
Published as a conference paper at ICLR 2026

SOLVING GENERAL-UTILITY MARKOV DECISION
PROCESSES IN THE SINGLE-TRIAL REGIME WITH
ONLINE PLANNING

Pedro P. Santos
INESC-ID & Instituto Superior Técnico
Lisbon, Portugal
pedro.pinto.santos@tecnico.ulisboa.pt

Alberto Sardinha
PUC-Rio
Rio de Janeiro, Brazil
sardinha@inf.puc-rio.br

Francisco S. Melo
INESC-ID & Instituto Superior Técnico
Lisbon, Portugal
fmelo@inesc-id.pt

ABSTRACT

In this work, we contribute the first approach to solve infinite-horizon discounted
general-utility Markov decision processes (GUMDPs) in the single-trial regime,
i.e., when the agent’s performance is evaluated based on a single trajectory. First,
we provide some fundamental results regarding policy optimization in the single-
trial regime, investigating which class of policies suffices for optimality, casting
our problem as a particular MDP that is equivalent to our original problem, as well
as studying the computational hardness of policy optimization in the single-trial
regime. Second, we show how we can leverage online planning techniques, in par-
ticular a Monte-Carlo tree search algorithm, to solve GUMDPs in the single-trial
regime. Third, we provide experimental results showcasing the superior perfor-
mance of our approach in comparison to relevant baselines.

1 INTRODUCTION

Markov decision processes (MDPs) have found a wide range of applications in different domains
such as inventory management (Dvoretzky et al., 1952), queueing control (Stidham, 1978), or op-
timal stopping (Chow et al., 1971). MDPs are also of key importance in the field of reinforcement
learning (RL) Sutton & Barto (2018), where the agent-environment interaction is usually modeled
by resorting to the framework of MDPs. In addition, recent years have seen significant progress in
applying RL techniques to different domains (Mnih et al., 2015; Silver et al., 2017; Lillicrap et al.,
2016), attesting to the flexibility of the MDP framework with respect to objective-specification.

However, despite providing a flexible framework concerning objective-specification, previous re-
search has shown that multiple relevant objectives cannot be easily expressed within the MDP
framework (Abel et al., 2022). Such objectives include, but not limited to, imitation learning (Hus-
sein et al., 2017; Osa et al., 2018), pure exploration problems (Hazan et al., 2019), risk-averse RL
(Garcı́a et al., 2015), diverse skills discovery (Eysenbach et al., 2018; Achiam et al., 2018), con-
strained MDPs (Altman, 1999; Efroni et al., 2020), and adversarial MDPs (Rosenberg & Mansour,
2019). All aforementioned objectives can be cast under the framework of general-utility Markov
decision processes (GUMDPs) (Santos et al., 2024). GUMDPs generalize the framework of MDPs
by allowing the objective to be a non-linear function of the occupancy (the frequency of visitation
of state-action pairs induced when running a given policy on the MDP). Recent works unified such
objectives under the GUMDP framework and proposed algorithms to solve GUMDPs with convex
objectives (Zhang et al., 2020; Geist et al., 2022; Zahavy et al., 2021).

Unfortunately, in GUMDPs, the performance of a given policy may depend on the number of trial-
s/trajectories drawn to evaluate its performance (Mutti et al., 2023; Santos et al., 2024). In fact, the
standard formulation of GUMDPs implicitly assumes the performance of a given policy is evaluated

1

Published as a conference paper at ICLR 2026

over an infinite number of trials/trajectories of interaction with the environment. This is problem-
atic because: (i) the infinite trials assumption is violated in many practical application domains
where the objective function depends on the empirical occupancy induced by a small or finite set
of trajectories; and (ii) in general, the optimal policies produced by algorithms from prior research
may perform poorly when evaluated on a limited number of trajectories, as demonstrated by Mutti
et al. (2023). To overcome this issue, previous research introduced a finite-trials formulation for
GUMDPs where the objective function depends on the empirical occupancy induced by a finite set
of trajectories (Mutti et al., 2023; Santos et al., 2024). Unfortunately, in the finite-horizon setting,
Mutti et al. (2023) show that computing optimal policies for the finite-trials formulation of GUMDPs
is computationally challenging, being significantly harder than its infinite trials counterpart. Specif-
ically, the authors demonstrate that the problem can be reformulated as an “extended MDP” where
the agent must keep track of the history of state-action pairs observed up to each timestep. Mutti
et al. (2023) present preliminary results showing that optimal policies for the extended MDP, com-
puted via dynamic programming techniques, outperform their infinite-trial counterparts. However,
the state space of the extended MDP grows combinatorially with the horizon, limiting the scalability
of the approach to very small problem instances.

In this work, we introduce the first approach for solving GUMDPs in the single-trial regime, i.e.,
when the agent’s performance is evaluated based on a single trial/trajectory. We consider an infinite-
horizon discounted setting, which has been greatly adopted by previous research in the field (Zahavy
et al., 2021; Hazan et al., 2019) and has found important applications in different domains where
the lifetime of the agent is uncertain or infinite. We focus our attention to environments with dis-
crete state and action spaces. Our key contributions are threefold. First, we establish fundamental
results on policy optimization in the single-trial regime, addressing: (i) which class of policies suf-
fices for optimality; (ii) how the problem can be cast as an “occupancy MDP” that is equivalent to
our original problem; and (iii) the computational complexity of policy optimization in the single-
trial regime. Technically, our results differ from Mutti et al. (2023) due to the inherent differences
between infinite-horizon discounted occupancies and the finite-horizon occupancies considered by
the previous work. Moreover, our occupancy MDP refines the extended MDP from Mutti et al.
(2023), preserves optimality guarantees, and is better suited for practical implementation. Second,
we introduce a Monte-Carlo tree search (MCTS) algorithm to solve the occupancy MDP, effectively
solving the GUMDP in the single-trial regime via online planning. Our approach provably retrieves
the optimal action at each timestep for a sufficiently high number of iterations. Third, we present
experimental results showcasing the superior performance of our approach over relevant baselines
across diverse tasks and environments.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

MDPs (Puterman, 2014) provide a mathematical framework to study sequential decision making
and are formally defined as a tuple M = (S,A, {P a : a ∈ A},p0, c) where: S is the finite state
space; A is the finite action space; {P a : a ∈ A} is a set of transition probability matrices P a, one
for each action a ∈ A; p0 ∈ ∆(S) is the initial state distribution; and c : S × A → R is the cost
function. For a given action a ∈ A, each row of matrix P a satisfies P a(s, ·) ∈ ∆(S), encoding the
probability of transition from state s at the present timestep to any other state at the next timestep
when choosing action a. The interaction takes place as follows: (i) an initial state s0 is sampled
from p0; (ii) at each step t, the agent observes the state of the environment st ∈ S and chooses an
action at ∈ A. Depending on the chosen action, the environment evolves to state st+1 ∈ S with
probability P at(st, ·), and the agent receives a random cost ct with expectation given by c(st, at);
and (iii) the interaction repeats infinitely.

A decision rule πt specifies the procedure for action selection at timestep t. A non-Markovian
decision rule πt, at each timestep t, maps the history of states and actions to a probability distribution
over actions, i.e., πt : S× (S×A)t → ∆(A). A Markovian decision rule does not take into account
the entire history and, instead, maps the last state in the history to a distribution over actions, i.e.,
πt : S → ∆(A). Both non-Markovian and Markovian decision rules can be deterministic if they
consist of mappings of the type πt : S × (S ×A)t → A or πt : S → A, respectively.

2

Published as a conference paper at ICLR 2026

A policy π = (π0, π1, . . .) is a sequence of decision rules, one for each timestep. If, for all
timesteps, the decision rules are Markovian or non-Markovian, we say the policy is Markovian
or non-Markovian, respectively. Similarly, if the decision rules are deterministic or stochastic for all
timesteps, we say the policy is deterministic or stochastic, respectively. We denote the class of non-
Markovian policies with ΠNM, the class of Markovian policies with ΠM, the class of non-Markovian
deterministic policies with ΠD

NM, and the class of Markovian deterministic policies with ΠD
M. Finally,

the class of stationary policies, ΠS, contains all policies such that the decision rule is the same for
all timesteps. We let ΠD

S denote the class of stationary deterministic policies.

For a given policy π ∈ ΠNM, the interaction between the agent and the environment is a random
process (s0, a0, s1, a1, . . .). We let ht = (s0, a0, s1, a1, . . . , st) denote a random history up to (in-
cluding) timestep t. We also denote with ht = (s0, a0, s1, a1, . . . , st) ∈ S × (S × A)t a particular
history up to timestep t. The random sequence (s0, a0, s1, a1, . . .) satisfies: (i) P [s0 = s] = p0(s);
(ii) P [st+1 = s′|ht, at] = P at(st, s

′); and (iii) P [at = a|ht] = πt(a|ht). Let (Ω,F ,Pπ) be the
probability space over the sequence of random variables (s0, a0, s1, a1, . . .) that satisfies conditions
(i)-(iii) above (Lattimore & Szepesvári, 2020), where F is a sigma algebra. We write specific tra-
jectories as ω ∈ Ω, with ω = (s0, a0, s1, a1, . . .). We denote with Pπ [st = s, at = a|s0 ∼ p0] the
probability of state-action pair (s, a) at timestep t under policy π.

The infinite-horizon discounted setting. The discounted cumulative cost objective is Jγ(π) =
E [
∑∞

t=0 γ
tc(st, at)] , where γ ∈ (0, 1) is the discount factor and the expectation is taken over

the random trajectory of state-action pairs (s0, a0, s1, a1, . . .) generated by the interaction be-
tween π and the MDP. It is well-known that the class of stationary policies suffices for optimal-
ity (Puterman, 2014, Theo. 6.2.10) and, hence, we aim to find the optimal policy, π∗, such that
π∗ = argminπ∈ΠS

Jγ(π). The discounted state-action occupancy under policy π is

dπ(s, a) = (1− γ)

∞∑
t=0

γtPπ [st = s, at = a|s0 ∼ p0] . (1)

The expected discounted cumulative cost of policy π can be written as Jγ(π) = c⊤dπ, where
dπ = [dπ(s0, a0), . . . , dπ(s|S|, a|A|)]⊤ and c = [c(s0, a0), . . . , c(s|S|, a|A|)]⊤. Then, the problem
of computing the optimal policy becomes π∗ = argminπ∈ΠS

c⊤dπ , which can be formulated as a
linear program (Puterman, 2014).

2.2 MONTE-CARLO TREE SEARCH

MCTS (Browne et al., 2012; Silver et al., 2017) is a sample-based planning algorithm to approx-
imate optimal policies in MDPs through sequential tree-based search. The search tree alternates
between decision nodes, representing agent actions, and chance nodes, representing stochastic envi-
ronment transitions. At each iteration, MCTS builds and refines a search tree by alternating between
four phases: selection, expansion, simulation, and backpropagation. In the selection phase, the al-
gorithm recursively selects actions at decision nodes according to a tree policy, often based on upper
confidence bounds, and samples successor states at chance nodes according to the environment’s
dynamics, until it reaches a node that has not yet been fully expanded. Then, in the expansion phase,
a new child node corresponding to an unvisited state-action pair is created. In the simulation phase,
a rollout policy (typically random or heuristic) generates a trajectory from the expanded node to
estimate a Monte Carlo return. Backpropagation then updates the statistics (e.g., mean value, visit
counts) along the path traversed during the selection phase. MCTS converges asymptotically to the
optimal action at the root under mild assumptions (Kocsis & Szepesvári, 2006). Shah et al. (2020)
and Cömer et al. (2025) establish polynomial regret concentration for MCTS-based algorithms.

2.3 GENERAL-UTILITY MARKOV DECISION PROCESSES

The GUMDP framework generalizes utility-specification by allowing the objective of the agent to
be written in terms of the visitation frequency of state-action pairs. This is in contrast to the MDP
framework, where the objective of the agent is encoded by the cost, a function of state-action pairs.

We define an infinite-horizon discounted GUMDP as a tuple Mf = (S,A, {P a : a ∈ A},p0, f)
where S, A, {P a : a ∈ A}, and p0 are defined in a similar way to the standard MDP formulation.

