
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOLVING GENERAL-UTILITY MARKOV DECISION
PROCESSES IN THE SINGLE-TRIAL REGIME WITH ON-
LINE PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we contribute the first approach to solve infinite-horizon discounted
general-utility Markov decision processes (GUMDPs) in the single-trial regime,
i.e., when the agent’s performance is evaluated based on a single trajectory. First,
we provide some fundamental results regarding policy optimization in the single-
trial regime, investigating which class of policies suffices for optimality, casting
our problem as a particular MDP that is equivalent to our original problem, as well
as studying the computational hardness of policy optimization in the single-trial
regime. Second, we show how we can leverage online planning techniques, in par-
ticular a Monte-Carlo tree search algorithm, to solve GUMDPs in the single-trial
regime. Third, we provide experimental results showcasing the superior perfor-
mance of our approach in comparison to relevant baselines.

1 INTRODUCTION

Markov decision processes (MDPs) have found a wide range of applications in different domains
such as inventory management (Dvoretzky et al., 1952), queueing control (Stidham, 1978), or op-
timal stopping (Chow et al., 1971). MDPs are also of key importance in the field of reinforcement
learning (RL) Sutton & Barto (2018), where the agent-environment interaction is usually modeled
by resorting to the framework of MDPs. In addition, recent years have seen significant progress in
applying RL techniques to different domains (Mnih et al., 2015; Silver et al., 2017; Lillicrap et al.,
2016), attesting to the flexibility of the MDP framework with respect to objective-specification.

However, despite providing a flexible framework concerning objective-specification, previous re-
search has shown that multiple relevant objectives cannot be easily expressed within the MDP
framework (Abel et al., 2022). Such objectives include, but not limited to, imitation learning (Hus-
sein et al., 2017; Osa et al., 2018), pure exploration problems (Hazan et al., 2019), risk-averse RL
(Garcı́a et al., 2015), diverse skills discovery (Eysenbach et al., 2018; Achiam et al., 2018), con-
strained MDPs (Altman, 1999; Efroni et al., 2020), and adversarial MDPs (Rosenberg & Mansour,
2019). All aforementioned objectives can be cast under the framework of general-utility Markov
decision processes (GUMDPs) (Santos et al., 2024). GUMDPs generalize the framework of MDPs
by allowing the objective to be a non-linear function of the occupancy (the frequency of visitation
of state-action pairs induced when running a given policy on the MDP). Recent works unified such
objectives under the GUMDP framework and proposed algorithms to solve GUMDPs with convex
objectives (Zhang et al., 2020; Geist et al., 2022; Zahavy et al., 2021).

Unfortunately, in GUMDPs, the performance of a given policy may depend on the number of trial-
s/trajectories drawn to evaluate its performance (Mutti et al., 2023; Santos et al., 2024). In fact, the
standard formulation of GUMDPs implicitly assumes the performance of a given policy is evaluated
over an infinite number of trials/trajectories of interaction with the environment. This is problem-
atic because: (i) the infinite trials assumption is violated in many practical application domains
where the objective function depends on the empirical occupancy induced by a small or finite set
of trajectories; and (ii) in general, the optimal policies produced by algorithms from prior research
may perform poorly when evaluated on a limited number of trajectories, as demonstrated by Mutti
et al. (2023). To overcome this issue, previous research introduced a finite-trials formulation for
GUMDPs where the objective function depends on the empirical occupancy induced by a finite set

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of trajectories (Mutti et al., 2023; Santos et al., 2024). Unfortunately, in the finite-horizon setting,
Mutti et al. (2023) show that computing optimal policies for the finite-trials formulation of GUMDPs
is computationally challenging, being significantly harder than its infinite trials counterpart. Specif-
ically, the authors demonstrate that the problem can be reformulated as an “extended MDP” where
the agent must keep track of the history of state-action pairs observed up to each timestep. Mutti
et al. (2023) present preliminary results showing that optimal policies for the extended MDP, com-
puted via dynamic programming techniques, outperform their infinite-trial counterparts. However,
the state space of the extended MDP grows combinatorially with the horizon, limiting the scalability
of the approach to very small problem instances.

In this work, we introduce the first approach for solving GUMDPs in the single-trial regime, i.e.,
when the agent’s performance is evaluated based on a single trial/trajectory. We consider an infinite-
horizon discounted setting, which has been greatly adopted by previous research in the field (Zahavy
et al., 2021; Hazan et al., 2019) and has found important applications in different domains where the
lifetime of the agent is uncertain or infinite. Our key contributions are threefold. First, we establish
fundamental results on policy optimization in the single-trial regime, addressing: (i) which class of
policies suffices for optimality; (ii) how the problem can be cast as an “occupancy MDP” that is
equivalent to our original problem; and (iii) the computational complexity of policy optimization
in the single-trial regime. Technically, our results differ from Mutti et al. (2023) due to the inher-
ent differences between infinite-horizon discounted occupancies and the finite-horizon occupancies
considered by the previous work. Moreover, our occupancy MDP refines the extended MDP from
Mutti et al. (2023), preserves optimality guarantees, and is better suited for practical implementa-
tion. Second, we introduce a Monte-Carlo tree search (MCTS) algorithm to solve the occupancy
MDP, effectively solving the GUMDP in the single-trial regime via online planning. Our approach
provably retrieves the optimal action at each timestep for a sufficiently high number of iterations.
Third, we present experimental results showcasing the superior performance of our approach over
relevant baselines across diverse tasks and environments.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

MDPs (Puterman, 2014) provide a mathematical framework to study sequential decision making
and are formally defined as a tuple M = (S,A, {P a : a ∈ A},p0, c) where: S is the finite state
space; A is the finite action space; {P a : a ∈ A} is a set of transition probability matrices P a, one
for each action a ∈ A; p0 ∈ ∆(S) is the initial state distribution; and c : S × A → R is the cost
function. For a given action a ∈ A, each row of matrix P a satisfies P a(s, ·) ∈ ∆(S), encoding the
probability of transition from state s at the present timestep to any other state at the next timestep
when choosing action a. The interaction takes place as follows: (i) an initial state s0 is sampled
from p0; (ii) at each step t, the agent observes the state of the environment st ∈ S and chooses an
action at ∈ A. Depending on the chosen action, the environment evolves to state st+1 ∈ S with
probability P at(st, ·), and the agent receives a random cost ct with expectation given by c(st, at);
and (iii) the interaction repeats infinitely.

A decision rule πt specifies the procedure for action selection at timestep t. A non-Markovian
decision rule πt, at each timestep t, maps the history of states and actions to a probability distribution
over actions, i.e., πt : S× (S×A)t → ∆(A). A Markovian decision rule does not take into account
the entire history and, instead, maps the last state in the history to a distribution over actions, i.e.,
πt : S → ∆(A). Both non-Markovian and Markovian decision rules can be deterministic if they
consist of mappings of the type πt : S × (S ×A)t → A or πt : S → A, respectively.

A policy π = (π0, π1, . . .) is a sequence of decision rules, one for each timestep. If, for all
timesteps, the decision rules are Markovian or non-Markovian, we say the policy is Markovian
or non-Markovian, respectively. Similarly, if the decision rules are deterministic or stochastic for all
timesteps, we say the policy is deterministic or stochastic, respectively. We denote the class of non-
Markovian policies with ΠNM, the class of Markovian policies with ΠM, the class of non-Markovian
deterministic policies with ΠD

NM, and the class of Markovian deterministic policies with ΠD
M. Finally,

the class of stationary policies, ΠD
S , contains all policies such that the decision rule is the same for

all timesteps. We let ΠS denote the class of stationary deterministic policies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

For a given policy π ∈ ΠNM, the interaction between the agent and the environment is a random
process (s0, a0, s1, a1, . . .). We let ht = (s0, a0, s1, a1, . . . , st) denote a random history up to (in-
cluding) timestep t. We also denote with ht = (s0, a0, s1, a1, . . . , st) ∈ S × (S × A)t a particular
history up to timestep t. The random sequence (s0, a0, s1, a1, . . .) satisfies: (i) P [s0 = s] = p0(s);
(ii) P [st+1 = s′|ht, at] = P at(st, s

′); and (iii) P [at = a|ht] = πt(a|ht). Let (Ω,F ,Pπ) be the
probability space over the sequence of random variables (s0, a0, s1, a1, . . .) that satisfies condi-
tions (i)-(iii) above (Lattimore & Szepesvári, 2020). We write specific trajectories as ω ∈ Ω, with
ω = (s0, a0, s1, a1, . . .). We denote with Pπ [st = s, at = a|s0 ∼ p0] the probability of state-action
pair (s, a) at timestep t under policy π.

The infinite-horizon discounted setting. The discounted cumulative cost objective is Jγ(π) =
E [
∑∞

t=0 γ
tc(st, at)] , where γ ∈ (0, 1) is the discount factor and the expectation is taken over

the random trajectory of state-action pairs (s0, a0, s1, a1, . . .) generated by the interaction be-
tween π and the MDP. It is well-known that the class of stationary policies suffices for optimal-
ity (Puterman, 2014, Theo. 6.2.10) and, hence, we aim to find the optimal policy, π∗, such that
π∗ = argminπ∈ΠS

Jγ(π). The discounted state-action occupancy under policy π is

dπ(s, a) = (1− γ)

∞∑
t=0

γtPπ [st = s, at = a|s0 ∼ p0] . (1)

The expected discounted cumulative cost of policy π can be written as Jγ(π) = c⊤dπ, where
dπ = [dπ(s0, a0), . . . , dπ(s|S|, a|A|)]⊤ and c = [c(s0, a0), . . . , c(s|S|, a|A|)]⊤. Then, the problem
of computing the optimal policy becomes π∗ = argminπ∈ΠS

c⊤dπ , which can be formulated as a
linear program (Puterman, 2014).

2.2 MONTE-CARLO TREE SEARCH

MCTS (Browne et al., 2012; Silver et al., 2017) is a sample-based planning algorithm to approx-
imate optimal policies in MDPs through sequential tree-based search. The search tree alternates
between decision nodes, representing agent actions, and chance nodes, representing stochastic envi-
ronment transitions. At each iteration, MCTS builds and refines a search tree by alternating between
four phases: selection, expansion, simulation, and backpropagation. In the selection phase, the al-
gorithm recursively selects actions at decision nodes according to a tree policy, often based on upper
confidence bounds, and samples successor states at chance nodes according to the environment’s
dynamics, until it reaches a node that has not yet been fully expanded. Then, in the expansion phase,
a new child node corresponding to an unvisited state-action pair is created. In the simulation phase,
a rollout policy (typically random or heuristic) generates a trajectory from the expanded node to
estimate a Monte Carlo return. Backpropagation then updates the statistics (e.g., mean value, visit
counts) along the path traversed during the selection phase. MCTS converges asymptotically to the
optimal action at the root under mild assumptions (Kocsis & Szepesvári, 2006).

2.3 GENERAL-UTILITY MARKOV DECISION PROCESSES

The GUMDP framework generalizes utility-specification by allowing the objective of the agent to
be written in terms of the visitation frequency of state-action pairs. This is in contrast to the MDP
framework, where the objective of the agent is encoded by the cost, a function of state-action pairs.

