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Abstract

We focus on investigating the performance of common active learning (AL) algorithms under
spurious bias and designing an AL algorithm that is robust to spurious bias. Spurious bias
refers to the bias created when certain potentially simpler, task-irrelevant attributes in the
training set are highly correlated with the target labels. Spurious bias can occur if the sample
we use for analysis is not representative of the population, some samples are overrepresented
while others are underrepresented. The AL criteria share similarities with approaches to
addressing spurious correlations in passive settings. Hence, with an appropriately defined
acquisition function, a sample-efficient framework can be established to effectively handle
spurious correlations. Inspired by recent works on simplicity bias, we propose Domain-
Invariant Active Learning (DIAL) which leverages the disparity in training dynamics between
overrepresented and underrepresented samples, selecting samples that exhibit “slow” training
dynamics. DIAL involves no excessively resource-intensive computations as it only relies on
training checkpoints to estimate the dynamics of the samples, making it more scalable for
addressing real-world spurious correlation problems with AL.

1 Introduction
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Figure 1: Example of spurious
correlation in Coloured MNIST.
Digits less than 5 are mostly
appeared in blue, while digits
greater than 5 are mostly ap-
peared in red.

Spurious correlations refer to the scenario where certain (potentially sim-
pler) task-irrelevant attributes in the training set are highly correlated
with the target labels. Consider the scenario where a deep neural network
(DNN) is trained to distinguish between if the coloured digit in the image
is less than 5 or greater than 5, as shown in Figure 1. In the training
dataset, an unintended sampling bias might emerge, leading to a situation
where the majority of digits less than 5 are predominantly red, while the
majority of digits greater than 5 tend to be blue. This sampling bias
inadvertently introduces a spurious correlation between the digits and the
colour attribute. As a result, the trained DNN may mistakenly learn to
associate the presence of a certain colour with a particular object class,
leading to erroneous predictions when faced with images featuring digits
of different colours. For example, during deployment, the model might
classify any blue digit as ⩾ 5 and any red object as < 5, regardless of
other features, such as shapes and edges. This issue can have adverse
effects in real-world applications – relying on these false associations can
result in flawed predictions, inaccurate analyses, and misguided actions,
particularly in critical domains such as healthcare (Oakden-Rayner et al.,
2020) and social sciences (Angwin et al., 2016).

One common category of existing approaches for learning robust DNNs (Sagawa et al., 2020; Liu et al., 2021;
Sohoni et al., 2020; Nam et al., 2020) rely on identification of underrepresented samples, often achieved
through explicit labels or estimation (more detailed discussions are provided in Section 2). This process
resembles the acquisition step in the active learning (AL) loop where the informativeness is based on the
representativeness of samples in the labelled pool. The key distinctions between standard AL methods and
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existing approaches to spurious correlation are as follows: (1) the former assesses informativeness solely based
on sample features, while the latter evaluates not only based on features but also considers label information
(in our illustrative scenario, class label – cars and bicycles – and/or attribute label – red and blue); (2) after
evaluation, the former appends newly labelled samples to existing labelled dataset while the latter assigns
importance weightings for subsets of samples. Those distinctions, though, are blurry. The phase when passive
approaches to spurious correlation identify underrepresented samples essentially corresponds to a single-step
active acquisition but without explicit labels. Furthermore, the act of appending samples to an existing
dataset is equivalent to increasing the importance of specific populations in the dataset (resampling versus
reweighing).

Tamkin et al. (2022) demonstrated that uncertainty-based AL methods can inherently address various
subpopulation shift problems. Their research showed that AL methods improve both overall performance
and the performance of underrepresented subgroups compared to random sampling. This improvement arises
from the increased of labelled disambiguating samples – those whose spurious attributes do not align with
their labels in the labelled pool – from the unlabelled pool by AL methods. However, uncertainty-based
acquisition can sometimes miss these disambiguating samples if their predictions are overly confident due to
reliance on spurious features, resulting in low uncertainty and causing these samples to be neglected in the
AL loop. Consequently, the robustness improvement is limited. Therefore, this work aims to design a deep
learning AL method that can accurately identify underrepresented/disambiguating samples.

