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Abstract

Natural language processing models often001
exploit spurious correlations between task-002
independent features and labels in datasets003
to perform well only within the distributions004
they are trained on, while not generalising005
to different task distributions. We propose006
to tackle this problem by generating a debi-007
ased version of a dataset, which can then be008
used to train a debiased, off-the-shelf model,009
by simply replacing its training data. Our010
approach consists of 1) a method for train-011
ing data generators to generate high-quality,012
label-consistent data samples; and 2) a filter-013
ing mechanism for removing data points that014
contribute to spurious correlations, measured015
in terms of z-statistics. We generate debi-016
ased versions of the SNLI and MNLI datasets,017
and we evaluate on a large suite of debiased,018
out-of-distribution, and adversarial test sets.019
Results show that models trained on our de-020
biased datasets generalise significantly better021
than those trained on the original datasets in all022
settings. On the majority of the datasets, our023
method outperforms or performs comparably024
to previous state-of-the-art debiasing strate-025
gies, and when combined with an orthogo-026
nal technique, product-of-experts, the perfor-027
mance improves further and achieves state-of-028
the-art results of SNLI-hard and MNLI-hard.029

1 Introduction030

Natural Language Processing (NLP) datasets in-031

evitably contain biases that are unrelated to the032

tasks they are supposed to represent. These biases033

are usually artifacts of the dataset collection, an-034

notation processes, or design decisions (Schwartz035

et al., 2017; Geva et al., 2019; Liu et al., 2021).036

Such biases often manifest as spurious correlations037

between simple features of the data points and their038

labels (Gardner et al., 2021). Trained models can039

exploit these spurious correlations to correctly pre-040

dict the labels of the data points within the same041

distributions as those they are trained on, but fail042
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Figure 1: Overview of our dataset bias mitigation ap-
proach. We minimise spurious correlations between la-
bels (represented by the shapes of data points) and task-
independent features (represented by their colours)
with our proposed data generation pipeline.

to generalise to other distributions within the same 043

tasks. Consequently, the models risk modelling the 044

datasets, but not the tasks (Gururangan et al., 2018; 045

Poliak et al., 2018; McCoy et al., 2019; Schuster 046

et al., 2019). 047

We address this issue by adjusting existing 048

dataset distributions to mitigate the correlations 049

between task-independent features and the labels. 050

First, we train data generators that generate high 051

quality data samples in the distribution of existing 052

datasets (Section 2). Then, we identify a set of sim- 053

ple features that are known to be task-independent, 054

and use the theoretical framework proposed by 055

Gardner et al. (2021) to measure correlations (i.e., 056

z-statistics) between those features and the labels. 057

Finally, we use these measures of spurious correla- 058

tions to adjust the distribution of samples generated 059

by the data generator (Section 3) by post-hoc filter- 060

ing (Section 3.2) to remove the data points that con- 061

tribute to high z-scores with task-independent fea- 062

tures, or finetuning the data generator (Section 4.1) 063

to make such data points less likely. Unlike prior 064

model-centric approaches for dealing with spurious 065

correlations in datasets (Belinkov et al., 2019a,b; 066

Clark et al., 2019; He et al., 2019; Karimi Mahabadi 067
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et al., 2020) that define new training objectives or068

model architectures, our approach has the advan-069

tage of keeping the objective and the model fixed,070

as we only alter the training data.071

To evaluate our approach, we use the task of Nat-072

ural Language Inference (NLI), which offers a wide073

range of datasets (including challenge datasets)074

for various domains. We generate1 debiased075

SNLI (Bowman et al., 2015) and MNLI (Williams076

et al., 2018) distributions and evaluate the gener-077

alisability of models trained on them to out-of-078

distribution hard evaluation sets (Gururangan et al.,079

2018; McCoy et al., 2019), and the adversarial at-080

tack suite for NLI proposed by Liu et al. (2020b).081

Furthermore, we compare our method to strong082

debiasing strategies from the literature (Belinkov083

et al., 2019b; Stacey et al., 2020; Clark et al., 2019;084

Karimi Mahabadi et al., 2020; Utama et al., 2020;085

Sanh et al., 2021; Ghaddar et al., 2021).086

Our results show that models trained on our de-087

biased datasets generalise better than those trained088

on original datasets to evaluation sets targeting089

hypothesis-only biases (by up to 2.8 points) and090

syntactic biases (by up to 13 points), and a suite of091

adversarial tests sets (by up to 4.2 points on aver-092

age). On the test sets targeting the hypotheis-only093

bias, they perform comparably to the best perform-094

ing models tweaked specifically to handle the bias,095

but since our contributions are orthogonal to such096

improvements, we show that combining the two097

yields further improvements of up to 1.6 points.098

2 Generating High-Quality Data099

Samples100

First, we need to train a data generator G to gen-101

erate data samples automatically. Our goal for the102

data generator is to model the base distribution as103

well as possible so that we can generate valid and104

high-quality data samples.105

2.1 Finetuning Pretrained Language Model106

to Generate NLI Samples107

We finetune a pretrained language model on the108

NLI datasets to serve as our data generator. We109

choose GPT-2 because it is a powerful and widely-110

used causal language model.111

Given an NLI dataset D0, the training objective112

is to minimise the following negative log-likelihood113

loss of generating the premise-label-hypothesis se-114

1We will release all our code and the generated datasets.