We define an infinite-horizon discounted GUMDP as a tuple Mf = (S,A, {P a : a ∈ A},p0, f)
where S, A, {P a : a ∈ A}, and p0 are defined in a similar way to the standard MDP formulation.
The objective of the agent is encoded by f : ∆(S × A) → R, as a function of a state-action
discounted occupancy d, as defined in equation 1. The objective is then to find

π∗ = argmin
π∈ΠS

f(dπ). (2)

We highlight that, when f is a linear function, we are under the standard MDP setting; if f is
convex, then we are under the convex MDP setting (Zahavy et al., 2021). In this work, we con-
sider three different tasks, each associated with a particular (convex) objective function: (i) maxi-
mum state entropy exploration (Hazan et al., 2019), where f(d) = d⊤ log(d); (ii) imitation learn-
ing (Abbeel & Ng, 2004), where f(d) = ∥d − dβ∥22 and dβ ∈ ∆(S × A) is the occupancy

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

induced by behavior policy β; and (iii) adversarial MDPs (Rosenberg & Mansour, 2019), where
f(d) = maxk∈{1,...,K} d⊤ck and {c1, . . . , cK} is a set of K cost vectors satisfying ck ∈ R|S||A|.
Nevertheless, our results apply to any task that can be modelled using the GUMDP framework.
We refer to Zahavy et al. (2021) for a comprehensive list of the different objectives considered by
previous works.

2.4 GUMDPS IN THE SINGLE-TRIAL REGIME

In this work, we consider a different objective from the one introduced in equation 2. While equa-
tion 2 depends on the expected discounted occupancy, dπ , the objective we herein introduce depends
on the empirical discounted occupancy induced by running a given policy on the GUMDP. This is
particularly important, as practical applications often require identifying the policy that performs
optimally when evaluated based on a single trajectory of interaction with the environment. Further-
more, as we shall explain next, in GUMDPs the performance of a given policy may depend on the
number of trajectories or trials used to evaluate it (Mutti et al., 2023; Santos et al., 2024).

Discounted empirical state-action occupancies We consider the setting in which the agent inter-
acts with its environment over a single-trial, i.e., a single trajectory. For a given policy π ∈ ΠNM, we
introduce the random vector dπ : Ω → ∆(S × A), which corresponds to the empirical discounted
state-action occupancy associated with the probability space (Ω,F ,Pπ), defined as

dπω(s, a) = (1− γ)

∞∑
t=0

γt1(st = s, at = a), (3)

where 1 is the indicator function. In practice, it is common to truncate the trajectories of interaction
between the agent and its environment. We denote by H ∈ N the truncation horizon and let the
empirical truncated occupancy, dπ,H : Ω → ∆(S ×A), be defined as

dπ,Hω (s, a) =
1− γ

1− γH

H−1∑
t=0

γt1(st = s, at = a). (4)

Single-trial formulation for GUMDPs We now introduce objectives for GUMDPs that depend
on empirical discounted state-action occupancies. The single-trial objective is defined as

F1(π) = E [f(dπ)] , (5)

and we aim to find π∗ = argminπ∈Π F1(π), where Π is an arbitrary policy class we specify later.
The single-trial truncated objective is defined as

F1,H(π) = E
[
f(dπ,H)

]
. (6)

We note that the single-trial truncated objective is more general than the single-trial objective. In
particular, F1,H is equivalent to F1 as H → ∞. The infinite trials1 objective, F∞, is defined as

F∞(π) = f(dπ) = f (E [dπ]) ,

and we aim to find π∗
∞ = argminπ∈ΠS

F∞(π). We note that F∞ is equivalent to the objective
in equation 2, which depends on expected occupancies. The fact that ΠS suffices for optimality
follows from results on the possible state-action occupancies induced by different classes of policies
(Puterman, 2014).

The mismatch between F1 and F∞ Previous works pointed out important differences between
the single and infinite trials formulations for GUMDPs (Mutti et al., 2023; Santos et al., 2024). In
particular, it has been shown that, in general, the performance of a given policy under the single and
infinite trials formulations differs and, consequently, the optimal policy for each objective may also
differ. This occurs because, since f may be non-linear, it can happen that F1(π) = E [f(dπ)] ̸=
f (E [dπ]) = F∞(π). We refer to Santos et al. (2024) for explicit lower bounds on the performance
difference between F1 and F∞. Naturally, when f is linear, as it is the case in standard MDPs, then

1We call F∞ the infinite trials objective because, as the number of sampled trajectories/trials approaches
infinity, the mismatch between GUMDPs that depend on empirical and expected occupancies fades away.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the single and infinite trials formulations become equivalent due to the linearity of the expectation.
However, due to the mismatch between the single and infinite trials formulations, and given that the
single-trial formulation is particularly relevant in practical applications where policy performance is
assessed based on a single trajectory of interaction with the environment, we focus in this work on
finding (approximately) optimal policies for the single-trial objective, F1.

3 POLICY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In this section, we establish the fundamental results that underpin the development of online plan-
ning algorithms to solve GUMDPs in the single-trial regime. Specifically, we investigate: (i) which
class of policies suffices for optimality; (ii) how we can focus on the truncated single-trial objective,
F1,H , to compute approximately optimal policies for the single trial objective, F1; (iii) how we can
cast our single-trial GUMDP problem as an MDP in which the agent keeps track of the accrued
occupancy at every timestep of the interaction with the GUMDP; and (iv) the computational com-
plexity of policy optimization in the single-trial regime. We let R(π) = F1(π)−minπ′∈ΠNM F1(π

′)
be the regret of an arbitrary policy π ∈ ΠNM with respect to the single-trial objective introduced in
equation 5. Intuitively, the regret measures how suboptimal a given policy π is compared to the best
policy. Throughout our work, we make use of the following assumption.

Assumption 1. The objective function f is L-Lipschitz with L ∈ R+, i.e., |f(d1) − f(d2)| ≤
L∥d1 − d2∥1 for any d1,d2 ∈ ∆(S ×A).

We refer to Appendix A for the Lipschitz constants of the objective functions considered.

3.1 NON-MARKOVIANITY MATTERS

We start by investigating which class of policies suffices for optimality. We have the following result
(proof in Appendix B.1).

Theorem 1. There exists a GUMDP Mf with γ ∈ (0, 1) and L-Lipschitz convex objective such
that:

1. F1(πS) > F1(πM), for some πM ∈ ΠM and any πS ∈ ΠS.

2. F1(πM) > F1(πNM), for some πNM ∈ ΠNM and any πM ∈ ΠM.

The result above shows that, in general, the class of stationary policies is strictly dominated by the
class of non-stationary policies, which is, in turn, strictly dominated by the class of non-Markovian
policies. Hence, non-Markovianity matters, and we must focus our attention on history-dependent
policies. Our Theo. 1 extends the result in Mutti et al. (2023), which considers finite-horizon
GUMDPs, to the infinite-horizon discounted setting.

3.2 COMPUTING (APPROXIMATELY) OPTIMAL POLICIES BY RESORTING TO F1,H

The result below (proof in Appendix B.2) establishes that the regret R(π) of any policy π ∈ ΠNM
can be upper bounded, up to a constant, by the regret of policy π for the single-trial truncated
objective.

Proposition 1 (Regret decomposition). For arbitrary π ∈ ΠNM, it holds that

R(π) ≤ F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}︸ ︷︷ ︸
= RH(π)

+8LγH , (7)

where RH(π) is the regret of policy π under the single-trial truncated objective with horizon H .

Intuitively, the proposition above shows that we can resort to the single-trial truncated objective, as
introduced in equation 6, to find an approximately optimal policy for the original objective defined
in equation 5, up to any desired tolerance. In particular, if π is the optimal policy for the single-
trial truncated objective, i.e., RH(π) = 0, then it holds that R(π) ≤ 8LγH , which can be made

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

arbitrarily small by tuning our truncation horizon H . Therefore, we focus our attention on how to
compute

π∗ = argmin
π∈ΠNM

F1,H(π) = argmin
π∈ΠNM

E
[
f(dπ,H)

]
, (8)

in order to keep the truncated regret term RH(π) low, which we investigate in the next section.

3.3 THE OCCUPANCY MDP: CASTING Mf AS A STANDARD MDP

To derive our planning algorithms for solving GUMDPs in the single-trial truncated setting, we
derive a finite-horizon MDP based on the original GUMDP. In particular, we consider the occupancy
MDP defined by the tuple MO = {SO,AO, {P a

O},p0,O, cO, H}, where SO = S × O is the discrete
state space and

O =

{
o ∈ R|S||A| : o(s, a) =

l−1∑
t=0

γt1(st = s, at = a),∀s ∈ S, a ∈ A,

(s0, a0, . . . , sl) ∈ S × (S ×A)l, 1 ≤ l ≤ H − 1

}⋃{
[0, . . . , 0] ∈ R|S||A|

}
.

We denote a state of the occupancy MDP with the tuple {s,o}, where s ∈ S is a state from the
original GUMDP and o ∈ O is a |S||A|-dimensional vector that keeps track of the running occu-
pancy of the agent up to a given timestep. Intuitively, the running occupancy records the empirical
occupancy, as defined in equation 3, observed by the agent up to any timestep. We let AO = A
be the action space. We define p0,O such that p0,O({s,o}) = p0(s) if o = [0, . . . , 0] and zero
otherwise. The dynamics are as follows: (i) component st+1 ∼ P at(·|st) evolves according to
the dynamics of the original GUMDP; and (ii) the running occupancy evolves deterministically as
ot+1(s, a) = γt+ ot(s, a) if s = st and a = at, and ot+1(s, a) = ot(s, a) otherwise. We emphasize
that we do not need to incorporate the timestep in the state of the occupancy MDP since it can be
inferred from the running occupancy by summing its entries. Finally, H ∈ N denotes the horizon of
the MDP and the cost function cO : S ×O → R is defined as

cO({s,o}) =
{
0 if t < H,

f
(

1−γ
1−γH o

)
if t = H.

Stationary policies πO ∈ ΠS for MO are mappings of the type πO : S × O → ∆(A). We let the
cumulative cost under MO be

JO(πO) = E

[
H∑
t=0

cO({st,ot})
]
= E [cO({sH ,oH})] , (9)

where the expectation above is taken with respect to the random sequence of states
({s0,o0}, . . . , {sH ,oH}) under policy πO. We let J∗

O = minπO∈ΠD
S
JO(πO) be the optimal cumula-

tive cost for MO. We also note that the occupancy MDP possesses well-defined (optimal) value and
action-value functions, which can be shown to satisfy standard Bellman equations (Appendix B.3).

We present the following result, relating states in MO to histories in Mf (proof in Appendix B.4).
Proposition 2 (One-to-one mapping between histories in Mf and states in MO). There exists a
one-to-one mapping between histories hl = (s0, a0, s1, a1, . . . , sl) ∈ S × (S × A)l in Mf , with
0 ≤ l ≤ H − 1, and states {s,o} ∈ S ×O in MO.

