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ABSTRACT

In this work, we contribute the first approach to solve infinite-horizon discounted
general-utility Markov decision processes (GUMDPs) in the single-trial regime,
i.e., when the agent’s performance is evaluated based on a single trajectory. First,
we provide some fundamental results regarding policy optimization in the single-
trial regime, investigating which class of policies suffices for optimality, casting
our problem as a particular MDP that is equivalent to our original problem, as well
as studying the computational hardness of policy optimization in the single-trial
regime. Second, we show how we can leverage online planning techniques, in par-
ticular a Monte-Carlo tree search algorithm, to solve GUMDPs in the single-trial
regime. Third, we provide experimental results showcasing the superior perfor-
mance of our approach in comparison to relevant baselines.

1 INTRODUCTION

Markov decision processes (MDPs) have found a wide range of applications in different domains
such as inventory management (Dvoretzky et al., [1952), queueing control (Stidham| [1978)), or op-
timal stopping (Chow et al.l|1971). MDPs are also of key importance in the field of reinforcement
learning (RL) [Sutton & Barto| (2018)), where the agent-environment interaction is usually modeled
by resorting to the framework of MDPs. In addition, recent years have seen significant progress in
applying RL techniques to different domains (Mnih et al.| 2015} |Silver et al., [2017; [Lillicrap et al.,
2016), attesting to the flexibility of the MDP framework with respect to objective-specification.

However, despite providing a flexible framework concerning objective-specification, previous re-
search has shown that multiple relevant objectives cannot be easily expressed within the MDP
framework (Abel et al.,[2022). Such objectives include, but not limited to, imitation learning (Hus-
sein et al., 2017;|Osa et al., |2018)), pure exploration problems (Hazan et al.l [2019), risk-averse RL
(Garcta et al.l |2015), diverse skills discovery (Eysenbach et al., 2018} |/Achiam et al.| 2018)), con-
strained MDPs (Altman, [1999; [Efroni et al.,|2020), and adversarial MDPs (Rosenberg & Mansour,
2019). All aforementioned objectives can be cast under the framework of general-utility Markov
decision processes (GUMDPs) (Santos et al., [2024). GUMDPs generalize the framework of MDPs
by allowing the objective to be a non-linear function of the occupancy (the frequency of visitation
of state-action pairs induced when running a given policy on the MDP). Recent works unified such
objectives under the GUMDP framework and proposed algorithms to solve GUMDPs with convex
objectives (Zhang et al.| 2020} |Geist et al., [2022; Zahavy et al., 2021)).

Unfortunately, in GUMDPs, the performance of a given policy may depend on the number of trial-
s/trajectories drawn to evaluate its performance (Mutti et al.|[2023; Santos et al.| 2024)). In fact, the
standard formulation of GUMDPs implicitly assumes the performance of a given policy is evaluated
over an infinite number of trials/trajectories of interaction with the environment. This is problem-
atic because: (i) the infinite trials assumption is violated in many practical application domains
where the objective function depends on the empirical occupancy induced by a small or finite set
of trajectories; and (ii) in general, the optimal policies produced by algorithms from prior research
may perform poorly when evaluated on a limited number of trajectories, as demonstrated by [Mutti
et al.| (2023). To overcome this issue, previous research introduced a finite-trials formulation for
GUMDPs where the objective function depends on the empirical occupancy induced by a finite set
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of trajectories (Mutti et al.l 2023} [Santos et al., 2024)). Unfortunately, in the finite-horizon setting,
Mutti et al.|(2023) show that computing optimal policies for the finite-trials formulation of GUMDPs
is computationally challenging, being significantly harder than its infinite trials counterpart. Specif-
ically, the authors demonstrate that the problem can be reformulated as an “extended MDP” where
the agent must keep track of the history of state-action pairs observed up to each timestep. |Mutti
et al.|(2023) present preliminary results showing that optimal policies for the extended MDP, com-
puted via dynamic programming techniques, outperform their infinite-trial counterparts. However,
the state space of the extended MDP grows combinatorially with the horizon, limiting the scalability
of the approach to very small problem instances.

In this work, we introduce the first approach for solving GUMDPs in the single-trial regime, i.e.,
when the agent’s performance is evaluated based on a single trial/trajectory. We consider an infinite-
horizon discounted setting, which has been greatly adopted by previous research in the field (Zahavy
et al.,|2021;|Hazan et al.| |2019) and has found important applications in different domains where the
lifetime of the agent is uncertain or infinite. Our key contributions are threefold. First, we establish
fundamental results on policy optimization in the single-trial regime, addressing: (i) which class of
policies suffices for optimality; (ii) how the problem can be cast as an “occupancy MDP” that is
equivalent to our original problem; and (iii) the computational complexity of policy optimization
in the single-trial regime. Technically, our results differ from Mutti et al.| (2023) due to the inher-
ent differences between infinite-horizon discounted occupancies and the finite-horizon occupancies
considered by the previous work. Moreover, our occupancy MDP refines the extended MDP from
Mutti et al.|(2023), preserves optimality guarantees, and is better suited for practical implementa-
tion. Second, we introduce a Monte-Carlo tree search (MCTS) algorithm to solve the occupancy
MDP, effectively solving the GUMDP in the single-trial regime via online planning. Our approach
provably retrieves the optimal action at each timestep for a sufficiently high number of iterations.
Third, we present experimental results showcasing the superior performance of our approach over
relevant baselines across diverse tasks and environments.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

MDPs (Puterman, 2014)) provide a mathematical framework to study sequential decision making
and are formally defined as a tuple M = (S, A, {P® : a € A}, po,c) where: S is the finite state
space; A is the finite action space; { P® : a € A} is a set of transition probability matrices P®, one
for each action a € A; pg € A(S) is the initial state distribution; and ¢ : S x A — R is the cost
function. For a given action a € A, each row of matrix P satisfies P?(s,-) € A(S), encoding the
probability of transition from state s at the present timestep to any other state at the next timestep
when choosing action a. The interaction takes place as follows: (i) an initial state sy is sampled
from py; (ii) at each step ¢, the agent observes the state of the environment s; € S and chooses an
action a; € A. Depending on the chosen action, the environment evolves to state s;1; € S with
probability P?(s;, ), and the agent receives a random cost ¢; with expectation given by c(s, a;);
and (iii) the interaction repeats infinitely.

A decision rule m; specifies the procedure for action selection at timestep ¢. A non-Markovian
decision rule 7, at each timestep ¢, maps the history of states and actions to a probability distribution
over actions, i.e., 1 : S X (8 x A)* — A(A). A Markovian decision rule does not take into account
the entire history and, instead, maps the last state in the history to a distribution over actions, i.e.,
7 8§ — A(A). Both non-Markovian and Markovian decision rules can be deterministic if they
consist of mappings of the type m; : S x (S x A)* — Aorm : S — A, respectively.

A policy 7 = (mp,m,...) is a sequence of decision rules, one for each timestep. If, for all
timesteps, the decision rules are Markovian or non-Markovian, we say the policy is Markovian
or non-Markovian, respectively. Similarly, if the decision rules are deterministic or stochastic for all
timesteps, we say the policy is deterministic or stochastic, respectively. We denote the class of non-
Markovian policies with IIyy, the class of Markovian policies with Iy, the class of non-Markovian
deterministic policies with 1R, and the class of Markovian deterministic policies with IIY;. Finally,
the class of stationary policies, IIY, contains all policies such that the decision rule is the same for
all timesteps. We let IIg denote the class of stationary deterministic policies.
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For a given policy m € IlInm, the interaction between the agent and the environment is a random
process (sg, ag,s1,4a1,...). We let hy = (sg,a0,81,a1,...,s:) denote a random history up to (in-
cluding) timestep . We also denote with h; = (sg, ag, $1,a1,...,5:) € S x (8 x A)¢ a particular
history up to timestep ¢. The random sequence (sg, ag, s1,ar, . . .) satisfies: (i) P [sp = s] = po(s);
(i) P [st41 = §'|he, ai] = P2t (st,s'); and (iii) P [a; = a|hy] = 7(alhy). Let (2, F,P,) be the
probability space over the sequence of random variables (sg,ag,s1,a1,...) that satisfies condi-
tions (i)-(iii) above (Lattimore & Szepesvaril 2020). We write specific trajectories as w € (2, with
w = (80, ag, 81, a1, ...). We denote with P [s; = s, a; = alsy ~ po] the probability of state-action
pair (s, a) at timestep ¢ under policy 7.

The infinite-horizon discounted setting. The discounted cumulative cost objective is J,(7) =
E[> 2o e(se, ar)], where v € (0,1) is the discount factor and the expectation is taken over
the random trajectory of state-action pairs (sg,ag,S1,a1,...) generated by the interaction be-
tween 7 and the MDP. It is well-known that the class of stationary policies suffices for optimal-
ity (Puterman, 2014, Theo. 6.2.10) and, hence, we aim to find the optimal policy, 7*, such that
7* = argmin, gy, J, (7). The discounted state-action occupancy under policy 7 is

o0
dr(s,a) = (1=7) Y 7'Pr[si = 5,0 = also ~ po] - )

t=0
The expected discounted cumulative cost of policy 7 can be written as J.(7) = ¢'d,, where
d, = [d:(s0,00),-- -, dﬂ(s|5|,a‘A|)]T and ¢ = [¢(s0,a0), - - - ,c(s|3|,a‘A|)]T. Then, the problem

of computing the optimal policy becomes 7* = arg min, ¢, c"d,, which can be formulated as a
linear program (Puterman), 2014)).