Our motivation stems from recent research on simplicity bias, where DNNs trained with stochastic gradient
descent (SGD) tend to prioritize learning simple features over complex ones (Shah et al., 2020; Nakkiran et al.,
2019). Consequently, the DNN will exhibit invariance to complex features, leading to potential detrimental
effects on generalization, especially when the simple features are completely irrelevant to the task. The lack
of robustness under spurious correlation arises from the bias towards much simpler (and thus, easier-to-learn)
features over task-intrinsic ones (Teney et al., 2022; Vasudeva et al., 2023; Bell & Sagun, 2023). In essence,
such classifiers adopt simplistic decision rules heavily influenced by the statistical bias present in the training
samples, e.g., relying on the colour instead of other features. Several works in passive settings have leveraged
this phenomenon to design methods that demonstrate strong effectiveness (Liu et al., 2021; Murali et al.,
2023; Yang et al., 2024). Moreover, from the perspective of training loss profiles, Nam et al. (2020) showed a
discrepancy in terms of training dynamics, where the loss of samples aligned with the bias converges faster
than those unaligned.

Inspired by these observations, we introduce Domain-Invariant Active Learning (DIAL), which utilizes training
dynamics as a proxy to assess the informativeness of unlabelled samples. Our experiments demonstrate that
DIAL effectively selects underrepresented samples from the labelled pool, thereby enhancing the robustness
of the classifier. Furthermore, although the concept of training dynamics is often associated with gradients,
DIAL does not require gradient operations but instead relies solely on feedforward inference during sample
acquisition, making it efficient in the context of deep learning.

Our contributions in this work can be summarized as follows:

• We show the potential of addressing spurious correlations in the sample-efficient manner by means of AL.
• Drawing inspiration from simplicity bias, we proposed DIAL, a deep AL method designed to mitigate

spurious bias. DIAL is easy to implement and highly compatible in deep learning.
• We perform extensive experiments on real-world datasets with spurious correlations, demonstrating that

our proposed method, DIAL, achieves better robustness than existing AL methods.
• We perform ablation studies to investigate the effectiveness of DIAL across different hyperparameter

settings and AL configurations.

2 Related work

Active learning. The primary goal of AL algorithms is to query labels for the most informative samples.
These criteria for informativeness are broadly categorized into two groups (Settles, 2012): uncertainty-based
and representation-based sampling. One classic notion of uncertainty-based sampling involves assessing the
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distance of the sample to the decision boundary, including the margin (Roth & Small, 2006), the entropy of
softmax outputs (Wang & Shang, 2014), and the maximum class predictive score (Wang & Shang, 2014). In
the context of probabilistic formulation, another notion is derived from the information-theoretic perspective
where Roy & McCallum (2001) uses the expected information gain, and Houlsby et al. (2011) measures the
mutual information between the model posterior and the samples. Gal et al. (2017) incorporates Monte Carlo
dropout (Gal & Ghahramani, 2016) to overcome the expensive computation of mutual information of (Houlsby
et al., 2011) for DNNs and Kirsch et al. (2019) further extends the approach to consider the dependencies
between samples in the batch. Representation-based strategies, on the other hand, adopt the notion of
representativeness as the measure for informativeness. Settles et al. (2007) evaluates representativeness in
the gradient space which selects samples with maximum norm of gradient in order to maximize the change
of model’s parameter. Sener & Savarese (2018) and Geifman & El-Yaniv (2017) label samples that exhibit
diversity w.r.t. the current labelled pool with the goal of constructing a proxy for the complete dataset.
Similarly, Ash et al. (2020) seeks to promote diversity using gradient embeddings. A closely related study to our
proposed method is presented in Jung et al. (2022), where they proposed utilizing snapshot-ensemble (Huang
et al., 2016) instead of commonly used methods such as deep ensemble (Lakshminarayanan et al., 2017)
during the acquisition phase. In Jung et al. (2022), a cosine annealing learning rate scheduler (Loshchilov
& Hutter, 2017) with large initial learning rate is used to enforce ensure that each snapshot converges to
diverse local minima. In contrast, our proposed method does not use the cyclical learning rate scheduler, as
it leverages the training dynamics of DNN to assess the informativeness of unlabelled samples.

Active learning for fairness. Conventional AL aims to enhance model performance by selectively querying
the most informative samples from the unlabelled pool. However, this often overlooks the fairness aspect,
potentially perpetuating or even exacerbating biases present in the data. To address this, several works
have proposed fairness-aware AL methods. Similarly, Anahideh et al. (2022); Sharaf et al. (2022); Fajri
et al. (2024) incorporate fairness constraints directly into the sample selection process, aiming to achieve
trade-off between fairness and model performance. However, these approaches necessitate explicit access
to bias attributes in the labelled or even unlabelled pool. This requirement can limit their practicality in
real-world scenarios where access to bias attributes might be restricted due to privacy regulations. In this
work, we aim to eliminate this requirement, aligning with the current research trends in passive settings.

