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Abstract

Heterogeneous federated learning without assuming any structure is challenging
due to the conflicts among non-identical data distributions of clients. In practice,
clients often comprise near-homogeneous clusters so training a server-side model
per cluster mitigates the conflicts. However, FL with client clustering often suffers
from “clustering collapse”, i.e., one cluster’s model excels on increasing clients,
and reduces to single-model FL. Moreover, cluster-wise models hinder knowledge
sharing between clusters and each model depends on fewer clients. Furthermore,
the static clustering assumption on data may not hold for dynamically changing
models, which are sensitive to cluster imbalance/initialization or outliers. To ad-
dress these challenges, we propose “Clustered Additive Modeling (CAM)”, which
applies a globally shared model Θg on top of the cluster-wise models Θ1:K , i.e.,
y = h(x; Θg)+f(x; Θk) for clients of cluster-k. The global model captures the fea-
tures shared by all clusters so Θ1:K are enforced to focus on the difference among
clusters. To train CAM, we develop a novel Fed-CAM algorithm that alternates be-
tween client clustering and training global/cluster models to predict the residual of
each other. We can easily modify any existing clustered FL methods by CAM and
significantly improve their performance without “clustering collapse” in different
non-IID settings. We also provide a convergence analysis of Fed-CAM algorithm.

1 Introduction

Federated learning (FL) trains a global model over distributed clients and enforces data localization,
i.e., data only stay local for model training at the client side while the server periodically averages
client models’ weights to update a global model and broadcast it to all clients. When the local data
distributions are identical across clients, one global model suffices to serve all clients [1] However,
non-identical distributions across clients (i.e., statistical heterogeneity) [2] are more common in
practical FL scenarios, which leads to conflicts between the global objective and local ones. Instead
of applying one model to all the m clients, an ideal case for non-IID settings would be training
a local model per client without any interference from others. However, the local data are usually
insufficient so a global model trained on heterogeneous clients exploiting all their data can still be
helpful to local training. Hence, non-IID FL methods [3–5] usually struggle to find a sweet spot
between the global consensus and local personalization. Without any assumptions on the structure
among clients, all clients’ distributions can be equally different from each other so a global model
is impacted by the conflicts of all clients and may provide limited guidance to their local training.

Clustered Federated Learning. That being said, non-IID clients in practice usually have rich
structures that have not been explored by most existing FL methods. A common structure is clusters,
i.e., heterogeneous clients can be grouped into several near-homogeneous clusters each composed of
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Figure 1: Cluster sizes during IFCA vs. IFCA+CAM in client/cluster-wise non-IID settings on CIFAR-10.
Legend: cluster ID (cluster size) in the last round. CAM effectively mitigates clustering collapse/imbalance.

Figure 2: Test accuracy and macro-F1 (mean±std) of IFCA/FeSEM (w/o CAM) and IFCA/FeSEM (CAM) in
cluster/client-wise non-IID settings on CIFAR-10 dataset. “IFCA(5)” represents IFCA with K = 5 clusters.
CAM consistently brings substantial improvement to IFCA/FeSEM on both metrics and in both settings.

clients with similar distributions. In practice, clusters might be associated with geographic/age/income
groups, affiliations, etc. Hence, we can train a server-side model for each cluster, hence mitigating the
conflicts caused by heterogeneity. Unfortunately, clients’ cluster memberships are usually undefined
or inaccessible due to sensitive/private information and have to be jointly optimized with cluster-wise
models, as recent clustered FL [6–9] approaches do. They maintain K models Θ1:K for K clusters
and assigns one Θk to each client-i (with local data Xi and local model θi), e.g., by min-loss (Θk

with the minimum loss on Xi) or K-means (the nearest Θk to θi) criterion. Hence, 1 ≤ K ≤ m
models can accommodate more heterogeneity than single-model FL but also allows knowledge
sharing among similar clients, which is lacking if training m client models independently. Hence, it
may reach a better trade-off between global consensus and local personalization in non-IID settings.

However, compared to the general non-IID assumption, clustered FL’s assumption might be too
restrictive since it prohibits inter-cluster knowledge sharing and enforces every cluster-wise model’s
training to only depend on a few clients. This is contradictory to the widely studied strategy that
different tasks or domains can benefit from sharing low-level or partial representations. It is due to
the gap between the assumption of “clustered data distributions” and the algorithms of “clustering
models (represented by loss vectors or model weights)”: they are not equal and the latter is more
restrictive. In other words, clients of different clusters can still benefit from feature/parameter sharing.