An important conclusion that follows from the result above is that there exists a one-to-one mapping
between non-Markovian policies for Mf and stationary policies for MO. This holds because every
state in MO is uniquely associated with a particular history in Mf (and vice versa). With this in
mind, we now state the following result (proof in Appendix B.5), which connects the problem of
solving the occupancy MDP and the problem of solving the single-trial truncated GUMDP objective.
Theorem 2 (Solving Mf is “equivalent” to solving MO). The problem of finding a policy π ∈ ΠNM

satisfying RH(π) ≤ ϵ, for any ϵ ∈ R+
0 , can be reduced to the problem of finding a policy πO ∈ ΠS

satisfying JO(πO) − J∗
O ≤ ϵ. In particular, if π∗

O = argminπO∈ΠS
JO(πO), then the corresponding

non-Markovian policy π in Mf satisfies RH(π) = 0. Finally, it holds that RH(π) = JO(πO)−J∗
O,

where πO is the stationary policy for MO associated with the non-Markovian policy π for Mf .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Intuitively, the result above tells us that it suffices to search for an approximately stationary optimal
policy for MO, since such a policy corresponds to a non-Markovian policy that is approximately
optimal for Mf . In particular, an approximately optimal policy for MO can be seen as a non-
Markovian policy for Mf that compresses the history up to any timestep into a running occupancy.
This result demonstrates that maintaining the running occupancy up to any timestep is sufficient to
achieve optimal behavior in the single-trial truncated-horizon regime equation 8.
Remark 1 (Deterministic policies suffice for optimality). Since the class of policies ΠD

S suffices for
optimality in standard MDPs (Puterman, 2014), we know that at least one stationary deterministic
policy πO ∈ ΠD

S for MO satisfies JO(πO)− J∗
O = 0, i.e., πO is optimal for MO. In light of Theo. 2

and Prop. 2, this implies that the corresponding non-Markovian policy π ∈ ΠNM for Mf , which is
deterministic, satisfies RH(π) = 0, i.e., π is optimal for Mf . Thus, we can focus our attention on
deterministic non-Markovian policies when solving Mf with objective F1,H , i.e., for any GUMDP
and horizon H ∈ N, it holds that minπ∈ΠNM F1,H(π) = minπ∈ΠD

NM
F1,H(π).

Given Theo. 2, we consider planning algorithms to solve the occupancy MDP. Unfortunately, solving
the occupancy MDP poses some challenges: (i) the cost function of the occupancy MDP is rather
sparse since it is only non-zero at the last timestep; (ii) the size of the state space of the occupancy
MDP grows combinatorially with H since every state in the occupancy MDP is associated with
a possible history in Mf ; and (iii) every state in the occupancy MDP is visited at most once per
trajectory. Therefore, before investigating how we can solve the occupancy MDP in Sec. 4, we take
a closer look at how hard it is, from a worst-case perspective, to compute the optimal policy in
GUMDPs in the single-trial regime.

It is worth noting that the occupancy MDP is conceptually related to the extended MDP proposed
by Mutti et al. (2023) for the case of undiscounted finite-horizon GUMDPs. While the extended
MDP explicitly tracks the full history up to the current timestep, we show that this information
can be compressed into a running occupancy without sacrificing optimality guarantees. Since there
exists a one-to-one mapping between states of the occupancy MDP and histories, the size of the
state space of both formulations is equivalent. However, the compressed representation used by the
occupancy MDP is more amenable to practical implementations since the running occupancy can be
incrementally updated as the agent interacts with its environment. Despite these similarities, a key
distinction lies in the setting: Mutti et al. (2023) consider the finite-horizon undiscounted setting,
whereas we focus on the discounted setting. Discounting plays a crucial role in our analysis (e.g.,
Proposition 2) and it remains unclear whether similar results hold in the undiscounted case. This
highlights a fundamental difference between our work and that of Mutti et al. (2023).

3.4 HARDNESS RESULT FOR POLICY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In the previous section, we established that it suffices to search over the class of policies ΠD
NM

in order to attain optimal policies for any GUMDP and horizon H ∈ N with respect to ob-
jective F1,H(π) = E

[
f(dπ,H)

]
. We now show that there exist GUMDPs for which solving

π∗ = argminπ∈ΠD
NM

F1,H(π) can be computationally hard. More precisely, we prove that the prob-
lem of deciding whether there exists a policy π ∈ ΠD

NM such that F1,H(π) ≤ λ, where λ ∈ R is a
threshold value, is NP-Hard.
Theorem 3 (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F1,H and a threshold value λ ∈ R, it is NP-Hard to determine whether there exists a policy
π ∈ ΠD

NM satisfying F1,H(π) ≤ λ.

Proof sketch. (Complete proof in Appendix B.6) We reduce the subset sum problem to the policy
existence problem in GUMDPs with objective F1,H . The subset sum problem asks whether, given
a set N = {n0, n1, . . . , nN−1} of N non-negative integers and a target sum k ∈ N, there exists
a subset of N whose elements sum to k. We map every instance of the subset sum problem as a
GUMDP such that at each state si, for i ∈ {0, . . . , N − 1}, the policy π ∈ ΠD

NM needs to decide
between selecting: (i) ainclude, thereby including ni in the sum; or (ii) anot-include, thereby excluding
ni from the sum. Then, we set H ≥ N and let f(d) = (n⊤d− k)2, where d denotes a discounted
occupancy that captures information regarding the actions selected by the agent at each state si. We
construct vector n ∈ R|S||A| such that n⊤d equals the sum of the numbers selected by the policy.
With this construction, the objective satisfies f(d) = 0 if and only if the sum of the selected numbers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

equals k. By setting λ = 0, we are asking whether there exists a policy such that F1,H(π) ≤ 0.
Since f(d) = 0 if and only if the selected numbers sum to k, the reduction is complete.

We note that the objective function f used in the proof of the result above is Lipschitz and (strictly)
convex. Thus, our result shows that, even for smooth convex objectives, the computational hardness
of computing the optimal policy in the single-trial regime is NP-Hard. Mutti et al. (2023) present a
hardness result for the single-trial optimization problem in the case of undiscounted finite-horizon
GUMDPs. Our theorem extends this result to the discounted case. In addition, our proof is signifi-
cantly simpler - a one-step reduction - compared to the NP-hardness argument in Mutti et al. (2023),
which relies on complexity results for partially observable MDPs. Furthermore, our result is more
informative, as it shows that the hardness persists even when the objective f is smooth and convex.

With the above hardness result in mind, we next explore how to develop practical planning al-
gorithms for our problem. Naturally, in a worst-case sense, these algorithms may require a non-
polynomial number of steps to retrieve the optimal policy. Nevertheless, our results show it is
possible to develop practical algorithms that are superior in comparison to relevant baselines.

4 ONLINE PLANNING FOR GUMDPS IN THE SINGLE-TRIAL REGIME

In this section, we investigate how we can solve the occupancy MDP introduced in the previous
section by resorting to online planning techniques.

As previously shown, solving a GUMDP in the single-trial setting is closely related to solving a
corresponding occupancy MDP. This connection allows us to employ an online planning approach
in which, at any timestep t ∈ {0, . . . ,H − 1} of the interaction with the occupancy MDP, the algo-
rithm receives the current state {st,ot}. The online planner then expands a look-ahead search tree
where the root node corresponds to state {st,ot}. After a given number of iterations, the planning
algorithm selects an action to execute in the environment; depending on the selected action, the en-
vironment evolves to a new state, and the process repeats until timestep H . This online planning
strategy is particularly effective, as it allows computational resources to be focused on computing
(approximately) optimal actions only along the specific trajectory experienced by the agent. This
avoids the prohibitive cost of computing an optimal policy for every state of the occupancy MDP.

4.1 MONTE-CARLO TREE SEARCH FOR GUMDPS IN THE SINGLE-TRIAL REGIME

We employ an MCTS algorithm to solve the occupancy MDP. As described in Sec. 2.2, the search
tree of the online planning algorithm comprises decision and chance nodes. In the context of the
occupancy MDP, each decision node corresponds to an action a ∈ A, while each chance node
corresponds to a given state {s,o} ∈ S ×O of the occupancy MDP. At timestep t of the interaction,
the MCTS algorithm builds a planning tree rooted at the current state {st,ot}, following the four
phases outlined in Sec. 2.2 at each iteration.

Remark 2. Assume that the objective function is bounded in its domain, i.e., fmin ≤ f(d) ≤ fmax,
for any d ∈ ∆(S × A). Then, for any horizon H ∈ N, the MCTS algorithm provably solves
the occupancy MDP as the number of iterations of the algorithm per timestep grows to infinity.
Furthermore, for any horizon H ∈ N, we have that R(πMCTS) ≤ 8 L

fmax−fmin
γH as the number of

iterations of the algorithm per timestep grows to infinity, where we let πMCTS be the policy induced
by the MCTS algorithm at each timestep. This result follows from our Theo. 2 and Theo. 6 in Kocsis
& Szepesvári (2006) by rescaling the objective function to lie in the [0, 1] interval.

5 EXPERIMENTAL RESULTS

In this section, we empirically assess the performance of the proposed MCTS-based algorithm for
solving GUMDPS in the single-trial setting. Below, we provide a brief description of the considered
tasks and environments. We refer to Appendix C for a complete description of our experiments.

Tasks, environments, baselines, and experimental methodology We consider three tasks: (i)
maximum state entropy exploration (Hazan et al., 2019); imitation learning (Abbeel & Ng, 2004);

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 0 2

a0a0a0

a1a1

a1

(a) Mf,1 (Entropy max.) and
Mf,3 (Adversarial MDP) .

1 0

a0a0a1

a1

(b) Mf,2 (Imitation
learning).

(s
0 , a

0)

(s
0 , a

1)

(s
1 , a

0)

(s
1 , a

1)

(s
2 , a

0)

(s
2 , a

1)

0.5

1.0

1.5

2.0

C
os

t

, c2 : , c3 :c1 :)(

(c) Mf,3 costs (Adversarial MDP).

Figure 1: Illustrative GUMDPs. Mf,1 and Mf,3 share the same dynamics but differ in the objective
function. In all GUMDPs, the chosen action succeeds with 90% probability and, with 10% probabil-
ity, the agent randomly moves to any of the states. The behavior policy for Mf,2 is β(a0|s0) = 0.8
and β(a0|s1) = 0.2. In (c), we plot the three cost functions, c1, c2 and c3, of the adversarial MDP.

Table 1: Mean single-trial objective, F1,H(π), obtained by different policies, across tasks and envi-
ronments. Values in parentheses correspond to the 90% mean conf. interval. Lower is better.