2.2 MONTE-CARLO TREE SEARCH

MCTS (Browne et al.l |2012; [Silver et al., 2017) is a sample-based planning algorithm to approx-
imate optimal policies in MDPs through sequential tree-based search. The search tree alternates
between decision nodes, representing agent actions, and chance nodes, representing stochastic envi-
ronment transitions. At each iteration, MCTS builds and refines a search tree by alternating between
four phases: selection, expansion, simulation, and backpropagation. In the selection phase, the al-
gorithm recursively selects actions at decision nodes according to a tree policy, often based on upper
confidence bounds, and samples successor states at chance nodes according to the environment’s
dynamics, until it reaches a node that has not yet been fully expanded. Then, in the expansion phase,
a new child node corresponding to an unvisited state-action pair is created. In the simulation phase,
a rollout policy (typically random or heuristic) generates a trajectory from the expanded node to
estimate a Monte Carlo return. Backpropagation then updates the statistics (e.g., mean value, visit
counts) along the path traversed during the selection phase. MCTS converges asymptotically to the
optimal action at the root under mild assumptions (Kocsis & Szepesvaril 2006).

2.3  GENERAL-UTILITY MARKOV DECISION PROCESSES

The GUMDP framework generalizes utility-specification by allowing the objective of the agent to
be written in terms of the visitation frequency of state-action pairs. This is in contrast to the MDP
framework, where the objective of the agent is encoded by the cost, a function of state-action pairs.

We define an infinite-horizon discounted GUMDP as a tuple M = (S, A, {P® : a € A}, po, [)
where S, A, {P® : a € A}, and p, are defined in a similar way to the standard MDP formulation.
The objective of the agent is encoded by f : A(S x A) — R, as a function of a state-action
discounted occupancy d, as defined in equation[I] The objective is then to find

7 = argmin f(d,). )

wellg
We highlight that, when f is a linear function, we are under the standard MDP setting; if f is
convex, then we are under the convex MDP setting (Zahavy et al., 2021). In this work, we con-
sider three different tasks, each associated with a particular (convex) objective function: (i) maxi-
mum state entropy exploration (Hazan et al., 2019), where f(d) = d’ log(d); (ii) imitation learn-
ing (Abbeel & Ng, 2004), where f(d) = |/d — dg||3 and dg € A(S x .A) is the occupancy
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induced by behavior policy /3; and (iii) adversarial MDPs (Rosenberg & Mansour} 2019), where
f(d) = maxyeq1, . xyd'epand {ei,...,cx} is aset of K cost vectors satisfying ¢, € RISIMI.
Nevertheless, our results apply to any task that can be modelled using the GUMDP framework.
We refer to [Zahavy et al.| (2021) for a comprehensive list of the different objectives considered by
previous works.

2.4 GUMDPS IN THE SINGLE-TRIAL REGIME

In this work, we consider a different objective from the one introduced in equation 2] While equa-
tion2|depends on the expected discounted occupancy, d, the objective we herein introduce depends
on the empirical discounted occupancy induced by running a given policy on the GUMDP. This is
particularly important, as practical applications often require identifying the policy that performs
optimally when evaluated based on a single trajectory of interaction with the environment. Further-
more, as we shall explain next, in GUMDPs the performance of a given policy may depend on the
number of trajectories or trials used to evaluate it (Mutti et al., 2023} |Santos et al., [2024).

Discounted empirical state-action occupancies We consider the setting in which the agent inter-
acts with its environment over a single-trial, i.e., a single trajectory. For a given policy 7 € IIxym, we
introduce the random vector d™ : Q — A(S x A), which corresponds to the empirical discounted
state-action occupancy associated with the probability space (€2, F, P, ), defined as

di(s,a) = (1=7) D> _7'1(ss = 5,0 = a), 3)
t=0

where 1 is the indicator function. In practice, it is common to truncate the trajectories of interaction
between the agent and its environment. We denote by H € N the truncation horizon and let the
empirical truncated occupancy, d™ : Q — A(S x A), be defined as

H-1
1—
d™ (s, a) = = VVH E Y1(s; = s,a; = a). 4)
t=0

Single-trial formulation for GUMDPs We now introduce objectives for GUMDPs that depend
on empirical discounted state-action occupancies. The single-trial objective is defined as

Fy(m) = E[f(d7)], (5)

and we aim to find 7* = arg min ¢y F (7), where II is an arbitrary policy class we specify later.
The single-trial truncated objective is defined as

By p(r) =E [f(d™7)]. (6)

We note that the single-trial truncated objective is more general than the single-trial objective. In
particular, Iy p is equivalent to I as H — oo. The infinite trialsﬂ objective, Fi., is defined as

Foo(m) = f(dr) = f(E[dT]),

and we aim to find 7%, = argmin, ., Foo (7). We note that I, is equivalent to the objective
in equation [2] which depends on expected occupancies. The fact that IIg suffices for optimality
follows from results on the possible state-action occupancies induced by different classes of policies
(Puterman,, [2014).

The mismatch between I and F,, Previous works pointed out important differences between
the single and infinite trials formulations for GUMDPs (Mutti et al., 2023} |Santos et al., 2024). In
particular, it has been shown that, in general, the performance of a given policy under the single and
infinite trials formulations differs and, consequently, the optimal policy for each objective may also
differ. This occurs because, since f may be non-linear, it can happen that Fy (7)) = E[f(d™)] #
F(E[d™]) = Fuo(m). We refer to|Santos et al.|(2024) for explicit lower bounds on the performance
difference between F; and F,,. Naturally, when f is linear, as it is the case in standard MDPs, then

"We call F., the infinite trials objective because, as the number of sampled trajectories/trials approaches
infinity, the mismatch between GUMDPs that depend on empirical and expected occupancies fades away.
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the single and infinite trials formulations become equivalent due to the linearity of the expectation.
However, due to the mismatch between the single and infinite trials formulations, and given that the
single-trial formulation is particularly relevant in practical applications where policy performance is
assessed based on a single trajectory of interaction with the environment, we focus in this work on
finding (approximately) optimal policies for the single-trial objective, F}.

3 PoLICcY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In this section, we establish the fundamental results that underpin the development of online plan-
ning algorithms to solve GUMDPs in the single-trial regime. Specifically, we investigate: (i) which
class of policies suffices for optimality; (ii) how we can focus on the truncated single-trial objective,
F1, 5, to compute approximately optimal policies for the single trial objective, F7; (iii) how we can
cast our single-trial GUMDP problem as an MDP in which the agent keeps track of the accrued
occupancy at every timestep of the interaction with the GUMDP; and (iv) the computational com-
plexity of policy optimization in the single-trial regime. We let R(7) = I (7) — ming ey, F1(7’)
be the regret of an arbitrary policy m € IIxm with respect to the single-trial objective introduced in
equation[5} Intuitively, the regret measures how suboptimal a given policy 7 is compared to the best
policy. Throughout our work, we make use of the following assumption.

Assumption 1. The objective function f is L-Lipschitz with L € RT, i.e.,
LHdl — d2||1f0rany dy,d, € A(S X .A)

f(dy) — f(d2)] <

We refer to Appendix [A]for the Lipschitz constants of the objective functions considered.

3.1 NON-MARKOVIANITY MATTERS

We start by investigating which class of policies suffices for optimality. We have the following result
(proof in Appendix [B.I).

Theorem 1. There exists a GUMDP M with v € (0,1) and L-Lipschitz convex objective such
that:

1. Fy(ms) > Fi(mm), for some my € Iy and any 7s € 1ls.
2. Fi(mm) > Fi(mnm), for some may € Ty and any my € Ty

The result above shows that, in general, the class of stationary policies is strictly dominated by the
class of non-stationary policies, which is, in turn, strictly dominated by the class of non-Markovian
policies. Hence, non-Markovianity matters, and we must focus our attention on history-dependent
policies. Our Theo. |l| extends the result in Mutti et al.| (2023), which considers finite-horizon
GUMDPs, to the infinite-horizon discounted setting.

3.2 COMPUTING (APPROXIMATELY) OPTIMAL POLICIES BY RESORTING TO Fi g

The result below (proof in Appendix [B.2) establishes that the regret R(m) of any policy w € IInm
can be upper bounded, up to a constant, by the regret of policy 7 for the single-trial truncated
objective.

Proposition 1 (Regret decomposition). For arbitrary w € Iy, it holds that

R(m) < Fig(m) — min {Fyg(rg)}+8Ly"7, (7)

g €llnm

=Rpu(m)
where R () is the regret of policy w under the single-trial truncated objective with horizon H.

Intuitively, the proposition above shows that we can resort to the single-trial truncated objective, as
introduced in equation [f] to find an approximately optimal policy for the original objective defined
in equation [5} up to any desired tolerance. In particular, if 7 is the optimal policy for the single-
trial truncated objective, i.e., Ry (m) = 0, then it holds that R(7) < 8L~*, which can be made
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arbitrarily small by tuning our truncation horizon H. Therefore, we focus our attention on how to
compute
7 =argmin Fy y(r) = argminE [f(d”’H)] , (8)
mEllnm m€llm
in order to keep the truncated regret term R gy (7) low, which we investigate in the next section.

3.3 THE OCCUPANCY MDP: CASTING M AS A STANDARD MDP

To derive our planning algorithms for solving GUMDPs in the single-trial truncated setting, we
derive a finite-horizon MDP based on the original GUMDP. In particular, we consider the occupancy
MDP defined by the tuple Mo = {So, Ao, {P§}, Po,o. co, H}, where So = S x O is the discrete
state space and
-1
0= {o e RISIMAL, o(s,a) = thl(st =s,as =a),Vs € S,a € A,
t=0

(so,ao,...,sl)GSX(8><.A)l,1glgH—l}U{[O,...,O]ER"S'A'}.

