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Abstract

Natural language processing models often
exploit spurious correlations between task-
independent features and labels in datasets
to perform well only within the distributions
they are trained on, while not generalising
to different task distributions. We propose
to tackle this problem by generating a debi-
ased version of a dataset, which can then be
used to train a debiased, off-the-shelf model,
by simply replacing its training data. Our
approach consists of 1) a method for train-
ing data generators to generate high-quality,
label-consistent data samples; and 2) a filter-
ing mechanism for removing data points that
contribute to spurious correlations, measured
in terms of z-statistics. We generate debi-
ased versions of the SNLI and MNLI datasets,
and we evaluate on a large suite of debiased,
out-of-distribution, and adversarial test sets.
Results show that models trained on our de-
biased datasets generalise significantly better
than those trained on the original datasets in all
settings. On the majority of the datasets, our
method outperforms or performs comparably
to previous state-of-the-art debiasing strate-
gies, and when combined with an orthogo-
nal technique, product-of-experts, the perfor-
mance improves further and achieves state-of-
the-art results of SNLI-hard and MNLI-hard.

1 Introduction

Natural Language Processing (NLP) datasets in-
evitably contain biases that are unrelated to the
tasks they are supposed to represent. These biases
are usually artifacts of the dataset collection, an-
notation processes, or design decisions (Schwartz
et al., 2017; Geva et al., 2019; Liu et al., 2021).
Such biases often manifest as spurious correlations
between simple features of the data points and their
labels (Gardner et al., 2021). Trained models can
exploit these spurious correlations to correctly pre-
dict the labels of the data points within the same
distributions as those they are trained on, but fail
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Figure 1: Overview of our dataset bias mitigation ap-
proach. We minimise spurious correlations between la-
bels (represented by the shapes of data points) and task-
independent features (represented by their colours)
with our proposed data generation pipeline.

to generalise to other distributions within the same
tasks. Consequently, the models risk modelling the
datasets, but not the tasks (Gururangan et al., 2018;
Poliak et al., 2018; McCoy et al., 2019; Schuster
et al., 2019).

We address this issue by adjusting existing
dataset distributions to mitigate the correlations
between task-independent features and the labels.
First, we train data generators that generate high
quality data samples in the distribution of existing
datasets (Section 2). Then, we identify a set of sim-
ple features that are known to be task-independent,
and use the theoretical framework proposed by
Gardner et al. (2021) to measure correlations (i.e.,
z-statistics) between those features and the labels.
Finally, we use these measures of spurious correla-
tions to adjust the distribution of samples generated
by the data generator (Section 3) by post-hoc filter-
ing (Section 3.2) to remove the data points that con-
tribute to high z-scores with task-independent fea-
tures, or finetuning the data generator (Section 4.1)
to make such data points less likely. Unlike prior
model-centric approaches for dealing with spurious
correlations in datasets (Belinkov et al., 2019a,b;
Clark et al., 2019; He et al., 2019; Karimi Mahabadi



et al., 2020) that define new training objectives or
model architectures, our approach has the advan-
tage of keeping the objective and the model fixed,
as we only alter the training data.

To evaluate our approach, we use the task of Nat-
ural Language Inference (NLI), which offers a wide
range of datasets (including challenge datasets)
for various domains. We generate' debiased
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) distributions and evaluate the gener-
alisability of models trained on them to out-of-
distribution hard evaluation sets (Gururangan et al.,
2018; McCoy et al., 2019), and the adversarial at-
tack suite for NLI proposed by Liu et al. (2020b).
Furthermore, we compare our method to strong
debiasing strategies from the literature (Belinkov
et al., 2019b; Stacey et al., 2020; Clark et al., 2019;
Karimi Mahabadi et al., 2020; Utama et al., 2020;
Sanh et al., 2021; Ghaddar et al., 2021).

Our results show that models trained on our de-
biased datasets generalise better than those trained
on original datasets to evaluation sets targeting
hypothesis-only biases (by up to 2.8 points) and
syntactic biases (by up to 13 points), and a suite of
adversarial tests sets (by up to 4.2 points on aver-
age). On the test sets targeting the hypotheis-only
bias, they perform comparably to the best perform-
ing models tweaked specifically to handle the bias,
but since our contributions are orthogonal to such
improvements, we show that combining the two
yields further improvements of up to 1.6 points.

2 Generating High-Quality Data
Samples

First, we need to train a data generator G to gen-
erate data samples automatically. Our goal for the
data generator is to model the base distribution as
well as possible so that we can generate valid and
high-quality data samples.

2.1 Finetuning Pretrained Language Model
to Generate NLI Samples

We finetune a pretrained language model on the
NLI datasets to serve as our data generator. We
choose GPT-2 because it is a powerful and widely-
used causal language model.