3

Published as a conference paper at ICLR 2026

The objective of the agent is encoded by f : ∆(S × A) → R, as a function of a state-action
discounted occupancy d, as defined in equation 1. The objective is then to find

π∗ = argmin
π∈ΠS

f(dπ). (2)

We highlight that, when f is a linear function, we are under the standard MDP setting; if f is
convex, then we are under the convex MDP setting (Zahavy et al., 2021). In this work, we con-
sider three different tasks, each associated with a particular (convex) objective function: (i) maxi-
mum state entropy exploration (Hazan et al., 2019), where f(d) = d⊤ log(d); (ii) imitation learn-
ing (Abbeel & Ng, 2004), where f(d) = ∥d − dβ∥22 and dβ ∈ ∆(S × A) is the occupancy
induced by behavior policy β; and (iii) adversarial MDPs (Rosenberg & Mansour, 2019), where
f(d) = maxk∈{1,...,K} d⊤ck and {c1, . . . , cK} is a set of K cost vectors satisfying ck ∈ R|S||A|.
Nevertheless, our results apply to any task that can be modelled using the GUMDP framework.
We refer to Zahavy et al. (2021) for a comprehensive list of the different objectives considered by
previous works.

2.4 GUMDPS IN THE SINGLE-TRIAL REGIME

In this work, we consider a different objective from the one introduced in equation 2. While equa-
tion 2 depends on the expected discounted occupancy, dπ , the objective we herein introduce depends
on the empirical discounted occupancy induced by running a given policy on the GUMDP. This is
particularly important, as practical applications often require identifying the policy that performs
optimally when evaluated based on a single trajectory of interaction with the environment (Mutti
et al., 2023; Santos et al., 2024). Furthermore, as we shall explain next, in GUMDPs the perfor-
mance of a given policy may depend on the number of trajectories or trials used to evaluate it (Mutti
et al., 2023; Santos et al., 2024).

Discounted empirical state-action occupancies We consider the setting in which the agent inter-
acts with its environment over a single-trial, i.e., a single trajectory. For a given policy π ∈ ΠNM, we
introduce the random vector dπ : Ω → ∆(S × A), which corresponds to the empirical discounted
state-action occupancy associated with the probability space (Ω,F ,Pπ), defined as

dπω(s, a) = (1− γ)

∞∑
t=0

γt1(st = s, at = a), (3)

where 1 is the indicator function. It holds that dπ = E[dπ], for dπ as introduced in equation 1.
In practice, it is common to truncate the trajectories of interaction between the agent and its envi-
ronment. We denote by H ∈ N the truncation horizon and let the empirical truncated occupancy,
dπ,H : Ω → ∆(S ×A), be defined as

dπ,Hω (s, a) =
1− γ

1− γH

H−1∑
t=0

γt1(st = s, at = a). (4)

Single-trial formulation for GUMDPs We now introduce objectives for GUMDPs that depend
on empirical discounted state-action occupancies. The single-trial objective is defined as

F1(π) = E [f(dπ)] , (5)
and we aim to find π∗ = argminπ∈Π F1(π), where Π is an arbitrary policy class we specify later.
The single-trial truncated objective is defined as

F1,H(π) = E
[
f(dπ,H)

]
. (6)

We note that the single-trial truncated objective is more general than the single-trial objective. In
particular, F1,H is equivalent to F1 as H → ∞. The infinite trials1 objective, F∞, is defined as

F∞(π) = f(dπ) = f (E [dπ]) ,

and we aim to find π∗
∞ = argminπ∈ΠS

F∞(π). We note that F∞ is equivalent to the objective
in equation 2, which depends on expected occupancies. The fact that ΠS suffices for optimality
follows from results on the possible state-action occupancies induced by different classes of policies
(Puterman, 2014).

1We call F∞ the infinite trials objective because, as the number of sampled trajectories/trials approaches
infinity, the mismatch between GUMDPs that depend on empirical and expected occupancies fades away.

4

Published as a conference paper at ICLR 2026

The mismatch between F1 and F∞ Previous works pointed out important differences between
the single and infinite trials formulations for GUMDPs (Mutti et al., 2023; Santos et al., 2024). In
particular, it has been shown that, in general, the performance of a given policy under the single and
infinite trials formulations differs and, consequently, the optimal policy for each objective may also
differ. This occurs because, since f may be non-linear, it can happen that F1(π) = E [f(dπ)] ̸=
f (E [dπ]) = F∞(π). We refer to Santos et al. (2024) for explicit lower bounds on the performance
difference between F1 and F∞. Naturally, when f is linear, as it is the case in standard MDPs, then
the single and infinite trials formulations become equivalent due to the linearity of the expectation.
However, due to the mismatch between the single and infinite trials formulations, and given that the
single-trial formulation is particularly relevant in practical applications where policy performance is
assessed based on a single trajectory of interaction with the environment, we focus in this work on
finding (approximately) optimal policies for the single-trial objective, F1.

3 POLICY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In this section, we establish the fundamental results that underpin the development of online plan-
ning algorithms to solve GUMDPs in the single-trial regime. Specifically, we investigate: (i) which
class of policies suffices for optimality; (ii) how we can focus on the truncated single-trial objective,
F1,H , to compute approximately optimal policies for the single trial objective, F1; (iii) how we can
cast our single-trial GUMDP problem as an MDP in which the agent keeps track of the accrued occu-
pancy at every timestep of the interaction with the GUMDP; and (iv) the computational complexity
of policy optimization in the single-trial regime. We let OptGap(π) = F1(π)−minπ′∈ΠNM F1(π

′)
be the optimality gap of an arbitrary policy π ∈ ΠNM with respect to the single-trial objective in-
troduced in equation 5. Intuitively, the optimality gap measures how suboptimal a given policy π is
compared to the best policy. Throughout our work, we make use of the following assumption.
Assumption 1. The objective function f is L-Lipschitz with L ∈ R+, i.e., |f(d1) − f(d2)| ≤
L∥d1 − d2∥1 for any d1,d2 ∈ ∆(S ×A).

We refer to Appendix A for the Lipschitz constants of the objective functions considered.

3.1 NON-MARKOVIANITY MATTERS

We start by investigating which class of policies suffices for optimality. We have the following result
(proof in Appendix B.1).
Theorem 1. There exists a GUMDP Mf with γ ∈ (0, 1) and L-Lipschitz convex objective such
that (lower is better):

1. F1(πS) > F1(πM), for some πM ∈ ΠM and any πS ∈ ΠS.

2. F1(πM) > F1(πNM), for some πNM ∈ ΠNM and any πM ∈ ΠM.

The result above shows that, in general, the class of stationary policies is strictly dominated by the
class of non-stationary policies, which is, in turn, strictly dominated by the class of non-Markovian
policies. Hence, non-Markovianity matters, and we must focus our attention on history-dependent
policies. Our Theo. 1 extends the result in Mutti et al. (2023), which considers finite-horizon
GUMDPs, to the infinite-horizon discounted setting.

3.2 COMPUTING (APPROXIMATELY) OPTIMAL POLICIES BY RESORTING TO F1,H

The result below (proof in Appendix B.2) establishes that the optimality gap OptGap(π) of any
policy π ∈ ΠNM can be upper bounded, up to a constant, by the optimality gap of policy π for the
single-trial truncated objective.
Proposition 1 (Optimality gap decomposition). For arbitrary π ∈ ΠNM, it holds that

OptGap(π) ≤ F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}︸ ︷︷ ︸
= OptGapH(π)

+8LγH , (7)

where OptGapH(π) is the optimality gap of policy π under the single-trial truncated objective with
horizon H .

5

Published as a conference paper at ICLR 2026

Intuitively, the proposition above shows that we can resort to the single-trial truncated objective, as
introduced in equation 6, to find an approximately optimal policy for the original objective defined
in equation 5, up to any desired tolerance. In particular, if π is the optimal policy for the single-trial
truncated objective, i.e., OptGapH(π) = 0, then it holds that OptGap(π) ≤ 8LγH , which can be
made arbitrarily small by tuning our truncation horizon H . Therefore, we focus our attention on
finding

π∗ = argmin
π∈ΠNM

F1,H(π) = argmin
π∈ΠNM

E
[
f(dπ,H)

]
, (8)

in order to keep the truncated optimality gap term OptGapH(π) low, which we investigate in the
next section.

3.3 THE OCCUPANCY MDP: CASTING Mf AS A STANDARD MDP

To derive our planning algorithms for solving GUMDPs in the single-trial truncated setting, we
derive a finite-horizon MDP based on the original GUMDP. In particular, we consider the occupancy
MDP defined by the tuple MO = {SO,AO, {P a

O},p0,O, cO, H}, where SO = S × O is the discrete
state space and

O =

{
o ∈ R|S||A| : o(s, a) =

l−1∑
t=0

γt1(st = s, at = a),∀s ∈ S, a ∈ A,

(s0, a0, . . . , sl) ∈ S × (S ×A)l, 1 ≤ l ≤ H − 1

}⋃{
[0, . . . , 0] ∈ R|S||A|

}
.

We denote a state of the occupancy MDP with the tuple {s,o}, where s ∈ S is a state from the
original GUMDP and o ∈ O is a |S||A|-dimensional vector that keeps track of the running occu-
pancy of the agent up to a given timestep. Intuitively, the running occupancy records the empirical
occupancy, as defined in equation 3, observed by the agent up to any timestep. We let AO = A
be the action space. We define p0,O such that p0,O({s,o}) = p0(s) if o = [0, . . . , 0] and zero
otherwise. The dynamics are as follows: (i) component st+1 ∼ P at(·|st) evolves according to
the dynamics of the original GUMDP; and (ii) the running occupancy evolves deterministically as
ot+1(s, a) = γt+ ot(s, a) if s = st and a = at, and ot+1(s, a) = ot(s, a) otherwise. We emphasize
that we do not need to incorporate the timestep in the state of the occupancy MDP since it can be
inferred from the running occupancy by summing its entries. Finally, H ∈ N denotes the horizon of
the MDP and the cost function cO : S ×O → R is defined as

cO({s,o}) =
{
0 if t < H,

f
(

1−γ
1−γH o

)
if t = H.

Stationary policies πO ∈ ΠS for MO are mappings of the type πO : S × O → ∆(A). We let the
cumulative cost under MO be

JO(πO) = E

[
H∑
t=0

cO({st,ot})
]
= E [cO({sH ,oH})] , (9)

where the expectation above is taken with respect to the random sequence of states
({s0,o0}, . . . , {sH ,oH}) under policy πO. We let J∗

O = minπO∈ΠD
S
JO(πO) be the optimal cumula-

tive cost for MO. We also note that the occupancy MDP possesses well-defined (optimal) value and
action-value functions, which can be shown to satisfy standard Bellman equations (Appendix B.3).

We present the following result, relating states in MO to histories in Mf (proof in Appendix B.4).
Proposition 2 (One-to-one mapping between histories in Mf and states in MO). There exists a
one-to-one mapping between histories hl = (s0, a0, s1, a1, . . . , sl) ∈ S × (S × A)l in Mf , with
0 ≤ l ≤ H − 1, and states {s,o} ∈ S ×O in MO.

An important conclusion that follows from the result above is that there exists a one-to-one mapping
between non-Markovian policies for Mf and stationary policies for MO. This holds because every
state in MO is uniquely associated with a particular history in Mf (and vice versa). With this in
mind, we now state the following result (proof in Appendix B.5), which connects the problem of
solving the occupancy MDP and the problem of solving the single-trial truncated GUMDP objective.

6

Published as a conference paper at ICLR 2026

Theorem 2 (Solving Mf is “equivalent” to solving MO). The problem of finding a policy π ∈ ΠNM

satisfying OptGapH(π) ≤ ϵ, for any ϵ ∈ R+
0 , can be reduced to the problem of finding a policy

πO ∈ ΠS satisfying JO(πO) − J∗
O ≤ ϵ. In particular, if π∗

O = argminπO∈ΠS
JO(πO), then the

corresponding non-Markovian policy π in Mf satisfies OptGapH(π) = 0. Finally, it holds that
OptGapH(π) = JO(πO) − J∗

O, where πO is the stationary policy for MO associated with the
non-Markovian policy π for Mf .