Maximum state entropy exploration Imitation learning Adversarial
MDP

Policy Mf,1 FL Taxi MC Mf,2 FL Taxi MC Mf,3

πRandom
0.12

(-0.04,+0.04)
0.51

(-0.03,+0.03)
0.65

(-0.01,+0.01)
0.72

(-0.02,+0.02)
0.05

(-0.02,+0.02)
0.07

(-0.02,+0.02)
0.08

(-0.01,+0.01)
0.18

(-0.04,+0.04)
1.23

(-0.02,+0.02)

π∗
Solver

0.05
(-0.02,+0.02)

0.48
(-0.03,+0.03)

0.63
(-0.01,+0.01)

0.70
(-0.03,+0.03)

0.02
(-0.01,+0.01)

0.05
(-0.02,+0.02)

0.05
(-0.001,+0.002)

0.07
(-0.01,+0.02)

1.17
(-0.02,+0.02)

πMCTS
0.01

(-0.01,+0.01)
0.40

(-0.03,+0.03)
0.59

(-0.0,+0.0)
0.61

(-0.02,+0.01)
0.002

(-0.001,+0.001)
0.02

(-0.005,+0.006)
0.05

(-0.002,+0.002)
0.04

(-0.01,+0.01)
1.07

(-0.003,+0.004)

and (iii) adversarial MDPs (Rosenberg & Mansour, 2019). We consider two sets of environments.
The first set consists of the illustrative GUMDPs depicted in Fig. 1, each associated with one of the
tasks. The second set of environments come from the OpenAI Gym library (Brockman et al., 2016).
We consider the FrozenLake (FL), Taxi, and mountaincar (MC) environments. The framework of
GUMDPs is defined over discrete state spaces; hence, we discretized the MC environment using
a 10 × 10 grid with equally-spaced bins. For the FL, Taxi, and MC environments, the task of
imitation learning consists in imitating an approximately optimal policy. We let γ = 0.9 and set
H = 100 for the illustrative GUMDPs and H = 200 for the other environments. We perform
10 runs per experimental setting. We consider two baselines: (i) a random policy, πRandom; and
(ii) the optimal policy for the infinite trials formulation equation 2, π∗

Solver, calculated by solving a
constrained optimization problem with objective f via a standard optimization solver. We denote the
policy induced by our MCTS algorithm as πMCTS and consider 4000 iterations per timestep (results
with other numbers of iterations in the Appendix C). Our code is attached to the submission.

Experimental results discussion We present our experimental results in Tab. 1. As seen, across
nearly all experimental settings, πMCTS outperformed the baselines, showcasing the superior perfor-
mance of our approach (the only exception is for the Taxi environment under the imitation learning
task where the performance of πMCTS is similar to that of π∗

Solver). We highlight the gains attained by
πMCTS in comparison to the infinite trials policy, π∗

Solver.

6 CONCLUSION & LIMITATIONS

In this work, we contribute with the first approach to solve infinite-horizon discounted GUMDPs in
the single-trial regime. In Sec. 3, we provided the fundamental results underpinning policy optimiza-
tion in the discounted single-trial regime. Then, in Secs. 4 and 5, we explored how we can resort
to online planning techniques, in particular MCTS, to solve discounted GUMDPs in the single-trial
regime. Our work takes a first step towards a broader application of GUMDPs in real-world settings
where the agent’s performance is typically evaluated under a single trial. The key limitations of
our approach to solve GUMDPs in the single-trial regime are: (i) the MCTS algorithm requires a
simulator of the environment to sample transitions; and (ii) the size of the matrix that keeps track
of the running occupancy may be impractical for GUMDPs with large state and action spaces. We
believe such limitations should be addressed by future work, for example, by investigating methods
to compress the running occupancy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, pp.
1, 2004.

David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup, and
Satinder Singh. On the expressivity of markov reward, 2022.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms, 2018.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, 2012.

Y.S. Chow, H. Robbins, and D. Siegmund. Great Expectations: The Theory of Optimal Stopping.
1971. ISBN 9780395053140.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. The inventory problem: Ii. case of unknown distributions
of demand. Econometrica, 20(3):450–466, 1952.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
CoRR, abs/2003.02189, 2020.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function, 2018.

Javier Garcı́a, Fern, and o Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(42):1437–1480, 2015.

Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem,
Rémi Munos, and Olivier Pietquin. Concave utility reinforcement learning: the mean-field game
viewpoint, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL https://www.
gurobi.com.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum en-
tropy exploration. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 2681–2691, 2019.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2), apr 2017.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine Learning:
ECML 2006, pp. 282–293, 2006.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

10

https://www.gurobi.com
https://www.gurobi.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Convex rein-
forcement learning in finite trials. Journal of Machine Learning Research, 24(250):1–42, 2023.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 7(1–2):
1–179, 2018. ISSN 1935-8261.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. CoRR, abs/1905.07773, 2019.

Pedro P. Santos, Alberto Sardinha, and Francisco S. Melo. The number of trials matters in infinite-
horizon general-utility markov decision processes, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Shaler Stidham. Socially and individually optimal control of arrivals to a gi/m/1 queue. Management
Science, 24(15):1598–1610, 1978.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Inc. Wolfram Research. Mathematica, Version 14.2. Champaign, IL, 2024.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
for convex mdps. CoRR, abs/2106.00661, 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational
policy gradient method for reinforcement learning with general utilities, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LIPSCHITZ CONSTANTS

Table 2: Common objective functions found in the GUMDPs literature. In (†) we assume d is lower
bounded by ϵ satisfying 0 < ϵ < e−2.

Task Objective (f(d)) Lipschitz constant (L)

MDPs/RL d⊤c, c ∈ R|S||A| maxs,a |c(s, a)|
Pure exploration d⊤ log(d) | log(ϵ) + 1| (†)

Imitation learning ∥d− dβ∥22, dβ ∈ ∆(S ×A) 4

Adversarial MDPs maxk∈{1,...,K} d⊤ck maxk∈{1,...,K} {maxs,a |ck(s, a)|}

Objective function f(d) = c⊤d It holds that

|f(d1)− f(d2)| = |c⊤(d1 − d2)| =
∑
s,a

|c(s, a)||d1(s, a)− d2(s, a)| ≤ max
s,a

|c(s, a)|∥d1 − d2∥1.

Objective function f(d) = d⊤ log(d) We assume d is lower bounded by ϵ, i.e., d(s, a) ≥ ϵ with
0 < ϵ < e−2 for all s ∈ S, a ∈ A. We let f(d) =

∑
s,a g(d(s, a)), for g(x) = x log(x). We note

that, g′(x) = log(x) + 1 and it holds for any x ∈ [ϵ, 1] that |g′(x)| ≤ | log(ϵ) + 1|. Thus, for any
x1, x2 ∈ [ϵ, 1] we have that

|g(x1)− g(x2)| =
∣∣∣∣∫ x1

x2

g′(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫ max{x1,x2}

min{x1,x2}
g′(x)dx

∣∣∣∣∣
≤
∫ max{x1,x2}

min{x1,x2}
|g′(x)| dx ≤

∫ max{x1,x2}

min{x1,x2}
|log(ϵ) + 1| dx

= |log(ϵ) + 1| |x1 − x2|.

Thus, for any d1,d2 ∈ ∆(S ×A) lower bounded by 0 < ϵ < e−2, it holds that

|f(d1)− f(d1)| =
∣∣∣∣∣∑
s,a

(g(d1(s, a))− g(d2(s, a)))

∣∣∣∣∣
(a)

≤
∑
s,a

|g(d1(s, a))− g(d2(s, a))|

≤
∑
s,a

|log(ϵ) + 1| |d1(s, a)− d2(s, a)|

= |log(ϵ) + 1| ∥d1 − d2∥1
were (a) follows from the triangular inequality.

Objective function f(d) = ∥d− dβ∥22 It holds that ∇f(d) = 2(d− dβ). Now,
max

d∈∆(S×A)
∥∇f(d)∥1 = 2 max

d∈∆(S×A)
∥d− dβ∥1 ≤ 2 max

d1,d2∈∆(S×A)
∥d1 − d2∥1 = 4.

Since the function f is continuous and differentiable over the simplex, which is compact, it holds
that L = 4 is a valid Lipschitz constant as it corresponds to an upper bound on the maximum
magnitude of the gradient of f over ∆(S ×A).

B SUPPLEMENTARY MATERIALS FOR SEC. 3

B.1 PROOF OF THEOREM 1

Theorem 1. There exists a GUMDP Mf with γ ∈ (0, 1) and L-Lipschitz convex objective such
that:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

1. F1(πS) > F1(πM), for some πM ∈ ΠM and any πS ∈ ΠS.

2. F1(πM) > F1(πNM), for some πNM ∈ ΠNM and any πM ∈ ΠM.

Proof. To prove our result, we consider the GUMDP depicted in Fig. 2. To simplify our proof,
we consider state-dependent occupancies and denote an occupancy for the GUMDP above with
the vector d = [d(s0), d(s1), d(s2)]. The objective function is f(d) = d⊤Ad, where A =
diag([0, 1, 1]), which is Lipschitz (over ∆(S)) and convex. Under any trajectory it holds that
d(s0) = (1− γ)

∑∞
t=0 γ

2t+1 = (1−γ)γ
1−γ2 . Hence, it holds that, under any trajectory, d(s1) + d(s2) =

1 − (1−γ)γ
1−γ2 = 1−γ

1−γ2 . Thus, we focus our attention to the value of the occupancy at state s1, d(s1),
and let d(s2) = 1−γ

1−γ2 − d(s1). With this, we can define our objective as a function of d(s1) only by
letting f(d(s1)) = d(s1)2 + (1−γ

1−γ2 − d(s1))2.

1

0

2

a1

a2

ϵ

1− ϵ

Figure 2: Illustration of the GUMDP used in the proof of Theo. 1 with S = {s0, s1, s2} and A =
{a1, a2}. The distribution of initial states is p0(s0) = 0, p0(s

1) = ϵ, p0(s
2) = 1 − ϵ, where we set

ϵ = 1/2. All transitions are deterministic and in states s1 and s2 any of the actions takes the agent
back to state s0.

For the first part of the Theorem it holds, for any πS ∈ ΠS, that

F1(πS) = E [f(dπS)]

(a)
= E

[
f(dπS

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s3∼P a2 (·|s2),a3∼πS(·|s3),...

]
(b)
= E

[
E

[
f(dπS

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(c)
= E

[
E

[
f

(
(1− γ)

4∑
t=0

γt1(st = s1) + γ5d̃πS
a5,s6,a6,...(s

1)

)∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(d)

≥ E

[
f

(
(1− γ)

4∑
t=0

γt1(st = s1) + γ5E

[
d̃πS
a5,s6,a6,...(s

1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]

= E

[
f

(
(1− γ)

(
1(s0 = s1) + γ21(s2 = s1) + γ41(s4 = s1)

)
+ (1− γ)E

[∞∑
t=5

γt1(st = s1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

])∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(e)
= E

[
f

(
(1− γ)

(
1(s0 = s1) + γ21(s2 = s1) + γ41(s4 = s1)

)
+ (1− γ)πS(a

1|s0) γ6

1− γ2

)∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
,

where in (a) we emphasized that the random vector dπS depends on random variables
s0, a0, s1, a1, . . .; (b) follows from the fact that s5 = s0 with probability one for trajectories drawn
from the GUMDP, i.e., for any trajectory the state at timestep 5 is always s0, and thus we can

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

split and simplify the expectation. In step (c), we let d̃ be the random vector defined as in equa-
tion 3 for the GUMDP depicted in Fig. 2, but where p0(s

0) = 1 and zero otherwise. Step (d)
follows from Jensen’s inequality since, for any values (s0, a0, s1, a1, . . . , s4, a4) ∈ (S × A)5 the
random variables of the outer expectation can take, it holds that E[g(d̃πS)] ≥ g(E[d̃πS]) where we
let g(x) = f((1 − γ)

∑4
t=0 γ

t1(st = s1) + γ5x), which is convex. Finally, step (e) follows from
the fact that

E

[∞∑
t=5

γt1(st = s1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

]
=

∞∑
t=5

γtPπS

[
st = s1

]
= γ5 · 0 + γ6πS(a

1|s0) + γ7 · 0 + γ8πS(a
1|s0) + . . .