Given an NLI dataset Dy, the training objective
is to minimise the following negative log-likelihood
loss of generating the premise-label-hypothesis se-

"We will release all our code and the generated datasets.

quence, in that order:
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where P, H() and 1)) are the premise, hypothe-
sis and label respectively.?

2.2 Improving Data Generation Quality

2.2.1 Unlikelihood Training to Improve
Label Consistency

We find that a generator trained with only Ly/1.E
has poor label consistency. This means that given
a generated sample (P, H ), the label [ often does
not correctly describe the relationship between P
and H. We apply unlikelihood training (Welleck
et al., 2020) to tackle this problem. First we perturb
the label to construct negative samples (P, H,1")
where I’ # [ for each sample in the dataset. Then
we apply a token-level unlikelihood objective on
the hypothesis tokens:

Econsistency =

Dol |H|¢) o
=57 tog(1 = p(HO D, PO, HY))).
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This objective decreases the probability of gener-
ating H when given an incorrect label I’; hence it
improves the label consistency.

We combine Ly and Leonsistency to finetune
our generator G with

EG = ACMLE + )\Econsistencya

where A is a hyper-parameter that balances the
two objectives. We can randomly sample from
the trained generator to obtain a large amount of
the synthetic data Dg ~ G.

2.2.2 Filtering Based on Model Confidence

To further improve the quality of the generated
dataset, we use an NLI model M trained on the
original dataset Dy to filter out samples in which
M has low confidence:

Da = {(P,H,l) € Dg | pu(I|P,H) > 7},

%In our preliminary study, we found the factorization or-
der premise-label-hypothesis in Eq. (1) performs better than
hypothesis-label-premise and premise-hypothesis-label.



where 7 is a confidence threshold. We found that
the filtered out data samples generally had incorrect
labels and/or ungrammatical text.

3 Mitigating Spurious Correlations using
z-filtering

We now define a method to reject samples that
contribute to the high spurious correlations be-
tween task-independent features of the samples
and their labels. Our approach is based on the
theoretical framework proposed by Gardner et al.
(2021) to measure these correlations, known as z-
statistics. Our filtering method, called z-filtering
(Section 3.2), will serve as the basis to construct
debiased datasets in Section 4.

3.1 Identifying and Measuring Spurious
Correlations

As a first step towards addressing spurious correla-
tions, we need to be able to quantify them. We start
by selecting a set of features that are trivially task-
independent and seek to ensure that the labels are
not correlated with these features. These features
are listed as follows: /) unigrams and bigrams;
2) hypothesis length and hypothesis-premise length
ratio; 3) lexical overlap between hypothesis and
premise; 4) the predictions of a BERT-base (Devlin
et al., 2019) hypothesis-only model.> We choose
these features as they capture various biases iden-
tified in prior work, including contradiction word
biases, lexical overlap bias (McCoy et al., 2019),
and hypothesis-only bias (Gururangan et al., 2018;
Poliak et al., 2018). Note that our method does
not rely on the specific choice of features, and one
can easily add alternative features that should not
correlated with the labels.

Following Gardner et al. (2021), we assume
there should be no correlation between each of
these features and the class labels. More formally,
for any feature x from our feature set X, p(l|z)
should be uniform over the class labels. We define
pllz) = £ 3%, 17 to be the empirical expecta-
tion of p(l|x) over n samples containing x. Then
we compute the standardised version of z-statistics
to quantify its deviation from the uniform distribu-
tion for each features = and label [:

p(]x) —po

Vol —po)/n’

3See Appendix B for detailed descriptions of the features.

2z, 1) = 2

where pg is the probability of uniform distribu-
tion (po = 1/3 in NLI tasks with three labels).

These z-statistics scores can be used to identify
the most biased features for each label [ — we select
k features with the highest z-statistic to define the
biased features set Bp(l). Table 10 shows exam-
ples of these biased features on SNLI.

3.2 z-filtering

To mitigate the biases in the dataset, we propose
z-filtering, an algorithm that iteratively selects and
filters instances from a dataset D’ to build a debi-
ased dataset Z. At each step, we find the set of
biased features Bz([) on the partially constructed
Z. We then select a new batch of samples from
D’ and filter out the samples that contain these bi-
ased features. This process is applied iteratively
until it has exhausted all samples from D’. It re-
moves the samples that contribute to the spurious
correlations in D', thus it finds a debiased subset
Z(D') C D'. We denote the removed samples as
Z~(D'). The full z-filtering algorithm is illustrated
in Algorithm 1.