quence, in that order: 115

LMLE = −
|D0|∑
i=1

log p(P (i), H(i), l(i)) 116

= −
|D0|∑
i=1

log p(P (i))p(l(i)|P (i))p(H(i)|l(i), P (i)),

(1)

117

where P (i), H(i) and l(i) are the premise, hypothe- 118

sis and label respectively.2 119

2.2 Improving Data Generation Quality 120

2.2.1 Unlikelihood Training to Improve 121

Label Consistency 122

We find that a generator trained with only LMLE 123

has poor label consistency. This means that given 124

a generated sample (P̃ , H̃, l̃), the label l̃ often does 125

not correctly describe the relationship between P̃ 126

and H̃ . We apply unlikelihood training (Welleck 127

et al., 2020) to tackle this problem. First we perturb 128

the label to construct negative samples (P,H, l′) 129

where l′ 6= l for each sample in the dataset. Then 130

we apply a token-level unlikelihood objective on 131

the hypothesis tokens: 132

Lconsistency = 133

−
|D0|∑
i=1

|H|(i)∑
t=1

log(1− p(H(i)
t |l′(i), P (i), H

(i)
<t)). 134

This objective decreases the probability of gener- 135

ating H when given an incorrect label l′; hence it 136

improves the label consistency. 137

We combine LMLE and Lconsistency to finetune 138

our generator G with 139

LG = LMLE + λLconsistency, 140

where λ is a hyper-parameter that balances the 141

two objectives. We can randomly sample from 142

the trained generator to obtain a large amount of 143

the synthetic data DG ∼ G. 144

2.2.2 Filtering Based on Model Confidence 145

To further improve the quality of the generated 146

dataset, we use an NLI model M trained on the 147

original dataset D0 to filter out samples in which 148

M has low confidence: 149

D̂G = {(P,H, l) ∈ DG | pM (l|P,H) > τ}, 150

2In our preliminary study, we found the factorization or-
der premise-label-hypothesis in Eq. (1) performs better than
hypothesis-label-premise and premise-hypothesis-label.
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where τ is a confidence threshold. We found that151

the filtered out data samples generally had incorrect152

labels and/or ungrammatical text.153

3 Mitigating Spurious Correlations using154

z-filtering155

We now define a method to reject samples that156

contribute to the high spurious correlations be-157

tween task-independent features of the samples158

and their labels. Our approach is based on the159

theoretical framework proposed by Gardner et al.160

(2021) to measure these correlations, known as z-161

statistics. Our filtering method, called z-filtering162

(Section 3.2), will serve as the basis to construct163

debiased datasets in Section 4.164

3.1 Identifying and Measuring Spurious165

Correlations166

As a first step towards addressing spurious correla-167

tions, we need to be able to quantify them. We start168

by selecting a set of features that are trivially task-169

independent and seek to ensure that the labels are170

not correlated with these features. These features171

are listed as follows: 1) unigrams and bigrams;172

2) hypothesis length and hypothesis-premise length173

ratio; 3) lexical overlap between hypothesis and174

premise; 4) the predictions of a BERT-base (Devlin175

et al., 2019) hypothesis-only model.3 We choose176

these features as they capture various biases iden-177

tified in prior work, including contradiction word178

biases, lexical overlap bias (McCoy et al., 2019),179

and hypothesis-only bias (Gururangan et al., 2018;180

Poliak et al., 2018). Note that our method does181

not rely on the specific choice of features, and one182

can easily add alternative features that should not183

correlated with the labels.184

Following Gardner et al. (2021), we assume185

there should be no correlation between each of186

these features and the class labels. More formally,187

for any feature x from our feature set X , p(l|x)188

should be uniform over the class labels. We define189

p̂(l|x) = 1
n

∑n
j=1 l

j to be the empirical expecta-190

tion of p(l|x) over n samples containing x. Then191

we compute the standardised version of z-statistics192

to quantify its deviation from the uniform distribu-193

tion for each features x and label l:194

z∗(x, l) =
p̂(l|x)− p0√
p0(1− p0)/n

, (2)195

3See Appendix B for detailed descriptions of the features.

where p0 is the probability of uniform distribu- 196

tion (p0 = 1/3 in NLI tasks with three labels). 197

These z-statistics scores can be used to identify 198

the most biased features for each label l – we select 199

k features with the highest z-statistic to define the 200

biased features set BD(l). Table 10 shows exam- 201

ples of these biased features on SNLI. 202

3.2 z-filtering 203

To mitigate the biases in the dataset, we propose 204

z-filtering, an algorithm that iteratively selects and 205

filters instances from a dataset D′ to build a debi- 206

ased dataset Z . At each step, we find the set of 207

biased features BZ(l) on the partially constructed 208

Z . We then select a new batch of samples from 209

D′ and filter out the samples that contain these bi- 210

ased features. This process is applied iteratively 211

until it has exhausted all samples from D′. It re- 212

moves the samples that contribute to the spurious 213

correlations in D′, thus it finds a debiased subset 214

Z(D′) ⊂ D′. We denote the removed samples as 215

Z−(D′). The full z-filtering algorithm is illustrated 216

in Algorithm 1. 217

Optionally, one can initialise Z with a seed 218

dataset Dseed. In this case, the samples from D′ 219

are only added to Z when they do not contain the 220

biased features of Dseed. Thus it can be seen as 221

a data-augmentation technique targeted to debias 222

a given dataset. We refer to it as conditional z- 223

filtering and denote the produced debiased dataset 224

as Z(D′|Dseed). 225

4 Constructing Debiased NLI Datasets 226

via Data Generation 227

We use z-filtering in two ways: 1) to further fine- 228

tune G with an objective that downweighs sam- 229

ples that should be rejected (Section 4.1); 2) to 230

post-hoc filter samples in D̂G to obtain debiased 231

datasets (Section 4.2). 232

4.1 Learning to Generate Unbiased Samples 233

The generator G can learn to exploit task- 234

independent features during its finetuning stage 235

(Section 2), causing the synthetic data D̂G to con- 236

tain many spurious correlations. While it is tempt- 237

ing to apply z-filtering to remove these spurious 238

correlations from D̂G, we find that this will lead to 239

the removal of majority of the generated data. For 240

example, when the generator is finetuned on SNLI, 241
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Algorithm 1: z-filtering algorithm.
Data: input dataset D′ [with optional seed