Subgroup robustness. Numerous methods are available to tackle bias caused by spurious correlations
in the dataset. These methods share a common objective: to mitigate bias by improving the worst-group
performance so that the disparities between overall performances is minimized. Examples include subgroup
robust approaches (Sagawa et al., 2020; Nam et al., 2020; Liu et al., 2021; Yao et al., 2022; Sohoni et al., 2020)
and representation learning approaches (Arjovsky et al., 2020; Zemel et al., 2013). Some of these methods
require explicit spurious attribute information (e.g., (Sagawa et al., 2020; Yao et al., 2022)), thereby limiting
their use cases. In contrast, our proposed algorithm requires no additional information beyond the class label.
Specifically, upon the AL algorithm’s selection of samples, the expert is only required to annotate them with
class labels.

3 Background

Notation. We consider classification problems. Given a set of samples D = {(x1, y1), . . . , (xn, yn) | x ∈
X , y ∈ Y}, where X denotes the feature space and Y denotes the labels, and a loss function ℓ : Y × Y → R,
the task is to learn a DNN fθ : X → Y parameterized by θ via empirical risk minimization (ERM):

θ∗ = arg min
θ∈Θ

n∑
i=1

ℓ (fθ(xi), yi) (1)

We omit the symbol θ when the context is clear. Furthermore, we express the DNN obtained at time t as fθt .

Active learning. In pool-based AL scenario, starting with a labelled pool DL the algorithm sequentially
queries an oracle for annotations of some unlabelled samples from DU = {x1, . . . , xm}. We overload the
notation by using fDL

to denote the DNN obtained on the labelled pool DL. Formally, at each AL iteration, the

3



Under review as submission to TMLR

active learner chooses some samples from the unlabelled poolQ ∈ DU (typically conditioned on fDL
). Following

this selection, the oracle H (i.e., human annotator) assigns labels for Q: Q̃ := H(Q) = {(x, h(x)) | x ∈ Q},
where h(x) = y is the ground truth label of sample x. Subsequently, the pool gets an update: DL ← DL ∪ Q̃
and DU ← DU \ Q. This process continues until a stopping criterion is met, e.g., when a labelling budget is
exhausted.

Spurious bias. Typically, one would anticipate learning a classifier that makes predictions based on
semantic features (i.e., features that are relevant to the prediction task). However, in many instances,
the feature domain comprises other meaningful attributes that are irrelevant to the task such as image
background (Sagawa et al., 2020), and demographic identities (Liu et al., 2015; Borkan et al., 2019). We
refer to these attributes as spurious attributes, denoted by S, and we define subgroups as g ∈ G := Y × S.
Formally, spurious correlation refers to the scenario where a statistical dependency between the task and the
spurious attributes is observed solely within the training set1 (Yang et al., 2023):

Ptr(X, Y, S) ∝ Ptr(Y | S)Ptr(S). (2)

This correlation, however, is absent in the test set:

Pte(X, Y, S) ∝ Pte(Y )Pte(S). (3)

More specifically, in the training set, we have Ptr(Y | S) ̸= Ptr(Y ). Learning becomes challenging in the
presence of spurious correlation because the classifier may shift its reliance from semantic features to spurious
attributes, leading to errors during deployment.

To assess robustness with respect to spurious bias, we adopt two key performance metrics in our analysis. The
first metric is the average accuracy: E(x,y) [1 [f(x) = y]], which provides an assessment of the overall model
performance. The second metric is the worst-group accuracy (Sagawa et al., 2020) defined as the “accuracy”
of the worst-performing subgroup: ming′∈G E(x,y)|g=g′ [1 [f(x) = y]]. More formally, the worst-group accuracy
is known as the worst true positive rate of one group versus the other groups. This is a commonly used
evaluation measure in the field of subgroup robustness (Idrissi et al., 2022; Yang et al., 2023). In line with
Nam et al. (2020), we term samples correctly classified by the bias attribute based on the biased training set
as bias-aligned (BA) samples, and those misclassified as bias-confliting (BC) samples. Throughout the paper,
for more broader context, we use the terms underrepresented and overrepresented to refer to BC and BA
samples, respectively.