Optionally, one can initialise Z with a seed
dataset D..q. In this case, the samples from D’
are only added to Z when they do not contain the
biased features of D,..4. Thus it can be seen as
a data-augmentation technique targeted to debias
a given dataset. We refer to it as conditional z-
filtering and denote the produced debiased dataset
as Z(D'|Dseed)-

4 Constructing Debiased NLI Datasets
via Data Generation

We use z-filtering in two ways: /) to further fine-
tune G with an objective that downweighs sam-
ples that should be rejected (Section 4.1); 2) to
post-hoc filter samples in D¢ to obtain debiased
datasets (Section 4.2).

4.1 Learning to Generate Unbiased Samples

The generator G can learn to exploit task-
independent features during its finetuning stage
(Section 2), causing the synthetic data D¢ to con-
tain many spurious correlations. While it is tempt-
ing to apply z-filtering to remove these spurious
correlations from f?g, we find that this will lead to
the removal of majority of the generated data. For
example, when the generator is finetuned on SNLI,



Algorithm 1: z-filtering algorithm.

Data: input dataset D’ [with optional seed
dataset Dyeeq]
Result: debiased dataset Z and the rejected

samples Z~
Z + 0 (or Z < Dseeq);
Z7 0

for sample batch D; C D' do
compute or update z-statistics

2*(x,1|12),VYx € X of Z;
find the biased features Bz((), Vi €
{entailment, neutral, contradiction};
foreach instance I = (P, H,l) € D, do
get the features f of the instance /;
if f N Bz(l) = () then
| Z+ Zu{I}
else
| 27« Z7u{I}
end

end
end

z-filtering removes around 85% of D¢ <vir- This
leads to a very inefficient data generation process
to mitigate the spurious correlations.

To alleviate this issue, we can incorporate the
debiasing objectives into the training of the genera-
tor, so that the samples produced by the generator
are more likely to be accepted by the z-filtering
stage. More specifically, we can encourage the
model to generate Z(Dy), while discouraging it
from generating Z~ (D). For the latter part, we
again apply an unlikelihood training objective Ly,
to unlearn Z~(Dy). Hence, the overall debiasing
training objective is:

Laevias = Lrre(Z(Do)) + aLyr(Z27 (Dy))

where « is a hyperparamter.

A naive use of an unlikelihood objective on all to-
kens gives the model mixed signals for good tokens
and leads to ungrammatical, degenerate outputs. To
avoid this degeneracy, we apply the unlikelihood
loss only to tokens that contribute to biased features.
The unlikelihood loss applies only to the tokens that
contribute to biased features. Concretely, for each
token I, of instance I~ € Z7(Dy), we define a

“This is also strong confirmation that these biases are prob-
lematic, as the generative model easily finds them and relies on
them during data generation. Conducting naive data augmen-

tation with D¢ s~ Will strengthen the spurious correlations.

mask m; as

0,
m+ =
t 1’

where Bz (l;- ) represent the biased features corre-
sponding the label of 7~

For biases towards unigram and bigram features
(as defined in Section 3.1), we consider only the
corresponding tokens to be relevant (i.e., m; = 0 if
1,” is part of the unigram or the bigram). For biases
towards other features (e.g. length of the hypothe-
sis), we consider all the tokens on the hypothesis
to be relevant. The unlikelihood training objective
is defined as follows:

if I} contributes to Bz (I;-)

otherwise.

Lu(Z2- (Do) = Y, Lon(),
I'eZ— (Do)
[7']
Ly(I') == log(mep(I{|T.,)
t=1

(1 —me) (1 = p(IH1%y)))-

We further finetune G with L 4,45 to obtain a
new generator G*, that is trained to generate more
unbiased data samples. We then randomly sample
from G* and conduct data filtering (Section 2.2.2)
to obtain a large set of high-quality debiased data
samples D

4.2 Combining with z-filtering to Construct
the Debiased NLI Datasets

Given the original dataset Dy and the synthetic
dataset Dg-, our goal is produce a large-scale un-
biased dataset D*. There are various ways to do
this given that we can either apply conditional z-
filtering, or simply z-filter both Dy and De+ and
merge them. We explore the following options:

1. Z-Augmentation (Z-Aug) Z (15@* Dy): we
treat the original dataset as is, and augment it
by conducting conditional z-filtering on D
using Dy as seed dataset.

2. Parallel z-filter (Par-Z) Z(Dy) U Z(Dg-):
we conduct z-filtering on Dy and D+ sepa-
rately, and then merge them.

3. Sequential z-filter (Seq-Z) Z(Dg-|Z(Dy)):
we first conduct z-filtering on Dy, then con-
duct conditional z-filtering on De+ with
Z(Dy) as seed dataset.



S Experiments

5.1 Experimental Setup

Source Datasets We select the two most widely
used NLI datasets SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018) as our original
datasets. Prior work (Gururangan et al., 2018; Po-
liak et al., 2018; McCoy et al., 2019) found various
annotation artifacts in them, hence they serve as
good use cases for constructing debiased datasets.