dataset Dseed]
Result: debiased dataset Z and the rejected

samples Z−
Z ← ∅ (or Z ← Dseed);
Z− ← ∅;
for sample batch D′t ⊂ D′ do

compute or update z-statistics
z∗(x, l|Z), ∀x ∈ X of Z;

find the biased features BZ(l), ∀l ∈
{entailment, neutral, contradiction};

foreach instance I = (P,H, l) ∈ D′t do
get the features f of the instance I;
if f ∩ BZ(l) = ∅ then
Z ← Z ∪ {I};

else
Z− ← Z− ∪ {I};

end
end

end

z-filtering removes around 85% of D̂GSNLI
.4 This242

leads to a very inefficient data generation process243

to mitigate the spurious correlations.244

To alleviate this issue, we can incorporate the245

debiasing objectives into the training of the genera-246

tor, so that the samples produced by the generator247

are more likely to be accepted by the z-filtering248

stage. More specifically, we can encourage the249

model to generate Z(D0), while discouraging it250

from generating Z−(D0). For the latter part, we251

again apply an unlikelihood training objective LUL252

to unlearn Z−(D0). Hence, the overall debiasing253

training objective is:254

Ldebias = LMLE(Z(D0)) + αLUL(Z−(D0))255

where α is a hyperparamter.256

A naive use of an unlikelihood objective on all to-257

kens gives the model mixed signals for good tokens258

and leads to ungrammatical, degenerate outputs. To259

avoid this degeneracy, we apply the unlikelihood260

loss only to tokens that contribute to biased features.261

The unlikelihood loss applies only to the tokens that262

contribute to biased features. Concretely, for each263

token I−t of instance I− ∈ Z−(D0), we define a264

4This is also strong confirmation that these biases are prob-
lematic, as the generative model easily finds them and relies on
them during data generation. Conducting naive data augmen-
tation with D̂GSNLI will strengthen the spurious correlations.

mask mt as 265

mt =

{
0, if I ′t contributes to BZ(lI−)
1, otherwise.

266

where BZ(lI−) represent the biased features corre- 267

sponding the label of I−. 268

For biases towards unigram and bigram features 269

(as defined in Section 3.1), we consider only the 270

corresponding tokens to be relevant (i.e., mt = 0 if 271

I−t is part of the unigram or the bigram). For biases 272

towards other features (e.g. length of the hypothe- 273

sis), we consider all the tokens on the hypothesis 274

to be relevant. The unlikelihood training objective 275

is defined as follows: 276

LUL(Z−(D0)) =
∑

I′∈Z−(D0)

LUL(I
′), 277

LUL(I
′) = −

|I′|∑
t=1

log(mtp(I
′
t|I ′<t) 278

+(1−mt)(1− p(I ′t|I ′<t))). 279

We further finetune G with Ldebias to obtain a 280

new generator G∗, that is trained to generate more 281

unbiased data samples. We then randomly sample 282

from G∗ and conduct data filtering (Section 2.2.2) 283

to obtain a large set of high-quality debiased data 284

samples D̂G∗ . 285

4.2 Combining with z-filtering to Construct 286

the Debiased NLI Datasets 287

Given the original dataset D0 and the synthetic 288

dataset D̂G∗ , our goal is produce a large-scale un- 289

biased dataset D∗. There are various ways to do 290

this given that we can either apply conditional z- 291

filtering, or simply z-filter both D0 and D̂G∗ and 292

merge them. We explore the following options: 293

1. Z-Augmentation (Z-Aug) Z(D̂G∗ |D0): we 294

treat the original dataset as is, and augment it 295

by conducting conditional z-filtering on D̂G∗ 296

using D0 as seed dataset. 297

2. Parallel z-filter (Par-Z) Z(D0) ∪ Z(D̂G∗): 298

we conduct z-filtering on D0 and D̂G∗ sepa- 299

rately, and then merge them. 300

3. Sequential z-filter (Seq-Z) Z(D̂G∗ |Z(D0)): 301

we first conduct z-filtering on D0, then con- 302

duct conditional z-filtering on D̂G∗ with 303

Z(D0) as seed dataset. 304
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5 Experiments305