= πS(a
1|s0)

(
γ6 + γ8 + . . .

)
= πS(a

1|s0)
∞∑
t=0

γ2t+6

= πS(a
1|s0) γ6

1− γ2
.

We can now explicitly write the expectation in the last step above, yielding, for any πS ∈ ΠS and
while letting ϵ = 1/2,

F1(πS) ≥
1

2
πS(a

1|s0)2
[
f

(
(1− γ)

(
1 + γ2 + γ4 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ2 + γ4 + πS(a

1|s0) γ6

1− γ2

))]

+
1

2
πS(a

1|s0)(1− πS(a
1|s0))

[
f

(
(1− γ)

(
1 + γ2 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
1 + γ4 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ2 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ4 + πS(a

1|s0) γ6

1− γ2

))]

+
1

2
(1− πS(a

1|s0))2
[
f

(
(1− γ)

(
1 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
πS(a

1|s0) γ6

1− γ2

))]
.

In summary, F1(πS) is lower bounded by the expression above for any policy πS ∈ ΠS. Since f
is a quadratic function, the lower bound above is also a quadratic function with respect to variable
πS(a

1|s0). Thus, we can calculate the minimizer of the lower bound above by computing the gra-
dient with respect to πS(a

1|s0) and setting it to zero. It can be checked that, for any γ ∈ (0, 1),
πS(a

1|s0) = 1/2 minimizes the lower bound above (we provide below a snippet of Mathematica
code that supports this claim). This implies that, for any πS ∈ ΠS, F1(πS) is lower bounded by the
expression above evaluated at πS(a

1|s0) = 1/2, i.e.,

F1(πS) ≥
2− 2γ2 + 2γ4 − 2γ6 + 2γ8 − 2γ10 + γ12

2(1 + γ)2
.

Now, consider the non-stationary policy πM ∈ ΠM that deterministically selects a1 at timesteps
t = 3, 7, 11, . . . and deterministically selects a2 at timesteps t = 1, 5, 9, It holds that

F1(πM) = E [f(dπM)]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

= E

[
f

(
(1− γ)

∞∑
t=0

γt1(st = s1)

)]
= ϵf

(
(1− γ)(1 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
+ (1− ϵ)f

(
(1− γ)(0 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
= ϵf

(
(1− γ)

(
1 +

∞∑
t=0

γ4t+4

))
+ (1− ϵ)f

(
(1− γ)

∞∑
t=0

γ4t+4

)
(a)
=

1

2
f

(
(1− γ)

(
1 +

γ4

1− γ4

))
+

1

2
f

(
(1− γ)γ4

1− γ4

)
=

1 + γ2 − γ6 + γ8

(1− γ)2(1 + γ2)2
,

where in (a) we let ϵ = 1/2 and simplified the sums.

To conclude, it holds, for any πS ∈ ΠS and γ ∈ (0, 1), that

F1(πS) ≥
2− 2γ2 + 2γ4 − 2γ6 + 2γ8 − 2γ10 + γ12

2(1 + γ)2
>

1 + γ2 − γ6 + γ8

(1− γ)2(1 + γ2)2
= F1(πM),

which can be verified using a software for symbolic/algebraic computation such as Mathematica
(Wolfram Research). We provide a snippet of the Mathematica code we used below.

Snippet of Mathematica code to support the proof that F1(πS) > F1(πM), ∀πS.
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: h[x_, g_] := (1/2)*xˆ2*(f[(1 - g) (1 + gˆ2 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g] +

f[(1 - g) (gˆ2 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g]) +
(1/2)*x (1 - x)*(f[(1 - g) (1 + gˆ2 + x*(gˆ6/(1 - gˆ2))), g] +

f[(1 - g) (1 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (gˆ2 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (gˆ4 + x*(gˆ6/(1 - gˆ2))), g]) +

(1/2)*(1 - x)ˆ2 (f[(1 - g) (1 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (x*(gˆ6/(1 - gˆ2))), g])

[In]: Simplify[Solve[D[h[x, g], x] == 0, x]]
[Out]: {{x -> 1/2}}
[In]: a[g_] = (1/2)*f[(1 - g)*(1 + gˆ4/(1 - gˆ4)), g] + (1/2)*f[(1 - g)*(gˆ4/(1 - gˆ4)), g]
[In]: Reduce[a[g] < h[1/2, g]]
[Out]: g < 0 || 0 < g < 1 || g > 1

For the second part of the Theorem it holds, for any πM = (π0, π1, π2, . . .) ∈ ΠM, that

F1(πM) = E [f(dπM)]

(a)
= E

[
f(dπM

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),

s2∼P a1 (·|s1),a2∼π2(·|s2),...

]
(b)
= E

[
E

[
f(dπM

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
(c)

≥ E

[
f

(
E

[
dπM
s0,a0,s1,a1,...(s

1))

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= E

[
f

(
E

[
(1− γ)

∞∑
t=0

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1)

+ E

[∞∑
t=3

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]))∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
,

where in (a) we emphasized that the random vector dπM depends on random variables
s0, a0, s1, a1, Step (b) follows from the fact that s3 = s0 with probability one for trajecto-
ries drawn from the GUMDP, i.e., for any trajectory the state at timestep 3 is always s0, and thus we

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

can split and simplify the expectation. Step (c) follows from Jensen’s inequality, following similar
steps as those for the first part of the Theorem. Now, it holds that

E

[∞∑
t=3

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]
=

∞∑
t=3

γtPπM

[
st = s1

]
= γ3 · 0 + γ4π3(a

1|s0) + γ5 · 0 + γ6π5(a
1|s0) + . . .

=

∞∑
t=2

γ2tπ2t−1(a
1|s0).

For any policy πM, it holds that
∑∞

t=2 γ
2tπ2t−1(a

1|s0) ∈ [0, γ4

1−γ2]. Hence, if we replace expression

E

[∑∞
t=3 γ

t1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]
with c γ4

1−γ2 , for c ∈ [0, 1], and show that

E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1) + c

γ4

1− γ2

)) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
is strictly lower bounded by F1(πNM) for a given πNM ∈ ΠNM, for any π0, π1, π2 ∈ ΠS and c ∈ [0, 1],
this implies that F1(πNM) is strictly lower than that of any possible π ∈ ΠM. For any π0, π1, π2 ∈ ΠS
and c ∈ [0, 1], the expectation in the expression above can be simplified as

E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1) + c

γ4

1− γ2

)) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= ϵπ1(a
1|s0)f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ ϵ(1− π1(a

1|s0))f
(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ (1− ϵ)π1(a

1|s0)f
(
(1− γ)

(
γ2 + c

γ4

1− γ2

))
+ (1− ϵ)(1− π1(a

1|s0))f
(
(1− γ)

(
c

γ4

1− γ2

))
(a)
=

1

2
π1(a

1|s0)
(
f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
γ2 + c

γ4

1− γ2

)))
+

1

2
(1− π1(a

1|s0))
(
f

(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
c

γ4

1− γ2

)))
,

where in (a) we let ϵ = 1/2.

Now consider the non-markovian policy πNM ∈ ΠNM that: (i) if s0 = s1, then at timesteps t =
1, 5, 9, . . . deterministically selects action a2 and at timesteps t = 3, 7, 11, . . . deterministically
action a1; (ii) if s0 = s2, then at timesteps t = 1, 5, 9, . . . deterministically selects action a1 and at
timesteps t = 3, 7, 11, . . . deterministically action a2. We have that

F1(πNM) = E [f(dπNM)]

= E

[
f

(
(1− γ)

∞∑
t=0

γt1(st = s1)

)]
= ϵf

(
(1− γ)(1 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
+ (1− ϵ)f

(
(1− γ)(0 + 0 + γ2 + 0 + 0 + 0 + γ6 + 0 + 0 + 0 + γ10 + . . .)

)
= ϵf

(
(1− γ)

∞∑
t=0

γ4t

)
+ (1− ϵ)f

(
(1− γ)

∞∑
t=0

γ4t+2

)
(a)
=

1

2
f

(
1− γ

1− γ4

)
+

1

2
f

(
(1− γ)γ2

1− γ4

)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where in (a) we let ϵ = 1/2 and simplified the sums.

We now need to verify that, for any π1(a
1|s0) ∈ [0, 1], c ∈ [0, 1] and γ ∈ (0, 1),

π1(a
1|s0) 1

2

(
f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
γ2 + c

γ4

1− γ2

)))
︸ ︷︷ ︸

(i)

+ (1− π1(a
1|s0)) 1

2

(
f

(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
c

γ4

1− γ2

)))
︸ ︷︷ ︸

(ii)

>
1

2
f

(
1− γ

1− γ4

)
+

1

2
f

(
(1− γ)γ2

1− γ4

)
= F1(πNM).

As can be seen, the expression on the left-hand side of the inequality above corresponds to a
weighted combination (with weights π1(a

1|s0) and 1−π1(a
1|s0)) of components (i) and (ii). By re-

sorting to a software for symbolic/algebraic computation such as Mathematica (Wolfram Research)
it can be shown that (i) > 1

2f
(

1−γ
1−γ4

)
+ 1

2f
(

(1−γ)γ2

1−γ4

)
= F1(πNM) and (ii) > 1

2f
(

1−γ
1−γ4

)
+

1
2f
(

(1−γ)γ2

1−γ4

)
= F1(πNM) for any c ∈ [0, 1] and γ ∈ (0, 1). We provide the snippets of the Math-

ematica code we used below. This implies that the weighted combination satisfies the inequality
above for any π1(a

1|s0) ∈ [0, 1] and the conclusion follows.

Snippet of Mathematica code to attest that (i) > F1(πNM).
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: m[c_, g_] := (1/2)*(f[(1 - g)*(1 + gˆ2 + c*(gˆ4/(1 - gˆ2))), g] +

f[(1 - g)*(gˆ2 + c*(gˆ4/(1 - gˆ2))), g])
[In]: n[g_] := (1/2)*f[(1 - g)/(1 - gˆ4), g] + (1/2)*f[((1 - g)*gˆ2)/(1 - gˆ4), g]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 || -1 < g < 0 || g > 0)) ||

(c == 1/2 && (g < -1 || -1 < g < 0 || 0 < g < 1 || g > 1)) ||
(c > 1/2 && (g < -1 || -1 < g < 0 || g > 0))

Snippet of Mathematica code to attest that (ii) > F1(πNM).
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: m[c_, g_] := (1/2)*(f[(1 - g)*(1 + c*(gˆ4/(1 - gˆ2))), g] +

f[(1 - g)*(c*(gˆ4/(1 - gˆ2))), g])
[In]: n[g_] := (1/2)*f[(1 - g)/(1 - gˆ4), g] + (1/2)*f[((1 - g)*gˆ2)/(1 - gˆ4), g]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 || -1 < g < 0 || g > 0)) ||

(c == 1/2 && (g < -1 || -1 < g < 0 || 0 < g < 1 || g > 1)) ||
(c > 1/2 && (g < -1 || -1 < g < 0 || g > 0))

B.2 PROOF OF PROPOSITION 1

Lemma 1. For any ω ∈ Ω, π ∈ ΠNM and H ∈ N it holds that
∣∣f(dπ

ω)− f(dπ,H
ω)

∣∣ ≤ 2LγH .