AL for spurious bias. The primary reason for poor robustness under spurious correlations is due to the
underrepresentation of certain subgroups in the training set. Consequently, many passive approaches address
this issue directly by augmenting the representation of underrepresented samples through upsampling. In this
study, we adopt a similar approach in the active way, i.e., improving the representation of underrepresented
samples through the acquisition of new samples. In passive frameworks, the criteria for upsampling typically
rely on some proxy measure, commonly the predictive error (Sagawa et al., 2020; Liu et al., 2021; Duchi &
Namkoong, 2021). However, this approach is unfeasible in AL, as neither the target labels nor the bias labels
are observable before acquisitions. This raises the question: how can we identify underrepresented samples
from the unlabelled pool without any labeling information? The following section describes our motivation
and principle behind our proposed method.

4 Limitation of uncertainty-based active learning in enhancing robustness

The goal of uncertainty-based AL methods is to minimize model uncertainty, thus enhancing overall per-
formance (Settles, 2012; Huang et al., 2014). This is achieved by selecting samples that the current model
finds less certain about. While there are various metrics to quantify uncertainty, they all share a common
principle: samples close to the decision boundary tend to be more informative.

1We assume that the covariate distribution is invariant between the training and test environments, i.e., Ptr(X | Y, S) =
Pte(X | Y, S).
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Figure 2a illustrates a 2D binary classification task where the features are generated by Gaussian distributions
x ∼ N ([µ1, µ2], Σ), with identical diagonal covariance matrix Σ = σ2I for every subgroup. The class label Y
is determined by the 1st feature coordinate x1 (x-axis), and the spurious attribute S is defined by the 2nd
feature coordinate x2 (y-axis). The decision boundary for the optimal and robust classifier will be the vertical
line at the center. All subgroups are linearly separable along the central axis. Due to spurious correlations,
samples with y = are more frequently observed in red while samples with y = are more frequently observed
in blue, making other combinations rare. Hence, the BA subgroups are {(y = , s = red) , (y = , s = blue)},
while the BC subgroups are the complementary pairs {(y = , s = blue) , (y = , s = red)}. For more intuitive
explanation, in this section, we use minority to refer to the BC subgroups and majority to refer to the BA
subgroups. We then train a linear classifier for the task. To emulate the simplicity bias phenomenon during
training, we incorporate simplicity regularization.2
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Figure 2: (a) 2D binary toy
example. The line rep-
resent the decision boundary
of the classifier after acquir-
ing all minority samples3.
The majority (resp., major-
ity) is on the off-diagonal
(resp., diagonal). (b) The
distribution (over subgroups)
of the queried batch.

One potential limitation of uncertainty-based AL methods is their reliance on predictive uncertainty as the
criterion (Roth & Small, 2006; Wang & Shang, 2014), which can be biased if the predictive model itself is
biased. For instance, in Figure 2a, the uncertainty measure primarily reflects the classifier’s uncertainty about
the spurious attribute (colour) rather than the target (shape). Consequently, a minority sample might exhibit
low uncertainty even if it is misclassified. In this illustrative example, we consider two linear classifiers: one
with additive bias and one without.

When employing the unbiased classifier, the mean of the minority samples in the unlabelled pool is closer to
the decision boundary compared to the majority samples. However, due to their disproportion, there are
significantly more majority samples with similar levels of ambiguity as the minority samples. Hence, the AL
agent queries a small number of minority samples alongside many majority samples.

Conversely, the biased classifier shifts the decision boundary towards certain subgroups. As shown in Figure 2b,
uncertainty sampling enhances the representation of minority compared to random sampling. However, this
behaviour is substantially influenced by the classifier’s characteristics. For example, a biased classifier makes
the blue subgroups more uncertain than the red ones, resulting in uncertainty sampling favouring these
subgroups and leading to the acquisition of a higher proportion of majority samples (blue rectangles) and
a smaller proportion of minority samples (red circles). We observed similar behaviour on the real dataset
(see Section 5.3). On the other hand, our proposed method, DIAL, is able to acquire a significantly higher
proportion of minority samples, while ensuring a balanced representation of the minority subgroups. As a
result, spurious correlations are mitigated, and the robustness across subgroups is improved, aligning closer
to the ideal scenario depicted in Figure 2a (decision boundary of ).