Moreover, clustered FL usually suffers from optimization instability because dynamically changing
models can violate the static clustering assumption and lead to imbalanced cluster assignment, which
affects Θ1:K and local training in the future. In particular: (1) Clustering collapse, i.e., the clients
assigned to one cluster keeps growing so “the rich becomes richer (i.e., the cluster-wise model
becomes even stronger)” until reducing to single-model FL. This happens because most clients tend
to first learn shared features before focusing on client-specific ones; (2) Fragile to outliers such
as malicious clients that may dominate some clusters and push all other benign ones to one or a
few clusters; (3) Sensitive to initialization. The process highly depends on initial and earlier cluster
assignments since they determine which clients’ local training starts from the same model.

Main Contributions. To overcome the above problems of clustered FL, we propose a novel structured
FL model termed “Clustered Additive Modeling (CAM)”. Compared to clustered FL, CAM trains
a global model Θg on top of the K clusters’ models Θ1:K . Its prediction for client-i combines
the outputs of Θg and the associated cluster c(i)’s model, i.e., y = h(x; Θg) + f(x; Θc(i)). This
simple additive model removes the restriction of clustered FL by letting all clients share a base
model Θg. It enforces Θ1:K to focus on learning the different features between clusters, hence
mitigating “clustering collapse”. Moreover, CAM tends to learn balanced clusters and determine the
number of clusters automatically (by starting from more clusters and then zeroing out some of them),
as demonstrated in Fig 1. Furthermore, CAM is less vulnerable to outliers, which can be mainly
captured by Θ1:K and have less impact on the global model Θg. In addition, interactions between
Θ1:K and Θg make CAM less sensitive to initial cluster assignments since updating Θg also changes
the clustering.
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CAM is a general model-agnostic method that can modify any existing clustered FL methods. As
examples, we apply CAM to two representative methods, i.e., IFCA [6] and FeSEM [8]. In the
optimization of CAM, Θ1:K and Θg aim to fit the residual of each other’s prediction. To this end,
we propose an efficiently structured FL algorithm “Fed-CAM”, which alternates between cluster
assignment (server), local training (clients), and update of Θ1:K and Θg (server). In experiments on
several benchmarks in different non-IID settings, CAM significantly improves SOTA clustered FL
methods, as shown in Fig 2. Moreover, we provide a convergence analysis of Fed-CAM algorithm.

2 Related Work

Non-IID FL aims to tackle statistical heterogeneity across clients. FedAvg [1] is designed for the
IID setting, so it suffers from client drift and slow convergence with non-IID clients [2]. To address
this challenge, FedDANE [10] proposed a federated Newton-type optimization method by adapting a
method for classical distributed optimization, i.e., DANE, to the FL setting. Instead of synchronizing
all clients’ models to be the same global model periodically, FedProx [3] only adds a proximal term to
the local training objective that discourages the local model from drifting away from the global model
and thus preserves the heterogeneity. [11] applies adaptive learning rates to clients and [12] conducts
attention-based adaptive weighting to aggregate clients’ models. [13] studies the convergence of the
FedAvg in non-IID scenarios. Recent work also studies client-wise personalized FL [14–20], which
aim to address the non-IID challenge by training a personalized model per client with the help of the
shared global model. Their objectives focus on training local models rather than the server-side model.

Clustered FL assumes that non-IID clients can be partitioned into several groups and clients in
each group share a cluster-wise model. It jointly optimizes the cluster assignments and the clusters’
models. K-means-based methods [8] assign clusters to clients according to their model parameters’
distance. CFL [21] divides clients into two partitions based on the cosine similarity between client
gradients and then checks whether a partition is congruent according to the gradient norm. IFCA [6]
and HypCluster [7] assign to each client the cluster whose model achieves the minimum loss on the
client’s data. Few-shot clustering has been introduced to clustered FL by [22,23]. FedP2P [24] allows
communication between clients in the same cluster. [25] uses cluster-based contexts to enhance
the fine-tuning of personalized FL models. [9] proposed the first cluster-wise non-IID setting and a
bi-level optimization framework unifying most clustered FL methods.

Additive modeling in FL trains multiple models and adds their outputs together as its prediction. It
was introduced to FL very recently. Federated residual learning [26] proposed an FL algorithm to
train an additive model for regression tasks. [27] applies additive modeling to combining the outputs
of a shared model and a local model in a partial model personalization framework. However, additive
modeling has not been studied for clustered FL.