Proof. For any ω ∈ Ω, π ∈ ΠNM and H ∈ N it holds that∣∣f(dπ
ω)− f(dπ,H

ω)
∣∣ (a)
≤ L

∥∥dπ
ω − dπ,H

ω

∥∥
1

(b)
= L

∥∥∥∥∥(1− γ)

∞∑
t=0

γtdπ
ω,t −

(1− γ)

1− γH

H−1∑
t=0

γtdπ
ω,t

∥∥∥∥∥
1

= L

∥∥∥∥∥ (1− γ)

1− γH

H−1∑
t=0

γt
(
(1− γH)dπ

ω,t − dπ
ω,t

)
+ (1− γ)

∞∑
t=H

γtdπ
ω,t

∥∥∥∥∥
1

(c)
≤ L

(
(1− γ)

1− γH

H−1∑
t=0

γt
∥∥(1− γH)dπ

ω,t − dπ
ω,t

∥∥
1
+ (1− γ)

∞∑
t=H

γt∥dπ
ω,t∥1

)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

= L
(1− γ)

1− γH
γH

H−1∑
t=0

γt
∥∥dπ

ω,t

∥∥
1
+ LγH

= 2LγH ,

where: (a) is due to the L-Lipschitz assumption; in (b) we used dπ
ω = (1 − γ)

∑∞
t=0 γ

tdπ
ω,t where

dπ
ω,t(s, a) = 1(st = s, at = a) is the empirical occupancy induced by the trajectory ω at timestep t

and dπ,H
ω = (1− γ)/(1− γH)

∑H−1
t=0 γtdπ

ω,t. Step (c) follows from the triangular inequality.

Lemma 2. If f is L-Lipschitz then it holds, for arbitrary π ∈ ΠNM and H ∈ N, that

|F1(π)− F1,H(π)| ≤ 2LγH .

Proof. It holds that, for arbitrary π ∈ ΠNM and H ∈ N,

|F1(π)− F1,H(π)| =
∣∣E [f(dπ)]− E

[
f(dπ,H)

]∣∣
=
∣∣E [f(dπ)− f(dπ,H)

]∣∣
(a)
≤ E

[∣∣f(dπ)− f(dπ,H)
∣∣]

=
∑
ω∈Ω

Pπ [ω] |f(dπ
ω)− f(dπ,H

ω)|

(b)
≤ 2LγH ,

where: (a) follows from |E[X]| ≤ E[|X|]; and (b) is due to Lemma 1.

Lemma 3. For every GUMDP Mf with L-Lipschitz f and H ∈ N, if π∗ = argminπ∈ΠNM
F1,H(π),

then it holds that R(π∗) ≤ 4LγH .

Proof. As shown in Lemma 2, |F1(π)− F1,H(π)| ≤ 2LγH , for arbitrary π. From such inequality,
we can infer that F1,H(π) − 2LγH ≤ F1(π), ∀π ∈ ΠNM, i.e., function F1,H(π) − 2LγH lower
bounds function F1(π). We provide a visual illustration of F1 and F1,H in Fig. 3. Let π∗ =
argminπ F1,H(π). It holds that

F1,H(π∗)− 2LγH = min
π

F1,H(π)− 2LγH
(a)
≤ min

π
F1(π)

(b)
≤ F1(π

∗),

where (a) follows from the fact that F1,H(π) − 2LγH lower bounds F1(π); and (b) from the fact
that minπ F1(π) ≤ F1(π

′), ∀π′ (from the definition of a minimum). We illustrate the inequalities
above in Fig. 3. Finally, we note that

F1(π
∗)−

(
F1,H(π∗)− 2LγH

)
= F1(π

∗)− F1,H(π∗) + 2LγH

≤ |F1(π
∗)− F1,H(π∗)|+ 2LγH

≤ 4LγH .

The above implies that
R(π∗) = F1(π

∗)−min
π

F1(π) ≤ 4LγH ,

as illustrated in Fig. 3.

Proposition 1 (Regret decomposition). For arbitrary π ∈ ΠNM, it holds that

R(π) ≤ F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}︸ ︷︷ ︸
= RH(π)

+8LγH , (10)

where RH(π) is the regret of policy π under the single-trial truncated objective with horizon H .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F1 (π
∗)

F1,H (π∗)− 2LγH

minπ F1(π) ⩽ 4LγH

ΠNM

F1,H(π)

F1,H(π)− 2LγH

F1,H(π) + 2LγHF1(π)

R (π∗)

π

Figure 3: Illustration of objectives F1 and F1,H , as well as the relation between different quantities
of interest for the proof.

Proof. Let π∗
H = argminπ∈ΠNM

F1,H(π), i.e., π∗
H is optimal with respect to the truncated objective.

It holds that,

R(π) = E [f(dπ)]− min
π′∈ΠNM

E
[
f(dπ′

)
]

=

∣∣∣∣E [f(dπ)]− min
π′∈ΠNM

E
[
f(dπ′

)
]∣∣∣∣

(a)
≤
∣∣∣E [f(dπ)]− E

[
f(dπ∗

H)
]∣∣∣+ ∣∣∣∣E [f(dπ∗

H)
]
− min

π′∈ΠNM
E
[
f(dπ′

)
]∣∣∣∣

(b)
≤
∣∣∣E [f(dπ)]− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(c)
≤
∣∣E [f(dπ)]− E

[
f(dπ,H)

]∣∣+ ∣∣∣E [f(dπ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(d)
≤ 2LγH +

∣∣∣E [f(dπ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(e)
≤
∣∣∣E [f(dπ,H)

]
− E

[
f(dπ∗

H ,H)
]∣∣∣+ ∣∣∣E [f(dπ∗

H ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 6LγH

(f)
≤
∣∣∣E [f(dπ,H)

]
− E

[
f(dπ∗

H ,H)
]∣∣∣+ 8LγH

= E
[
f(dπ,H)

]
− min

πH∈ΠNM

{
E
[
f(dπH ,H)

]}
+ 8LγH

= F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}+ 8LγH

where (a) follows from adding and subtracting E
[
f(dπ∗

H)
]

and applying the triangular inequal-
ity; (b) follows from Lemma 3; (c) follows from adding and subtracting E

[
f(dπ,H)

]
and apply-

ing the triangular inequality; (d) follows from Lemma 2; (e) follows from adding and subtracting
E
[
f(dπ∗

H ,H)
]

and applying the triangular inequality; and (f) follows from Lemma 2.

B.3 THE OCCUPANCY MDP: VALUE AND ACTION-VALUE FUNCTIONS

For a given policy πO ∈ ΠS, the interaction between the agent and the occupancy MDP gives rise to
a random process ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) such that:

1. P [{s0,o0} = {s0,o0}] = p0,O({s0,o0})
2. P [{st+1,ot+1} = {s′,o′}|{s0,o0}, a0, . . . , {st,ot}, at] = P at

O ({st,ot}, {s′,o′})
3. P [at = a|{s0,o0}, a0, . . . , {st,ot}] = πO(a|{st,ot})

We let (ΩO,FO,PO
πO
) be the probability space over the sequence of random variables

({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) that satisfies conditions 1-3 above. We write specific tra-
jectories as ωO ∈ ΩO, with ωO = ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}). We highlight that the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

probability of a given trajectory ωO ∈ ΩO under stationary policy πO ∈ ΠS can be calculated as

PO
πO
(ωO) = p0,O({s0,o0}) · πO(a0|{s0,o0}) · P a0

O ({s0,o0}, {s1,o1}) . . .
· πO(aH−1|{sH−1,oH−1}) · P aH−1

O ({sH−1,oH−1}, {sH ,oH}).

To streamline our notation we introduce the mapping σ : S × O × A → O that describes the
evolution of component o of the state, defined as

[σ(s,o, a)]s′,a′ =

{
o(s, a) + γt if s′ = s, a′ = a,

o(s, a) otherwise,

where [o]s′,a′ denotes the value of entry s′, a′ for vector o, i.e., [o]s′,a′ = o(s′, a′).

The value function under MO, for any t ∈ {0, . . . , H}, is defined as

V πO
t ({s,o}) = EπO

[
H∑

t′=t

cO({st′ ,ot′})
∣∣∣∣{st,ot} = {s,o}

]
(11)

= EπO

[
cO({sH ,oH})

∣∣{st,ot} = {s,o}
]
, (12)

and the optimal value function, for any t ∈ {0, . . . , H}, as V ∗
t ({s,o}) = minπO∈ΠD

S
V πO
t ({s,o}).

The action-value function under MO, for any t ∈ {0, . . . , H − 1}, is defined as

QπO
t ({s,o}, a) = EπO

[
H∑

t′=t

cO({st′ ,ot′})
∣∣∣∣{st,ot} = {s,o}, at = a

]
= EπO

[
cO({sH ,oH})

∣∣{st,ot} = {s,o}, at = a
]
,

and the optimal action-value function, for any t ∈ {0, . . . ,H − 1}, as Q∗
t ({s,o}, a) =

minπO∈ΠD
S
QπO

t ({s,o}, a). We emphasize again that subscript t can be dropped from V πO
t ({s,o}),

V ∗
t ({s,o}), QπO

t ({s,o}, a) and Q∗
t ({s,o}, a) as it can be inferred from o. Finally, we note that

value functions, optimal value functions and optimal action-value functions satisfy the following set
of Bellman equations:

V πO
t ({s,o}) =

∑
a∈A

πO(a|{s,o})
(∑

s′∈S
P a(s′|s)V πO

t+1({s′, σ(s,o, a)})
)
, ∀t ∈ {0, . . . ,H − 1}

V ∗
t ({s,o}) = min

a∈A

{∑
s′∈S

P a(s′|s)V ∗
t+1({s′, σ(s,o, a)})

}
, ∀t ∈ {0, . . . ,H − 1}

Q∗
t ({s,o}, a) =

∑
s′∈S

P a(s′|s)V ∗
t+1({s′, σ(s,o, a)}), ∀t ∈ {0, . . . ,H − 1}

Q∗
t ({s,o}, a) =

∑
s′∈S

P a(s′|s) min
a′∈A

{
Q∗

t+1({s′, σ(s,o, a)}, a′)
}
, ∀t ∈ {0, . . . ,H − 2}.

B.4 PROOF OF PROPOSITION 2

Lemma 4 (Linear independence of exponential functions over R). For any x ∈ R, L ∈ N,
c0, . . . , cL−1 ∈ R, and distinct λ0, . . . , λL−1 ∈ R, if

∑L−1
t=0 cte

λtx = 0 then c0 = c1 = . . . =
cL−1 = 0, i.e., the exponentials eλ0x, . . . , eλL−1x are linearly independent over R.