We denote a state of the occupancy MDP with the tuple {s, 0}, where s € S is a state from the
original GUMDP and o € O is a |S||.A|-dimensional vector that keeps track of the running occu-
pancy of the agent up to a given timestep. Intuitively, the running occupancy records the empirical
occupancy, as defined in equation [3] observed by the agent up to any timestep. We let 4o = A
be the action space. We define pg o such that poo({s,0}) = po(s) if o = [0,...,0] and zero
otherwise. The dynamics are as follows: (i) component s;11 ~ P?(|s;) evolves according to
the dynamics of the original GUMDP; and (ii) the running occupancy evolves deterministically as
0111(8,a) =y  +0.(s,a) if s = s; and a = ay, and 0,11 (s, a) = 04(s, a) otherwise. We emphasize
that we do not need to incorporate the timestep in the state of the occupancy MDP since it can be
inferred from the running occupancy by summing its entries. Finally, H € N denotes the horizon of
the MDP and the cost function cg : S X O — R is defined as

0 ift< H,
CO({Svo}) = f ( 17'2 o) ift=H.
-

1

Stationary policies o € IIg for Mg are mappings of the type 7o : S x O — A(A). We let the
cumulative cost under Mg be

Jo(mo) = E =Efco({su,0on})], ©)

H
ZCO({Staot})
t=0

where the expectation above is taken with respect to the random sequence of states
({s0,00}, ..., {sy,0m}) under policy mo. We let J§ = min e Jo (7o) be the optimal cumula-
tive cost for M. We also note that the occupancy MDP possesses well-defined (optimal) value and
action-value functions, which can be shown to satisfy standard Bellman equations (Appendix [B.3).

We present the following result, relating states in Mo to histories in M (proof in Appendix [B.4).
Proposition 2 (One-to-one mapping between histories in M and states in Mgq). There exists a

one-to-one mapping between histories h; = (8o, ag, S1,01,...,8) € S X (S x A in My, with
0 <1< H — 1, and states {s,0} € § x O in M.

An important conclusion that follows from the result above is that there exists a one-to-one mapping
between non-Markovian policies for M ; and stationary policies for Mg. This holds because every
state in M is uniquely associated with a particular history in M ¢ (and vice versa). With this in
mind, we now state the following result (proof in Appendix [B.5), which connects the problem of
solving the occupancy MDP and the problem of solving the single-trial truncated GUMDP objective.
Theorem 2 (Solving M is “equivalent” to solving Mg). The problem of finding a policy m € IIxm
satisfying Ry (m) < ¢, for any ¢ € RY, can be reduced to the problem of finding a policy To € Ils
satisfying Jo(mo) — J§ < €. In particular, if T}, = argmin_ cp. Jo(mo), then the corresponding
non-Markovian policy m in My satisfies R (m) = 0. Finally, it holds that Ry (m) = Jo(mo) — J§,
where To is the stationary policy for Mg associated with the non-Markovian policy 7 for M.
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Intuitively, the result above tells us that it suffices to search for an approximately stationary optimal
policy for My, since such a policy corresponds to a non-Markovian policy that is approximately
optimal for M. In particular, an approximately optimal policy for Mg can be seen as a non-
Markovian policy for M ; that compresses the history up to any timestep into a running occupancy.
This result demonstrates that maintaining the running occupancy up to any timestep is sufficient to
achieve optimal behavior in the single-trial truncated-horizon regime equation [§]

Remark 1 (Deterministic policies suffice for optimality). Since the class of policies 115 suffices for
optimality in standard MDPs (Puterman, |2014|), we know that at least one stationary deterministic
policy mo € 1S for M satisfies Jo(mo) — J}, = 0, i.e., mo is optimal for Mo. In light of Theo. [Z]
and Prop. [2| this implies that the corresponding non-Markovian policy m € Ilxy for My, which is
deterministic, satisfies Ry (mw) = 0, i.e., 7 is optimal for M ¢- Thus, we can focus our attention on
deterministic non-Markovian policies when solving My with objective Iy g, i.e., for any GUMDP
and horizon H € N, it holds that minx ey, Fi,p(7) = min ey Fi p(m).

Given Theo. 2] we consider planning algorithms to solve the occupancy MDP. Unfortunately, solving
the occupancy MDP poses some challenges: (i) the cost function of the occupancy MDP is rather
sparse since it is only non-zero at the last timestep; (ii) the size of the state space of the occupancy
MDP grows combinatorially with H since every state in the occupancy MDP is associated with
a possible history in M ¢; and (iii) every state in the occupancy MDP is visited at most once per
trajectory. Therefore, before investigating how we can solve the occupancy MDP in Sec.[d] we take
a closer look at how hard it is, from a worst-case perspective, to compute the optimal policy in
GUMDPs in the single-trial regime.

It is worth noting that the occupancy MDP is conceptually related to the extended MDP proposed
by Mutti et al.| (2023)) for the case of undiscounted finite-horizon GUMDPs. While the extended
MDP explicitly tracks the full history up to the current timestep, we show that this information
can be compressed into a running occupancy without sacrificing optimality guarantees. Since there
exists a one-to-one mapping between states of the occupancy MDP and histories, the size of the
state space of both formulations is equivalent. However, the compressed representation used by the
occupancy MDP is more amenable to practical implementations since the running occupancy can be
incrementally updated as the agent interacts with its environment. Despite these similarities, a key
distinction lies in the setting: [Mutti et al.| (2023)) consider the finite-horizon undiscounted setting,
whereas we focus on the discounted setting. Discounting plays a crucial role in our analysis (e.g.,
Proposition [2) and it remains unclear whether similar results hold in the undiscounted case. This
highlights a fundamental difference between our work and that of Mutti et al.| (2023)).

3.4 HARDNESS RESULT FOR POLICY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In the previous section, we established that it suffices to search over the class of policies IRy,
in order to attain optimal policies for any GUMDP and horizon H € N with respect to ob-
jective Fy g(m) = E[f(d™)]. We now show that there exist GUMDPs for which solving

T = arg min e F g(m) can be computationally hard. More precisely, we prove that the prob-

lem of deciding whether there exists a policy 7w € IIR,, such that Fy y(m) < X\, where A € Risa
threshold value, is NP-Hard.

Theorem 3 (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F'1 g and a threshold value A € R, it is NP-Hard to determine whether there exists a policy
7 € Ry, satisfying Fy p(m) < A

Proof sketch. (Complete proof in Appendix [B.6) We reduce the subset sum problem to the policy
existence problem in GUMDPs with objective F; g. The subset sum problem asks whether, given
aset N = {ng,n1,...,nny_1} of N non-negative integers and a target sum k € N, there exists
a subset of A/ whose elements sum to k. We map every instance of the subset sum problem as a
GUMDRP such that at each state s;, for i € {0,..., N — 1}, the policy = € IR, needs to decide
between selecting: (i) @incude, thereby including n; in the sum; or (ii) Gpotinciude, thereby excluding
n; from the sum. Then, we set H > N and let f(d) = (n"d — k)?, where d denotes a discounted
occupancy that captures information regarding the actions selected by the agent at each state s;. We
construct vector n. € RISII4I such that n " d equals the sum of the numbers selected by the policy.
With this construction, the objective satisfies f(d) = 0 if and only if the sum of the selected numbers
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equals k. By setting A = 0, we are asking whether there exists a policy such that F g (7) < 0.
Since f(d) = 0 if and only if the selected numbers sum to k, the reduction is complete. O

We note that the objective function f used in the proof of the result above is Lipschitz and (strictly)
convex. Thus, our result shows that, even for smooth convex objectives, the computational hardness
of computing the optimal policy in the single-trial regime is NP-Hard. Mutti et al.| (2023) present a
hardness result for the single-trial optimization problem in the case of undiscounted finite-horizon
GUMDPs. Our theorem extends this result to the discounted case. In addition, our proof is signifi-
cantly simpler - a one-step reduction - compared to the NP-hardness argument in |Mutti et al.[(2023),
which relies on complexity results for partially observable MDPs. Furthermore, our result is more
informative, as it shows that the hardness persists even when the objective f is smooth and convex.

With the above hardness result in mind, we next explore how to develop practical planning al-
gorithms for our problem. Naturally, in a worst-case sense, these algorithms may require a non-
polynomial number of steps to retrieve the optimal policy. Nevertheless, our results show it is
possible to develop practical algorithms that are superior in comparison to relevant baselines.

4 ONLINE PLANNING FOR GUMDPS IN THE SINGLE-TRIAL REGIME

In this section, we investigate how we can solve the occupancy MDP introduced in the previous
section by resorting to online planning techniques.

As previously shown, solving a GUMDP in the single-trial setting is closely related to solving a
corresponding occupancy MDP. This connection allows us to employ an online planning approach
in which, at any timestep ¢ € {0, ..., H — 1} of the interaction with the occupancy MDP, the algo-
rithm receives the current state {s;, 0;}. The online planner then expands a look-ahead search tree
where the root node corresponds to state {s;, 0;}. After a given number of iterations, the planning
algorithm selects an action to execute in the environment; depending on the selected action, the en-
vironment evolves to a new state, and the process repeats until timestep /. This online planning
strategy is particularly effective, as it allows computational resources to be focused on computing
(approximately) optimal actions only along the specific trajectory experienced by the agent. This
avoids the prohibitive cost of computing an optimal policy for every state of the occupancy MDP.

4.1 MONTE-CARLO TREE SEARCH FOR GUMDPS IN THE SINGLE-TRIAL REGIME

We employ an MCTS algorithm to solve the occupancy MDP. As described in Sec. 2.2] the search
tree of the online planning algorithm comprises decision and chance nodes. In the context of the
occupancy MDP, each decision node corresponds to an action a € A, while each chance node
corresponds to a given state {s, 0} € S x O of the occupancy MDP. At timestep ¢ of the interaction,
the MCTS algorithm builds a planning tree rooted at the current state {s;, o;}, following the four
phases outlined in Sec. at each iteration.

Remark 2. Assume that the objective function is bounded in its domain, i.e., fuin < f(d) < fnax
forany d € A(S x A). Then, for any horizon H € N, the MCTS algorithm provably solves
the occupancy MDP as the number of iterations of the algorithm per timestep grows to infinity.

Furthermore, for any horizon H € N, we have that R(mycrs) < 8 7 L g vH as the number of

iterations of the algorithm per timestep grows to infinity, where we let mycrs be the policy induced
by the MCTS algorithm at each timestep. This result follows from our Theo.2|and Theo. 6 in|Kocsis
& Szepesvdri| (2006) by rescaling the objective function to lie in the [0, 1] interval.

5 EXPERIMENTAL RESULTS

In this section, we empirically assess the performance of the proposed MCTS-based algorithm for
solving GUMDPS in the single-trial setting. Below, we provide a brief description of the considered
tasks and environments. We refer to Appendix [C|for a complete description of our experiments.