3 Clustered Additive Modeling (CAM)

In this section, we introduce clustered additive modeling (CAM), which combines a global model and
cluster-wise model prediction in FL. CAM conducts a joint optimization of the global and cluster-wise
models defined by a cluster assignment criterion. In particular, we provide two examples of CAM
using different cluster assignment criteria, i.e., min-loss and K-means, which have been adopted
respectively by two SOTA clustered-FL methods, i.e., IFCA and FeSEM. For each of them, we derive
alternating optimization procedures (i.e., IFCA-CAM and FeSEM-CAM) that can be implemented in
FL setting using two parallel threads of local model training. At the end of this section, we unify
both algorithms in a structured FL algorithm Fed-CAM.

Notations. We assume that there are m clients and K clusters, where client-i has ni examples and
all clients have n =

∑m
i=1 ni examples. On the server side, we have a global model Θg and K

cluster-wise models Θ1:K . On the client side, we train m cluster models θ01:m used to update the
global model Θg in FL and θ1:m used to update the cluster-wise model Θc(i) assigned to each client-i,
where c(i) is its cluster label determined by the cluster assignment criterion c(·). We further define
Ck ≜ {i ∈ [m] : c(i) = k} as the set of clients in cluster-k. For simplicity, we will use Xi and Yi

to respectively represent the local training data on client-i and their ground truths, and ℓ(Yi, F (Xi))
denotes the batch loss of model F (·) on (Xi, Yi). A CAM model for client-i can be

Fi(·) = h(·; Θg) + f(·; Θc(i))). (1)
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For classification, Fi(·) produces logits and we can apply softmax to get the class probabilities.

3.1 IFCA-CAM: model performance-driven clustering

We extend the min-loss criterion used in IFCA [6] to CAM for cluster assignment, i.e., each client-i
is assigned to the cluster-k whose model Θk leads to the minimal loss of CAM on client-i’s data, i.e.,

c(i) = arg min
k∈[K]

ℓ(Yi, h(Xi; Θg) + f(Xi; Θk)). (2)

IFCA-CAM optimizes Θg and Θ1:K for minimizing the above minimal loss over all the m clients, i.e.,

IFCA-CAM: min
Θg,Θ1:K

m∑
i=1

ni

n
min
k∈[K]

ℓ(Yi, h(Xi; Θg) + f(Xi; Θk)), (3)

where the inner minimization performs the min-loss assignment in Eq. (2). We solve Eq. (3) by the
following alternating minimization of cluster membership, cluster-wise models, and the global model.

(i) Cluster assignment by applying Eq. (2) to the latest Θg and Θ1:K . This yields c(·) and C1:K .

(ii) Fixing Θg , we can optimize the cluster-wise models Θ1:K by gradient descent:

Θk ← Θk − η
∑
i∈Ck

ni

n
∇Θk

ℓ(Yi, h(Xi; Θg) + f(Xi; Θk)), ∀ k ∈ [K]. (4)

In FL, the gradient can be approximated by aggregating the model updates of local models θi
from clients, whose training on the client side is: (1) initializing θi ← Θc(i); (2) starting from the
initialization, running E local epochs updating θi by

θi ← θi − η∇θiℓ(Yi, h(Xi; Θg) + f(Xi; θi)), ∀ i ∈ [m]; (5)

and (3) aggregating the local model update θi −Θk from client i ∈ Ck to update Θk, i.e.,

Θk ←

(
1−

∑
i∈Ck

ni

n

)
Θk +

∑
i∈Ck

ni

n
θi. (6)

(iii) Fixing Θ1:K , we can optimize the global model Θg by gradient descent:

Θg ← Θg − η
∑
i∈[m]

ni

n
∇Θg

ℓ(Yi, h(Xi; Θg) + f(Xi; Θc(i))). (7)

In FL, this gradient step can be approximated by aggregating the local models θ0i (similar to FedAvg):
(1) initializing θ0i ← Θg; (2) running E local epochs training θ0i by

θ0i ← θ0i − η∇θ0
i
ℓ(Yi, h(Xi; θ

0
i ) + f(Xi; Θc(i))), ∀ i ∈ [m]; (8)

and (3) aggregating the updated local models θ0i of all the m clients to update Θg , i.e.,

Θg ←
∑
i∈[m]

ni

n
θ0i . (9)