Proof. Let f(x) =
∑L−1

t=0 cte
λtx. It holds that dkf

dxk =
∑L−1

t=0 ctλ
k
t e

λtx. We can repeatedly differen-
tiate f to obtain the following set of equalities:

L−1∑
t=0

cte
λtx = 0,

L−1∑
t=0

ctλte
λtx = 0,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

L−1∑
t=0

ctλ
2
t e

λtx = 0,

. . .

L−1∑
t=0

ctλ
L−1
t eλtx = 0.

The set of equations above can be rearranged as follows
1 1 . . . 1
λ0 λ1 . . . λL−1

λ2
0 λ2

1 . . . λ2
L−1

...
...

. . .
...

λL−1
0 λL−1

1 . . . λL−1
L−1




c0e
λ0x

c1e
λ1x

c2e
λ2x

...
cL−1e

λL−1x

 =


0
0
0
...
0

 . (13)

The square matrix above is known as the Vandermonde matrix and, since all λ0, . . . , λL−1 are
distinct, the matrix has a non-zero determinant (hence it is invertible). Therefore, multiplying the
equality above by the inverse of the Vandermonde matrix on the left we obtain

c0e
λ0x

c1e
λ1x

c2e
λ2x

...
cL−1e

λL−1x

 =


0
0
0
...
0

 . (14)

Since functions eλ0x, . . . , eλL−1x are always positive, we have that c0 = c1 = . . . = cL−1 = 0.

Proposition 2 (One-to-one mapping between histories in Mf and states in MO). There exists a
one-to-one mapping between histories hl = (s0, a0, s1, a1, . . . , sl) ∈ S × (S × A)l in Mf , with
0 ≤ l ≤ H − 1, and states {s,o} ∈ S ×O in MO.

Proof. For a given history hl = (s0, a0, s1, a1, . . . , sl) ∈ S×(S×A)l in Mf , with 0 ≤ l ≤ H−1,
consider the mapping defined below that associates hl to a given state {s,o} ∈ S × O for MO by
letting

s = sl and o(s, a) =

l−1∑
t=0

γt1(st = s, at = a), ∀s ∈ S, a ∈ A. (15)

We aim to show that the mapping above is a bijection between the set of possible histories in Mf

and the discrete state space O in MO. Clearly, from the mapping above defined, each history hl

in Mf is associated with a unique state in MO. Thus, what remains is to show that any two states
{s1,o1} and {s2,o2} for MO are equal under mapping equation 15 if and only if their associated
histories h1 and h2 are equal. We now make two observations. First, for a given state {s,o} in
MO, component s is directly related, through mapping equation 15, to the last state in the history
hl. Second, each history hl = (s0, a0, s1, a1, . . . , sl) will yield through mapping equation 15 a
running occupancy o satisfying

∑
s,a o(s, a) =

1−γl

1−γ ; thus, histories hl with different lengths will
yield different o-vectors. Hence, we only need to show that two running occupancies o1 and o2,
associated with histories h1 and h2 (both of length l), respectively, are the same if and only if their
histories up to timestep l − 1 are the same:

• If two histories h1 and h2 of length l are the same, then it should be clear that their respec-
tive running occupancies, as defined through equation 15, are also the same.

• If two running occupancies o1 and o2 are the same, then their associated histories are
also the same. To prove this implication, we focus our attention to a given entry (s, a)
of the vectors o1 and o2. Running occupancy o1 is associated with an arbitrary history
h1 = (s10, a

1
0, s

1
1, a

1
1, . . . , s

1
l); running occupancy o2 is associated with an arbitrary history

h2 = (s20, a
2
0, s

2
1, a

2
1, . . . , s

2
l). If o1 = o2 then, for any s ∈ S, a ∈ A,

o1(s, a)− o2(s, a) = 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

⇔
l−1∑
t=0

γt1(s1t = s, a1t = a)−
l−1∑
t=0

γt1(s2t = s, a2t = a) = 0

⇔
l−1∑
t=0

γt
(
1(s1t = s, a1t = a)− 1(s2t = s, a2t = a)

)
= 0

(a)⇔
l−1∑
t=0

γtct = 0,

where in (a) we let ct ∈ {−1, 0, 1}. Now, the only solution to the last equation above is
c0 = c1 = . . . = cl−1 = 0, which implies that 1(s1t = s, a1t = a) = 1(s2t = s, a2t = a)
for all o ≤ t ≤ l − 1 and hence, the histories are the same. The fact that c0 = c1 = . . . =
cl−1 = 0 is the only solution to the equation above follows from Lemma 4 by letting L = l,
x = 1, and λt = ln(γ)t (which implies that all λt are distinct for γ ∈ (0, 1)).

Thus, we conclude that there exists a one-to-one mapping, as defined in equation 15, between every
possible history in Mf up to timestep H − 1 and states in MO.

B.5 PROOF OF THEOREM 2

Theorem 2 (Solving Mf is “equivalent” to solving MO). The problem of finding a policy π ∈ ΠNM

satisfying RH(π) ≤ ϵ, for any ϵ ∈ R+
0 , can be reduced to the problem of finding a policy πO ∈ ΠS

satisfying JO(πO) − J∗
O ≤ ϵ. In particular, if π∗

O = argminπO∈ΠS
JO(πO), then the corresponding

non-Markovian policy π in Mf satisfies RH(π) = 0. Finally, it holds that RH(π) = JO(πO)−J∗
O,

where πO is the stationary policy for MO associated with the non-Markovian policy π for Mf .

Proof. We start by showing that, for any horizon H ∈ N and policy π ∈ ΠNM, it holds that

F1,H(π) = JO(πO),

for F1,H(π) as defined in equation 6 and JO(πO) as defined in equation 9, where πO is the stationary
policy for MO associated with the non-Markovian policy π for Mf .

For any H ∈ N, finite-horizon random trajectories (s0, a0, s1, a1, . . . , sH−1, aH−1) in Mf are
associated with the probability space (Ω,F ,Pπ). We write specific trajectories as ω ∈ Ω,
with ω = (s0, a0, s1, a1, . . . , sH−1, aH−1). We highlight that the probability of a given tra-
jectory ω ∈ Ω under policy π ∈ ΠNM can be calculated as Pπ [ω] = p0(s0) · π(a0|h0) ·
P a0(s0, s1) · π(a1|h1) · P a1(s1, s2) . . . P

aH−2(sH−2, sH−1) · π(aH−1|hH−1). On the other
hand, random trajectories ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) in MO are associated with
probability space (ΩO,FO,PO

πO
). We write specific trajectories as ωO ∈ ΩO, with ωO =

({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}).
We start by noting that, for any trajectory ωO = ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) ∈ ΩO,

PO
πO
[ωO] = p0,O({s0,o0}) · πO(a0|{s0,o0}) · P a0

O ({s0,o0}, {s1,o1}) · . . .
· πO(aH−1|{sH−1,oH−1}) · P aH−1

O ({sH−1,oH−1}, {sH ,oH}).
(a)
= p0(s0) · 1(o0 = [0, . . . , 0]) · πO(a0|{s0,o0}) · P a0(s0, s1) · 1(o1 = σ(s0,o0, a0)) · . . .

· πO(aH−1|{sH−1,oH−1}) · P aH−1(sH−1, sH) · 1(oH = σ(sH−1,oH−1, aH−1))

(b)
= p0(s0) · 1(o0 = [0, . . . , 0]) · π(a0|h0) · P a0(s0, s1) · 1(o1 = σ(s0,o0, a0)) · . . .

· π(aH−1|hH−1) · P aH−1(sH−1, sH) · 1(oH = σ(sH−1,oH−1, aH−1))

(c)
= Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1)),

where in (a) we note that component o of the state is initialized as a zero vector and then determin-
istically evolves according to σ; any sequence of o-vectors that does not evolve according to σ has
zero probability under probability measure PO

πO
. In (b) we used the fact that any stationary policy

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

πO ∈ ΠS for MO can be mapped to a particular non-Markovian policy π ∈ ΠNM in Mf . In (c)
we recall that, for ω = (s0, a0, s1, a1, . . . , sH−1, aH−1), Pπ [ω] = p0(s0) · π(a0|h0) · P a0(s0, s1) ·
π(a1|h1) · P a1(s1, s2) . . . P

aH−2(sH−2, sH−1) · π(aH−1|hH−1).

Now, for any stationary policy πO ∈ ΠS, it holds that

JO(πO) = E [cO({sH ,oH})]
=
∑

ωO∈ΩO

PO
πO
[ωO]cO({sH ,oH})

=
∑

ωO∈ΩO

Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1))f

(
1− γ

1− γH
oH

)
(a)
=

∑
ωO∈ΩO

Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1))f
(
dπ,H
ω

)
(b)
=
∑
ω∈Ω

Pπ [ω] f
(
dπ,H
ω

) ∑
o0,o1,...,oH∈O

∑
sH∈S

P aH−1(sH−1, sH)·

1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . . · 1(oH = σ(sH−1,oH−1, aH−1))

(c)
=
∑
ω∈Ω

Pπ [ω] f
(
dπ,H
ω

)
= E

[
f(dπ,H)

]
= F1,H(π),

where in (a) we noted that, for any ωO ∈ ΩO, f
(

1−γ
1−γH oH

)
= f

(
dπ,H
ω

)
. In (b), we split the sum

over ωO ∈ ΩO as a sum over ω ∈ Ω, a sum over each possible vector o ∈ O across all timesteps,
and a sum over the final state sH ∈ S (not included in ω). We also rearranged the sums by noting
that some terms do not depend on some of the sums. In (c) we note that the inner sums over the
o-vectors and sH equal one.

Hence, we have proven that, for any H ∈ N and π ∈ ΠNM, F1,H(π) = JO(πO) holds, where, in
light of Prop. 2, πO is the stationary policy for MO associated with the non-Markovian policy π for
Mf . Given this result, and due to the one-to-one mapping between non-Markovian policies for Mf

and stationary policies for MO, it holds for any π ∈ ΠNM that

RH(π) = F1,H(π)− min
πH∈ΠNM

{F1,H(πH)} = JO(πO)− min
π′

O∈ΠS

JO(π
′
O),

and the conclusion follows.

B.6 PROOF OF THEOREM 3

Theorem 3 (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F1,H and a threshold value λ ∈ R, it is NP-Hard to determine whether there exists a policy
π ∈ ΠD

NM satisfying F1,H(π) ≤ λ.

Proof. We reduce the subset sum problem to the policy existence problem in GUMDPs with objec-
tive F1,H . The subset sum problem asks, given a set N = {n0, n1, . . . , nN−1} of N non-negative
integer numbers and a target sum k ∈ N, whether there exists a subset of the numbers such that the
sum of the elements in the set is k. The policy existence problem is: given a GUMDP with objective
F1,H and a threshold value λ ∈ R, does there exist a policy π ∈ ΠD

NM such that F1,H(π) ≤ λ.