5.1 Experimental Setup306

Source Datasets We select the two most widely307

used NLI datasets SNLI (Bowman et al., 2015)308

and MNLI (Williams et al., 2018) as our original309

datasets. Prior work (Gururangan et al., 2018; Po-310

liak et al., 2018; McCoy et al., 2019) found various311

annotation artifacts in them, hence they serve as312

good use cases for constructing debiased datasets.313

Evaluation Datasets For the hypothesis-only314

bias, we use the challenge sets SNLI-hard (Gu-315

rurangan et al., 2018) and MNLI-hard (Williams316

et al., 2018), which were produced by filtering317

the test set with a hypothesis-only model (Sec-318

tion 5.2). For syntactic biases, we follow previous319

work and use HANS (McCoy et al., 2019) for eval-320

uation (Section 5.3). In addition, we evaluate on321

the adversarial test benchmark introduced by Liu322

et al. (2020b) (Section 5.4). This benchmark covers323

a wide range of adversarial attacks, which will give324

a more complete picture of what spurious correla-325

tions the debiasing methods tackle.326

Generating Debiased Datasets We conduct de-327

biased data generation for SNLI and MNLI sep-328

arately. For SNLI, we use the proposed method329

described in Section 4.1 to train a generator G∗SNLI.330

Then we randomly sample a large number of in-331

stances from the generator to constructDG∗SNLI
. The332

samples are filtered with a strong NLI model M333

trained on SNLI to obtain D̂G∗SNLI
. Finally, differ-334

ent options (Section 4.2) can be adopted to merge335

the synthetic data with the original data DSNLI to336

construct debiased versions of SNLI. The same337

procedure is used to produce debiased datasets for338

MNLI, by simply replacing the original dataset339

with MNLI. We choose GPT-2 large and Roberta-340

large as the pretrained language models for G∗ and341

M respectively.5 The size of the constructed debi-342

ased datasets are listed in Table 1.343

NLI Model Training Since our method directly344

debiases the training data itself, we keep the model345

and training objective fixed and only replace the346

training data with our generated debiased datasets.347

For comparability with previous work (Karimi Ma-348

habadi et al., 2020; Utama et al., 2020; Sanh et al.,349

2021), we train BERT-base (Devlin et al., 2019)350

5On one A100 GPU, training the generator takes around
24 hours and generating the samples takes roughly 35 hours
for each dataset.

Options D0 = DSNLI D0 = DMNLI

Original D0 549,367 382,702
Z-Aug Z(D̂G∗ |D0) 1,142,475 744,326
Par-Z Z(D0) ∪ Z(D̂G∗) 933,085 740,811
Seq-Z Z(D̂G∗ |Z(D0)) 927,906 744,200

Table 1: Data size of the constructed debiased datasets
for SNLI and MNLI.

on our debiased datasets. The NLI models are 351

trained with ordinary cross-entropy classification 352

loss, and the training hyperparameters are listed 353

in Appendix A. We run our experiments five times 354

and report the average and standard deviation of 355

the scores.6 356

State-of-the-art Debiasing Models We com- 357

pare our method with the following three state- 358

of-the-art debiasing models on each of our evalua- 359

tion datasets. Product-of-Experts (He et al., 2019; 360

Karimi Mahabadi et al., 2020), that ensembles 361

a bias-only model’s prediction bi with the main 362

model’s pi using p′i = softmax(log pi + log bi). 363

This ensembling enforces that the main model fo- 364

cuses on the samples that the bias-only model 365

does not predict well. Learned-Mixin (Clark et al., 366

2019), that is a variant of PoE that introduces a 367

learnable weight for the bias-only model’s predic- 368

tion. The model proposed by Utama et al. (2020), 369

that uses confidence regularisation to retain the in- 370

distribution performance while conducting model 371

debiasing. 372

Combining PoE with Our Debiased Datasets 373

Our approach changes the training data distribu- 374

tion instead of the model’s training objective, and 375

hence is orthogonal to prior work method-wise. We 376

also report the results of combining PoE with our 377

proposed method, simply by training a PoE model 378

on our debiased datasets. We adapt the PoE imple- 379

mentation7 by Karimi Mahabadi et al. (2020), and 380

we follow their approach to conduct hyperparame- 381

ter tuning for PoE. 382

5.2 Hypothesis-only Bias in NLI 383

Gururangan et al. (2018) found that, on SNLI and 384

MNLI, a model that has only access to the hy- 385

pothesis can perform surprisingly well, which indi- 386

cates that the datasets contain hypothesis-only bias. 387

6With the exception of our PoE experiments which single
run, as hyperparameter tuning for PoE is costlier.

7https://github.com/rabeehk/robust-nli
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Method (model w/ data) SNLI SNLI-hard

Prior debiasing strategies trained on SNLI
AdvCls (Belinkov et al., 2019a)∗ 83.56 66.27
Ens. AdvCls (Stacey et al., 2020)∗ 84.09 67.42
DFL (Karimi Mahabadi et al., 2020)∗ 89.57 83.01
PoE (Karimi Mahabadi et al., 2020)∗ 90.11 82.15

BERT-base w/ DSNLI baseline 90.45 80.34±0.46
Models trained on our debiased datasets
BERT-base w/ Z-Aug Z(D̂G∗ |DSNLI) 90.67 81.78±0.53
BERT-base w/ Par-Z Z(DSNLI) ∪ Z(D̂G∗) 88.11 82.81±0.37
BERT-base w/ Seq-Z Z(D̂G∗ |Z(DSNLI)) 88.08 82.82±0.15
Combining PoE with our debiased datasets
BERT-base + PoE w/ DSNLI 90.25 82.92
BERT-base + PoE w/ Seq-Z Z(D̂G∗ |Z(DSNLI)) 87.65 84.48

Table 2: Results on SNLI and SNLI-hard. ∗ are re-
ported results.