We can run two parallel threads of local training for θ0i and θi for each client-i because their training
in Eq. (8) and Eq. (5) does not depend on each other (but they both depend on the cluster assignments
in (i)). This is analogous to the simultaneous update algorithm (FedSim) in [27]. One may also
consider an alternative update algorithm (which may enjoy a slightly faster convergence) that iterates
(i)→(ii)→(i)→(iii) in each round. However, it doubles the communication rounds ((i) requires one
communication round) and does not allow parallel local training. Since the alternative update does
not show a significant empirical improvement over FedSim in [27], we mainly focus on the parallel
one in the remainder of this paper.
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3.2 FeSEM-CAM: parameter similarity-based clustering

We follow a similar procedure of IFCA-CAM to derive FeSEM-CAM, which applies a K-means
style clustering to the client models θ1:m, whose objective is minimizing the sum of squares of
client-cluster distance, i.e.,

min
Θ1:K

m∑
i=1

ni

n
min
j∈[K]

∥θi −Θj∥22. (10)

Hence, similar to FeSEM [8], FeSEM-CAM assigns the nearest cluster-wise model to each client and
updates the cluster-wise models as the cluster centroids (i.e., K-means algorithm), i.e.,

c(i) = arg min
k∈[K]

∥θi −Θk∥22, Θk ←
∑
i∈Ck

ni∑
i∈Ck

ni
θi. (11)

We iterate the above K-means steps for a few times until convergence in practice. FeSEM-
CAM applies the K-means objective in Eq. (10) as a regularization to the loss of CAM model
ℓ(Yi, h(Xi; Θg) + f(Xi; θi)), i.e.,

FeSEM-CAM: min
Θg,Θ1:K ,θ1:m

m∑
i=1

ni

n

[
ℓ(Yi, h(Xi; Θg) + f(Xi; θi)) +

λ

2
min
j∈[K]

∥θi −Θj∥22
]
, (12)

where the minimization w.r.t. Θ1:K (with θ1:m fixed) recovers the (weighted) K-means objective in
Eq. (10). Unlike IFCA-CAM, where client model θi is an auxiliary/latent variable for FL not showing
in the objective of Eq. (3), it is explicitly optimized in Eq. (12). Similar to IFCA-CAM, we solve
Eq. (3) by iterating the following alternating minimization steps (i)-(iii).

(i) K-means clustering that iterates Eq. (11) for a few steps until convergence, which yields c(·),
C1:K , and Θ1:K . The update of Θ1:K is analogous to Eq. (6).

(ii) Fixing Θg , we optimize θ1:m by client-side local gradient descent:

θi ← (1− ηλ)θi + ηλΘc(i) − η
ni

n
∇θiℓ(Yi, h(Xi; Θg) + f(Xi; θi)), ∀ i ∈ [m]. (13)

The first two terms in Eq. (13) compute a linear interpolation between θi and its assigned cluster’s
model Θc(i). This is a result of the K-means regularization term in Eq. (12) and keeps θi close to Θc(i).

(iii) Fixing θ1:m, we can optimize Θg by gradient descent:

Θg ← Θg − η
∑
i∈[m]

ni

n
∇Θgℓ(Yi, h(Xi; Θg) + f(Xi; θi)). (14)

In FL, this gradient step can be approximated by aggregating the local models θ0i (similar to FedAvg):
(1) initializing θ0i ← Θg; (2) running E local epochs training θ0i by

θ0i ← θ0i − η∇θ0
i
ℓ(Yi, h(Xi; θ

0
i ) + f(Xi; θi)), ∀ i ∈ [m]; (15)

and (3) aggregating the updated local models θ0i of all the m clients to update Θg by Eq. (9).

3.3 Algorithm

In Algorithm 1, we propose a structured FL algorithm for CAM, i.e., Fed-CAM, which can unify the
derived optimization procedures for IFCA-CAM and FeSEM-CAM and can be easily extended to
other clustered FL and clustering criteria.

Warmup. As an alternating optimization framework, it would be unstable if both Θg and Θ1:K are
randomly initialized and jointly optimized in parallel since they may capture overlapping information
and result in an inefficient competitive game. To encourage them to learn complementary knowledge,
warmup training for one of them before the joint optimization is helpful. For example, a few rounds
of FedAvg can produce a “warm” Θg, whose predictions’ residuals are more informative to train
Θ1:K . Another warmup strategy could be to run a few local training epochs and extract warm Θ1:K

by clustering the lightly-trained local models θ1:m. In Fed-CAM, we can apply the former warmup to
IFCA-CAM and the latter to FeSEM-CAM.
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Algorithm 1: Fed-CAM
initialize :Randomly initialize Θ1:K and Θg .
warmup :(1) β rounds of FedAvg to get an initial Θg (IFCA-CAM) or (2) β epochs of local training only

to get a initial θ1:m (FedSEM-CAM). Broadcast Θg and Θ1:K to all clients.
1 while not converge do