Evaluation Datasets For the hypothesis-only
bias, we use the challenge sets SNLI-hard (Gu-
rurangan et al., 2018) and MNLI-hard (Williams
et al., 2018), which were produced by filtering
the test set with a hypothesis-only model (Sec-
tion 5.2). For syntactic biases, we follow previous
work and use HANS (McCoy et al., 2019) for eval-
uation (Section 5.3). In addition, we evaluate on
the adversarial test benchmark introduced by Liu
et al. (2020b) (Section 5.4). This benchmark covers
a wide range of adversarial attacks, which will give
a more complete picture of what spurious correla-
tions the debiasing methods tackle.

Generating Debiased Datasets We conduct de-
biased data generation for SNLI and MNLI sep-
arately. For SNLI, we use the proposed method
described in Section 4.1 to train a generator Gy, -
Then we randomly sample a large number of in-
stances from the generator to construct D¢y . The
samples are filtered with a strong NLI model M
trained on SNLI to obtain D . Finally, differ-
ent options (Section 4.2) can be adopted to merge
the synthetic data with the original data Dgny to
construct debiased versions of SNLI. The same
procedure is used to produce debiased datasets for
MNLI, by simply replacing the original dataset
with MNLI. We choose GPT-2 large and Roberta-
large as the pretrained language models for G* and
M respectively.’ The size of the constructed debi-
ased datasets are listed in Table 1.

NLI Model Training Since our method directly
debiases the training data itself, we keep the model
and training objective fixed and only replace the
training data with our generated debiased datasets.
For comparability with previous work (Karimi Ma-
habadi et al., 2020; Utama et al., 2020; Sanh et al.,
2021), we train BERT-base (Devlin et al., 2019)

50n one A100 GPU, training the generator takes around
24 hours and generating the samples takes roughly 35 hours
for each dataset.

Options Do =Dsni - Do = Dmnwr
Original D, 549,367 382,702
Z-Aug Z(Dg-|Dy) 1,142,475 744,326
Par-Z Z(Dy) U Z(Dg-) 933,085 740,811
Seq-Z Z(Dg+|Z(Dy)) 927,906 744,200

Table 1: Data size of the constructed debiased datasets
for SNLI and MNLI.

on our debiased datasets. The NLI models are
trained with ordinary cross-entropy classification
loss, and the training hyperparameters are listed
in Appendix A. We run our experiments five times
and report the average and standard deviation of
the scores.®

State-of-the-art Debiasing Models We com-
pare our method with the following three state-
of-the-art debiasing models on each of our evalua-
tion datasets. Product-of-Experts (He et al., 2019;
Karimi Mahabadi et al., 2020), that ensembles
a bias-only model’s prediction b; with the main
model’s p; using p, = softmaz(logp; + logb;).
This ensembling enforces that the main model fo-
cuses on the samples that the bias-only model
does not predict well. Learned-Mixin (Clark et al.,
2019), that is a variant of PoE that introduces a
learnable weight for the bias-only model’s predic-
tion. The model proposed by Utama et al. (2020),
that uses confidence regularisation to retain the in-
distribution performance while conducting model
debiasing.

Combining PoE with Our Debiased Datasets
Our approach changes the training data distribu-
tion instead of the model’s training objective, and
hence is orthogonal to prior work method-wise. We
also report the results of combining PoE with our
proposed method, simply by training a PoE model
on our debiased datasets. We adapt the PoE imple-
mentation’ by Karimi Mahabadi et al. (2020), and
we follow their approach to conduct hyperparame-
ter tuning for PoE.

5.2 Hypothesis-only Bias in NLI

Gururangan et al. (2018) found that, on SNLI and
MNLI, a model that has only access to the hy-
pothesis can perform surprisingly well, which indi-
cates that the datasets contain hypothesis-only bias.

*With the exception of our PoE experiments which single
run, as hyperparameter tuning for PoE is costlier.
"https://github.com/rabeehk/robust-nli
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Method (model w/ data) SNLI SNLI-hard

Prior debiasing strategies trained on SNLI

AdvCls (Belinkov et al., 2019a)= 83.56 66.27

Ens. AdvCls (Stacey et al., 2020)x* 84.09 67.42

DFL (Karimi Mahabadi et al., 2020)x 89.57 83.01

PoE (Karimi Mahabadi et al., 2020)x* 90.11 82.15

BERT-base w/ DSNLI baseline 90.45 80.34i0,45

Models trained on our debiased datasets

BERT-base w/ Z-Aug Z(Dg+|Dsnii) 90.67 81.781053

BERT-base w/ Par-Z Z(Dsni1) U Z(Dg-) 88.11 82.814037

BERT-base w/ Seq—Z Z(Dg* |Z (DSNLI>) 88.08 82.82i0_1 5

Combining PoE with our debiased datasets

BERT-base + PoE w/ Dgni1 90.25 82.92

BERT-base + PoE w/ Seq-Z Z(D(;* |Z(DSNLI)) 87.65 84.48
Table 2: Results on SNLI and SNLI-hard. * are re-

ported results.