Tasks, environments, baselines, and experimental methodology We consider three tasks: (i)
maximum state entropy exploration (Hazan et al., |2019); imitation learning (Abbeel & Ngl [2004));
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oy, (o, (o) (3, (n (o
(a) M1 (Entropy max.) and (b) My (Imitation A
M 3 (Adversarial MDP) . learning). (c) My 3 costs (Adversarial MDP).

Figure 1: Illustrative GUMDPs. M ; and M ¢ 3 share the same dynamics but differ in the objective
function. In all GUMDPs, the chosen action succeeds with 90% probability and, with 10% probabil-
ity, the agent randomly moves to any of the states. The behavior policy for M 2 is S(ag|so) = 0.8
and B(ag|s1) = 0.2. In (c), we plot the three cost functions, ¢1, co and c3, of the adversarial MDP.

Table 1: Mean single-trial objective, Fj (), obtained by different policies, across tasks and envi-
ronments. Values in parentheses correspond to the 90% mean conf. interval. Lower is better.

Maximum state entropy exploration Imitation learning Adl\‘;;gsrfmal
Policy Mg FL Taxi MC Mo FL Taxi MC M;3
- 0.12 0.51 0.65 0.72 0.05 0.07 0.08 0.18 1.23
Random (-0.04,40.04) (-0.03,40.03) (-0.01,40.01) (-0.02,+0.02) (-0.02.+0.02) (-0.02,+0.02) (-0.01,40.01) (-0.04,40.04) (-0.02,40.02)
s 0.05 0.48 0.63 0.70 0.02 0.05 0.05 0.07 1.17
Solver (-0.02.40.02) (-0.03,+0.03) (-0.01,+0.01) (:0.03,40.03) (-0.01.+0.01) (-0.02,+0.02) (:0.001,+0.002) (:0.01,+0.02) (-0.02,+0.02)
0.01 0.40 0.59 0.61 0.002 0.02 0.05 0.04 1.07

TMCTS (-0.01,40.01) (-0.03,+0.03) (-0.0,40.0) (-0.02,40.01) (-0.001,+0.001) (-0.005,+0.006) (-0.002,+0.002) (-0.01,40.01) (-0.003,+0.004)

and (iii) adversarial MDPs (Rosenberg & Mansour, [2019). We consider two sets of environments.
The first set consists of the illustrative GUMDPs depicted in Fig. [I] each associated with one of the
tasks. The second set of environments come from the OpenAl Gym library (Brockman et al.,[2016).
We consider the FrozenLake (FL), Taxi, and mountaincar (MC) environments. The framework of
GUMDPs is defined over discrete state spaces; hence, we discretized the MC environment using
a 10 x 10 grid with equally-spaced bins. For the FL, Taxi, and MC environments, the task of
imitation learning consists in imitating an approximately optimal policy. We let v = 0.9 and set
H = 100 for the illustrative GUMDPs and H = 200 for the other environments. We perform
10 runs per experimental setting. We consider two baselines: (i) a random policy, Trandom; and
(i1) the optimal policy for the infinite trials formulation equation@ TSover» Calculated by solving a
constrained optimization problem with objective f via a standard optimization solver. We denote the
policy induced by our MCTS algorithm as mycrs and consider 4000 iterations per timestep (results
with other numbers of iterations in the Appendix [C). Our code is attached to the submission.

Experimental results discussion We present our experimental results in Tab.|l| As seen, across
nearly all experimental settings, myicts outperformed the baselines, showcasing the superior perfor-
mance of our approach (the only exception is for the Taxi environment under the imitation learning
task where the performance of myicrs is similar to that of 7§ ..). We highlight the gains attained by
TpcTs in comparison to the infinite trials policy, g e,

6 CONCLUSION & LIMITATIONS

In this work, we contribute with the first approach to solve infinite-horizon discounted GUMDPs in
the single-trial regime. In Sec. [3] we provided the fundamental results underpinning policy optimiza-
tion in the discounted single-trial regime. Then, in Secs. d] and [5] we explored how we can resort
to online planning techniques, in particular MCTS, to solve discounted GUMDPs in the single-trial
regime. Our work takes a first step towards a broader application of GUMDPs in real-world settings
where the agent’s performance is typically evaluated under a single trial. The key limitations of
our approach to solve GUMDPs in the single-trial regime are: (i) the MCTS algorithm requires a
simulator of the environment to sample transitions; and (ii) the size of the matrix that keeps track
of the running occupancy may be impractical for GUMDPs with large state and action spaces. We
believe such limitations should be addressed by future work, for example, by investigating methods
to compress the running occupancy.
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A LIPSCHITZ CONSTANTS

Table 2: Common objective functions found in the GUMDPs literature. In (1) we assume d is lower
bounded by e satisfying 0 < € < e~ 2.

Task Objective (f(d)) Lipschitz constant (L)
MDPs/RL d'c, ceRISIA max, 4 |c(s, a)|
Pure exploration d' log(d) |log(e) + 1] (1)
Imitation learning  ||d — dg||3, dg € A(S x A) 4
Adversarial MDPs maxye(1,. k3 d' Ck maxye(1,. K} {Maxsq |cu(s, a)|}

Objective function f(d) = c¢'d It holds that
f(d) = f(da)] = | (di — do)| = Y |e(s,a)||di (s, a) — da(s,a)| < max |c(s, a)[|d1 — a1

s,a

Objective function f(d) = d log(d) We assume d is lower bounded by ¢, i.e., d(s,a) > € with
0<e<e?foralls € S,ac A Welet f(d) =3, , g(d(s,a)), for g(z) = zlog(z). We note

that, ¢’(z) = log(z) + 1 and it holds for any = € [e, 1] that |¢'(z)| < |log(e) + 1|. Thus, for any
max{zi,x2}
/ g (z)dx

x1, T2 € [€,1] we have that
z1
/ g (z)dx
o min{z1,z2}

max{z1i,r2} max{zi,r2}
</ g@lds < [ log(e) + 1] da

min{zi,x2} min{z,z2}

= |log(e) + 1] [r1 — @2|.

l9(21) — g(w2)| =

Thus, for any dq,ds € A(S x A) lower bounded by 0 < € < e~2, it holds that

[f(dr) = f(d)] = | (9(di(s,a)) = g(da(s,a)))

s,a

(%) Z lg(di(s, a)) — g(da(s, a))|

< Z llog(e) + 1] |dy (s, a) — da(s, a)]

= [log(€) + 1] [|d1 — d2lx
were (a) follows from the triangular inequality.

Objective function f(d) = ||d — dg||3 Itholds that V f(d) = 2(d — dg). Now,

max ||Vf(d)|1 =2 max |d—dg|:1<2 max ldi — da||s = 4.
deA(SxA) deA(SxA) dy,d2€A(Sx.A)

Since the function f is continuous and differentiable over the simplex, which is compact, it holds
that L = 4 is a valid Lipschitz constant as it corresponds to an upper bound on the maximum
magnitude of the gradient of f over A(S x A).

B SUPPLEMENTARY MATERIALS FOR SEC.[3

B.1 PROOF OF THEOREM/[I]

Theorem (1, There exists a GUMDP My with v € (0,1) and L-Lipschitz convex objective such
that:

12
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1. Fy(ms) > Fi(mm), for some my € Iy and any 7s € 1ls.

2. Fi(mm) > Fi(mnm), for some may € Ty and any my € Tl

Proof. To prove our result, we consider the GUMDP depicted in Fig. [2] To simplify our proof,
we consider state-dependent occupancies and denote an occupancy for the GUMDP above with
the vector d = [d(s"),d(s'),d(s?)]. The objective function is f(d) = d' Ad, where A =
diag([0, 1,1]), which is Lipschitz (over A(S)) and convex. Under any trajectory it holds that
d(s%) = (1—) Y2 %t = 7(1:'7”27. Hence, it holds that, under any trajectory, d(s') + d(s?) =
1— % = 11_’—772 Thus, we focus our attention to the value of the occupancy at state st, d(sl),
and let d(s?) = {—2% — d(s'). With this, we can define our objective as a function of d(s') only by

letting f(d(s')) 2(51)2 + (=% - d(sY))2

1—~2

Figure 2: Illustration of the GUMDP used in the proof of Theo. With S =1{s" s 5%} and A =
{a', a?}. The distribution of initial states is po(s°) = 0, po(s?) = €, po(s?) = 1 — €, where we set
€ = 1/2. All transitions are deterministic and in states s' and s? any of the actions takes the agent
back to state s°.