/* Client (in parallel) */
2 for every selected client i do
3 Model performance-driven clustering (e.g., IFCA-CAM): cluster assignment by Eq. (2);
4 Initialize θi ← Θc(i) and θ0i ← Θg;
5 Local training of θi for E epochs: e.g., Eq. (5) (IFCA-CAM) or Eq. (13) (FeSEM-CAM);
6 Local training of θ0i for E epochs: e.g., Eq. (8) (IFCA-CAM) or Eq. (15) (FeSEM-CAM);
7 Upload θi and θ0i to the server;

/* Server */
8 Update cluster-wise models Θ1:K : e.g., Eq. (6) (IFCA-CAM) or Eq. (11) (FeSEM-CAM);
9 Update global model Θg by Eq. (9);

10 Broadcast Θg and Θ1:K to all clients;

output :Global model Θg , cluster-wise models Θ1:K and c(i) ∀ i ∈ [m].

4 Convergence Analysis

Based on the convergence analysis presented in [27], which aims to minimize the following objective:

min
u,V

F (u, V ) :=
1

n

m∑
i=1

Fi(u, vi), (16)

where u represents the shared parameters and V = v1, v2, · · · , vm denotes the personalized parame-
ters. If we map Θg to u, and Θ1:K to V respectively, this appears strikingly similar to our methods
as illustrated in Equations 3 and 12. Provided that the clustering remains stable, we can employ the
theoretical framework of [27]. And firstly, we make some standard assumptions for the convergence
analysis as below.
Assumption 1. (Smoothness). For i = 1, · · · ,m, the loss function l is continuously differentiable,
and there exist constants L that ∇Θg

ℓ(Θg,Θk) is L-Lipschitz with respect to Θg and Θk, and
∇Θk

ℓ(Θg,Θk) is L-Lipschitz with respect to Θg and Θk.
Assumption 2. (Unbiased gradients and bounded variance). The stochastic gradients are unbiased
and have bounded variance. For all Θg and Θk,

E[∇̃Θgℓ(Θg,Θk)] = ∇Θgℓ(Θg,Θk), E[∇̃Θk
ℓ(Θg,Θk)] = ∇Θk

ℓ(Θg,Θk),

and

E[∥∇̃Θgℓ(Θg,Θk)−∇Θgℓ(Θg,Θk)∥2] ≤ σ2
g , E[∥∇̃Θk

ℓ(Θg,Θk)−∇Θk
ℓ(Θg,Θk)∥2] ≤ σ2

k.

Assumption 3. (Partial gradient diversity). There exists a constant for all θ0i and Θg , θi and Θk,
m∑
i=1

ni

n
∥∇Θg

ℓ(Θg, θi)−∇Θg
ℓ(Θg,Θk)∥2 ≤ δ2∑

i∈[k]

ni∑
i∈[k] ni

∥∇Θk
ℓ(θ0i ,Θk)−∇Θk

ℓ(Θg,Θk)∥2 ≤ δ2.

Assumption 4. (Convexity of cluster models). Fix Θg , assume ℓ(Θk) is convex.
Theorem 1. (Convergence of Fed-CAM). Let Assumptions 1, 2, 3 and 4 hold, and learning rates cho-
sen as η = τ/(LE) for a τ depending on the parameters L, σ2

g , σ
2
k, δ

2, s,m, T , provided clustering
stable, we have (ignoring absolute constants),

1

T

T∑
t=1

(
1

L
E[∥∇Θg

ℓ(Θg,Θk)∥2] +
s

mL

1

m

m∑
i=1

E[∥∇Θc(i)
ℓ(Θg,Θc(i))∥2]) (17)

≤
(△ℓσ

2
sim,1)

1/2

T 1/2
+

(△2
ℓσ

2
sim,2)

1/3

T 2/3
+O(

1

T
), (18)
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where△ℓ = ℓ0 − ℓ⋆, and we define effective variance terms,

σ2
sim,1 =

2

L
(δ2(1− s

m
) +

σ2
g

L
+

σ2
ks

m
)) (19)

σ2
sim,2 =

2

L
(δ2 + σ2

g + σ2
k)(1−

1

E
). (20)