To alleviate this problem, SNLI-hard and MNLI-
hard (Gururangan et al., 2018) subsets were con-
structed by filtering the test set with a hypothesis-
only model and only accepting those that the
hypothesis-only model predicts incorrectly. We ex-
amine whether our method successfully mitigates
the hypothesis-only bias in NLI, by evaluating the
models trained with our debiased datasets on SNLI-
hard and MNLI-hard.

Results on SNLI  Table 2 shows the results of our
method on SNLI. The results show that, compared
to training on SNLI, training with our debiased
datasets significantly improves the performance on
SNLI-hard. The debiased dataset produced by Seq-
Z achieves a 2.48% gain in accuracy on SNLI-hard
compared to the SNLI baseline, whereas Z-Aug
improves both SNLI and SNLI-hard accuracy.

Results on MNLI Table 3 shows the results of
our method on MNLI-matched (MNLI-m) and
MNLI-mismatched (MNLI-mm), and their corre-
sponding hard sets. We use the development sets
of MNLI-hard reconstructed by (Karimi Mahabadi
et al., 2020) to develop our methods. To comply
with the submission limit of MNLI submission sys-
tem, we select the best checkpoint among the five
runs using the development set, and report its test
set performance in Table 3.

The results show that BERT-base models trained
on our debiased MNLI datasets outperform the
models trained on the original MNLI by a large
margin on the MNLI-hard sets. In particular, the Z-
Aug version of the debiased datasets gives a 2.72%
and 2.76% gain in accuracy on MNLI-m hard and
MNLI-mm hard respectively, and outperforms the
previous state-of-the-art on MNLI-m, MNLI-mm,

and MNLI MNLI-mm hard.

Combining PoE with Our Debiased Datasets
We investigate the combination of our method and
PoE, to see if the two orthogonal techniques can
work together to achieve better performance. Since
hyperparameter tuning of PoE is costly, we choose
the best version of the debiased dataset (Seq-Z on
SNLI and Z-Aug on MNLI) using the development
set accuracy, and train PoE with it. The results are
listed in the last rows of Table 2 and Table 3. We
can find that, on both SNLI and MNLI, combin-
ing PoE with our debiased dataset yields further
improvements on SNLI-hard, MNLI-m hard, and
MNLI-mm hard, achieving new state-of-the-art re-
sults on all three datasets.

5.3 Syntactic Bias in NLI

McCoy et al. (2019) show that NLI models trained
on MNLI can exploit syntactic heuristics present
in the data, such as lexical overlap, subsequence,
and constituent features. They introduce HANS,
an evaluation dataset that contains examples where
the syntactic heuristics fail. To test whether our
method mitigates the syntactic biases in NLI, we
evaluate models trained on our debiased datasets
on HANS. If our debiased dataset contains less
syntactic bias than the original dataset, the model
would not exploit the syntactic heuristics and thus
perform better on HANS. Due to the high variance
of the scores on HANS, we run five times for each
experiment (except PoE), and report the average
and standard deviation of the scores.

Results on HANS Table 4 shows the results on
HANS. The results are categorised into three sec-
tions according to the original data: SNLI, MNLI,
and our debiased datasets. With SNLI as the origi-
nal dataset, we compare with TAILOR (Ross et al.,
2021), a semantically controlled data augmentation
method that uses heuristics specifically designed
to tackle syntactic biases. Following TAILOR,
we train Roberta-base models with our debiased
SNLI dataset (Seq-Z). The results show that the
performance of our debiased dataset outperforms
the SNLI baseline, and is also slightly better than
TAILOR. This is surprising because TAILOR re-
lies on specifically designed heuristics to generate
samples, whereas our method does not require such
manual heuristics.