For the first part of the Theorem it holds, for any g € Ilg, that
Fi(ms) =E[f(d™)]

s1~P*0(-|s0),a1~7s(+[s1),

=E f(d:;,ao,sl,al,...(sl))

so~Ppo,ao~ms(|so), ]

e
s3~ P2 (-[s2),a3~ms(+[s3),.-

a5~ -sO7
FOATS 01y (81| 2omTsCls) ]

=E|E

s1~P?0 (-|so),a1~s(-[s1),
s6~ P (-|s°),...

so~po,ao~7s(-[so),
] o
s4~ P (-|s3),a4~ms(+[s4)

ag~ms(-|s), ‘|

s6~ P (-]s0),...

as~ms(-]s0),
s6~ P (|s0),...

r 4
YE|E lf ((1 Y A 1(se =Y + v5&§§,56,a6,“.(81)>

d;:,sa,ae,... (sl)

@ [ -
>E|f ((1 —N> A'1(si =) +9°E

t=0

- f<(1 =) (so = 5") +7"1(s2 = s7) +9"1(sa = 7))
> 1 (5% S92vpo,a0~s (+[so),
+(1=7E | >_1"1(se = 5") ommlln) 51~Pa Clso).aammsC ).
t=5 s4~P*3(-|s3),aq~ms(-|s4)
(e)

= Elf <(1 =) (L(so = 8") +7%1(s2 = s') + ¥'1(s4 = 5"))

s1~P?0 (-[s0),a1~ms(+[s1), )

6
+(1- v>WS<a1|s°>ljvg>

so~po,ao~s(+[so),
a: i ’
sa~P*3 (-|s3),a4~ms(-[s4)

where in (a) we emphasized that the random vector d™ depends on random variables
S0, 80,51, a1, . . .; (b) follows from the fact that s5 = s° with probability one for trajectories drawn
from the GUMDP, i.e., for any trajectory the state at timestep 5 is always s°, and thus we can

13

s0~po,ao~7s(-|so),
s1~P?0 (-|s0),a1~ms(+[s1),

sa~P*3(-|s3),a4~ms(-|s4)

so~po,ao0~7s(+[so),
81~ P (-[s0),a1~ms(+[s1),

S
sa~P*3 (-|s3),a4~ms(+[s4)

|
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split and simplify the expectation. In step (c), we let d be the random vector defined as in equa-
tion I 3| for the GUMDP depicted in Fig. [2} but where p(s®) = 1 and zero otherwise. Step (d)
follows from Jensen’s inequality since, for any values (s, ag, 81, a1, ..,84,a4) € (S x A)° the

random variables of the outer expectation can take, it holds that E[g(d™)] > ¢(E[d™]) where we

let g(z) = f((1 =) Sr_y 7' 1(s: = s') + ~5x), which is convex. Finally, step (e) follows from
the fact that

: lz Y 1(se =
t=5

~s (-] t
) gmpos (. |§ ] 27 Prs [s0 = 5]
=9° -0+7 Srs(al|s®) +77 - 0+ y*ms(at|s”) +
= ms(a'|s?) (76 +8 4. )
oo
= Ws(a1|50)272t+6
t=0

6
Y
= ws(a1|so)1 .z

We can now explicitly write the expectation in the last step above, yielding, for any 75 € IIg and

While lettlng € = 1/2,
1 ,YG
J (1—7)([—’—72-_'}/ +7S(a' |S )2>

6
+ f((l =) <’YQ + 9%+ Ws(a1|50)lj'y2> )]
+ gs(als)(1 = ms(als) [f ((1 =) <1 +oP + ﬂs<a1|s°>1772> >

+f<(1 o (14 +7Ts(al|30)1j:,2)>

R
Aol

(1 - ms(a'|s%)) [( 1+”S<“1'S°>1j672>>
+f<(1 —) (msta' 001255 )]

In summary, Fi(7s) is lower bounded by the expression above for any policy 7rs € IIs. Since f
is a quadratic function, the lower bound above is also a quadratic function with respect to variable
ws(a!|s?). Thus, we can calculate the minimizer of the lower bound above by computing the gra-
dient with respect to 7s(at|s?) and setting it to zero. It can be checked that, for any v € (0,1),
7s(al|s®) = 1/2 minimizes the lower bound above (we provide below a snippet of Mathematica
code that supports this claim). This implies that, for any 7s € IIg, Fi(ms) is lower bounded by the
expression above evaluated at 75 (at|s?) = 1/2, i.e.,

2292+ 294 — 290 4 298 — 2910 4 412
2(1+ )2

1
Fl(’ﬂ's) 2 57Ts(6l1|80)2

6
1|S Y

v

+

DO =

Fi(ms) >

Now, consider the non-stationary policy my € Ily that deterministically selects a' at timesteps

t =3,7,11, ... and deterministically selects a? at timesteps ¢t = 1, 5,9, .. .. It holds that
Fy(mm) = E[f(d™)]

14
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f <(1 —N)> (s = sl))

t
=ef (L=NA+04+04+04++"+0+0+0+7%+...))
+1=af(1=O+04+0+0+7*"+0+0+0+~%+...))

=ef ((1 —7) <1 + Zv‘“*“)) +(1-ef ((1 —7) Zv‘“*“)
t=0 t=0

@1 o 1 (A=)
2 (e 125)) e (550)
149218448

A=)+

where in (a) we let ¢ = 1/2 and simplified the sums.

To conclude, it holds, for any 7g € IIg and v € (0, 1), that
2_2,)/24_2,)/4_2,)/64_2,)/8_2,)/10_'_,}/12 1+’YQ—’}/6+’)/8
Fi(ms) 2 2 2 2)2
2(1+7) (1=7)21+7?)

which can be verified using a software for symbolic/algebraic computation such as Mathematica
(Wolfram Research). We provide a snippet of the Mathematica code we used below.

= Fl(ﬂ-M)v

Snippet of Mathematica code to support the proof that Fy (ws) > Fy(mym), Vrs.

[In): flo_, g_] :=0"2 + (((1 - g)/(1 -g"2)) - o0)"2
[In]: hix_, g_] := (1/2)*x"2x(£[(1 - g) (1 + g"2 + g™4 + xx(g76/(1 - g°2))), gl +
fI(1 - g) (972 + g”4 + xx(g76/(1L - g°2))), gl) +
(L/2)*x (1 = x)*(£[(1 = g) (1 + g"2 + xx(g76/(1 - g"2))), gl +
fI(1 - g) (1 +g™4 + xx(g"6/(1 - g°2))), gl +
fI(1 - g9) (g72 + xx(g"6/(1 - g°2))), gl +
fI(1 - g) (974 + xx(g"6/(1 - g°2))), gl) +
(1/2)%(1 = x)°2 (£[(1 - g) (1 + xx(g°6/(1L - g°2))), gl +
fI(1 - g) (xx(g"6/(1 - g~2))), gl)
[In]: Simplify([Solve[D[h([x, g], x] == 0, x]]
[Out]: {{x —> 1/2}}
[In): alg_] = (1/2)*£[(1 - g)*(1 + g"4/(1 - g"4)), g] + (1/2)«£[(1 - g)x(g74/(1 - g"4)), 9]
[In]: Reducelalg] < h([1/2, g]]
[Out]: g <0 || 0<g<1I|| g>1

For the second part of the Theorem it holds, for any my = (7o, 71, 7o, . . .) € Iy, that
Fy(mv) = E[f(d™)]

=EK f(dsowfao,sl,al,...(sl))

s1~P%0(-|sg),a1~m1(+[s1),
SQ"\/F’;’L1 (-|81),a2~7r2(~|sz),...

s0~po,a0~7o([s0), ‘|

s1~P?0(-|s0),a1~m1(-[s1),
82~ P (-|s1),a2~m2(|s2)

az~ms(-|s%),
S4NPa3("50)7~~-

FAD g 1,0 (51)

iz

sav P38 (+s0),...

a3~7r3(~|50), ‘|

s0~Po,a0~7o(-[s0), ‘|

a5, (s1)

S0,20,51,a1 5--- si~P 0( ‘SO)’alNﬂ—l( |51):

S2~ P (-|s1),a2~m2(+[s2)

s0~Po,ao~mo(-[so), ]

> s0~po,a0~7o([s0),
=K E|[(1— t]. S 1 agwgg("so), s NIg“Up([-)\s ),a1~m1(+]s1),
f ( l( ’Y);V (st ) savP3(+]s0),... slngal('\sfi)alzwﬂz('lsz)
=E f(( —7) <l(sosl)+1(5231)

+E

s1~P?0(-|sq),a1~m1(-|s1),
82~ P (-[s1),a2~72(+[s2)

- t _1y| as~ws(-]s?),
IRCTEE (”D)

where in (a) we emphasized that the random vector d™ depends on random variables
S0,40,51,81,.... Step (b) follows from the fact that s3 = s° with probability one for trajecto-
ries drawn from the GUMDP, i.e., for any trajectory the state at timestep 3 is always s°, and thus we

So~P0,a0~0 (-|s0), ]
b

15
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can split and simplify the expectation. Step (c) follows from Jensen’s inequality, following similar
steps as those for the first part of the Theorem. Now, it holds that

(o]
S B M
t=3
~0+7 m3(a'|s?) +9° - 0+~ 75 (at|s”) +

00
Z 7T2t 1 1|80).

t=2

4
~ . .
i - ]. Hence, if we replace expression

For any policy my, it holds that Y2, v* 7o _1 (a1 |s9) € [

E Zfig th(st = 51)

a3~ﬂ—3(~\30),
84~ P23 (-[s%),...

P (160 = +16= s+ e ))

1—x

with cl —z, for ¢ € [0, 1], and show that

E

s1~P?0(-[s0),a1~m1(-|s1),
82~ P?1(+[s1),a0~T2(+[s2)

so~po,a0~7o(|s0), ]

is strictly lower bounded by Fi (mnm) for a given v € I, for any g, 1, o € g and ¢ € [0, 1],
this implies that F7 (mym ) is strictly lower than that of any possible 7 € IIy. For any g, 71, w2 € Ilg
and ¢ € [0, 1], the expectation in the expression above can be simplified as

E[f((l—v)(l(s s+ 1(s2 = 8) + o ))
i (ion307 72>>
+€(1m(a1|80))f<(17) (HC E ))

+ (1= m(alls")f ((1—% <7 verls 72 )
+(1_6)(1—7r1(a180))f<(1_ ( 72>>
@ Sl (1 (0= (1492 e 'ﬁ)) (o +017:ﬂ>)>
st (110 (o025 (00 (25))

where in (a) we let e = 1/2.

s1~P?0(-|s0),a1~m1(-[s1),
s2~P*1(+|s1),a2~m2(s2)

s0~Po,a0~7o(-[s0), ‘|

Now consider the non-markovian policy mny € Ilnm that: (i) if sp = s, then at timesteps ¢t =

1,5,9,... deterministically selects action a? and at timesteps ¢ = 3,7,11,... deterministically
action a'; (i) if so = s2, then at timesteps t = 1, 5,9, ... deterministically selects action a' and at
timesteps t = 3,7, 11, ... deterministically action a?. We have that

Fy(mam) = E[f(d™")]

f <(1 ) ivtl(St = 51)>

=ef(1—7)1+04+0+0+~+*"+0+0+0+~%+...))
+(1=-af(1=O0+0+7>4+0+04+0+7°+04+0+0+~" +...))