Remark 1. It is straightforward to prove that the clustering of both IFCA-CAM and FeSEM-CAM
converges, as evidenced by Ma et al. (2022). However, proving the stability of these clustering
methods is more challenging due to the oscillation phenomenon often seen in K-means. The stability
of clustering will be further demonstrated through experimental analysis in Section 5.2.
Remark 2. Besides the clustering structure, there is a distinct difference between FedSim [27] and
Fed-CAM. In Fed-CAM, we need to aggregate both Θg and Θ1:K , while in FedAlt [27], only Θg

requires aggregation. The σ2
sim,1 and σ2

sim,2 reflect the impact of sample number s and local steps
E. Larger s or smaller E, better convergence rate. According to the results presented in [27],
alternative gradient descent surpasses simultaneous gradient descent in terms of convergence rate.
The asymptotic 1/

√
T rate is achieved when each device is seen at least once on average, and the

1/T term is dominated by the 1/
√
T term, a situation that occurs when (ignoring absolute constants)

T ≥ △ℓ

σ2
sim,1

max{(1− 1

E
)
m

s
, 2}.

5 Experiments

Benchmark datasets and partitions. The proposed methods have been validated using several
benchmark datasets. While detailed results for PathMNIST and TissueMNIST from the MedMNIST
[28] are provided in the supplementary material, the other datasets used for validation include:

• Fashion-MNIST [29] includes 70,000 labeled fashion images (28×28 grayscale) in 10 classes,
such as T-shirts, Trouser, and Bag, with others.

• CIFAR-10 [30] consists of 60,000 images (32×32 color) in 10 classes, including airplane, automo-
bile, bird, and truck, among others. The divergence among classes in CIFAR-10 is relatively higher
than in other datasets from the MNIST family.

Each dataset is split among 200 clients and we create the following non-IID scenarios:

• Client-wise non-IID by Dirichlet distribution (α = 0.1): This approach uses the Dirichlet
distribution to control the randomness of non-IID data, as proposed by [31]. This is a standard
method used in most personalized FL methods, which are usually client-wise non-IID.

• Cluster-wise non-IID by Dirichlet distribution (α = (0.1, 10)): This strategy divides the dataset
into K clusters with α = 0.1 to generate substantial variance in cluster-wise non-IID. Then, each
cluster is divided into m/K clients with α = 10 to control the non-IID across clients.

• Client-wise non-IID by n-class (2): This method randomly selects n-class out of all classes in the
dataset for each client, as proposed by [1], and then samples instances from these datasets.

• Cluster-wise non-IID by n-class (3, 2): This approach randomly assigns 3 classes to each cluster,
ensuring a relatively balanced number of instances per class. It then assigns 2 classes to each client.

Baselines. We select baseline methods from four categories as follows:

• Single model-based FL: We choose FedAvg [1] and FedProx [3] with a coefficient of 230 and a
regularization of 0.95 as the baselines.

• Ensemble FL: We train FedAvg and FedProx K times and then learn an ensemble model via soft
voting to serve all clients, which are named FedAvg+ and FedProx+, respectively.

• Clustered FL: We choose FeSEM [8] and IFCA [6], which is similar to HypCluster [7].

• Clustered FL with additive modeling: We integrate CAM with IFCA and FeSEM, denoting them
as IFCA-CAM and FeSEM-CAM, respectively.
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Learning-related hyperparameters. We use the Convolutional Neural Network (CNN) [32] as the
basic model architecture for each client, as detailed in the supplementary material. For optimization,
we employ SGD with a learning rate of 0.001 and momentum of 0.9 to train the model, and the batch
size is 32. We evaluate the performance using both micro accuracy (%) and macro F1-score (%) on
the client-wise test datasets to better capture the non-IID nature per client.

FL system settings. We conduct 100 global communication rounds in the FL system, including
30 warm-up rounds if applicable. Each communication involves 10 local steps. For the clustering
process of FeSEM-CAM, we measure distance on the flattened parameters of the fully-connected
layers, and use K-Means as the clustering algorithm. The coefficient λ is chosen from 0.001, 0.01, 0.1
based on the best performance.

5.1 Main Results and Comparisons

Cluster-wise non-IID scenarios make the assumption that there are underlying clustering structures
among clients. Table 1 compares the methods using two benchmark datasets, namely Fashion-MNIST
and CIFAR-10. Results using two biomedical datasets are presented in the appendix. The following
are some notable observations and analyses:

• The application of the ensemble mechanism to FedAvg and FedProx yields minor improvements.
This is because the server-side model in FedAvg or FedProx is already a relatively strong model,
while ensemble mechanisms usually excel with weak models.