The results of models train on our debiased
MNLI datasets also show strong improvements:
compared to the original MNLI, our debiased



Method (model w/ data) MNLI-m MNLI-mm MNLI-m hard MNLI-mm hard
dev test dev test dev test dev test
Prior debiasing strategies trained on MNLI
PoE (Karimi Mahabadi et al., 2020)x 84.58 84.11 84.85 8347 78.02 76.81 79.23 76.83
Learned-Mixin (Clark et al., 2019)x 80.5 79.5 812 804 - 79.2 - 78.2
Regularized-conf (Utama et al., 2020)* 84.6 84.1 850 842 - 78.3 - 77.3
BERT-base Main PoE+CE (Sanh et al., 2021)x  83.32 - 83.54 - - 77.63 - 76.39
BERT-base w/ Dyny1 baseline 83.87 84.11 8422 8351 76391064 75.88 77.751045 75.75
Models trained on our debiased datasets
BERT-base w/ Z-Aug Z('Dg* DMNLI) 84.72 85.12 85.14 84.09 78.95:{:()‘76 78.60 80.29:&0.54 78.51
BERT-base w/ Par-Z Z(Dynp1) U Z(ﬁg*) 82.48 83.27 8295 8295 78.88ip050 79.19 80.02.062 78.49
BERT-base w/ Seq-Z Z(ﬁg* Z(DmnNwi)) 82.55 83.41 82770 83.17 78.881083 79.19 79.651044 78.44
Combining PoE with our debiased dataset
BERT-base + PoE w/ Dyt 84.39 - 84.25 - 78.37 77.54 79.45 78.33
BERT-base + PoE w/ Z-Aug Z (ﬁg* DmNLI) 85.22 8538 85.72 84.53 80.49 80.03 81.52 79.28

Table 3: Results on MNLI-matched (MNLI-m), MNLI-mismatched (MNLI-mm), MNLI-matched hard, and MNLI-

mismatched hard. x are reported results.

Method HANS
Methods trained on SNLI

Roberta-base w/ Dgni1 (Ross et al., 2021)x 64.72
Roberta-base w/ TAILOR (Ross et al., 2021)x  66.45
Methods trained on MNLI

Learned-Mixin (Clark et al., 2019)x 64.00
Learned-Mixin+H (Clark et al., 2019)% 66.15

PoE (Karimi Mahabadi et al., 2020)x 66.3140.6
DFL (Karimi Mahabadi et al., 2020)x 69.2610.2
PoE+CE (Sanh et al., 2021)x* 67.9
Regularized-conf (Utama et al., 2020)x* 69.141.9
E2E Self-debias (Ghaddar et al., 2021)x* 71.2410.2
Models trained on our debiased datasets

Roberta-base w/ Dgni 1 (ours) 65.3249.99
Roberta-base w/ Z(Dg+|Z(Dsnwi)) (ours) 66.87 11 .47
BERT-base w/ Dyny (baseline) 543641956
BERT-base w/ Z—Aug Z(DG* DMNLI) 625715491
BERT-base w/ Par-Z Z(Dynwi) U Z(Dg+) 65.111562
BERT-base w/ Seq-Z Z(Dg* |Z(DMNLI)) 67.6913‘53
BERT-base + PoE w/ Z-Aug Z(Dg+|Dynur)  68.75
Roberta-large w/ Dyni (baseline) 75.74 4989
Roberta-large w/ Z-Aug Z(Dg+|DynLi) 78.6515.96

Table 4: Results on HANS (McCoy et al., 2019). * are
reported results.

MNLI datasets obtain up to a 13.33% gain in
HANS accuracy. Our Seq-Z variant achieves
67.69% accuracy, which is comparable with strong
baselines PoE (Karimi Mahabadi et al., 2020) and
(Sanh et al., 2021).

Additionally, we train a Roberta-large model on
our debiased MNLI dataset. Training on our debi-
ased dataset introduces 2.9 points accuracy gain on

HANS, indicating that the performance gain by our
debiased dataset generalises to larger and stronger
model.

5.4 Adversarial Tests for Combating Distinct
Biases in NLI

Liu et al. (2020b) find that debiasing methods often
tie to one particular known bias and it is nontriv-
ial to mitigate multiple NLI biases at the same
time. They introduce a suite of test datasets for
NLI models that targets various aspects of robust-
ness, including partial input heuristics (PI), logical
inference ability (LI), and stress test (ST).8

Several data augmentation strategies were inves-
tigated by Liu et al. (2020b): 1) text swap: swap-
ping the premise and hypothesis in the original
data; 2) word substitution: replacing words in the
hypothesis with synonyms or generations from a
masked language model; 3) paraphrase: using back
translation to paraphrase the hypothesis.

We compare the our approach with their data-
augmentation heuristics, and the results are shown
in Table 5. Comparing with the MNLI baseline,
our debiased MNLI datasets lead to better perfor-
mance across all categories, which indicates that
our method successfully mitigates various distinct
biases simultaneously. All three variants of our de-
biased datasets outperform the data augmentation
heuristics by Liu et al. (2021), which again demon-
strates the efficacy of our method when compared
against manually designed heuristics.

8Refer to Appendix C for detailed description of the sub-
categories.