=ef ((1 -7) Zv‘“) +(1=ef ((1 ) Zv‘““)
t=0 t=0

@1,(1—x 1, ((1=9)°

3t (1=e) o ()
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where in (a) we let e = 1/2 and simplified the sums.

We now need to verify that, for any 7 (at|s") € [0,1], ¢ € [0,1] and v € (0, 1),

(10 14 2)) o (00 e 7))

)
ra-m@i g (r(0-0 (1+e2s)) +1 (0= (25)))
@
() b () o

As can be seen, the expression on the left-hand side of the inequality above corresponds to a
weighted combination (with weights 71 (a*|s") and 1 —; (a'|s?)) of components (i) and (ii). By re-
sorting to a software for symbolic/algebraic computation such as Mathematica (Wolfram Research)

it can be shown that (i) > 1f (11:7”4) if ((1 Ny ) = Fi(mnw) and (i3) > 3 f (11;1) +
if ((1 1y ) = Fy(mnm) for any ¢ € [0,1] and v € (0,1). We provide the snippets of the Math-

ematica code we used below. This implies that the weighted combination satisfies the inequality
above for any 7 (a!|s%) € [0, 1] and the conclusion follows.

Snippet of Mathematica code to attest that (i) > F} (7\m).

) —o)°2

: flo_, g 1= 072 ((1 )/ (1 ~2)
[In]: mlc_, g_] := (1/2)*(£[(1 - g)*(1 + g"2 + cx(g"4/(1 - g72))), g] +

fL(1 - g)*x(g"2 + cx(g™4/(1 - g°2))), gl)
[In]: nlg_] := (1/2)*£[(1 - g)/(1 - g™4), gl + (1/2)*£[((1 - g)*g"2)/(1 - g"4), g]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 ]| -1 <g<0 [l g>0)) |

(c == 1/2 && (g < -1 || -1 <g<0 ]|l 0<g<1]|g>1)) |

(c >1/2 &8 (g <-11| -1<g<01lg>0))

Snippet of Mathematica code to attest that (i7) > Fy (mxm).

[In]: flo_, g_] =072 + (((1 - g)/(1 - g"2)) - o)"2
[In): mlc_, g_] := (1/2)*(£[(1 - g)*(1 + cx(g"4/(1 - g72))), gl +

£I(1 - g)*(cx(g74/(1 - g°2))), 9])
[In]: nlg_) := (1/2)*£[(1 - 9)/(1 - g"4), g] + (L/2)»£[((1 - g)*g"2)/(1 - g~4), 9]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 || -1 <g<0 1l g>0)) |

(c==1/2 &8 (g < -1 1] -1<g<01[]l0<g<1I]lg>1) ||

(c >1/2 && (g < -1 || -1 <g<20 1| g>0))

B.2 PROOF OF PROPOSITION(]

Lemma 1. Foranyw € Q, m € llny and H € N it holds that | f(d7) — f(d5H)| < 2L4yH
Proof. Forany w € Q, m € Iy and H € N it holds that

)
|£(dZ) — f(azy™) ] < L|ar - e,

YA ) S,
t=0 t=0 1
I{ 1 (e’
H Mdj, -d 7)Y AT,
t=0 t=H 1
(C H 1 o
( thH Mag, —di.l, + 1= ~ld] tnl)
t=0 t=H

17
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(1-9) pi=

=Ly DA ldDll, + L
v t=0

=2L~H

where: (a) is due to the L-Lipschitz assumption; in (b) we used d, = (1 — ) >_;2~7*d[ ; where
d7 ,(s,a) = 1(s; = s,a; = a) is the empirical occupancy induced by the trajectory w at timestep ¢
and d™ = (1 —7)/(1 — 1) Zt o fytd&t. Step (c) follows from the triangular inequality. [
Lemma 2. If f is L-Lipschitz then it holds, for arbitrary w € llny and H € N, that

|Fy(7) — Fuu(m)| < 2Ly7

Proof. Tt holds that, for arbitrary 7 € IIxy and H € N,
|Fy(7) = Fyu(m)| = [E[f(d7)] — E [f(d™F)]]
= [k [7(@") - @)
?E[yfd” F(@))|]
=D Prlwl|f(dF) - f(a5™)]

weN

(d)
< 2L,

)
)

where: (a) follows from [E[X]| < E[|X|]; and (b) is due to Lemma[l} O

Lemma 3. For every GUMDP M with L-Lipschitz f and H € N, if 7* = argmin, .y F1, 5 (7),
then it holds that R(m*) < AL~

Proof. As shown in Lemma [2} |y () — F1 g (n)| < 2L~™, for arbitrary 7. From such inequality,
we can infer that Fy g (1) — 2LyH < Fy(7), Y7 € Tlnw, i.e., function Fy (7)) — 2Ly lower
bounds function Fiy(w). We provide a visual illustration of F; and Fj y in Fig. [3| Let 7* =
argmin_ Fy g (). It holds that

* H : H @ . ® *
Fi (") —2Ly" =min Fy g(7) —2Ly" <min Fy(7) < Fi(7"),

where (a) follows from the fact that F g (7) — 2L~yH lower bounds F(); and (b) from the fact
that min, Fy (7) < Fy(n'),¥7’ (from the definition of a minimum). We illustrate the inequalities
above in Fig. 3] Finally, we note that

Fy(r*) = (FLu(n) = 2Iy") = Fi(x*) = FLua(n*) + 207"
< |Fi(n*) = Fuu(n)] + 27"
<4LyM

The above implies that
R(n*) = Fy(7*) — min Fy (r) < 4Ly

as illustrated in Fig. 3]

Proposition [T (Regret decomposition). For arbitrary € T, it holds that

R(m) < Frg(m) = min {Fp(ma)}h+8L9", (10)

= Rpy(n)

where Ry () is the regret of policy w under the single-trial truncated objective with horizon H.

18
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A
\K’Fﬂﬂ) FLa(m) + 207"
N\ L/, Fuu(m) ne }R( )
~ < _ __- _ H 7r*
k N //FLH(W) 2Ly min, Fy(m) +
= __-- Frpg(n*) —2Ly" +
' IInm S

Figure 3: Illustration of objectives F; and I f, as well as the relation between different quantities
of interest for the proof.

Proof. Letny; = argmin, cp, F1 g (7), i.e., mF is optimal with respect to the truncated objective.
It holds that,

R(r) =E[f(")] - min E|f(d™)]

7' €llnm

~ B 0@ - i £ [ra@)]|

7' €llnm

<Blp@) £

7/ €llnm

|+ ‘ 7@ )] = min E[f(dﬂ’)]’

)
< [El/@)] -~ E [f(a7#)]| + 414"
< [E[f(d")] ~E [f(dH)]

L ory B [(@m)] ~ E [f(@)]| + 427"

(e)
<

IA

J|+ |E [f@™)] —E [f(d7i)] | + 424"

E [f(d™)] ~E [ F(a@minot ”+‘1E [f(dﬁnH)}—E[f(d”?f)ﬂwmff
2]1@ [F(@ )] — B [f(ario)] [ + 814"
[f(d )]— min {E [f(dﬂH’H)]}—V—BL’yH

)

g €lnm

=Fpg(r)— min {F g(mg)}+ 8Ly

g €llnm

where (a) follows from adding and subtracting E [ f (d”ff)} and applying the triangular inequal-

ity; (b) follows from Lemma [3} (c) follows from adding and subtracting E [ f(d™*)] and apply-
ing the triangular inequality; (d) follows from Lemma [2} (e) follows from adding and subtracting
E [ f(dmmH )] and applying the triangular inequality; and (f) follows from Lemma O

B.3 THE OCCUPANCY MDP: VALUE AND ACTION-VALUE FUNCTIONS

For a given policy o € Ilg, the interaction between the agent and the occupancy MDP gives rise to
a random process ({sg, 00}, a9, {S1,01},a1,...,{sg,0m}) such that:

1. P [{so,00} = {s0,00}] = po,0({s0,00})
2. P[{st41,0t41} = {s',0'}{s0,00}, 20, .., {S¢, 04 },a¢] = Pgt({shot}’ {s,0'})

3. Pla; = al{s0,00}, a0, .., {st,0¢}] = mo(al{st, 0:})

We let (Q0,Fo, 7TO) be the probability space over the sequence of random variables
({so0,00},a0,{81,01},a1,...,{sH,om}) that satisfies conditions 1-3 above. We write specific tra-
jectories as wo € Qo, with wo = ({s0, 00}, a0, {s1,01},a1,...,{su,o0n}). We highlight that the
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probability of a given trajectory wo € o under stationary policy 7o € Ilg can be calculated as

PO (wo) = po.o({s0, 00}) - mo(aol{s0,00}) - P§*({s0,00},{s1,01}) ...

‘molam—1{su-1,0m-1})  P3" " ({sg—1,00-1},{sm,0n}).

To streamline our notation we introduce the mapping o : S x O x A — O that describes the
evolution of component o of the state, defined as

[0(s,0,a)]y 0 = {

where [0 o+ denotes the value of entry s’, a’ for vector o, i.e., [0]y o = 0o(s',a’).
) ) 3 )

o(s,a) +~t ifs' =s,a’ =a,
o(s,a) otherwise,

The value function under Mo, for any ¢ € {0,..., H}, is defined as

Vi ({s,0}) = Ex, lz co({si; 01 })|{s1, 00} = {s, 0}] (11)

=E. [co({sH,oH})’{st,ot} = {s,0}], (12)

and the optimal value function, for any t € {0,..., H}, as Vi*({s,0}) = min; mp Vi ({s, 0}).