Intuitively, the result above tells us that it suffices to search for an approximately stationary optimal
policy for MO, since such a policy corresponds to a non-Markovian policy that is approximately
optimal for Mf . In particular, an approximately optimal policy for MO can be seen as a non-
Markovian policy for Mf that compresses the history up to any timestep into a running occupancy.
This result demonstrates that maintaining the running occupancy up to any timestep is sufficient to
achieve optimal behavior in the single-trial truncated-horizon regime equation 8.
Remark 1 (Deterministic policies suffice for optimality). Since the class of policies ΠD

S suffices for
optimality in standard MDPs (Puterman, 2014), we know that at least one stationary deterministic
policy πO ∈ ΠD

S for MO satisfies JO(πO)− J∗
O = 0, i.e., πO is optimal for MO. In light of Theo. 2

and Prop. 2, this implies that the corresponding non-Markovian policy π ∈ ΠNM for Mf , which
is deterministic, satisfies OptGapH(π) = 0, i.e., π is optimal for Mf . Thus, we can focus our
attention on deterministic non-Markovian policies when solving Mf with objective F1,H , i.e., for
any GUMDP and horizon H ∈ N, it holds that minπ∈ΠNM F1,H(π) = minπ∈ΠD

NM
F1,H(π).

Given Theo. 2, we consider planning algorithms to solve the occupancy MDP. Unfortunately, solving
the occupancy MDP poses some challenges: (i) the cost function of the occupancy MDP is rather
sparse since it is only non-zero at the last timestep; (ii) the size of the state space of the occupancy
MDP grows combinatorially with H since every state in the occupancy MDP is associated with
a possible history in Mf ; and (iii) every state in the occupancy MDP is visited at most once per
trajectory. Therefore, before investigating how we can solve the occupancy MDP in Sec. 4, we take
a closer look at how hard it is, from a worst-case perspective, to compute the optimal policy in
GUMDPs in the single-trial regime.

It is worth noting that the occupancy MDP is conceptually related to the extended MDP proposed
by Mutti et al. (2023) for the case of undiscounted finite-horizon GUMDPs. While the extended
MDP explicitly tracks the full history up to the current timestep, we show that this information
can be compressed into a running occupancy without sacrificing optimality guarantees. Since there
exists a one-to-one mapping between states of the occupancy MDP and histories, the size of the
state space of both formulations is equivalent. However, the compressed representation used by the
occupancy MDP is more amenable to practical implementations since the running occupancy can be
incrementally updated as the agent interacts with its environment. Despite these similarities, a key
distinction lies in the setting: Mutti et al. (2023) consider the finite-horizon undiscounted setting,
whereas we focus on the discounted setting. Discounting plays a crucial role in our analysis (e.g.,
Proposition 2) and it remains unclear whether similar results hold in the undiscounted case. This
highlights a fundamental difference between our work and that of Mutti et al. (2023).

3.4 HARDNESS RESULT FOR POLICY OPTIMIZATION IN THE SINGLE-TRIAL REGIME

In the previous section, we established that it suffices to search over the class of policies ΠD
NM

in order to attain optimal policies for any GUMDP and horizon H ∈ N with respect to ob-
jective F1,H(π) = E

[
f(dπ,H)

]
. We now show that there exist GUMDPs for which solving

π∗ = argminπ∈ΠD
NM

F1,H(π) can be computationally hard. More precisely, we prove that the prob-
lem of deciding whether there exists a policy π ∈ ΠD

NM such that F1,H(π) ≤ λ, where λ ∈ R is a
threshold value, is NP-Hard.
Theorem 3 (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F1,H and a threshold value λ ∈ R, it is NP-Hard to determine whether there exists a policy
π ∈ ΠD

NM satisfying F1,H(π) ≤ λ.

Proof sketch. (Complete proof in Appendix B.6) We reduce the subset sum problem to the policy
existence problem in GUMDPs with objective F1,H . The subset sum problem asks whether, given
a set N = {n0, n1, . . . , nN−1} of N non-negative integers and a target sum k ∈ N, there exists

7

Published as a conference paper at ICLR 2026

a subset of N whose elements sum to k. We map every instance of the subset sum problem as a
GUMDP such that at each state si, for i ∈ {0, . . . , N − 1}, the policy π ∈ ΠD

NM needs to decide
between selecting: (i) ainclude, thereby including ni in the sum; or (ii) anot-include, thereby excluding
ni from the sum. Then, we set H ≥ N and let f(d) = (n⊤d− k)2, where d denotes a discounted
occupancy that captures information regarding the actions selected by the agent at each state si. We
construct vector n ∈ R|S||A| such that n⊤d equals the sum of the numbers selected by the policy.
With this construction, the objective satisfies f(d) = 0 if and only if the sum of the selected numbers
equals k. By setting λ = 0, we are asking whether there exists a policy such that F1,H(π) ≤ 0.
Since f(d) = 0 if and only if the selected numbers sum to k, the reduction is complete.

We note that the objective function f used in the proof of the result above is Lipschitz and (strictly)
convex. Thus, our result shows that, even for smooth convex objectives, the computational hardness
of computing the optimal policy in the single-trial regime is NP-Hard. Mutti et al. (2023) present a
hardness result for the single-trial optimization problem in the case of undiscounted finite-horizon
GUMDPs. Our theorem extends this result to the discounted case. In addition, our proof is signifi-
cantly simpler - a one-step reduction - compared to the NP-hardness argument in Mutti et al. (2023),
which relies on complexity results for partially observable MDPs. Furthermore, our result is more
informative, as it shows that the hardness persists even when the objective f is smooth and convex.

With the above hardness result in mind, we next explore how to develop practical planning al-
gorithms for our problem. Naturally, in a worst-case sense, these algorithms may require a non-
polynomial number of steps to retrieve the optimal policy. Nevertheless, our results show it is
possible to develop practical algorithms that are superior in comparison to relevant baselines.

4 ONLINE PLANNING FOR GUMDPS IN THE SINGLE-TRIAL REGIME

In this section, we investigate how we can solve the occupancy MDP introduced in the previous
section by resorting to online planning techniques.

As previously shown, solving a GUMDP in the single-trial setting is closely related to solving a
corresponding occupancy MDP. This connection allows us to employ an online planning approach
in which, at any timestep t ∈ {0, . . . ,H − 1} of the interaction with the occupancy MDP, the algo-
rithm receives the current state {st,ot}. The online planner then expands a look-ahead search tree
where the root node corresponds to state {st,ot}. After a given number of iterations, the planning
algorithm selects an action to execute in the environment; depending on the selected action, the en-
vironment evolves to a new state, and the process repeats until timestep H . This online planning
strategy is particularly effective, as it allows computational resources to be focused on computing
(approximately) optimal actions only along the specific trajectory experienced by the agent. This
avoids the prohibitive cost of computing an optimal policy for every state of the occupancy MDP.

4.1 MONTE-CARLO TREE SEARCH FOR GUMDPS IN THE SINGLE-TRIAL REGIME

We employ an MCTS algorithm to solve the occupancy MDP. As described in Sec. 2.2, the search
tree of the online planning algorithm comprises decision and chance nodes. In the context of the
occupancy MDP, each decision node corresponds to an action a ∈ A, while each chance node corre-
sponds to a given state {s,o} ∈ S × O of the occupancy MDP. At timestep t of the interaction, the
MCTS algorithm builds a planning tree rooted at the current state {st,ot}, following the four phases
outlined in Sec. 2.2 at each iteration. We provide the following two remarks, which further charac-
terize the convergence and regret of our proposed MCTS-based approach for solving GUMDPs in
the single-trial regime. To derive the two results below, we make the following assumption.
Assumption 2. The objective function satisfies fmin ≤ f(d) ≤ fmax, for any d ∈ ∆(S ×A).

Remark 2 (Convergence). Under Assumption 2, for any horizon H ∈ N, the MCTS algorithm
provably solves the occupancy MDP as the number of iterations of the algorithm per timestep grows
to infinity. More precisely, for any horizon H ∈ N, we have that OptGapH(πMCTS) = 0 as the
number of iterations of the algorithm per timestep grows to infinity, where we let πMCTS be the policy
induced by the MCTS algorithm at each timestep. This result follows from our Theo. 2 and Theo. 6
in Kocsis & Szepesvári (2006) by rescaling the objective function to lie in the [0, 1] interval. Thus,
from Prop. 1, OptGap(πMCTS) ≤ 8 L

fmax−fmin
γH .

8

Published as a conference paper at ICLR 2026

1 0 2

a0a0a0

a1a1

a1

(a) Mf,1 (Entropy max.) and
Mf,3 (Adversarial MDP) .

1 0

a0a0a1

a1

(b) Mf,2 (Imitation
learning).

(s
0 , a

0)

(s
0 , a

1)

(s
1 , a

0)

(s
1 , a

1)

(s
2 , a

0)

(s
2 , a

1)

0.5

1.0

1.5

2.0

C
os

t

, c2 : , c3 :c1 :)(

(c) Mf,3 costs (Adversarial MDP).

Figure 1: Illustrative GUMDPs. Mf,1 and Mf,3 share the same dynamics but differ in the objective
function. In all GUMDPs, the chosen action succeeds with 90% probability and, with 10% probabil-
ity, the agent randomly moves to any of the states. The behavior policy for Mf,2 is β(a0|s0) = 0.8
and β(a0|s1) = 0.2. In (c), we plot the three cost functions, c1, c2 and c3, of the adversarial MDP.

Remark 3 (Regret bound). For a given number of episodes n and a sequence of policies
(π1, . . . , πn), let R(π1, . . . , πn) = 1

n

∑n
i=1 OptGap(πi) be the expected regret for the sequence

of policies and RH(π1, . . . , πn) =
1
n

∑n
i=1 OptGapH(πi) the truncated expected regret for the se-

quence of policies. Under Assumption 2, for any horizon H , there exists an MCTS-based algorithm
such that, when applied to solve the occupancy MDP with n expansion steps, yields a sequence
of policies (π1, . . . , πn) satisfying RH(π1, . . . , πn) ≤ O(1/

√
n). Furthermore, from Prop. 1,

R(π1, . . . , πn) ≤ O(1/
√
n + γH). This result follows from our Theo. 2 and the works of Shah

et al. (2020) and Cömer et al. (2025), particularly Theo. 1 in Shah et al. (2020) and Theo. 1 in
Cömer et al. (2025), which establish polynomial regret bounds for MCTS-based algorithms.

5 EXPERIMENTAL RESULTS

In this section, we empirically assess the performance of the proposed MCTS-based algorithm for
solving GUMDPs in the single-trial setting. Below, we provide a brief description of the considered
tasks and environments. We refer to Appendix C for a complete description of our experiments.

Tasks, environments, baselines, and experimental methodology We consider three tasks: (i)
maximum state entropy exploration (Hazan et al., 2019); imitation learning (Abbeel & Ng, 2004);
and (iii) adversarial MDPs (Rosenberg & Mansour, 2019). We consider two sets of environments.
The first set consists of the illustrative GUMDPs depicted in Fig. 1, each associated with one of the
tasks. The second set of environments come from the OpenAI Gym library (Brockman et al., 2016).
We consider the FrozenLake (FL), Taxi, and mountaincar (MC) environments. The framework of
GUMDPs is defined over discrete state spaces; hence, we discretized the MC environment using
a 10 × 10 grid with equally-spaced bins. For the FL, Taxi, and MC environments, the task of
imitation learning consists in imitating an approximately optimal policy. We let γ = 0.9 and set
H = 100 for the illustrative GUMDPs and H = 200 for the other environments. We perform
10 runs per experimental setting. We consider two baselines: (i) a random policy, πRandom; and
(ii) the optimal policy for the infinite trials formulation equation 2, π∗

Solver, calculated by solving a
constrained optimization problem with objective f via a standard optimization solver. We denote the
policy induced by our MCTS algorithm as πMCTS and consider 4000 iterations per timestep (results
with other numbers of iterations in the Appendix C). Our code can be found here

Experimental results discussion We present our experimental results in Tab. 1. As seen, across
nearly all experimental settings, πMCTS outperformed the baselines, showcasing the superior perfor-
mance of our approach (the only exception is for the Taxi environment under the imitation learning
task where the performance of πMCTS is similar to that of π∗

Solver). We highlight the gains attained by
πMCTS in comparison to the infinite trials policy, π∗

Solver.