To alleviate this problem, SNLI-hard and MNLI-388

hard (Gururangan et al., 2018) subsets were con-389

structed by filtering the test set with a hypothesis-390

only model and only accepting those that the391

hypothesis-only model predicts incorrectly. We ex-392

amine whether our method successfully mitigates393

the hypothesis-only bias in NLI, by evaluating the394

models trained with our debiased datasets on SNLI-395

hard and MNLI-hard.396

Results on SNLI Table 2 shows the results of our397

method on SNLI. The results show that, compared398

to training on SNLI, training with our debiased399

datasets significantly improves the performance on400

SNLI-hard. The debiased dataset produced by Seq-401

Z achieves a 2.48% gain in accuracy on SNLI-hard402

compared to the SNLI baseline, whereas Z-Aug403

improves both SNLI and SNLI-hard accuracy.404

Results on MNLI Table 3 shows the results of405

our method on MNLI-matched (MNLI-m) and406

MNLI-mismatched (MNLI-mm), and their corre-407

sponding hard sets. We use the development sets408

of MNLI-hard reconstructed by (Karimi Mahabadi409

et al., 2020) to develop our methods. To comply410

with the submission limit of MNLI submission sys-411

tem, we select the best checkpoint among the five412

runs using the development set, and report its test413

set performance in Table 3.414

The results show that BERT-base models trained415

on our debiased MNLI datasets outperform the416

models trained on the original MNLI by a large417

margin on the MNLI-hard sets. In particular, the Z-418

Aug version of the debiased datasets gives a 2.72%419

and 2.76% gain in accuracy on MNLI-m hard and420

MNLI-mm hard respectively, and outperforms the421

previous state-of-the-art on MNLI-m, MNLI-mm,422

and MNLI MNLI-mm hard. 423

Combining PoE with Our Debiased Datasets 424

We investigate the combination of our method and 425

PoE, to see if the two orthogonal techniques can 426

work together to achieve better performance. Since 427

hyperparameter tuning of PoE is costly, we choose 428

the best version of the debiased dataset (Seq-Z on 429

SNLI and Z-Aug on MNLI) using the development 430

set accuracy, and train PoE with it. The results are 431

listed in the last rows of Table 2 and Table 3. We 432

can find that, on both SNLI and MNLI, combin- 433

ing PoE with our debiased dataset yields further 434

improvements on SNLI-hard, MNLI-m hard, and 435

MNLI-mm hard, achieving new state-of-the-art re- 436

sults on all three datasets. 437

5.3 Syntactic Bias in NLI 438

McCoy et al. (2019) show that NLI models trained 439

on MNLI can exploit syntactic heuristics present 440

in the data, such as lexical overlap, subsequence, 441

and constituent features. They introduce HANS, 442

an evaluation dataset that contains examples where 443

the syntactic heuristics fail. To test whether our 444

method mitigates the syntactic biases in NLI, we 445

evaluate models trained on our debiased datasets 446

on HANS. If our debiased dataset contains less 447

syntactic bias than the original dataset, the model 448

would not exploit the syntactic heuristics and thus 449

perform better on HANS. Due to the high variance 450

of the scores on HANS, we run five times for each 451

experiment (except PoE), and report the average 452

and standard deviation of the scores. 453

Results on HANS Table 4 shows the results on 454

HANS. The results are categorised into three sec- 455

tions according to the original data: SNLI, MNLI, 456

and our debiased datasets. With SNLI as the origi- 457

nal dataset, we compare with TAILOR (Ross et al., 458

2021), a semantically controlled data augmentation 459

method that uses heuristics specifically designed 460

to tackle syntactic biases. Following TAILOR, 461

we train Roberta-base models with our debiased 462

SNLI dataset (Seq-Z). The results show that the 463

performance of our debiased dataset outperforms 464

the SNLI baseline, and is also slightly better than 465

TAILOR. This is surprising because TAILOR re- 466

lies on specifically designed heuristics to generate 467

samples, whereas our method does not require such 468

manual heuristics. 469

The results of models train on our debiased 470

MNLI datasets also show strong improvements: 471

compared to the original MNLI, our debiased 472
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Method (model w/ data) MNLI-m MNLI-mm MNLI-m hard MNLI-mm hard
dev test dev test dev test dev test

Prior debiasing strategies trained on MNLI
PoE (Karimi Mahabadi et al., 2020)∗ 84.58 84.11 84.85 83.47 78.02 76.81 79.23 76.83
Learned-Mixin (Clark et al., 2019)∗ 80.5 79.5 81.2 80.4 - 79.2 - 78.2
Regularized-conf (Utama et al., 2020)∗ 84.6 84.1 85.0 84.2 - 78.3 - 77.3
BERT-base Main PoE+CE (Sanh et al., 2021)∗ 83.32 - 83.54 - - 77.63 - 76.39

BERT-base w/ DMNLI baseline 83.87 84.11 84.22 83.51 76.39±0.64 75.88 77.75±0.45 75.75
Models trained on our debiased datasets
BERT-base w/ Z-Aug Z(D̂G∗ |DMNLI) 84.72 85.12 85.14 84.09 78.95±0.76 78.60 80.29±0.54 78.51
BERT-base w/ Par-Z Z(DMNLI) ∪ Z(D̂G∗) 82.48 83.27 82.95 82.95 78.88±0.80 79.19 80.02±0.62 78.49
BERT-base w/ Seq-Z Z(D̂G∗ |Z(DMNLI)) 82.55 83.41 82.70 83.17 78.88±0.83 79.19 79.65±0.44 78.44

Combining PoE with our debiased dataset
BERT-base + PoE w/ DMNLI 84.39 - 84.25 - 78.37 77.54 79.45 78.33
BERT-base + PoE w/ Z-Aug Z(D̂G∗ |DMNLI) 85.22 85.38 85.72 84.53 80.49 80.03 81.52 79.28

Table 3: Results on MNLI-matched (MNLI-m), MNLI-mismatched (MNLI-mm), MNLI-matched hard, and MNLI-
mismatched hard. ∗ are reported results.