PI-CD PI-SP IS-SD IS-CS LI-LI LI-TS ST Avg.
Data-augmentation heuristics proposed by Liu et al. (2020b)
Text Swaps 71.7 72.8 63.5 67.4 86.3 86.8 66.5 73.6
Sub (synonym)x* 69.8 72.0 62.4 65.8 85.2 82.8 64.3 71.8
Sub (MLM)x 71.0 72.8 64.4 65.9 85.6 83.3 64.9 72.6
Paraphrasesx 72.1 74.6 66.5 66.4 85.7 83.1 64.8 73.3
BERT-base w/ DMNLI baseline 70‘310'5 73-7i1.4 53~5i243 64.8i144 85.5i0.g 81.6i1'4 69-2j:0.8 71~2i048
Models trained on our debiased datasets
BERT-base w/ Z—Aug Z(ﬁa* ‘DMNLI) 73-110,9 76.1i1.2 61.83:(5‘1 69. liLg 86.93:()‘6 83.1i0‘9 70.13:0.5 74.33:1‘3
BERT-base w/ Par-Z Z(DMNLI) @] Z(ﬁc*) 72.010.9 78.7i1.2 64~5i5,8 70~7i1.7 88.5i0,7 82.6i0.3 69.6i1.0 75~2i1,4
BERT-base w/ Seq—Z Z('Dcx |Z(DMNLI)) 71.710‘9 77.811.2 66-9;{;3(7 71-1j:()‘7 89.13:1‘0 82.3i0‘9 69-310.8 75.43:0‘8

Table 5: Results on the NLI adversarial test benchmark (Liu et al., 2020b). We compare with the data augmentation
techniques investigated by Liu et al. (2020b) and * are reported results.

6 Related Work

Spurious Correlations in Datasets The issue of
spurious correlations in datasets between labels and
simple input features has recently received signifi-
cant attention (Gururangan et al., 2018; Poliak et al.,
2018; Belinkov et al., 2019a; Karimi Mahabadi
et al., 2020). It has been shown that this issue is of-
ten inherent in the data annotation process, caused
by biases in the framing of the task (Schwartz et al.,
2017), noisy annotations (Chen et al., 2016), or per-
sonal (Geva et al., 2019) or group-level (Liu et al.,
2021) annotator biases. Gardner et al. (2021) pro-
vide a theoretical framework for analyzing spurious
correlations in language understanding problems,
which we use to define our filtering mechanism in
Section 3.2.

Debiasing NLI Models Much prior work fol-
lows a model-centric approach towards mitigating
biases in NLI models—they propose novel model
architectures or training objectives to ensure that
the models do not exploit the shortcuts presented
by the dataset biases. At the representation level,
Belinkov et al. (2019a,b) introduce an adversarial
architecture to debias hypothesis representations
to tackle hypothesis-only bias (Gururangan et al.,
2018), and Stacey et al. (2020) strengthen the de-
biasing by using multiple adversarial classifiers.
Zhou and Bansal (2020) use HEX projection to
project the representation to the space orthogonal
to the biased features to debias the model. At the
model level, Clark et al. (2019); He et al. (2019);
Karimi Mahabadi et al. (2020) propose methods
based on Product-of-Expert (PoE) (Hinton, 2002)
for mitigating biases by ensembling a biased-only
model with a main model. Utama et al. (2020)
propose the use of confidence regularization to im-
prove out-of-distribution performance while retain-

ing in-distribution accuracy.

Debiasing NLI Datasets Prior work towards de-
biasing NLI datasets perturb individual instances
as a data augmentation strategy. Ross et al. (2021)
introduce TAILOR, a semantically-controlled per-
turbation method for data augmentation based on
a small number of manually defined perturbation
strategies. Lee et al. (2021) train a generator to gen-
erate new claims and evidence for debiasing fact
verification datasets. Unlike their approach, our
method does not require manually-written heuris-
tics or additional datasets to construct augmented
datasets, and hence is more generally applicable.

7 Conclusions

To address the issue of spurious correlations be-
tween task-independent features and labels in NLI
datasets, we propose methods to generate label-
consistent data and then filter out instances from
existing datasets that contribute to those spurious
correlations; thereby generating debiased datasets.
Models trained on our debiased versions of the
SNLI and MNLI datasets generalise better than the
equivalent model trained on the original datasets to
a large suite of test sets focusing on various kinds
of known biases, even though our method does not
explicitly counteract those biases. Future work in
this direction includes investigating whether our
techniques are applicable to tasks beyond NLI.
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A Hyper-parameters

Hyper-parameter Value
learning rate le-5
batch size 24
epoch 5
optimiser Adam
Adam € le-6
Adam (1, B2) (0.9, 0.999)
learning rate scheduler constant
max sequence length 128
pretrained model GPT-2 large
device Nvidia A100
A 0.5

o} 1.0

Table 6: Hyper-parameters for the generator G*.