The action-value function under Mo, for any ¢t € {0, ..., H — 1}, is defined as

H
ZCO({St'»Ot/})

?O({S,O},a) = Eﬂ'o {St,Ot} = {s,o},at = a‘|

=E,, [co({sH,oH})Hst,ot} = {s,0},a; = a]

and the optimal action-value function, for any t € {0,...,H — 1}, as Q;({s,o0},a)
min o Q7°({s,0},a). We emphasize again that subscript ¢ can be dropped from V,;™ ({s, o}),
Vi ({s,0}), Q7°({s,0},a) and Qf({s, 0}, a) as it can be inferred from o. Finally, we note that
value functions, optimal value functions and optimal action-value functions satisfy the following set
of Bellman equations:

Vi ({s,0}) = Y molal{s, 0}) (Z P(s'[s)Vi({s', o (s, 0, a)})> , vte{0,...,H -1}

acA s'eS

Vi'({s,0}) = ffélﬂ { Z Pe(s'[s)Vi ({5, 0(s, 0, a)})} , Vte{o,...,H—-1}

s'eS

Q; ({s,0},a) = Z P(s'1s)Vi ({5 0(s,0,a)}), Vte{0,...,H —1}

s'eS

Qi ({s,0},a ZP“ meiI}‘{Qfﬂ({s’,o(s,o,a)},a')}, vt €{0,...,H —2}.

s'eS

B.4 PROOF OF PROPOSITION[2]

Lemma 4 (Linear independence of exponential functions over R). For any x € R, L € N,
co,...,cr—1 € R, and distinct \g,..., A1 € R, ithL;Ol ceM® = 0thency = ¢4 = ... =
cr—1 = 0, i.e., the exponentials e*% . .., e 1% gre linearly independent over R.

Proof. Let f(z) = Zt o ' ;M It holds that =t Zt o ctAre®. We can repeatedly differen-
tiate f to obtain the following set of equahtles

L—-1
Z creM® =
t=0
L—-1
Z CtAteAtz =0
t=0
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L—-1

E ct)\tzeAtz =0,

t=0

L1
Z MM = 0.
t=0
The set of equations above can be rearranged as follows

1 U | coeto® 0
/\(2) /\% )\2L—1 Cle’\lw 0
A§ Af AL coeM2® — o] (13)
YAV N Vi I e Ve B [
The square matrix above is known as the Vandermonde matrix and, since all Ag,...,Ap_; are

distinct, the matrix has a non-zero determinant (hence it is invertible). Therefore, multiplying the
equality above by the inverse of the Vandermonde matrix on the left we obtain

COeA()w O
creM” 0
kzl‘
c2€ = 19]. (14)
cpoqeT 0
Since functions e, ... e*:-17 are always positive, we have thatcy =c¢; = ... =cr_; =0. O

Proposition [2| (One-to-one mapping between histories in M and states in Mo). There exists a
one-to-one mapping between histories h; = (so, ag, $1,a1,...,5,) € S x (S x A) in My, with
0 <! < H —1, and states {s,0} € S x O in M.

Proof. For a given history h; = (9, ao, 51,01, - -,51) € Sx (Sx.A) in My, with0 <1 < H-1,
consider the mapping defined below that associates h; to a given state {s,0} € S x O for Mg by
letting

-1
s=s¢ and o(s,a)= thl(st =s,a. =a), Vs € S,a € A. (15)
t=0

We aim to show that the mapping above is a bijection between the set of possible histories in M f
and the discrete state space O in Mg. Clearly, from the mapping above defined, each history A
in M is associated with a unique state in Mq. Thus, what remains is to show that any two states
{s1,01} and {s3, 02} for Mg are equal under mapping equation [15|if and only if their associated
histories h! and h? are equal. We now make two observations. First, for a given state {s, 0} in
Mo, component s is directly related, through mapping equation [I3] to the last state in the history
h;. Second, each history h; = (so,ag, $1,a1,-..,s;) will yield through mapping equation |15 a
running occupancy o satisfying ZM o(s,a) = %; thus, histories h; with different lengths will
yield different o-vectors. Hence, we only need to show that two running occupancies 0; and 02,

associated with histories ' and h? (both of length [), respectively, are the same if and only if their
histories up to timestep [ — 1 are the same:

» If two histories h' and h? of length [ are the same, then it should be clear that their respec-
tive running occupancies, as defined through equation[I5] are also the same.

* If two running occupancies o; and o- are the same, then their associated histories are
also the same. To prove this implication, we focus our attention to a given entry (s, a)
of the vectors 0; and 0,. Running occupancy o, is associated with an arbitrary history
h' = (s}, ad,si,al, ..., si); running occupancy o is associated with an arbitrary history
h? = (s§, a5, s1,a3,...,57). If 01 = 09 then, forany s € S,a € A,

01(s,a) —02(s,a) =0
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-1 -1
= Z’yfl(s% =s,a; =a)— Z’ytl(sf =s,a2=a)=0
t=0 t=0
-1
& Z'yt (1(s{ =s,a; =a) —1(s} = s,a; =a)) =0
t=0

-1
a thct =0,
t=0

where in (a) we let ¢; € {—1,0,1}. Now, the only solution to the last equation above is

co =c1 =...=c_1 = 0, which implies that 1(s} = s,a} = a) = 1(s? = s af:a)

for all o < t <[ — 1 and hence, the histories are the same. The factthatcg = c; = ... =
cj—1 = Oisthe only solution to the equation above follows from Lemma[d]by letting L =1,
x = 1, and \; = In(~)t (which implies that all A; are distinct for v € (0, 1)).

Thus, we conclude that there exists a one-to-one mapping, as defined in equation [I5] between every
possible history in M ¢ up to timestep /{ — 1 and states in Mo.

B.5 PROOF OF THEOREM[2]

TheoremE](Solving M is “equivalent” to solving Mg). The problem of finding a policy m € IIxm
satisfying Ry () <€, forany e € Ra', can be reduced to the problem of finding a policy mo € Ilg
satisfying Jo(mo) — J§ < €. In particular, if nf, = argmin, cp. Jo(mo), then the corresponding
non-Markovian policy m in M satisfies R (m) = 0. Finally, it holds that R (m) = Jo(mo) — J3,
where o is the stationary policy for M associated with the non-Markovian policy m for M.

Proof. We start by showing that, for any horizon H € N and policy 7 € Ilxy, it holds that
Fy () = Jo(mo),

for Iy () as defined in equation@and Jo(mo) as defined in equation@], where 7q is the stationary
policy for Mg associated with the non-Markovian policy 7 for M.

For any H € N, finite-horizon random trajectories (so, a9,81,8a1,...,SH—1,am—1) in My are
associated with the probability space (Q,F,P.). We write specific trajectories as w € €,
with w = (so,a0,81,a1,.-.,8g—1,ag—1). We highlight that the probability of a given tra-
jectory w € € under policy # € IIym can be calculated as P, [w] = po(so) - m(aplho) -
PaO(SO,Sl) . 7T((11|h1) . Pa1(81782)...PaH72(8H72,SH71) . W(aHfl‘thl). On the other
hand, random trajectories ({sg,00},a0,{S1,01},21,...,{smg,0m}) in Mg are associated with
probability space (Qo,}'o,]PQO). We write specific trajectories as wo € $lo, with wo =

({SO; OO},a()» {517 01}7 A1y.ey {SHv OH})

We start by noting that, for any trajectory wo = ({so, 00}, ao,{s1,01},a1,...,{sm,o0n}) € Qo,

P, [wo] = po.o({s0,00}) - 7o (aol{s0,00}) - P§° ({s0, 00}, {s1,01}) - ...
7To(GH 1\{SH 1,0H— 1}) aH 1({3H7170H71}7{5H70H})~
@ po(s0) - L(0p = [0, - .., 0]) - mo(ao| {50, 00}) - P™ (50, 51) - 1(01 = o(50, 00, a0)) -
-molag—1|{sH-1,0m-1}) - P***(spg_1,5m) - L(og = o(Sg_1,0H_1,aH-1))
2 pO(SO) . 1(00 = [0, .. ,0]) . 7T((l()|h()) . Pao(So,Sl) . 1(01 = O’(So,Oo,ao)) S
m(apg—1|lhg—1) - P*"(sg_1,5m) - 1(og = 0(Sg—1,0H-1,0H-1))
Dp (W] P (s 1,5m) - 1(00 = [0, ...,0]) - 1(o1 = o(s0,00,a0)) - ...
-1(opg = 0(sHg—1,0H-1,aH-1)),

where in (a) we note that component o of the state is initialized as a zero vector and then determin-
istically evolves according to o; any sequence of o-vectors that does not evolve according to o has
zero probability under probability measure ]P’go. In (b) we used the fact that any stationary policy
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mo € Ilg for Mo can be mapped to a particular non-Markovian policy 7 € Ilnm in M. In (c)
we recall that, for w = (s, ag, $1,a1, ..., SH-1,a0H-1), Pr [w] = po(s0) - m(ap|ho) - P*(s0,51) -
7T(a1|h1) - P (51, 82) .. PaH-2 (SH—27 5H—1) . 7T(aH_1|hH_1).

Now, for any stationary policy mo € Ilg, it holds that
Jo(mo) = E [co({sr,0n})]
= Y P2 [wolco({su,0n})

wo€Qo

Z P [w]- P~ (sg_1,8m) 1(og =10,...,0]) - 1(0; = 0(s0,00,a0)) - ...

wo €N

1—
‘1loxg =0(sH-1,00-1,a1-1))f (1_77}101{)

(é) Z ]P)ﬂ— [(JJ] . PGH—1(8H7178H) . 1(00 = [0, . ,OD . 1(01 = U(S(),O(ha())) .

wo€QNo

-1(og = o(sg—1,08-1,a5-1))f (dZH)

apILCFIC D D DE L]

weN 00,01,...,00 €O sgES
1(og =10,...,0]) - 1(01 = 0(80,00,a0)) - ... - 1(og = o(sg—1,0H-1,aH-1))
D Pl £ (dnH)
weN
=E[f(@™")]
= F1,m(m),

where in (a) we noted that, for any wo € Qo, f (11:71, 0H> = f(dZ). In (b), we split the sum
over wo € o as a sum over w € €, a sum over each possible vector o € O across all timesteps,
and a sum over the final state sy € S (not included in w). We also rearranged the sums by noting
that some terms do not depend on some of the sums. In (c) we note that the inner sums over the

o-vectors and sy equal one.