Method HANS

Methods trained on SNLI

Roberta-base w/ DSNLI (Ross et al., 2021)∗ 64.72
Roberta-base w/ TAILOR (Ross et al., 2021)∗ 66.45

Methods trained on MNLI

Learned-Mixin (Clark et al., 2019)∗ 64.00
Learned-Mixin+H (Clark et al., 2019)∗ 66.15
PoE (Karimi Mahabadi et al., 2020)∗ 66.31±0.6
DFL (Karimi Mahabadi et al., 2020)∗ 69.26±0.2
PoE+CE (Sanh et al., 2021)∗ 67.9
Regularized-conf (Utama et al., 2020)∗ 69.1±1.2
E2E Self-debias (Ghaddar et al., 2021)∗ 71.2±0.2

Models trained on our debiased datasets

Roberta-base w/ DSNLI (ours) 65.32±2.22
Roberta-base w/ Z(D̂G∗ |Z(DSNLI)) (ours) 66.87±1.47
BERT-base w/ DMNLI (baseline) 54.36±2.56
BERT-base w/ Z-Aug Z(D̂G∗ |DMNLI) 62.57±5.91
BERT-base w/ Par-Z Z(DMNLI) ∪ Z(D̂G∗) 65.11±5.62
BERT-base w/ Seq-Z Z(D̂G∗ |Z(DMNLI)) 67.69±3.53
BERT-base + PoE w/ Z-Aug Z(D̂G∗ |DMNLI) 68.75

Roberta-large w/ DMNLI (baseline) 75.74±2.82
Roberta-large w/ Z-Aug Z(D̂G∗ |DMNLI) 78.65±2.26

Table 4: Results on HANS (McCoy et al., 2019). ∗ are
reported results.

MNLI datasets obtain up to a 13.33% gain in473

HANS accuracy. Our Seq-Z variant achieves474

67.69% accuracy, which is comparable with strong475

baselines PoE (Karimi Mahabadi et al., 2020) and476

(Sanh et al., 2021).477

Additionally, we train a Roberta-large model on478

our debiased MNLI dataset. Training on our debi-479

ased dataset introduces 2.9 points accuracy gain on480

HANS, indicating that the performance gain by our 481

debiased dataset generalises to larger and stronger 482

model. 483

5.4 Adversarial Tests for Combating Distinct 484

Biases in NLI 485

Liu et al. (2020b) find that debiasing methods often 486

tie to one particular known bias and it is nontriv- 487

ial to mitigate multiple NLI biases at the same 488

time. They introduce a suite of test datasets for 489

NLI models that targets various aspects of robust- 490

ness, including partial input heuristics (PI), logical 491

inference ability (LI), and stress test (ST).8 492

Several data augmentation strategies were inves- 493

tigated by Liu et al. (2020b): 1) text swap: swap- 494

ping the premise and hypothesis in the original 495

data; 2) word substitution: replacing words in the 496

hypothesis with synonyms or generations from a 497

masked language model; 3) paraphrase: using back 498

translation to paraphrase the hypothesis. 499

We compare the our approach with their data- 500

augmentation heuristics, and the results are shown 501

in Table 5. Comparing with the MNLI baseline, 502

our debiased MNLI datasets lead to better perfor- 503

mance across all categories, which indicates that 504

our method successfully mitigates various distinct 505

biases simultaneously. All three variants of our de- 506

biased datasets outperform the data augmentation 507

heuristics by Liu et al. (2021), which again demon- 508

strates the efficacy of our method when compared 509

against manually designed heuristics. 510

8Refer to Appendix C for detailed description of the sub-
categories.
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PI-CD PI-SP IS-SD IS-CS LI-LI LI-TS ST Avg.

Data-augmentation heuristics proposed by Liu et al. (2020b)
Text Swap∗ 71.7 72.8 63.5 67.4 86.3 86.8 66.5 73.6
Sub (synonym)∗ 69.8 72.0 62.4 65.8 85.2 82.8 64.3 71.8
Sub (MLM)∗ 71.0 72.8 64.4 65.9 85.6 83.3 64.9 72.6
Paraphrase∗ 72.1 74.6 66.5 66.4 85.7 83.1 64.8 73.3

BERT-base w/ DMNLI baseline 70.3±0.5 73.7±1.4 53.5±2.3 64.8±1.4 85.5±0.9 81.6±1.4 69.2±0.8 71.2±0.8
Models trained on our debiased datasets
BERT-base w/ Z-Aug Z(D̂G∗ |DMNLI) 73.1±0.9 76.1±1.2 61.8±6.1 69.1±1.3 86.9±0.6 83.1±0.9 70.1±0.5 74.3±1.3
BERT-base w/ Par-Z Z(DMNLI) ∪ Z(D̂G∗) 72.0±0.9 78.7±1.2 64.5±5.8 70.7±1.7 88.5±0.7 82.6±0.3 69.6±1.0 75.2±1.4
BERT-base w/ Seq-Z Z(D̂G∗ |Z(DMNLI)) 71.7±0.9 77.8±1.2 66.9±3.7 71.1±0.7 89.1±1.0 82.3±0.9 69.3±0.8 75.4±0.8

Table 5: Results on the NLI adversarial test benchmark (Liu et al., 2020b). We compare with the data augmentation
techniques investigated by Liu et al. (2020b) and ∗ are reported results.