We map every instance of the subset sum problem as a GUMDP as follows: (i) the state space is
S = {s0, s1, . . . , sN}; (ii) the action space is A = {ainclude, anot-include}; (iii) P a(si+1|si) = 1 and
zero otherwise for any a ∈ A and i ∈ {0, . . . , N − 1}, and P a(sN |sN) = 1 for any a ∈ A; (iv)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

p0(s0) = 1 and zero otherwise. We provide an illustration of the GUMDP in Fig. 4. We describe a
discounted occupancy for GUMDP above defined with the vector

d = [d(s0, ainclude), d(s0, anot-include), d(s1, ainclude), d(s1, anot-include), . . . ,

d(sN−1, ainclude), d(sN−1, anot-include), d(sN , ainclude), d(sN , anot-include)].

Then, we set H ≥ N and let f(d) = (n⊤d− k)2, where

n =

[
1− γH

1− γ
n0, 0,

1− γH

(1− γ)γ
n1, 0, . . . ,

1− γH

(1− γ)γN−1
nN−1, 0, 0, 0

]
.

It holds that

min
π∈ΠD

NM

F1,H(π) = min
π∈ΠD

NM

E
[
f(dπ,H)

]
=
∑
ω∈Ω

P[ω]f(dπ,H
ω).

For a given policy π ∈ ΠD
NM, only one trajectory ω ∈ Ω has non-zero probability. The vector dπ,H

ω
associated with such a trajectory can be described as follows, for any si ∈ {0, . . . , N − 1}: (i) if at
state si, π selects ainclude then entry dπ,Hω (si, ainclude) =

1−γ
1−γH γi and dπ,Hω (si, anot-include) = 0; (ii)

if at state si, π selects anot-include then entry dπ,Hω (si, ainclude) = 0 and entry dπ,Hω (si, anot-include) =
1−γ
1−γH γi. The action selected at sN is irrelevant since it does not affect the objective value. The
intuition behind the GUMDP above defined is that, at each state si for i ∈ {0, . . . , N − 1}, the
policy needs to decide on whether to select action ainclude and, therefore, include term ni in the sum,
or to select action anot-include and, therefore, not include term ni in the sum. We build the vector
n to reflect such behavior, where each entry in n associated with the state si and action ainclude

has a normalizing constant of 1−γH

(1−γ)γi to account for the fact that the occupancy is discounted, as
introduced in equation 4. Thus, it can be seen that every policy π ∈ ΠD

NM will induce a particular
trajectory ω ∈ Ω with probability one and the sum of the numbers selected by the policy is given by
n⊤dπ,H

ω . Finally, the objective is such that f(d) = 0 if and only if the sum of the selected numbers
equals k. The policy existence problem then asks whether there exists a policy π ∈ ΠD

NM such that
F1,H(π) ≤ λ. By setting λ = 0 we are asking whether there exists a policy such that F1,H(π) ≤ 0.
Since f(d) = 0 if and only if the sum of the selected numbers equals k, we completed our reduction
from the subset problem to the policy existence problem in GUMDPs with objective F1,H .

10 2

...

...

N − 1 N

ainclude

anot-include

ainclude

anot-include

ainclude

anot-include

Figure 4: GUMDP instance used in the NP-Hardness proof.

C SUPPLEMENTARY MATERIALS FOR SEC. 5

C.1 TASKS AND ENVIRONMENTS

We consider three tasks: (i) maximum state entropy exploration (Hazan et al., 2019), where the
objective is to visit all state-action pairs as uniformly as possible; imitation learning (Abbeel &
Ng, 2004), where the objective is to imitate a given behaviour policy; and (iii) adversarial MDPs
(Rosenberg & Mansour, 2019), where an adversary player selects the cost function that yields the
highest cost. We refer to Sec. 2.3 for the exact definition of the objective function for each of
these tasks. We normalize all objective functions to lie in the [0, 1] interval. We consider two sets
of environments. The first set corresponds to the illustrative GUMDPs depicted in Fig. 1, each
associated with one of the tasks. The second set of environments come from the OpenAI Gym
library (Brockman et al., 2016). We consider the FrozenLake (FL), the Taxi, and the Mountaincar
(MC) environments. For the MC environment, we partitioned the original state space using equally
spaced bins (we consider 10 bins per dimension). For the FL, Taxi and MC environments, the task
of imitation learning consists in imitating and approximately optimal policy.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.2 EXPERIMENTAL METHODOLOGY, BASELINES, AND HYPERPARAMETERS

We perform 10 runs per experimental setting and report the 90% bootstrapped confidence interval.
We let γ = 0.9. We consider two baselines. The first baseline is the random policy, πRandom. The
second baseline is the optimal policy for the infinite trials formulation equation 2, π∗

Solver, that we
calculate by solving a constrained optimization problem with objective f using the Gurobi optimizer
(Gurobi Optimization, LLC, 2025). More precisely, to compute π∗

Solver we first solve the following
optimization problem:

d∗ = argmin
d∈D

f(d),

D = {d ∈ R|S||A| : d(s, a) ≥ 0 ∀s, a,
∑
a

d(s, a) = (1− γ)p0(s) + γ
∑
s′,a

P a(s|s′)d(s′, a) ∀s}

Then, we let π∗
Solver(a|s) = d∗(s, a)/

∑
a′ d∗(s, a′). For the illustrative GUMDPs we directly use

the respective initial states distribution, p0, and the transition probablity matrix, P a. For the case of
the OpenAI Gym environments we run a samling procedure to first estimate p0 and P a, and then we
feed the estimated quantities to the optimization solver.

We denote the policy induced by our MCTS algorithm as πMCTS. We use 4000 as
the default number of iterations of the MCTS algorithm, but we also provide results for
10, 20, 50, 100, 500, 1000, 2000, 3000, 4000 iteration steps. We submit our code in the zip file with
our submission.

Our experiments required modest computational resources, with each experimental setting running
in under an hour on a CPU cluster.

C.3 COMPLETE EXPERIMENTAL RESULTS

C.3.1 MAXIMUM STATE ENTROPY EXPLORATION, Mf,1

π = Random π = π∗∞ π = π∗MCTS

0.00

0.05

0.10

0.15

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

0.00

0.05

0.10

0.15

0.20

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.0

0.2

0.4

0.6

F
1,
H

(π
)

MCTS planner

(c)

Figure 5: Maximum state entropy exploration, Mf,1: (a) - Mean single-trial objective F1,H(π)
obtained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial
objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.3.2 MAXIMUM STATE ENTROPY EXPLORATION, FROZENLAKE

π = πRandom π = π∗∞ π = π∗MCTS

0.40

0.45

0.50

0.55
F

1
,H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.35

0.40

0.45

0.50

0.55

0.60

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.4

0.5

0.6

0.7

0.8

F
1
,H

(π
)

MCTS planner

(c)

Figure 6: Maximum state entropy exploration, FrozenLake: (a) - Mean single-trial objective
F1,H(π) obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean
single-trial objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,
lower is better.

C.3.3 MAXIMUM STATE ENTROPY EXPLORATION, TAXI

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.62

0.64

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.62

0.64

0.66

0.68

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.60

0.62

0.64

0.66

0.68

F
1,
H

(π
)

MCTS planner

(c)

Figure 7: Maximum state entropy exploration, Taxi: (a) - Mean single-trial objective F1,H(π) ob-
tained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial
objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.3.4 MAXIMUM STATE ENTROPY EXPLORATION, MOUNTAINCAR

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.65

0.70

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.55

0.60

0.65

0.70

0.75

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.60

0.65

0.70

0.75

0.80

F
1
,H

(π
)

MCTS planner

(c)

Figure 8: Maximum state entropy exploration, Mountaincar: (a) - Mean single-trial objective
F1,H(π) obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean
single-trial objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,
lower is better.

C.3.5 IMITATION LEARNING, Mf,2

π = Random π = π∗∞ π = π∗MCTS

0.00

0.02

0.04

0.06

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

0.00

0.02

0.04

0.06

0.08

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.00

0.05

0.10

0.15

F
1,
H

(π
)

MCTS planner

(c)

Figure 9: Imitation learning, Mf,2: (a) - Mean single-trial objective F1,H(π) obtained by different
policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-
trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π)
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.3.6 IMITATION LEARNING, FROZENLAKE

π = πRandom π = π∗∞ π = π∗MCTS

0.02

0.04

0.06

0.08

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.025

0.050

0.075

0.100

0.125

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.05

0.10

0.15

0.20

0.25

F
1
,H

(π
)

MCTS planner

(c)

Figure 10: Imitation learning, FrozenLake: (a) - Mean single-trial objective F1,H(π) obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective
F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.7 IMITATION LEARNING, TAXI

π = πRandom π = π∗∞ π = π∗MCTS

0.05

0.06

0.07

0.08

0.09

F
1
,H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.04

0.06

0.08

0.10

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.050

0.055

0.060

0.065

0.070

F
1,
H

(π
)

MCTS planner

(c)

Figure 11: Imitation learning, Taxi: (a) - Mean single-trial objective F1,H(π) obtained by different
policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-
trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π)
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C.3.8 IMITATION LEARNING, MOUNTAINCAR

π = πRandom π = π∗∞ π = π∗MCTS

0.05

0.10

0.15

0.20

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.0

0.1

0.2

0.3

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.02

0.03

0.04

0.05

F
1
,H

(π
)

MCTS planner

(c)

Figure 12: Imitation learning, MountainCar: (a) - Mean single-trial objective F1,H(π) obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective
F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.9 ADVERSARIAL MDP

π = Random π = π∗∞ π = π∗MCTS

1.10

1.15

1.20

1.25

1.30

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

1.1

1.2

1.3

1.4

1.5

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

1.10

1.15

1.20

1.25

F
1,
H

(π
)

MCTS planner

(c)

Figure 13: Adversarial MDP: (a) - Mean single-trial objective F1,H(π) obtained by different poli-
cies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-trial
objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π) obtained
by the MCTS-based algorithm as a function of the number of expansion steps. Shaded areas corre-
spond to the 90% mean confidence interval. Across all plots, lower is better.

29

	Introduction
	Background
	Markov decision processes
	Monte-Carlo tree search
	General-utility Markov decision processes
	GUMDPs in the single-trial regime

	Policy Optimization in the Single-Trial Regime
	Non-Markovianity matters
	Computing (approximately) optimal policies by resorting to F1,H
	The occupancy MDP: Casting Mf as a standard MDP
	Hardness result for policy optimization in the single-trial regime

	Online Planning for GUMDPs in the Single-Trial Regime
	Monte-Carlo tree search for GUMDPs in the single-trial regime

	Experimental Results
	Conclusion & Limitations
	Lipschitz constants
	Supplementary materials for Sec. 3
	Proof of Theorem 1
	Proof of Proposition 1
	The occupancy MDP: Value and action-value functions
	Proof of Proposition 2
	Proof of Theorem 2
	Proof of Theorem 3

	Supplementary materials for Sec. 5
	Tasks and environments
	Experimental methodology, baselines, and hyperparameters
	Complete experimental results
	Maximum state entropy exploration, Mf,1
	Maximum state entropy exploration, FrozenLake
	Maximum state entropy exploration, Taxi
	Maximum state entropy exploration, Mountaincar
	Imitation learning, Mf,2
	Imitation learning, FrozenLake
	Imitation learning, Taxi
	Imitation learning, Mountaincar
	Adversarial MDP