6 CONCLUSION & LIMITATIONS

In this work, we contribute with the first approach to solve infinite-horizon discounted GUMDPs in
the single-trial regime. In Sec. 3, we provided the fundamental results underpinning policy optimiza-

9

https://github.com/PPSantos/gumdps-finite-trials-optimization-public

Published as a conference paper at ICLR 2026

Table 1: Mean single-trial objective, F1,H(π), obtained by different policies, across tasks and envi-
ronments. Values in parentheses correspond to the 90% mean conf. interval. Lower is better.

Maximum state entropy exploration Imitation learning Adversarial
MDP

Policy Mf,1 FL Taxi MC Mf,2 FL Taxi MC Mf,3

πRandom
0.12

(-0.04,+0.04)
0.51

(-0.03,+0.03)
0.65

(-0.01,+0.01)
0.72

(-0.02,+0.02)
0.05

(-0.02,+0.02)
0.07

(-0.02,+0.02)
0.08

(-0.01,+0.01)
0.18

(-0.04,+0.04)
1.23

(-0.02,+0.02)

π∗
Solver

0.05
(-0.02,+0.02)

0.48
(-0.03,+0.03)

0.63
(-0.01,+0.01)

0.70
(-0.03,+0.03)

0.02
(-0.01,+0.01)

0.05
(-0.02,+0.02)

0.05
(-0.001,+0.002)

0.07
(-0.01,+0.02)

1.17
(-0.02,+0.02)

πMCTS
0.01

(-0.01,+0.01)
0.40

(-0.03,+0.03)
0.59

(-0.0,+0.0)
0.61

(-0.02,+0.01)
0.002

(-0.001,+0.001)
0.02

(-0.005,+0.006)
0.05

(-0.002,+0.002)
0.04

(-0.01,+0.01)
1.07

(-0.003,+0.004)

tion in the discounted single-trial regime. Then, in Secs. 4 and 5, we explored how we can resort
to online planning techniques, in particular MCTS, to solve discounted GUMDPs in the single-trial
regime. Our work takes a first step towards a broader application of GUMDPs in real-world settings
where the agent’s performance is typically evaluated under a single trial. The key limitations of
our approach to solve GUMDPs in the single-trial regime are: (i) the MCTS algorithm requires a
simulator of the environment to sample transitions; and (ii) the size of the matrix that keeps track
of the running occupancy may be impractical for GUMDPs with large state and action spaces. We
believe such limitations should be addressed by future work, for example, by investigating methods
to compress the running occupancy.

ACKNOWLEDGMENTS

This work was supported by Portuguese national funds through the Portuguese Fundação para a
Ciência e a Tecnologia (FCT) under projects UID/50021/2025 and UID/PRR/50021/2025 (INESC-
ID multi-annual funding), as well as AI-PackBot (project number 14935, LISBOA2030-FEDER-
00854700). Pedro P. Santos acknowledges the FCT PhD grant 2021.04684.BD. Alberto Sardinha
acknowledges the CNPq Research Productivity Fellowship (PQ), with reference 312699/2025-5.
The authors also thank the lab managers at GAIPS for the support provided when running the com-
putational experiments of this work.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, pp.
1, 2004.

David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup, and
Satinder Singh. On the expressivity of markov reward, 2022.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms, 2018.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, 2012.

Y.S. Chow, H. Robbins, and D. Siegmund. Great Expectations: The Theory of Optimal Stopping.
1971. ISBN 9780395053140.

Can Cömer, Jannis Blüml, Cedric Derstroff, and Kristian Kersting. Polynomial regret concentration
of ucb for non-deterministic state transitions, 2025.

10

Published as a conference paper at ICLR 2026

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. The inventory problem: Ii. case of unknown distributions
of demand. Econometrica, 20(3):450–466, 1952.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
CoRR, abs/2003.02189, 2020.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function, 2018.

Javier Garcı́a, Fern, and o Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(42):1437–1480, 2015.

Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem,
Rémi Munos, and Olivier Pietquin. Concave utility reinforcement learning: the mean-field game
viewpoint, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL https://www.
gurobi.com.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum en-
tropy exploration. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 2681–2691, 2019.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2), apr 2017.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine Learning:
ECML 2006, pp. 282–293, 2006.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Convex rein-
forcement learning in finite trials. Journal of Machine Learning Research, 24(250):1–42, 2023.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 7(1–2):
1–179, 2018. ISSN 1935-8261.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. CoRR, abs/1905.07773, 2019.

Pedro P. Santos, Alberto Sardinha, and Francisco S. Melo. The number of trials matters in infinite-
horizon general-utility markov decision processes, 2024.

Devavrat Shah, Qiaomin Xie, and Zhi Xu. Non-asymptotic analysis of monte carlo tree search,
2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Shaler Stidham. Socially and individually optimal control of arrivals to a gi/m/1 queue. Management
Science, 24(15):1598–1610, 1978.

11

https://www.gurobi.com
https://www.gurobi.com

Published as a conference paper at ICLR 2026

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Inc. Wolfram Research. Mathematica, Version 14.2. Champaign, IL, 2024.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
for convex mdps. CoRR, abs/2106.00661, 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational
policy gradient method for reinforcement learning with general utilities, 2020.

12

Published as a conference paper at ICLR 2026

A LIPSCHITZ CONSTANTS

Table 2: Common objective functions found in the GUMDPs literature. In (†) we assume d is lower
bounded by ϵ satisfying 0 < ϵ < e−2.

Task Objective (f(d)) Lipschitz constant (L)

MDPs/RL d⊤c, c ∈ R|S||A| maxs,a |c(s, a)|
Pure exploration d⊤ log(d) | log(ϵ) + 1| (†)

Imitation learning ∥d− dβ∥22, dβ ∈ ∆(S ×A) 4

Adversarial MDPs maxk∈{1,...,K} d⊤ck maxk∈{1,...,K} {maxs,a |ck(s, a)|}

Objective function f(d) = c⊤d It holds that

|f(d1)− f(d2)| = |c⊤(d1 − d2)| =
∑
s,a

|c(s, a)||d1(s, a)− d2(s, a)| ≤ max
s,a

|c(s, a)|∥d1 − d2∥1.

Objective function f(d) = d⊤ log(d) We assume d is lower bounded by ϵ, i.e., d(s, a) ≥ ϵ with
0 < ϵ < e−2 for all s ∈ S, a ∈ A. We let f(d) =

∑
s,a g(d(s, a)), for g(x) = x log(x). We note

that, g′(x) = log(x) + 1 and it holds for any x ∈ [ϵ, 1] that |g′(x)| ≤ | log(ϵ) + 1|. Thus, for any
x1, x2 ∈ [ϵ, 1] we have that

|g(x1)− g(x2)| =
∣∣∣∣∫ x1

x2

g′(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫ max{x1,x2}

min{x1,x2}
g′(x)dx

∣∣∣∣∣
≤
∫ max{x1,x2}

min{x1,x2}
|g′(x)| dx ≤

∫ max{x1,x2}

min{x1,x2}
|log(ϵ) + 1| dx

= |log(ϵ) + 1| |x1 − x2|.

Thus, for any d1,d2 ∈ ∆(S ×A) lower bounded by 0 < ϵ < e−2, it holds that

|f(d1)− f(d1)| =
∣∣∣∣∣∑
s,a

(g(d1(s, a))− g(d2(s, a)))

∣∣∣∣∣
(a)

≤
∑
s,a

|g(d1(s, a))− g(d2(s, a))|

≤
∑
s,a

|log(ϵ) + 1| |d1(s, a)− d2(s, a)|

= |log(ϵ) + 1| ∥d1 − d2∥1
were (a) follows from the triangular inequality.

Objective function f(d) = ∥d− dβ∥22 It holds that ∇f(d) = 2(d− dβ). Now,
max

d∈∆(S×A)
∥∇f(d)∥1 = 2 max

d∈∆(S×A)
∥d− dβ∥1 ≤ 2 max

d1,d2∈∆(S×A)
∥d1 − d2∥1 = 4.

Since the function f is continuous and differentiable over the simplex, which is compact, it holds
that L = 4 is a valid Lipschitz constant as it corresponds to an upper bound on the maximum
magnitude of the gradient of f over ∆(S ×A).

B SUPPLEMENTARY MATERIALS FOR SEC. 3

B.1 PROOF OF THEOREM 1

Theorem 1. There exists a GUMDP Mf with γ ∈ (0, 1) and L-Lipschitz convex objective such
that:

13

Published as a conference paper at ICLR 2026

1. F1(πS) > F1(πM), for some πM ∈ ΠM and any πS ∈ ΠS.

2. F1(πM) > F1(πNM), for some πNM ∈ ΠNM and any πM ∈ ΠM.

Proof. To prove our result, we consider the GUMDP depicted in Fig. 2. To simplify our proof,
we consider state-dependent occupancies and denote an occupancy for the GUMDP above with
the vector d = [d(s0), d(s1), d(s2)]. The objective function is f(d) = d⊤Ad, where A =
diag([0, 1, 1]), which is Lipschitz (over ∆(S)) and convex. Under any trajectory it holds that
d(s0) = (1− γ)

∑∞
t=0 γ

2t+1 = (1−γ)γ
1−γ2 . Hence, it holds that, under any trajectory, d(s1) + d(s2) =

1 − (1−γ)γ
1−γ2 = 1−γ

1−γ2 . Thus, we focus our attention to the value of the occupancy at state s1, d(s1),
and let d(s2) = 1−γ

1−γ2 − d(s1). With this, we can define our objective as a function of d(s1) only by
letting f(d(s1)) = d(s1)2 + (1−γ

1−γ2 − d(s1))2.

1

0

2

a1

a2

ϵ

1− ϵ

Figure 2: Illustration of the GUMDP used in the proof of Theo. 1 with S = {s0, s1, s2} and A =
{a1, a2}. The distribution of initial states is p0(s0) = 0, p0(s

1) = ϵ, p0(s
2) = 1 − ϵ, where we set

ϵ = 1/2. All transitions are deterministic and in states s1 and s2 any of the actions takes the agent
back to state s0.

For the first part of the Theorem it holds, for any πS ∈ ΠS, that

F1(πS) = E [f(dπS)]

(a)
= E

[
f(dπS

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s3∼P a2 (·|s2),a3∼πS(·|s3),...

]
(b)
= E

[
E

[
f(dπS

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(c)
= E

[
E

[
f

(
(1− γ)

4∑
t=0

γt1(st = s1) + γ5d̃πS
a5,s6,a6,...(s

1)

)∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(d)

≥ E

[
f

(
(1− γ)

4∑
t=0

γt1(st = s1) + γ5E

[
d̃πS
a5,s6,a6,...(s

1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]

= E

[
f

(
(1− γ)

(
1(s0 = s1) + γ21(s2 = s1) + γ41(s4 = s1)

)
+ (1− γ)E

[∞∑
t=5

γt1(st = s1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

])∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
(e)
= E

[
f

(
(1− γ)

(
1(s0 = s1) + γ21(s2 = s1) + γ41(s4 = s1)

)
+ (1− γ)πS(a

1|s0) γ6

1− γ2

)∣∣∣∣∣ s0∼p0,a0∼πS(·|s0),
s1∼P a0 (·|s0),a1∼πS(·|s1),

...,
s4∼P a3 (·|s3),a4∼πS(·|s4)

]
,

where in (a) we emphasized that the random vector dπS depends on random variables
s0, a0, s1, a1, . . .; (b) follows from the fact that s5 = s0 with probability one for trajectories drawn
from the GUMDP, i.e., for any trajectory the state at timestep 5 is always s0, and thus we can

14

Published as a conference paper at ICLR 2026

split and simplify the expectation. In step (c), we let d̃ be the random vector defined as in equa-
tion 3 for the GUMDP depicted in Fig. 2, but where p0(s

0) = 1 and zero otherwise. Step (d)
follows from Jensen’s inequality since, for any values (s0, a0, s1, a1, . . . , s4, a4) ∈ (S × A)5 the
random variables of the outer expectation can take, it holds that E[g(d̃πS)] ≥ g(E[d̃πS]) where we
let g(x) = f((1 − γ)

∑4
t=0 γ

t1(st = s1) + γ5x), which is convex. Finally, step (e) follows from
the fact that

E

[∞∑
t=5

γt1(st = s1)

∣∣∣∣∣ a5∼πS(·|s0),
s6∼P a5 (·|s0),...