6 Related Work511

Spurious Correlations in Datasets The issue of512

spurious correlations in datasets between labels and513

simple input features has recently received signifi-514

cant attention (Gururangan et al., 2018; Poliak et al.,515

2018; Belinkov et al., 2019a; Karimi Mahabadi516

et al., 2020). It has been shown that this issue is of-517

ten inherent in the data annotation process, caused518

by biases in the framing of the task (Schwartz et al.,519

2017), noisy annotations (Chen et al., 2016), or per-520

sonal (Geva et al., 2019) or group-level (Liu et al.,521

2021) annotator biases. Gardner et al. (2021) pro-522

vide a theoretical framework for analyzing spurious523

correlations in language understanding problems,524

which we use to define our filtering mechanism in525

Section 3.2.526

Debiasing NLI Models Much prior work fol-527

lows a model-centric approach towards mitigating528

biases in NLI models—they propose novel model529

architectures or training objectives to ensure that530

the models do not exploit the shortcuts presented531

by the dataset biases. At the representation level,532

Belinkov et al. (2019a,b) introduce an adversarial533

architecture to debias hypothesis representations534

to tackle hypothesis-only bias (Gururangan et al.,535

2018), and Stacey et al. (2020) strengthen the de-536

biasing by using multiple adversarial classifiers.537

Zhou and Bansal (2020) use HEX projection to538

project the representation to the space orthogonal539

to the biased features to debias the model. At the540

model level, Clark et al. (2019); He et al. (2019);541

Karimi Mahabadi et al. (2020) propose methods542

based on Product-of-Expert (PoE) (Hinton, 2002)543

for mitigating biases by ensembling a biased-only544

model with a main model. Utama et al. (2020)545

propose the use of confidence regularization to im-546

prove out-of-distribution performance while retain-547

ing in-distribution accuracy. 548

Debiasing NLI Datasets Prior work towards de- 549

biasing NLI datasets perturb individual instances 550

as a data augmentation strategy. Ross et al. (2021) 551

introduce TAILOR, a semantically-controlled per- 552

turbation method for data augmentation based on 553

a small number of manually defined perturbation 554

strategies. Lee et al. (2021) train a generator to gen- 555

erate new claims and evidence for debiasing fact 556

verification datasets. Unlike their approach, our 557

method does not require manually-written heuris- 558

tics or additional datasets to construct augmented 559

datasets, and hence is more generally applicable. 560

7 Conclusions 561

To address the issue of spurious correlations be- 562

tween task-independent features and labels in NLI 563

datasets, we propose methods to generate label- 564

consistent data and then filter out instances from 565

existing datasets that contribute to those spurious 566

correlations; thereby generating debiased datasets. 567

Models trained on our debiased versions of the 568

SNLI and MNLI datasets generalise better than the 569

equivalent model trained on the original datasets to 570

a large suite of test sets focusing on various kinds 571

of known biases, even though our method does not 572

explicitly counteract those biases. Future work in 573

this direction includes investigating whether our 574

techniques are applicable to tasks beyond NLI. 575
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ing the Hypothesis-Only Bias in Natural Language 757
Inference via Ensemble Adversarial Training. In 758
Proceedings of the 2020 Conference on Empirical 759
Methods in Natural Language Processing (EMNLP), 760
pages 8281–8291, Online. Association for Computa- 761
tional Linguistics. 762

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna 763
Gurevych. 2020. Mind the trade-off: Debiasing 764
NLU models without degrading the in-distribution 765
performance. In Proceedings of the 58th Annual 766
Meeting of the Association for Computational Lin- 767
guistics, pages 8717–8729, Online. Association for 768
Computational Linguistics. 769

Haohan Wang, Da Sun, and Eric P Xing. 2019. What if 770
we simply swap the two text fragments? a straight- 771
forward yet effective way to test the robustness of 772
methods to confounding signals in nature language 773
inference tasks. In Proceedings of the AAAI Con- 774
ference on Artificial Intelligence, volume 33, pages 775
7136–7143. 776

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 777
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu- 778
ral text generation with unlikelihood training. In 779
International Conference on Learning Representa- 780
tions. 781

Adina Williams, Nikita Nangia, and Samuel Bowman. 782
2018. A broad-coverage challenge corpus for sen- 783
tence understanding through inference. In Proceed- 784
ings of the 2018 Conference of the North American 785
Chapter of the Association for Computational Lin- 786
guistics: Human Language Technologies, Volume 787
1 (Long Papers), pages 1112–1122, New Orleans, 788
Louisiana. Association for Computational Linguis- 789
tics. 790

Xiang Zhou and Mohit Bansal. 2020. Towards robusti- 791
fying NLI models against lexical dataset biases. In 792
Proceedings of the 58th Annual Meeting of the Asso- 793
ciation for Computational Linguistics, pages 8759– 794
8771, Online. Association for Computational Lin- 795
guistics. 796