• The introduction of CAM significantly enhances the performance of IFCA, which typically struggles
with clustering collapse in cluster-wise non-IID scenarios. Notably, CAM decomposes the shared
components into a global model and personalized parts into cluster models. Thus, the clustering
collapse is mitigated by isolating the dominant shared knowledge.

• FeSEM generally exhibits robust performance on cluster-wise non-IID without outliers. Implement-
ing CAM in FeSEM further improves the Macro-F1 performance. The clustering process in FeSEM
tends to overfit the label distribution (imbalanced classes) of clients to achieve higher accuracy.
However, the application of CAM introduces a global model with a balanced label distribution by
averaging all clients, thereby boosting the Macro-F1 performance while preserving the cluster-wise
non-IID for high accuracy.

• With an increase in the number of clusters K, the CAM-based methods show substantial im-
provements in Macro-F1. The decomposition of shared knowledge and cluster-wise non-IID
characteristics benefit from a reasonably larger K, which facilitates fine-grained, cluster-wise
personalization.

Table 1: Test results (mean±std) in cluster-wise non-IID settings on Fashion-MNIST & CIFAR-10.

Datasets Fashion-MNIST CIFAR-10

Non-IID setting Dirichlet α = (0.1, 10) n-class (3, 2) Dirichlet α = (0.1, 10) n-class (3, 2)
#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 86.08±0.70 57.24±2.26 86.33±0.44 46.09±1.08 24.38±3.30 11.69±3.15 21.33±3.83 9.00±0.58
FedProx 86.32±0.78 58.03±3.19 86.42±0.63 45.86±1.42 24.73±3.68 11.28±2.35 22.66±1.13 9.23±0.78

5

FedAvg+ 87.61 59.48 86.95 65.61 25.97 12.16 24.35 9.06
FedProx+ 87.94 59.83 86.52 65.73 26.05 12.53 24.83 9.31
IFCA 84.60±2.22 62.03±3.01 84.94±2.54 66.50±4.43 34.10±4.79 22.12±2.21 29.80±4.49 17.90±2.08
IFCA-CAM 93.33±0.95 79.64±4.09 95.38±0.49 77.56±1.14 58.13±3.82 28.09±3.68 54.56±3.58 27.27±1.06
FeSEM 94.64±1.54 82.90±2.38 94.20±1.96 77.07±6.05 59.06±3.24 32.33±7.25 58.76±3.35 35.75±2.54
FeSEM-CAM 95.13±1.78 85.10±3.17 95.69±1.05 78.82±1.17 64.35±2.33 38.33±1.77 65.58±1.21 38.63±1.17

10

FedAvg+ 89.42 67.83 86.91 63.01 28.45 13.79 27.28 9.81
FedProx+ 89.55 68.02 86.73 63.42 28.33 13.64 26.94 9.64
IFCA 82.10±5.40 62.62±8.22 86.58±4.97 66.22±5.69 34.84±5.82 22.76±3.99 34.06±2.60 18.70±1.31
IFCA-CAM 95.42±2.54 88.45±5.46 95.09±0.87 82.98±1.16 70.90±1.18 40.03±1.28 68.46±4.08 41.45±4.00
FeSEM 95.73±1.28 89.34±1.57 95.54±0.74 84.43±2.38 66.89±2.18 38.35±4.24 71.76±2.23 49.72±3.84
FeSEM-CAM 96.19±1.20 92.37±1.85 98.07±1.46 92.43±2.70 78.45±1.71 49.50±1.13 75.04±1.97 55.90±2.07

Client-wise non-IID Table 2 presents comparative results under client-wise non-IID scenarios
using two benchmark datasets: Fashion-MNIST and CIFAR-10. Interestingly, IFCA maintains stable
performance under client-wise non-IID conditions, primarily because it cannot form a single dominant
cluster model - a primary cause of clustering collapse - in a highly heterogeneous environment. The
application of CAM to IFCA and FeSEM shows a significant enhancement, particularly on the
CIFAR-10 dataset. This improvement is likely due to FeSEM’s typical restriction on knowledge
sharing across clusters. In contrast, CAM utilizes a global model to capture more useful common
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Figure 3: Cluster sizes during FeSEM vs. FeSEM+CAM in client/cluster-wise non-IID settings on CIFAR-10.
Legend: cluster ID (cluster size) in the last round. CAM effectively mitigates clustering collapse/imbalance.

knowledge across clusters, thereby substantially enhancing the generalization capability of each
cluster. Furthermore, CIFAR-10, being a relatively complex dataset with a diversity of images,
underscores the importance of sharing common knowledge.