]
=

∞∑
t=5

γtPπS

[
st = s1

]
= γ5 · 0 + γ6πS(a

1|s0) + γ7 · 0 + γ8πS(a
1|s0) + . . .

= πS(a
1|s0)

(
γ6 + γ8 + . . .

)
= πS(a

1|s0)
∞∑
t=0

γ2t+6

= πS(a
1|s0) γ6

1− γ2
.

We can now explicitly write the expectation in the last step above, yielding, for any πS ∈ ΠS and
while letting ϵ = 1/2,

F1(πS) ≥
1

2
πS(a

1|s0)2
[
f

(
(1− γ)

(
1 + γ2 + γ4 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ2 + γ4 + πS(a

1|s0) γ6

1− γ2

))]

+
1

2
πS(a

1|s0)(1− πS(a
1|s0))

[
f

(
(1− γ)

(
1 + γ2 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
1 + γ4 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ2 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
γ4 + πS(a

1|s0) γ6

1− γ2

))]

+
1

2
(1− πS(a

1|s0))2
[
f

(
(1− γ)

(
1 + πS(a

1|s0) γ6

1− γ2

))

+ f

(
(1− γ)

(
πS(a

1|s0) γ6

1− γ2

))]
.

In summary, F1(πS) is lower bounded by the expression above for any policy πS ∈ ΠS. Since f
is a quadratic function, the lower bound above is also a quadratic function with respect to variable
πS(a

1|s0). Thus, we can calculate the minimizer of the lower bound above by computing the gra-
dient with respect to πS(a

1|s0) and setting it to zero. It can be checked that, for any γ ∈ (0, 1),
πS(a

1|s0) = 1/2 minimizes the lower bound above (we provide below a snippet of Mathematica
code that supports this claim). This implies that, for any πS ∈ ΠS, F1(πS) is lower bounded by the
expression above evaluated at πS(a

1|s0) = 1/2, i.e.,

F1(πS) ≥
2− 2γ2 + 2γ4 − 2γ6 + 2γ8 − 2γ10 + γ12

2(1 + γ)2
.

Now, consider the non-stationary policy πM ∈ ΠM that deterministically selects a1 at timesteps
t = 3, 7, 11, . . . and deterministically selects a2 at timesteps t = 1, 5, 9, It holds that

F1(πM) = E [f(dπM)]

15

Published as a conference paper at ICLR 2026

= E

[
f

(
(1− γ)

∞∑
t=0

γt1(st = s1)

)]
= ϵf

(
(1− γ)(1 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
+ (1− ϵ)f

(
(1− γ)(0 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
= ϵf

(
(1− γ)

(
1 +

∞∑
t=0

γ4t+4

))
+ (1− ϵ)f

(
(1− γ)

∞∑
t=0

γ4t+4

)
(a)
=

1

2
f

(
(1− γ)

(
1 +

γ4

1− γ4

))
+

1

2
f

(
(1− γ)γ4

1− γ4

)
=

1 + γ2 − γ6 + γ8

(1− γ)2(1 + γ2)2
,

where in (a) we let ϵ = 1/2 and simplified the sums.

To conclude, it holds, for any πS ∈ ΠS and γ ∈ (0, 1), that

F1(πS) ≥
2− 2γ2 + 2γ4 − 2γ6 + 2γ8 − 2γ10 + γ12

2(1 + γ)2
>

1 + γ2 − γ6 + γ8

(1− γ)2(1 + γ2)2
= F1(πM),

which can be verified using a software for symbolic/algebraic computation such as Mathematica
(Wolfram Research). We provide a snippet of the Mathematica code we used below.

Snippet of Mathematica code to support the proof that F1(πS) > F1(πM), ∀πS.
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: h[x_, g_] := (1/2)*xˆ2*(f[(1 - g) (1 + gˆ2 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g] +

f[(1 - g) (gˆ2 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g]) +
(1/2)*x (1 - x)*(f[(1 - g) (1 + gˆ2 + x*(gˆ6/(1 - gˆ2))), g] +

f[(1 - g) (1 + gˆ4 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (gˆ2 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (gˆ4 + x*(gˆ6/(1 - gˆ2))), g]) +

(1/2)*(1 - x)ˆ2 (f[(1 - g) (1 + x*(gˆ6/(1 - gˆ2))), g] +
f[(1 - g) (x*(gˆ6/(1 - gˆ2))), g])

[In]: Simplify[Solve[D[h[x, g], x] == 0, x]]
[Out]: {{x -> 1/2}}
[In]: a[g_] = (1/2)*f[(1 - g)*(1 + gˆ4/(1 - gˆ4)), g] + (1/2)*f[(1 - g)*(gˆ4/(1 - gˆ4)), g]
[In]: Reduce[a[g] < h[1/2, g]]
[Out]: g < 0 || 0 < g < 1 || g > 1

For the second part of the Theorem it holds, for any πM = (π0, π1, π2, . . .) ∈ ΠM, that

F1(πM) = E [f(dπM)]

(a)
= E

[
f(dπM

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),

s2∼P a1 (·|s1),a2∼π2(·|s2),...

]
(b)
= E

[
E

[
f(dπM

s0,a0,s1,a1,...(s
1))

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

] ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
(c)

≥ E

[
f

(
E

[
dπM
s0,a0,s1,a1,...(s

1))

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= E

[
f

(
E

[
(1− γ)

∞∑
t=0

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1)

+ E

[∞∑
t=3

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]))∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
,

where in (a) we emphasized that the random vector dπM depends on random variables
s0, a0, s1, a1, Step (b) follows from the fact that s3 = s0 with probability one for trajecto-
ries drawn from the GUMDP, i.e., for any trajectory the state at timestep 3 is always s0, and thus we

16

Published as a conference paper at ICLR 2026

can split and simplify the expectation. Step (c) follows from Jensen’s inequality, following similar
steps as those for the first part of the Theorem. Now, it holds that

E

[∞∑
t=3

γt1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]
=

∞∑
t=3

γtPπM

[
st = s1

]
= γ3 · 0 + γ4π3(a

1|s0) + γ5 · 0 + γ6π5(a
1|s0) + . . .

=

∞∑
t=2

γ2tπ2t−1(a
1|s0).

For any policy πM, it holds that
∑∞

t=2 γ
2tπ2t−1(a

1|s0) ∈ [0, γ4

1−γ2]. Hence, if we replace expression

E

[∑∞
t=3 γ

t1(st = s1)

∣∣∣∣∣ a3∼π3(·|s0),
s4∼P a3 (·|s0),...

]
with c γ4

1−γ2 , for c ∈ [0, 1], and show that

E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1) + c

γ4

1− γ2

)) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]
is strictly lower bounded by F1(πNM) for a given πNM ∈ ΠNM, for any π0, π1, π2 ∈ ΠS and c ∈ [0, 1],
this implies that F1(πNM) is strictly lower than that of any possible π ∈ ΠM. For any π0, π1, π2 ∈ ΠS
and c ∈ [0, 1], the expectation in the expression above can be simplified as

E

[
f

(
(1− γ)

(
1(s0 = s1) + 1(s2 = s1) + c

γ4

1− γ2

)) ∣∣∣∣∣ s0∼p0,a0∼π0(·|s0),
s1∼P a0 (·|s0),a1∼π1(·|s1),
s2∼P a1 (·|s1),a2∼π2(·|s2)

]

= ϵπ1(a
1|s0)f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ ϵ(1− π1(a

1|s0))f
(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ (1− ϵ)π1(a

1|s0)f
(
(1− γ)

(
γ2 + c

γ4

1− γ2

))
+ (1− ϵ)(1− π1(a

1|s0))f
(
(1− γ)

(
c

γ4

1− γ2

))
(a)
=

1

2
π1(a

1|s0)
(
f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
γ2 + c

γ4

1− γ2

)))
+

1

2
(1− π1(a

1|s0))
(
f

(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
c

γ4

1− γ2

)))
,

where in (a) we let ϵ = 1/2.

Now consider the non-markovian policy πNM ∈ ΠNM that: (i) if s0 = s1, then at timesteps t =
1, 5, 9, . . . deterministically selects action a2 and at timesteps t = 3, 7, 11, . . . deterministically
action a1; (ii) if s0 = s2, then at timesteps t = 1, 5, 9, . . . deterministically selects action a1 and at
timesteps t = 3, 7, 11, . . . deterministically action a2. We have that

F1(πNM) = E [f(dπNM)]

= E

[
f

(
(1− γ)

∞∑
t=0

γt1(st = s1)

)]
= ϵf

(
(1− γ)(1 + 0 + 0 + 0 + γ4 + 0 + 0 + 0 + γ8 + . . .)

)
+ (1− ϵ)f

(
(1− γ)(0 + 0 + γ2 + 0 + 0 + 0 + γ6 + 0 + 0 + 0 + γ10 + . . .)

)
= ϵf

(
(1− γ)

∞∑
t=0

γ4t

)
+ (1− ϵ)f

(
(1− γ)

∞∑
t=0

γ4t+2

)
(a)
=

1

2
f

(
1− γ

1− γ4

)
+

1

2
f

(
(1− γ)γ2

1− γ4

)

17

Published as a conference paper at ICLR 2026

where in (a) we let ϵ = 1/2 and simplified the sums.

We now need to verify that, for any π1(a
1|s0) ∈ [0, 1], c ∈ [0, 1] and γ ∈ (0, 1),

π1(a
1|s0) 1

2

(
f

(
(1− γ)

(
1 + γ2 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
γ2 + c

γ4

1− γ2

)))
︸ ︷︷ ︸

(i)

+ (1− π1(a
1|s0)) 1

2

(
f

(
(1− γ)

(
1 + c

γ4

1− γ2

))
+ f

(
(1− γ)

(
c

γ4

1− γ2

)))
︸ ︷︷ ︸

(ii)

>
1

2
f

(
1− γ

1− γ4

)
+

1

2
f

(
(1− γ)γ2

1− γ4

)
= F1(πNM).

As can be seen, the expression on the left-hand side of the inequality above corresponds to a
weighted combination (with weights π1(a

1|s0) and 1−π1(a
1|s0)) of components (i) and (ii). By re-

sorting to a software for symbolic/algebraic computation such as Mathematica (Wolfram Research)
it can be shown that (i) > 1

2f
(

1−γ
1−γ4

)
+ 1

2f
(

(1−γ)γ2

1−γ4

)
= F1(πNM) and (ii) > 1

2f
(

1−γ
1−γ4

)
+

1
2f
(

(1−γ)γ2

1−γ4

)
= F1(πNM) for any c ∈ [0, 1] and γ ∈ (0, 1). We provide the snippets of the Math-

ematica code we used below. This implies that the weighted combination satisfies the inequality
above for any π1(a

1|s0) ∈ [0, 1] and the conclusion follows.