10

https://doi.org/10.18653/v1/2020.conll-1.48
https://doi.org/10.18653/v1/2020.conll-1.48
https://doi.org/10.18653/v1/2020.conll-1.48
https://doi.org/10.18653/v1/2020.conll-1.48
https://doi.org/10.18653/v1/2020.conll-1.48
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://aclanthology.org/C18-1198
https://openreview.net/forum?id=Hf3qXoiNkR
https://openreview.net/forum?id=Hf3qXoiNkR
https://openreview.net/forum?id=Hf3qXoiNkR
https://openreview.net/forum?id=Hf3qXoiNkR
https://openreview.net/forum?id=Hf3qXoiNkR
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/2020.emnlp-main.665
https://doi.org/10.18653/v1/2020.emnlp-main.665
https://doi.org/10.18653/v1/2020.emnlp-main.665
https://doi.org/10.18653/v1/2020.emnlp-main.665
https://doi.org/10.18653/v1/2020.emnlp-main.665
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.acl-main.773
https://doi.org/10.18653/v1/2020.acl-main.773
https://doi.org/10.18653/v1/2020.acl-main.773


A Hyper-parameters797

Hyper-parameter Value

learning rate 1e-5
batch size 24
epoch 5
optimiser Adam
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
learning rate scheduler constant
max sequence length 128
pretrained model GPT-2 large
device Nvidia A100
λ 0.5
α 1.0

Table 6: Hyper-parameters for the generator G∗.

Hyper-parameter Value

number of samples from G∗SNLI 5,000,000
number of samples from G∗MNLI 4,000,000
data filtering threshold τ 0.95
data filtering model Roberta-large
z-filtering number of biased features 20

Table 7: Hyper-parameters for the data generation
pipeline.

Hyper-parameter Value

learning rate 1e-5
batch size 32
epoch 5
optimiser Adam
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
learning rate scheduler constant with warmup
warm up steps 2000
max sequence length 128
pretrained model BERT-base
device Nvidia A100
early stop patience 3 epochs

Table 8: Hyper-parameters for training NLI models.

B Biased Features798

We list the set of task-independent features that we799

mitigate in this work in Table 9. Table 10 shows800

the most salient biased features identified on SNLI 801

and our debiased SNLI dataset. 802

C Description of Adversarial Test (Liu 803

et al., 2020b) Subcategories 804

The adversarial test benchmark (Liu et al., 2020b) 805

includes the following subcategories from various 806

sources: 807

• PI-CD: classifier detected partial-input (Guru- 808

rangan et al., 2018). 809

• PI-SP: HypoNLI (Liu et al., 2020a) dataset 810

that tackles surface patterns heuristics. 811

• IS-SD: syntactic diagnostic dataset 812

HANS (McCoy et al., 2019). 813

• IS-CS: lexically misleading instances con- 814

structed by Nie et al. (2019). 815

• LI-LI: lexical inference test by (Naik et al., 816

2018; Glockner et al., 2018). 817

• LI-TS: text-fragment swap test by swapping 818

the premise and hypothesis (Wang et al., 2019; 819

Minervini and Riedel, 2018). 820

• ST: an aggregation of word-overlap (ST-WO), 821

negation (ST-NE), length mismatch (ST-LM), 822

and spelling errors (ST-SE) tests in (Naik 823

et al., 2018). 824

D Visualisation of z-statistics 825

Following Gardner et al. (2021), we visualise the 826

statistics of the features on both SNLI and our de- 827

biased SNLI (Seq-Z) dataset in Fig. 2.9 Comparing 828

the two plots, it confirms that our method success- 829

fully suppresses the spurious correlations in the 830

dataset. 831

9it may be slow to load the figures because they are large.
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Feature Description

Unigrams & Bigrams All unigrams and bigrams. The n-grams from premise and hypothesis are treated separately.

Hypothesis length Number of tokens in the hypothesis.

Hypothesis-premise length ratio Number of tokens in hypothesis divided by number of tokens in the premise.

Lexical overlap Ratio of tokens in the hypothesis that overlap with the premise.

Hypothesis-only model’s prediction We train a hypothesis-only model on the original dataset and use its prediction as a feature.

Null feature A dummy feature added for all instances to avoid skewed label distribution.

Table 9: Descriptions of the features used to debias the datasets in Section 3.

SNLI Debiased SNLI (Seq-Z)
Biased feature z-statistics Biased feature z-statistics

Entailment
hypo-only-pred=0 422.1 theres@hypothesis 17.5
lex-overlap> 0.8 123.3 hypo-len< 5 17.4
full-lex-overlap 117.3 full-lex-overlap 17.4
outside@hypothesis 102.2 politician@hypothesis 17.4
lex-overlap> 0.9 90.4 speaking@hypothesis 17.4

Neutral
hypo-only-pred=1 436.1 championship@hypothesis 15.3
for a@hypothesis 63.6 living room@hypothesis 15.2
his@hypothesis 56.8 many men@hypothesis 15.2
friends@hypothesis 55.6 green suit@hypothesis 15.2
tall@hypothesis 52.7 are wearing@hypothesis 15.2

Contradiction
hypo-only-pred=2 433.9 nothing@hypothesis 17.0
sleeping@hypothesis 92.9 hypo-only-pred=2 16.9
is sleeping@hypothesis 68.7 at home@hypothesis 16.9
nobody@hypothesis 68.4 is no@hypothesis 16.9
no@hypothesis 62.7 york yankees@hypothesis 16.9

Table 10: Top-5 biased features with the highest z-statistics on SNLI (left) and debiased SNLI Seq-Z (right) for
each label class.
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Figure 2: Statistics of the features on SNLI and our debiased SNLI (Seq-Z).

12