Hence, we have proven that, for any H € N and 7 € Iy, Fi g(m) = Jo(mo) holds, where, in
light of Prop. [2] 7o is the stationary policy for Mg associated with the non-Markovian policy 7 for
M. Given this result, and due to the one-to-one mapping between non-Markovian policies for My
and stationary policies for Mg, it holds for any 7 € Iy that

Ru(m) =Fiu(r)— min {Fn(ma)} = Jo(mo) — min Jo(m5),
o

and the conclusion follows. O

B.6 PROOF OF THEOREM[3]

Theorem 3| (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F'| g and a threshold value A € R, it is NP-Hard to determine whether there exists a policy
7 € URy, satisfying Fy g (m) < A

Proof. We reduce the subset sum problem to the policy existence problem in GUMDPs with objec-
tive I p. The subset sum problem asks, given a set N = {ng,n1,...,my—1} of N non-negative
integer numbers and a target sum k£ € N, whether there exists a subset of the numbers such that the
sum of the elements in the set is k. The policy existence problem is: given a GUMDP with objective
Fy g and a threshold value \ € R, does there exist a policy 7 € IIXy; such that Fy g () < \.

We map every instance of the subset sum problem as a GUMDP as follows: (i) the state space is
S = {s0,81,-..,8n}; (ii) the action space iS A = {@include, Gnotinclude |5 (i) P*(s;+1]s;) = 1 and
zero otherwise for any a € Aandi € {0,...,N — 1}, and P*(sy|sy) = 1 for any a € A; (iv)
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po(so) = 1 and zero otherwise. We provide an illustration of the GUMDP in Fig. E} We describe a
discounted occupancy for GUMDP above defined with the vector
d = [d(s0, Gincude ), A(50, Gnotinclude )s A(S1; Ginclude )s A(51; Gnot-inelude ) - - - »
d(SN—1, Ginclude) A(S N —1, Gnotiinclude ), A(SN'; Ginclude )s A(SN s Gnot-include )] -
Then, we set H > N and let f(d) = (n"d — k)?, where
1—~H 1—~H 1—v

n = no,O, nl,O,...
1—x (T=7)y

H

7W”N—1707070 :

It holds that
min Fy g(7) = min E [f(dﬂH)] = Z Plw]f(dz ™).

mEllRy mElRy weD

For a given policy 7 € IIR, only one trajectory w € (2 has non-zero probability. The vector d7-*

associated with such a trajectory can be described as follows, for any s; € {0,..., N — 1}: (i) if at
1—~y .

state s;, T selects dineiuge then entry d™H (s;, dincude) = 1_;}1 v and d™H (s;, Gnotinetude) = 0; (ii)

if at state s;, 7 selects @notinclude then entry d%(s;, aineluge) = 0 and entry d7 (s;, anoinclude) =

11:%, ~*. The action selected at sy is irrelevant since it does not affect the objective value. The

intuition behind the GUMDP above defined is that, at each state s; for i € {0,..., N — 1}, the
policy needs to decide on whether to select action ajnciuge and, therefore, include term n; in the sum,
or to select action aGperinclude and, therefore, not include term n; in the sum. We build the vector
n to reflect such behavior, where each entry in m associated with the state s; and action ajncjude

H
has a normalizing constant of ﬁ to account for the fact that the occupancy is discounted, as

introduced in equation E] Thus, it can be seen that every policy 7 € 11X, will induce a particular
trajectory w € 2 with probability one and the sum of the numbers selected by the policy is given by
n"d™ . Finally, the objective is such that f(d) = 0 if and only if the sum of the selected numbers
equals k. The policy existence problem then asks whether there exists a policy 7 € IIR); such that
Fy g(m) < A\ By setting A = 0 we are asking whether there exists a policy such that Fy g (7) < 0.
Since f(d) = 0 if and only if the sum of the selected numbers equals k, we completed our reduction

from the subset problem to the policy existence problem in GUMDPs with objective F f. O
Qinclude Ginclude Ginclude
BegO=
Gnot-include Gnot-include Gnot-include

Figure 4: GUMDP instance used in the NP-Hardness proof.

C SUPPLEMENTARY MATERIALS FOR SEC.[3]

C.1 TASKS AND ENVIRONMENTS

We consider three tasks: (i) maximum state entropy exploration (Hazan et al) 2019), where the
objective is to visit all state-action pairs as uniformly as possible; imitation learning (Abbeel &
Ng, 2004), where the objective is to imitate a given behaviour policy; and (iii) adversarial MDPs
(Rosenberg & Mansour, 2019), where an adversary player selects the cost function that yields the
highest cost. We refer to Sec. [2.3] for the exact definition of the objective function for each of
these tasks. We normalize all objective functions to lie in the [0, 1] interval. We consider two sets
of environments. The first set corresponds to the illustrative GUMDPs depicted in Fig. [I] each
associated with one of the tasks. The second set of environments come from the OpenAl Gym
library (Brockman et al., 2016). We consider the FrozenLake (FL), the Taxi, and the Mountaincar
(MC) environments. For the MC environment, we partitioned the original state space using equally
spaced bins (we consider 10 bins per dimension). For the FL, Taxi and MC environments, the task
of imitation learning consists in imitating and approximately optimal policy.
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C.2 EXPERIMENTAL METHODOLOGY, BASELINES, AND HYPERPARAMETERS

We perform 10 runs per experimental setting and report the 90% bootstrapped confidence interval.
We let v = 0.9. We consider two baselines. The first baseline is the random policy, Trangom- The
second baseline is the optimal policy for the infinite trials formulation equation |2 73, that we
calculate by solving a constrained optimization problem with objective f using the Gurobi optimizer
(Gurobi Optimization, LLC, 2025). More precisely, to compute 75, We first solve the following
optimization problem:
d* = argmin f(d),
deD

D ={d e RISIM . d(s,a) > 0Vs,a, Zd(s, a) = (1 —)po(s) + ’yzpa(s\sl)d(s', a) Vs}

Then, we let 7., (a|s) = d*(s,a)/ ", d*(s,a’). For the illustrative GUMDPs we directly use
the respective initial states distribution, pg, and the transition probablity matrix, P®. For the case of
the OpenAl Gym environments we run a samling procedure to first estimate py and P¢, and then we
feed the estimated quantities to the optimization solver.

We denote the policy induced by our MCTS algorithm as mycrs.  We use 4000 as
the default number of iterations of the MCTS algorithm, but we also provide results for
10, 20, 50, 100, 500, 1000, 2000, 3000, 4000 iteration steps. We submit our code in the zip file with
our submission.

Our experiments required modest computational resources, with each experimental setting running
in under an hour on a CPU cluster.

C.3 COMPLETE EXPERIMENTAL RESULTS

C.3.1 MAXIMUM STATE ENTROPY EXPLORATION, M ;

0.15 020 —— MCTS planner
0.6
0.15
_0.10 — 4L o
® & L 04
= =0.10 &
= =
0.05 0.2
0.05
) T I 0.0
0.00 0.00 0 1000 2000 3000 4000
7 = Random =Tk T =) 7 = Random =Tk T=Tyer Expansion steps
(2) (b) ©

Figure 5: Maximum state entropy exploration, My q: (a) - Mean single-trial objective Fy ()
obtained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective Fi g (7) obtained by different policies. (c) - Mean single-trial
objective F () obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.
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C.3.2 MAXIMUM STATE ENTROPY EXPLORATION, FROZENLAKE

0.55 0.8
0.60 —— MCTS planner
. 0.7
0.50 0.5
= € 0.50 =06
=045 <
045 =~ 0.45 0.5
0.40
0.40 04
0.35 0 1000 2000 3000 4000
T = TRandom =T =Ty T = T Random =175 T =Thor Expansion steps
(a) (b) ©

Figure 6: Maximum state entropy exploration, FrozenLake: (a) - Mean single-trial objective
F1 g () obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective Fy p(7) obtained by different policies. (c) - Mean
single-trial objective F; () obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,
lower is better.

C.3.3 MAXIMUM STATE ENTROPY EXPLORATION, TAXI

0.68
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0.62 0.62
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Figure 7: Maximum state entropy exploration, Taxi: (a) - Mean single-trial objective F g (7) ob-
tained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective F g (7) obtained by different policies. (c) - Mean single-trial
objective F p () obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.
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C.3.4 MAXIMUM STATE ENTROPY EXPLORATION, MOUNTAINCAR
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Figure 8: Maximum state entropy exploration, Mountaincar: (a) - Mean single-trial objective
F1 g () obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective Fy p(7) obtained by different policies. (c) - Mean
single-trial objective F; () obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,

lower is better.

C.3.5 IMITATION LEARNING, M o
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Figure 9: Imitation learning, M 5: (a) - Mean single-trial objective Fi_g () obtained by different

policies. Error bars correspond to the 90% mean confidence interval. (b) -

Distribution of the single-

trial objective Fi g (7) obtained by different policies. (c) - Mean single-trial objective Fy ()
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.
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C.3.6 IMITATION LEARNING, FROZENLAKE
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Figure 10: Imitation learning, FrozenLake: (a) - Mean single-trial objective F; g (m) obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F; () obtained by different policies. (c) - Mean single-trial objective
F1 g (m) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.7 IMITATION LEARNING, TAXI
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Figure 11: Imitation learning, Taxi: (a) - Mean single-trial objective Fy () obtained by different
policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-
trial objective F r(m) obtained by different policies. (c) - Mean single-trial objective Fy ()
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.
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C.3.8 IMITATION LEARNING, MOUNTAINCAR
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Figure 12: Imitation learning, MountainCar: (a) - Mean single-trial objective F () obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F; () obtained by different policies. (c) - Mean single-trial objective
F1 g (m) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.9 ADVERSARIAL MDP
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Figure 13: Adversarial MDP: (a) - Mean single-trial objective F g () obtained by different poli-
cies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-trial
objective Fy p () obtained by different policies. (c) - Mean single-trial objective F g () obtained
by the MCTS-based algorithm as a function of the number of expansion steps. Shaded areas corre-
spond to the 90% mean confidence interval. Across all plots, lower is better.
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