Snippet of Mathematica code to attest that (i) > F1(πNM).
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: m[c_, g_] := (1/2)*(f[(1 - g)*(1 + gˆ2 + c*(gˆ4/(1 - gˆ2))), g] +

f[(1 - g)*(gˆ2 + c*(gˆ4/(1 - gˆ2))), g])
[In]: n[g_] := (1/2)*f[(1 - g)/(1 - gˆ4), g] + (1/2)*f[((1 - g)*gˆ2)/(1 - gˆ4), g]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 || -1 < g < 0 || g > 0)) ||

(c == 1/2 && (g < -1 || -1 < g < 0 || 0 < g < 1 || g > 1)) ||
(c > 1/2 && (g < -1 || -1 < g < 0 || g > 0))

Snippet of Mathematica code to attest that (ii) > F1(πNM).
[In]: f[o_, g_] := oˆ2 + (((1 - g)/(1 - gˆ2)) - o)ˆ2
[In]: m[c_, g_] := (1/2)*(f[(1 - g)*(1 + c*(gˆ4/(1 - gˆ2))), g] +

f[(1 - g)*(c*(gˆ4/(1 - gˆ2))), g])
[In]: n[g_] := (1/2)*f[(1 - g)/(1 - gˆ4), g] + (1/2)*f[((1 - g)*gˆ2)/(1 - gˆ4), g]
[In]: Reduce[m[c, g] > n[g]]
[Out]: (c < 1/2 && (g < -1 || -1 < g < 0 || g > 0)) ||

(c == 1/2 && (g < -1 || -1 < g < 0 || 0 < g < 1 || g > 1)) ||
(c > 1/2 && (g < -1 || -1 < g < 0 || g > 0))

B.2 PROOF OF PROPOSITION 1

Lemma 1. For any ω ∈ Ω, π ∈ ΠNM and H ∈ N it holds that
∣∣f(dπ

ω)− f(dπ,H
ω)

∣∣ ≤ 2LγH .

Proof. For any ω ∈ Ω, π ∈ ΠNM and H ∈ N it holds that∣∣f(dπ
ω)− f(dπ,H

ω)
∣∣ (a)
≤ L

∥∥dπ
ω − dπ,H

ω

∥∥
1

(b)
= L

∥∥∥∥∥(1− γ)

∞∑
t=0

γtdπ
ω,t −

(1− γ)

1− γH

H−1∑
t=0

γtdπ
ω,t

∥∥∥∥∥
1

= L

∥∥∥∥∥ (1− γ)

1− γH

H−1∑
t=0

γt
(
(1− γH)dπ

ω,t − dπ
ω,t

)
+ (1− γ)

∞∑
t=H

γtdπ
ω,t

∥∥∥∥∥
1

(c)
≤ L

(
(1− γ)

1− γH

H−1∑
t=0

γt
∥∥(1− γH)dπ

ω,t − dπ
ω,t

∥∥
1
+ (1− γ)

∞∑
t=H

γt∥dπ
ω,t∥1

)

18

Published as a conference paper at ICLR 2026

= L
(1− γ)

1− γH
γH

H−1∑
t=0

γt
∥∥dπ

ω,t

∥∥
1
+ LγH

= 2LγH ,

where: (a) is due to the L-Lipschitz assumption; in (b) we used dπ
ω = (1 − γ)

∑∞
t=0 γ

tdπ
ω,t where

dπ
ω,t(s, a) = 1(st = s, at = a) is the empirical occupancy induced by the trajectory ω at timestep t

and dπ,H
ω = (1− γ)/(1− γH)

∑H−1
t=0 γtdπ

ω,t. Step (c) follows from the triangular inequality.

Lemma 2. If f is L-Lipschitz then it holds, for arbitrary π ∈ ΠNM and H ∈ N, that

|F1(π)− F1,H(π)| ≤ 2LγH .

Proof. It holds that, for arbitrary π ∈ ΠNM and H ∈ N,

|F1(π)− F1,H(π)| =
∣∣E [f(dπ)]− E

[
f(dπ,H)

]∣∣
=
∣∣E [f(dπ)− f(dπ,H)

]∣∣
(a)
≤ E

[∣∣f(dπ)− f(dπ,H)
∣∣]

=
∑
ω∈Ω

Pπ [ω] |f(dπ
ω)− f(dπ,H

ω)|

(b)
≤ 2LγH ,

where: (a) follows from |E[X]| ≤ E[|X|]; and (b) is due to Lemma 1.

Lemma 3. For every GUMDP Mf with L-Lipschitz f and H ∈ N, if π∗ = argminπ∈ΠNM
F1,H(π),

then it holds that OptGap(π∗) ≤ 4LγH .

Proof. As shown in Lemma 2, |F1(π)− F1,H(π)| ≤ 2LγH , for arbitrary π. From such inequality,
we can infer that F1,H(π) − 2LγH ≤ F1(π), ∀π ∈ ΠNM, i.e., function F1,H(π) − 2LγH lower
bounds function F1(π). We provide a visual illustration of F1 and F1,H in Fig. 3. Let π∗ =
argminπ F1,H(π). It holds that

F1,H(π∗)− 2LγH = min
π

F1,H(π)− 2LγH
(a)
≤ min

π
F1(π)

(b)
≤ F1(π

∗),

where (a) follows from the fact that F1,H(π) − 2LγH lower bounds F1(π); and (b) from the fact
that minπ F1(π) ≤ F1(π

′), ∀π′ (from the definition of a minimum). We illustrate the inequalities
above in Fig. 3. Finally, we note that

F1(π
∗)−

(
F1,H(π∗)− 2LγH

)
= F1(π

∗)− F1,H(π∗) + 2LγH

≤ |F1(π
∗)− F1,H(π∗)|+ 2LγH

≤ 4LγH .

The above implies that

OptGap(π∗) = F1(π
∗)−min

π
F1(π) ≤ 4LγH ,

as illustrated in Fig. 3.

Proposition 1 (Optimality gap decomposition). For arbitrary π ∈ ΠNM, it holds that

OptGap(π) ≤ F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}︸ ︷︷ ︸
= OptGapH(π)

+8LγH , (10)

where OptGapH(π) is the optimality gap of policy π under the single-trial truncated objective with
horizon H .

19

Published as a conference paper at ICLR 2026

F1 (π
∗)

F1,H (π∗)− 2LγH

minπ F1(π) ⩽ 4LγH

ΠNM

F1,H(π)

F1,H(π)− 2LγH

F1,H(π) + 2LγHF1(π)

OptGap (π∗)

π

Figure 3: Illustration of objectives F1 and F1,H , as well as the relation between different quantities
of interest for the proof.

Proof. Let π∗
H = argminπ∈ΠNM

F1,H(π), i.e., π∗
H is optimal with respect to the truncated objective.

It holds that,

OptGap(π) = E [f(dπ)]− min
π′∈ΠNM

E
[
f(dπ′

)
]

=

∣∣∣∣E [f(dπ)]− min
π′∈ΠNM

E
[
f(dπ′

)
]∣∣∣∣

(a)
≤
∣∣∣E [f(dπ)]− E

[
f(dπ∗

H)
]∣∣∣+ ∣∣∣∣E [f(dπ∗

H)
]
− min

π′∈ΠNM
E
[
f(dπ′

)
]∣∣∣∣

(b)
≤
∣∣∣E [f(dπ)]− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(c)
≤
∣∣E [f(dπ)]− E

[
f(dπ,H)

]∣∣+ ∣∣∣E [f(dπ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(d)
≤ 2LγH +

∣∣∣E [f(dπ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 4LγH

(e)
≤
∣∣∣E [f(dπ,H)

]
− E

[
f(dπ∗

H ,H)
]∣∣∣+ ∣∣∣E [f(dπ∗

H ,H)
]
− E

[
f(dπ∗

H)
]∣∣∣+ 6LγH

(f)
≤
∣∣∣E [f(dπ,H)

]
− E

[
f(dπ∗

H ,H)
]∣∣∣+ 8LγH

= E
[
f(dπ,H)

]
− min

πH∈ΠNM

{
E
[
f(dπH ,H)

]}
+ 8LγH

= F1,H(π)− min
πH∈ΠNM

{F1,H(πH)}+ 8LγH

where (a) follows from adding and subtracting E
[
f(dπ∗

H)
]

and applying the triangular inequal-
ity; (b) follows from Lemma 3; (c) follows from adding and subtracting E

[
f(dπ,H)

]
and apply-

ing the triangular inequality; (d) follows from Lemma 2; (e) follows from adding and subtracting
E
[
f(dπ∗

H ,H)
]

and applying the triangular inequality; and (f) follows from Lemma 2.

B.3 THE OCCUPANCY MDP: VALUE AND ACTION-VALUE FUNCTIONS

For a given policy πO ∈ ΠS, the interaction between the agent and the occupancy MDP gives rise to
a random process ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) such that:

1. P [{s0,o0} = {s0,o0}] = p0,O({s0,o0})
2. P [{st+1,ot+1} = {s′,o′}|{s0,o0}, a0, . . . , {st,ot}, at] = P at

O ({st,ot}, {s′,o′})
3. P [at = a|{s0,o0}, a0, . . . , {st,ot}] = πO(a|{st,ot})

We let (ΩO,FO,PO
πO
) be the probability space over the sequence of random variables

({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) that satisfies conditions 1-3 above. We write specific tra-
jectories as ωO ∈ ΩO, with ωO = ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}). We highlight that the

20

Published as a conference paper at ICLR 2026

probability of a given trajectory ωO ∈ ΩO under stationary policy πO ∈ ΠS can be calculated as

PO
πO
(ωO) = p0,O({s0,o0}) · πO(a0|{s0,o0}) · P a0

O ({s0,o0}, {s1,o1}) . . .
· πO(aH−1|{sH−1,oH−1}) · P aH−1

O ({sH−1,oH−1}, {sH ,oH}).

To streamline our notation we introduce the mapping σ : S × O × A → O that describes the
evolution of component o of the state, defined as

[σ(s,o, a)]s′,a′ =

{
o(s, a) + γt if s′ = s, a′ = a,

o(s, a) otherwise,

where [o]s′,a′ denotes the value of entry s′, a′ for vector o, i.e., [o]s′,a′ = o(s′, a′).

The value function under MO, for any t ∈ {0, . . . , H}, is defined as

V πO
t ({s,o}) = EπO

[
H∑

t′=t

cO({st′ ,ot′})
∣∣∣∣{st,ot} = {s,o}

]
(11)

= EπO

[
cO({sH ,oH})

∣∣{st,ot} = {s,o}
]
, (12)

and the optimal value function, for any t ∈ {0, . . . , H}, as V ∗
t ({s,o}) = minπO∈ΠD

S
V πO
t ({s,o}).

The action-value function under MO, for any t ∈ {0, . . . , H − 1}, is defined as

QπO
t ({s,o}, a) = EπO

[
H∑

t′=t

cO({st′ ,ot′})
∣∣∣∣{st,ot} = {s,o}, at = a

]
= EπO

[
cO({sH ,oH})

∣∣{st,ot} = {s,o}, at = a
]
,

and the optimal action-value function, for any t ∈ {0, . . . ,H − 1}, as Q∗
t ({s,o}, a) =

minπO∈ΠD
S
QπO

t ({s,o}, a). We emphasize again that subscript t can be dropped from V πO
t ({s,o}),

V ∗
t ({s,o}), QπO

t ({s,o}, a) and Q∗
t ({s,o}, a) as it can be inferred from o. Finally, we note that

value functions, optimal value functions and optimal action-value functions satisfy the following set
of Bellman equations:

V πO
t ({s,o}) =

∑
a∈A

πO(a|{s,o})
(∑

s′∈S
P a(s′|s)V πO

t+1({s′, σ(s,o, a)})
)
, ∀t ∈ {0, . . . ,H − 1}

V ∗
t ({s,o}) = min

a∈A

{∑
s′∈S

P a(s′|s)V ∗
t+1({s′, σ(s,o, a)})

}
, ∀t ∈ {0, . . . ,H − 1}

Q∗
t ({s,o}, a) =

∑
s′∈S

P a(s′|s)V ∗
t+1({s′, σ(s,o, a)}), ∀t ∈ {0, . . . ,H − 1}

Q∗
t ({s,o}, a) =

∑
s′∈S

P a(s′|s) min
a′∈A

{
Q∗

t+1({s′, σ(s,o, a)}, a′)
}
, ∀t ∈ {0, . . . ,H − 2}.

B.4 PROOF OF PROPOSITION 2

Lemma 4 (Linear independence of exponential functions over R). For any x ∈ R, L ∈ N,
c0, . . . , cL−1 ∈ R, and distinct λ0, . . . , λL−1 ∈ R, if

∑L−1
t=0 cte

λtx = 0 then c0 = c1 = . . . =
cL−1 = 0, i.e., the exponentials eλ0x, . . . , eλL−1x are linearly independent over R.

