For remote
sensing applications, substantial scale variations and complex scene compositions further challenge its
adaptability. Future research directions may include developing domain-adaptive modules to enhance
feature distribution alignment across different domains, as well as incorporating attention-guided
upsampling mechanisms in the decoder to better capture small-object characteristics.
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