Table 2: Test results (mean±std) in client-wise non-IID settings on Fashion-MNIST & CIFAR-10.

Datasets Fashion-MNIST CIFAR-10

Non-IID setting Dirichlet α = 0.1 n-class (2) Dirichlet α = 0.1 n-class (2)
#Cluster Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 FedAvg 85.90±0.46 54.52±2.66 86.17±0.25 44.88±1.24 25.62±3.47 11.38±2.02 24.30±3.53 8.56±0.64
FedProx 86.03±0.58 54.69±3.32 86.47±0.23 44.89±1.38 25.72±3.29 11.14±1.49 24.19±2.45 8.69±0.74

5

FedAvg+ 86.12 61.07 86.5 45.39 25.71 12.45 24.83 8.74
FedProx+ 86.39 56.56 86.15 45.43 25.58 12.43 25.88 8.55
IFCA 90.13±6.81 68.47±5.23 91.54±5.04 72.30±5.32 47.21± 10.28 22.67±1.48 46.54±12.8 17.78±1.29
IFCA-CAM 93.72±1.34 70.67±1.75 92.24±1.22 70.24±4.33 54.32±1.25 23.48±1.18 54.92±1.51 25.20±1.05
FeSEM 91.51±2.90 73.78±9.88 91.83±1.24 71.05±8.63 54.30±4.58 24.78±6.01 55.55±4.83 32.80±4.18
FeSEM-CAM 94.74±1.04 75.12±5.82 93.14±2.03 76.98±2.17 59.71±2.80 40.45±3.53 56.70±1.68 34.52±1.64

10

FedAvg+ 86.81 60.43 86.91 47.12 27.83 13.65 27.71 9.65
FedProx+ 86.24 56.2 86.78 42.83 25.86 12.84 26.16 9.94
IFCA 91.04±4.33 68.6±6.77 91.42±5.16 72.29±5.80 47.62±10.15 23.36±2.48 47.96±10.59 17.88±1.04
IFCA-CAM 95.70±1.19 79.17±1.91 92.57±2.63 76.31±4.39 72.54±2.7 42.86±4.36 61.01±2.41 31.63±2.17
FeSEM 93.3±2.0 80.47±11.05 93.75±1.53 79.39±6.57 67±1.57 31.69±8.52 63.64±6.51 42.97±6.08
FeSEM-CAM 95.25±1.93 81.5±2.24 95.15±1.48 86.16±3.19 80.11±1.82 59.19±4.67 69.88±1.7 49.5±1.42

5.2 Visualization: CAM combats clustering collapse

Figures 1 and 3 demonstrate the effectiveness of applying CAM to mitigate clustering collapse in
IFCA and FeSEM under both cluster-wise and client-wise non-IID scenarios, using the CIFAR-10
dataset with K = 10. Each color represents a cluster, and the X-axis represents the iteration rounds.

In the case of IFCA, we observe a severe clustering collapse issue in cluster-wise non-IID scenarios.
A single cluster can encompass all clients in the client-wise non-IID setting and up to 50% of clients
in the cluster non-IID setting. Furthermore, the clustering remains unstable throughout the process.
However, when CAM is applied in IFCA-CAM, it quickly identifies some clustering structures within
a few rounds, and this structure closely approximates the ground truth.

As for FeSEM, while the phenomenon of clustering collapse is not as pronounced, a single cluster
can still dominate up to 25% of all clients if there are no outliers. CAM can expedite the clustering
convergence, sometimes achieving it in just one round. Moreover, under client-wise non-IID settings,
the application of CAM results in lower variance and more uniform cluster size. In the case of
cluster-wise non-IID settings, FeSEM-CAM can easily identify the ground truth.

6 Conclusions

We propose a novel structured FL model “clustered additive modeling (CAM)” and an efficient
FL algorithmic framework Fed-CAM to address non-IID FL challenges with clustering structure.
CAM is a general mode-agnostic tool that can improve various existing non-IID FL methods. It can
capture more general non-IID structures with global knowledge sharing among clients than clustered
FL and overcome several weaknesses such as clustering collapse, vulnerability to cluster imbal-
ance/initialization, etc. Theoretically, Fed-CAM is capable of achieving an asymptotic convergence
rate of O(1/

√
T ). Extensive experiments show that CAM brings substantial improvement to existing

clustered FL methods, improves cluster balance, and effectively mitigates clustering collapse.
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