Proof. Let f(x) =
∑L−1

t=0 cte
λtx. It holds that dkf

dxk =
∑L−1

t=0 ctλ
k
t e

λtx. We can repeatedly differen-
tiate f to obtain the following set of equalities:

L−1∑
t=0

cte
λtx = 0,

L−1∑
t=0

ctλte
λtx = 0,

21

Published as a conference paper at ICLR 2026

L−1∑
t=0

ctλ
2
t e

λtx = 0,

. . .

L−1∑
t=0

ctλ
L−1
t eλtx = 0.

The set of equations above can be rearranged as follows
1 1 . . . 1
λ0 λ1 . . . λL−1

λ2
0 λ2

1 . . . λ2
L−1

...
...

. . .
...

λL−1
0 λL−1

1 . . . λL−1
L−1




c0e
λ0x

c1e
λ1x

c2e
λ2x

...
cL−1e

λL−1x

 =


0
0
0
...
0

 . (13)

The square matrix above is known as the Vandermonde matrix and, since all λ0, . . . , λL−1 are
distinct, the matrix has a non-zero determinant (hence it is invertible). Therefore, multiplying the
equality above by the inverse of the Vandermonde matrix on the left we obtain

c0e
λ0x

c1e
λ1x

c2e
λ2x

...
cL−1e

λL−1x

 =


0
0
0
...
0

 . (14)

Since functions eλ0x, . . . , eλL−1x are always positive, we have that c0 = c1 = . . . = cL−1 = 0.

Proposition 2 (One-to-one mapping between histories in Mf and states in MO). There exists a
one-to-one mapping between histories hl = (s0, a0, s1, a1, . . . , sl) ∈ S × (S × A)l in Mf , with
0 ≤ l ≤ H − 1, and states {s,o} ∈ S ×O in MO.

Proof. For a given history hl = (s0, a0, s1, a1, . . . , sl) ∈ S×(S×A)l in Mf , with 0 ≤ l ≤ H−1,
consider the mapping defined below that associates hl to a given state {s,o} ∈ S × O for MO by
letting

s = sl and o(s, a) =

l−1∑
t=0

γt1(st = s, at = a), ∀s ∈ S, a ∈ A. (15)

We aim to show that the mapping above is a bijection between the set of possible histories in Mf

and the discrete state space O in MO. Clearly, from the mapping above defined, each history hl

in Mf is associated with a unique state in MO. Thus, what remains is to show that any two states
{s1,o1} and {s2,o2} for MO are equal under mapping equation 15 if and only if their associated
histories h1 and h2 are equal. We now make two observations. First, for a given state {s,o} in
MO, component s is directly related, through mapping equation 15, to the last state in the history
hl. Second, each history hl = (s0, a0, s1, a1, . . . , sl) will yield through mapping equation 15 a
running occupancy o satisfying

∑
s,a o(s, a) =

1−γl

1−γ ; thus, histories hl with different lengths will
yield different o-vectors. Hence, we only need to show that two running occupancies o1 and o2,
associated with histories h1 and h2 (both of length l), respectively, are the same if and only if their
histories up to timestep l − 1 are the same:

• If two histories h1 and h2 of length l are the same, then it should be clear that their respec-
tive running occupancies, as defined through equation 15, are also the same.

• If two running occupancies o1 and o2 are the same, then their associated histories are
also the same. To prove this implication, we focus our attention to a given entry (s, a)
of the vectors o1 and o2. Running occupancy o1 is associated with an arbitrary history
h1 = (s10, a

1
0, s

1
1, a

1
1, . . . , s

1
l); running occupancy o2 is associated with an arbitrary history

h2 = (s20, a
2
0, s

2
1, a

2
1, . . . , s

2
l). If o1 = o2 then, for any s ∈ S, a ∈ A,

o1(s, a)− o2(s, a) = 0

22

Published as a conference paper at ICLR 2026

⇔
l−1∑
t=0

γt1(s1t = s, a1t = a)−
l−1∑
t=0

γt1(s2t = s, a2t = a) = 0

⇔
l−1∑
t=0

γt
(
1(s1t = s, a1t = a)− 1(s2t = s, a2t = a)

)
= 0

(a)⇔
l−1∑
t=0

γtct = 0,

where in (a) we let ct ∈ {−1, 0, 1}. Now, the only solution to the last equation above is
c0 = c1 = . . . = cl−1 = 0, which implies that 1(s1t = s, a1t = a) = 1(s2t = s, a2t = a)
for all o ≤ t ≤ l − 1 and hence, the histories are the same. The fact that c0 = c1 = . . . =
cl−1 = 0 is the only solution to the equation above follows from Lemma 4 by letting L = l,
x = 1, and λt = ln(γ)t (which implies that all λt are distinct for γ ∈ (0, 1)).

Thus, we conclude that there exists a one-to-one mapping, as defined in equation 15, between every
possible history in Mf up to timestep H − 1 and states in MO.

B.5 PROOF OF THEOREM 2

Theorem 2 (Solving Mf is “equivalent” to solving MO). The problem of finding a policy π ∈ ΠNM

satisfying OptGapH(π) ≤ ϵ, for any ϵ ∈ R+
0 , can be reduced to the problem of finding a policy

πO ∈ ΠS satisfying JO(πO) − J∗
O ≤ ϵ. In particular, if π∗

O = argminπO∈ΠS
JO(πO), then the

corresponding non-Markovian policy π in Mf satisfies OptGapH(π) = 0. Finally, it holds that
OptGapH(π) = JO(πO) − J∗

O, where πO is the stationary policy for MO associated with the
non-Markovian policy π for Mf .

Proof. We start by showing that, for any horizon H ∈ N and policy π ∈ ΠNM, it holds that

F1,H(π) = JO(πO),

for F1,H(π) as defined in equation 6 and JO(πO) as defined in equation 9, where πO is the stationary
policy for MO associated with the non-Markovian policy π for Mf .

For any H ∈ N, finite-horizon random trajectories (s0, a0, s1, a1, . . . , sH−1, aH−1) in Mf are
associated with the probability space (Ω,F ,Pπ). We write specific trajectories as ω ∈ Ω,
with ω = (s0, a0, s1, a1, . . . , sH−1, aH−1). We highlight that the probability of a given tra-
jectory ω ∈ Ω under policy π ∈ ΠNM can be calculated as Pπ [ω] = p0(s0) · π(a0|h0) ·
P a0(s0, s1) · π(a1|h1) · P a1(s1, s2) . . . P

aH−2(sH−2, sH−1) · π(aH−1|hH−1). On the other
hand, random trajectories ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) in MO are associated with
probability space (ΩO,FO,PO

πO
). We write specific trajectories as ωO ∈ ΩO, with ωO =

({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}).
We start by noting that, for any trajectory ωO = ({s0,o0}, a0, {s1,o1}, a1, . . . , {sH ,oH}) ∈ ΩO,

PO
πO
[ωO] = p0,O({s0,o0}) · πO(a0|{s0,o0}) · P a0

O ({s0,o0}, {s1,o1}) · . . .
· πO(aH−1|{sH−1,oH−1}) · P aH−1

O ({sH−1,oH−1}, {sH ,oH}).
(a)
= p0(s0) · 1(o0 = [0, . . . , 0]) · πO(a0|{s0,o0}) · P a0(s0, s1) · 1(o1 = σ(s0,o0, a0)) · . . .

· πO(aH−1|{sH−1,oH−1}) · P aH−1(sH−1, sH) · 1(oH = σ(sH−1,oH−1, aH−1))

(b)
= p0(s0) · 1(o0 = [0, . . . , 0]) · π(a0|h0) · P a0(s0, s1) · 1(o1 = σ(s0,o0, a0)) · . . .

· π(aH−1|hH−1) · P aH−1(sH−1, sH) · 1(oH = σ(sH−1,oH−1, aH−1))

(c)
= Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1)),

where in (a) we note that component o of the state is initialized as a zero vector and then determin-
istically evolves according to σ; any sequence of o-vectors that does not evolve according to σ has

23

Published as a conference paper at ICLR 2026

zero probability under probability measure PO
πO

. In (b) we used the fact that any stationary policy
πO ∈ ΠS for MO can be mapped to a particular non-Markovian policy π ∈ ΠNM in Mf . In (c)
we recall that, for ω = (s0, a0, s1, a1, . . . , sH−1, aH−1), Pπ [ω] = p0(s0) · π(a0|h0) · P a0(s0, s1) ·
π(a1|h1) · P a1(s1, s2) . . . P

aH−2(sH−2, sH−1) · π(aH−1|hH−1).

Now, for any stationary policy πO ∈ ΠS, it holds that

JO(πO) = E [cO({sH ,oH})]
=
∑

ωO∈ΩO

PO
πO
[ωO]cO({sH ,oH})

=
∑

ωO∈ΩO

Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1))f

(
1− γ

1− γH
oH

)
(a)
=

∑
ωO∈ΩO

Pπ [ω] · P aH−1(sH−1, sH) · 1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . .

· 1(oH = σ(sH−1,oH−1, aH−1))f
(
dπ,H
ω

)
(b)
=
∑
ω∈Ω

Pπ [ω] f
(
dπ,H
ω

) ∑
o0,o1,...,oH∈O

∑
sH∈S

P aH−1(sH−1, sH)·

1(o0 = [0, . . . , 0]) · 1(o1 = σ(s0,o0, a0)) · . . . · 1(oH = σ(sH−1,oH−1, aH−1))

(c)
=
∑
ω∈Ω

Pπ [ω] f
(
dπ,H
ω

)
= E

[
f(dπ,H)

]
= F1,H(π),

where in (a) we noted that, for any ωO ∈ ΩO, f
(

1−γ
1−γH oH

)
= f

(
dπ,H
ω

)
. In (b), we split the sum

over ωO ∈ ΩO as a sum over ω ∈ Ω, a sum over each possible vector o ∈ O across all timesteps,
and a sum over the final state sH ∈ S (not included in ω). We also rearranged the sums by noting
that some terms do not depend on some of the sums. In (c) we note that the inner sums over the
o-vectors and sH equal one.

Hence, we have proven that, for any H ∈ N and π ∈ ΠNM, F1,H(π) = JO(πO) holds, where, in
light of Prop. 2, πO is the stationary policy for MO associated with the non-Markovian policy π for
Mf . Given this result, and due to the one-to-one mapping between non-Markovian policies for Mf

and stationary policies for MO, it holds for any π ∈ ΠNM that

OptGapH(π) = F1,H(π)− min
πH∈ΠNM

{F1,H(πH)} = JO(πO)− min
π′

O∈ΠS

JO(π
′
O),

and the conclusion follows.

B.6 PROOF OF THEOREM 3

Theorem 3 (NP-Hardness of policy optimization in the single-trial regime). Given a GUMDP with
objective F1,H and a threshold value λ ∈ R, it is NP-Hard to determine whether there exists a policy
π ∈ ΠD

NM satisfying F1,H(π) ≤ λ.

Proof. We reduce the subset sum problem to the policy existence problem in GUMDPs with objec-
tive F1,H . The subset sum problem asks, given a set N = {n0, n1, . . . , nN−1} of N non-negative
integer numbers and a target sum k ∈ N, whether there exists a subset of the numbers such that the
sum of the elements in the set is k. The policy existence problem is: given a GUMDP with objective
F1,H and a threshold value λ ∈ R, does there exist a policy π ∈ ΠD

NM such that F1,H(π) ≤ λ.

We map every instance of the subset sum problem as a GUMDP as follows: (i) the state space is
S = {s0, s1, . . . , sN}; (ii) the action space is A = {ainclude, anot-include}; (iii) P a(si+1|si) = 1 and

24

Published as a conference paper at ICLR 2026

zero otherwise for any a ∈ A and i ∈ {0, . . . , N − 1}, and P a(sN |sN) = 1 for any a ∈ A; (iv)
p0(s0) = 1 and zero otherwise. We provide an illustration of the GUMDP in Fig. 4. We describe a
discounted occupancy for GUMDP above defined with the vector

d = [d(s0, ainclude), d(s0, anot-include), d(s1, ainclude), d(s1, anot-include), . . . ,

d(sN−1, ainclude), d(sN−1, anot-include), d(sN , ainclude), d(sN , anot-include)].