Hyper-parameter Value
number of samples from Gy ; 5,000,000
number of samples from G,y ; 4,000,000
data filtering threshold 7 0.95
data filtering model Roberta-large
z-filtering number of biased features 20

Table 7: Hyper-parameters for the data generation
pipeline.

Hyper-parameter Value
learning rate le-5
batch size 32
epoch 5
optimiser Adam
Adam € le-6
Adam (81, f2) (0.9, 0.999)
learning rate scheduler constant with warmup
warm up steps 2000
max sequence length 128
pretrained model BERT-base
device Nvidia A100
early stop patience 3 epochs

Table 8: Hyper-parameters for training NLI models.

B Biased Features

We list the set of task-independent features that we
mitigate in this work in Table 9. Table 10 shows
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the most salient biased features identified on SNLI
and our debiased SNLI dataset.

C Description of Adversarial Test (Liu
et al., 2020b) Subcategories

The adversarial test benchmark (Liu et al., 2020b)
includes the following subcategories from various
sources:

PI-CD: classifier detected partial-input (Guru-
rangan et al., 2018).

PI-SP: HypoNLI (Liu et al., 2020a) dataset
that tackles surface patterns heuristics.

IS-SD:  syntactic  diagnostic  dataset

HANS (McCoy et al., 2019).

IS-CS: lexically misleading instances con-
structed by Nie et al. (2019).

LI-LI: lexical inference test by (Naik et al.,
2018; Glockner et al., 2018).

* LI-TS: text-fragment swap test by swapping
the premise and hypothesis (Wang et al., 2019;
Minervini and Riedel, 2018).

» ST: an aggregation of word-overlap (ST-WO),
negation (ST-NE), length mismatch (ST-LM),
and spelling errors (ST-SE) tests in (Naik
et al., 2018).

D Visualisation of z-statistics

Following Gardner et al. (2021), we visualise the
statistics of the features on both SNLI and our de-
biased SNLI (Seq-Z) dataset in Fig. 2. Comparing
the two plots, it confirms that our method success-
fully suppresses the spurious correlations in the
dataset.

%it may be slow to load the figures because they are large.


https://huggingface.co/gpt2-large
https://huggingface.co/roberta-large
https://huggingface.co/bert-base-uncased

Feature Description

Unigrams & Bigrams All unigrams and bigrams. The n-grams from premise and hypothesis are treated separately.
Hypothesis length Number of tokens in the hypothesis.

Hypothesis-premise length ratio Number of tokens in hypothesis divided by number of tokens in the premise.

Lexical overlap Ratio of tokens in the hypothesis that overlap with the premise.

Hypothesis-only model’s prediction =~ We train a hypothesis-only model on the original dataset and use its prediction as a feature.

Null feature A dummy feature added for all instances to avoid skewed label distribution.

Table 9: Descriptions of the features used to debias the datasets in Section 3.

SNLI Debiased SNLI (Seq-Z)
Biased feature z-statistics Biased feature z-statistics
Entailment
hypo-only-pred=0 422.1 theres @hypothesis 17.5
lex-overlap> 0.8 123.3 hypo-len< 5 17.4
full-lex-overlap 117.3 full-lex-overlap 17.4
outside @hypothesis 102.2 politician @hypothesis 17.4
lex-overlap> 0.9 90.4 speaking @hypothesis 17.4
Neutral
hypo-only-pred=1 436.1 championship @hypothesis 153
for a@hypothesis 63.6 living room @hypothesis 15.2
his @hypothesis 56.8 many men@hypothesis 15.2
friends @hypothesis 55.6 green suit@hypothesis 15.2
tall @hypothesis 52.7 are wearing @hypothesis 15.2
Contradiction
hypo-only-pred=2 4339 nothing @hypothesis 17.0
sleeping @hypothesis 92.9 hypo-only-pred=2 16.9
is sleeping @hypothesis 68.7 at home @hypothesis 16.9
nobody @hypothesis 68.4 is no@hypothesis 16.9
no @hypothesis 62.7 york yankees @hypothesis 16.9

Table 10: Top-5 biased features with the highest z-statistics on SNLI (left) and debiased SNLI Seq-Z (right) for
each label class.

Artifact statistics in SNLI Artifact statistics in Debiased SNLI (Seq-2)

— z=10.0
neutral
contradict
entailment

1.04 1.01

0.8 1 0.8

0.6 0.6

Bly | x)
Bly | x)

0.4 1 0.4

0.2 4
— z=10.0 0-2

neutral
contradict
0.0 1 entailment 0.0 A

102 10° 104 10° 10? 10° 104 10°

Figure 2: Statistics of the features on SNLI and our debiased SNLI (Seq-Z).
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