Then, we set H ≥ N and let f(d) = (n⊤d− k)2, where

n =

[
1− γH

1− γ
n0, 0,

1− γH

(1− γ)γ
n1, 0, . . . ,

1− γH

(1− γ)γN−1
nN−1, 0, 0, 0

]
.

It holds that
min

π∈ΠD
NM

F1,H(π) = min
π∈ΠD

NM

E
[
f(dπ,H)

]
=
∑
ω∈Ω

P[ω]f(dπ,H
ω).

For a given policy π ∈ ΠD
NM, only one trajectory ω ∈ Ω has non-zero probability. The vector dπ,H

ω
associated with such a trajectory can be described as follows, for any si ∈ {0, . . . , N − 1}: (i) if at
state si, π selects ainclude then entry dπ,Hω (si, ainclude) =

1−γ
1−γH γi and dπ,Hω (si, anot-include) = 0; (ii)

if at state si, π selects anot-include then entry dπ,Hω (si, ainclude) = 0 and entry dπ,Hω (si, anot-include) =
1−γ
1−γH γi. The action selected at sN is irrelevant since it does not affect the objective value. The
intuition behind the GUMDP above defined is that, at each state si for i ∈ {0, . . . , N − 1}, the
policy needs to decide on whether to select action ainclude and, therefore, include term ni in the sum,
or to select action anot-include and, therefore, not include term ni in the sum. We build the vector
n to reflect such behavior, where each entry in n associated with the state si and action ainclude

has a normalizing constant of 1−γH

(1−γ)γi to account for the fact that the occupancy is discounted, as
introduced in equation 4. Thus, it can be seen that every policy π ∈ ΠD

NM will induce a particular
trajectory ω ∈ Ω with probability one and the sum of the numbers selected by the policy is given by
n⊤dπ,H

ω . Finally, the objective is such that f(d) = 0 if and only if the sum of the selected numbers
equals k. The policy existence problem then asks whether there exists a policy π ∈ ΠD

NM such that
F1,H(π) ≤ λ. By setting λ = 0 we are asking whether there exists a policy such that F1,H(π) ≤ 0.
Since f(d) = 0 if and only if the sum of the selected numbers equals k, we completed our reduction
from the subset problem to the policy existence problem in GUMDPs with objective F1,H .

10 2

...

...

N − 1 N

ainclude

anot-include

ainclude

anot-include

ainclude

anot-include

Figure 4: GUMDP instance used in the NP-Hardness proof.

C SUPPLEMENTARY MATERIALS FOR SEC. 5

C.1 TASKS AND ENVIRONMENTS

We consider three tasks: (i) maximum state entropy exploration (Hazan et al., 2019), where the
objective is to visit all state-action pairs as uniformly as possible; imitation learning (Abbeel &
Ng, 2004), where the objective is to imitate a given behaviour policy; and (iii) adversarial MDPs
(Rosenberg & Mansour, 2019), where an adversary player selects the cost function that yields the
highest cost. We refer to Sec. 2.3 for the exact definition of the objective function for each of
these tasks. We normalize all objective functions to lie in the [0, 1] interval. We consider two sets
of environments. The first set corresponds to the illustrative GUMDPs depicted in Fig. 1, each
associated with one of the tasks. The second set of environments come from the OpenAI Gym
library (Brockman et al., 2016). We consider the FrozenLake (FL), the Taxi, and the Mountaincar
(MC) environments. For the MC environment, we partitioned the original state space using equally
spaced bins (we consider 10 bins per dimension). For the FL, Taxi and MC environments, the task
of imitation learning consists in imitating and approximately optimal policy.

25

Published as a conference paper at ICLR 2026

C.2 EXPERIMENTAL METHODOLOGY, BASELINES, AND HYPERPARAMETERS

We perform 10 runs per experimental setting and report the 90% bootstrapped confidence interval.
We let γ = 0.9. We consider two baselines. The first baseline is the random policy, πRandom. The
second baseline is the optimal policy for the infinite trials formulation equation 2, π∗

Solver, that we
calculate by solving a constrained optimization problem with objective f using the Gurobi optimizer
(Gurobi Optimization, LLC, 2025). More precisely, to compute π∗

Solver we first solve the following
optimization problem:

d∗ = argmin
d∈D

f(d),

D = {d ∈ R|S||A| : d(s, a) ≥ 0 ∀s, a,
∑
a

d(s, a) = (1− γ)p0(s) + γ
∑
s′,a

P a(s|s′)d(s′, a) ∀s}

Then, we let π∗
Solver(a|s) = d∗(s, a)/

∑
a′ d∗(s, a′). For the illustrative GUMDPs we directly use

the respective initial states distribution, p0, and the transition probablity matrix, P a. For the case of
the OpenAI Gym environments we run a samling procedure to first estimate p0 and P a, and then we
feed the estimated quantities to the optimization solver.

We denote the policy induced by our MCTS algorithm as πMCTS. We use 4000 as
the default number of iterations of the MCTS algorithm, but we also provide results for
10, 20, 50, 100, 500, 1000, 2000, 3000, 4000 iteration steps. We submit our code in the zip file with
our submission.

Our experiments required modest computational resources, with each experimental setting running
in under an hour on a CPU cluster.

C.3 COMPLETE EXPERIMENTAL RESULTS

C.3.1 MAXIMUM STATE ENTROPY EXPLORATION, Mf,1

π = Random π = π∗∞ π = π∗MCTS

0.00

0.05

0.10

0.15

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

0.00

0.05

0.10

0.15

0.20

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.0

0.2

0.4

0.6

F
1,
H

(π
)

MCTS planner

(c)

Figure 5: Maximum state entropy exploration, Mf,1: (a) - Mean single-trial objective F1,H(π)
obtained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial
objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.

26

Published as a conference paper at ICLR 2026

C.3.2 MAXIMUM STATE ENTROPY EXPLORATION, FROZENLAKE

π = πRandom π = π∗∞ π = π∗MCTS

0.40

0.45

0.50

0.55
F

1
,H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.35

0.40

0.45

0.50

0.55

0.60

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.4

0.5

0.6

0.7

0.8

F
1
,H

(π
)

MCTS planner

(c)

Figure 6: Maximum state entropy exploration, FrozenLake: (a) - Mean single-trial objective
F1,H(π) obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean
single-trial objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,
lower is better.

C.3.3 MAXIMUM STATE ENTROPY EXPLORATION, TAXI

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.62

0.64

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.62

0.64

0.66

0.68

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.60

0.62

0.64

0.66

0.68

F
1,
H

(π
)

MCTS planner

(c)

Figure 7: Maximum state entropy exploration, Taxi: (a) - Mean single-trial objective F1,H(π) ob-
tained by different policies. Error bars correspond to the 90% mean confidence interval. (b) - Dis-
tribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial
objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion
steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is
better.

27

Published as a conference paper at ICLR 2026

C.3.4 MAXIMUM STATE ENTROPY EXPLORATION, MOUNTAINCAR

π = πRandom π = π∗∞ π = π∗MCTS

0.60

0.65

0.70

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.55

0.60

0.65

0.70

0.75

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.60

0.65

0.70

0.75

0.80

F
1
,H

(π
)

MCTS planner

(c)

Figure 8: Maximum state entropy exploration, Mountaincar: (a) - Mean single-trial objective
F1,H(π) obtained by different policies. Error bars correspond to the 90% mean confidence interval.
(b) - Distribution of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean
single-trial objective F1,H(π) obtained by the MCTS-based algorithm as a function of the number
of expansion steps. Shaded areas correspond to the 90% mean confidence interval. Across all plots,
lower is better.

C.3.5 IMITATION LEARNING, Mf,2

π = Random π = π∗∞ π = π∗MCTS

0.00

0.02

0.04

0.06

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

0.00

0.02

0.04

0.06

0.08

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.00

0.05

0.10

0.15

F
1,
H

(π
)

MCTS planner

(c)

Figure 9: Imitation learning, Mf,2: (a) - Mean single-trial objective F1,H(π) obtained by different
policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-
trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π)
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

28

Published as a conference paper at ICLR 2026

C.3.6 IMITATION LEARNING, FROZENLAKE

π = πRandom π = π∗∞ π = π∗MCTS

0.02

0.04

0.06

0.08

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.025

0.050

0.075

0.100

0.125

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.05

0.10

0.15

0.20

0.25

F
1
,H

(π
)

MCTS planner

(c)

Figure 10: Imitation learning, FrozenLake: (a) - Mean single-trial objective F1,H(π) obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective
F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.7 IMITATION LEARNING, TAXI

π = πRandom π = π∗∞ π = π∗MCTS

0.05

0.06

0.07

0.08

0.09

F
1
,H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.04

0.06

0.08

0.10

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.050

0.055

0.060

0.065

0.070

F
1,
H

(π
)

MCTS planner

(c)

Figure 11: Imitation learning, Taxi: (a) - Mean single-trial objective F1,H(π) obtained by different
policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-
trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π)
obtained by the MCTS-based algorithm as a function of the number of expansion steps. Shaded
areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

29

Published as a conference paper at ICLR 2026

C.3.8 IMITATION LEARNING, MOUNTAINCAR

π = πRandom π = π∗∞ π = π∗MCTS

0.05

0.10

0.15

0.20

F
1,
H

(π
)

(a)

π = πRandom π = π∗∞ π = π∗MCTS

0.0

0.1

0.2

0.3

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

0.02

0.03

0.04

0.05

F
1
,H

(π
)

MCTS planner

(c)

Figure 12: Imitation learning, MountainCar: (a) - Mean single-trial objective F1,H(π) obtained by
different policies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution
of the single-trial objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective
F1,H(π) obtained by the MCTS-based algorithm as a function of the number of expansion steps.
Shaded areas correspond to the 90% mean confidence interval. Across all plots, lower is better.

C.3.9 ADVERSARIAL MDP

π = Random π = π∗∞ π = π∗MCTS

1.10

1.15

1.20

1.25

1.30

F
1,
H

(π
)

(a)

π = Random π = π∗∞ π = π∗MCTS

1.1

1.2

1.3

1.4

1.5

F
1,
H

(π
)

(b)

0 1000 2000 3000 4000
Expansion steps

1.10

1.15

1.20

1.25

F
1,
H

(π
)

MCTS planner

(c)

Figure 13: Adversarial MDP: (a) - Mean single-trial objective F1,H(π) obtained by different poli-
cies. Error bars correspond to the 90% mean confidence interval. (b) - Distribution of the single-trial
objective F1,H(π) obtained by different policies. (c) - Mean single-trial objective F1,H(π) obtained
by the MCTS-based algorithm as a function of the number of expansion steps. Shaded areas corre-
spond to the 90% mean confidence interval. Across all plots, lower is better.

30

	Introduction
	Background
	Markov decision processes
	Monte-Carlo tree search
	General-utility Markov decision processes
	GUMDPs in the single-trial regime

	Policy Optimization in the Single-Trial Regime
	Non-Markovianity matters
	Computing (approximately) optimal policies by resorting to F1,H
	The occupancy MDP: Casting Mf as a standard MDP
	Hardness result for policy optimization in the single-trial regime

	Online Planning for GUMDPs in the Single-Trial Regime
	Monte-Carlo tree search for GUMDPs in the single-trial regime

	Experimental Results
	Conclusion & Limitations
	Lipschitz constants
	Supplementary materials for Sec. 3
	Proof of Theorem 1
	Proof of Proposition 1
	The occupancy MDP: Value and action-value functions
	Proof of Proposition 2
	Proof of Theorem 2
	Proof of Theorem 3

	Supplementary materials for Sec. 5
	Tasks and environments
	Experimental methodology, baselines, and hyperparameters
	Complete experimental results
	Maximum state entropy exploration, Mf,1
	Maximum state entropy exploration, FrozenLake
	Maximum state entropy exploration, Taxi
	Maximum state entropy exploration, Mountaincar
	Imitation learning, Mf,2
	Imitation learning, FrozenLake
	Imitation learning, Taxi
	Imitation learning, Mountaincar
	Adversarial MDP