Why is it important to prioritise minority samples? The lack of subgroup robustness is due to the
bias introduced by the underrepresentation of certain subgroups. The intuitive approach to reduce this bias is
to balance the subgroups. This requires acquiring relatively more minority samples than majority ones to “fill
the gaps”. The ideal “filler” is a dataset with a complementary distribution to the existing labelled set (i.e.,

2We introduce a regularization term |w1| to the loss function, simulating that learning x1 is more challenging than x2. Note
that this simplicity bias is the key cause of poor robustness under spurious correlations, as evidenced by recent studies. It can be
shown that enforcing a complexity bias through a |w1| term would yield an unbiased classifier, even in the presence of data bias.

3This is a hypothetical scenario to illustrate the potential of AL in enhancing robustness by acquiring minority samples.
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large amount of minority samples and small amount of majority samples). While diversity-based strategies,
such as CoreSet (Sener & Savarese, 2018), aim to acquire diverse samples and often achieve balanced subgroup
representation (as shown in Figure 2b), their ability to improve subgroups robustness can be limited. This is
because they also acquire equal amounts of majority samples, diluting the focus on the minority. Therefore,
diversity alone is insufficient for our problem; the acquisition method must specifically favour minority to
effectively enhance robustness.

Despite this limitation, uncertainty-based approaches still offer advantages over random sampling. However,
they might exhibit slow progress in improving robustness due to sampling bias. To address this challenge, we
require an approach capable of identifying and isolating minority samples. By prioritising these samples, we
can expedite the development of a more robust classifier through AL.

5 Motivation

5.1 Bias-aligned samples are learned faster

training step [103]
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ss
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Figure 3: Training loss of aggregated
over different subgroups. The colour
represents the bias (digit colour).

When training a DNN with the ERM objective on a biased dataset, a
notable phenomenon arises: the loss of the BA groups decreases much
more rapidly than that of the BC groups, as discussed in Nam et al.
(2020); Qiu et al. (2023). This discrepancy arises because the model
tends to learn a decision rule that heavily relies on the bias in the
early training stage. As a result, the loss for BA subgroups rapidly
approaches zero, while the loss for BC subgroups remains high. To
demonstrate this phenomenon, we consider a binary classification task
involving a binary spurious attribute. We construct a toy example using
a binarized MNIST dataset, where digits less than five are labelled as
the negative class, while those above are labelled as the positive class.
To simulate spurious bias, we assign colours (S = {red, blue}) to digits

(e.g., { }y=−1
s=red, { }y=−1

s=blue, { }y=+1
s=red, { }y=+1

s=blue), with the training set
primarily featuring negative-class digits in red and positive-class digits in blue which establishes a statistical
relationship between colour and target label. As depicted in Figure 3, the loss of BA subgroups shows notably
quicker convergence compared to the BC subgroups. This suggests that BC or underrepresented samples can
be readily identified by their loss with a model from early training stages (Liu et al., 2021). However, this
methodology becomes impractical in AL scenarios where labels are unavailable. Moreover, pseudo-labels,
often utilized as substitutes for ground truth labels in AL algorithms (Ash et al., 2020; Wang et al., 2022),
may not be suitable, as the model could confidently make incorrect predictions based on incorrect contexts,
making the samples distinguishable by loss (further discussion is provided in Section 5.2). Nevertheless, this
discrepancy in learning dynamics serves as a useful indicator to discern sample membership, which is the
primary motivation behind our approach. This is explored in the next section.

5.2 Inference of learning dynamics

The training dynamics can be further interpreted from an inference perspective. Specifically, predicting an
unseen BA sample is anticipated to exhibit sustained low variance throughout the entire training process,
while the prediction of a BC sample gradually converges towards the ground truth over time.

Figure 4 presents the view of the loss landscape alongside the predicted probability of unseen sam-
ples from multiple subgroups in the parameter space. Distinct behaviors emerge for BC samples
({(y = −1, blue), (y = +1, red)}) compared to BA samples ({(y = −1, red), (y = +1, blue)}) as the model
converges to the local minimum. In the case of BA samples, the model consistently delivers correct predictions
with minor variations in confidence. Conversely, for BC samples, the model initially tends to make incorrect
predictions, and significant fluctuations in predictions occur until it eventually converges to the ground truth.
This exploration underscores the intricate dynamics involved in handling underrepresented samples offering
an insight into designing an acquisition function based on the learning dynamics. Furthermore, to accurately
capture the dynamics, one approach is to measure the rate of change of the output of the model w.r.t. training
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Figure 4: Visualization of multiple metrics in the parameter space. (a) illustrates the training loss surface.
The predicted probability of test samples (displayed in the corners) from different subgroup is depicted in (b)
and (e) for BA subgroups, and (c) and (d) for BC subgroups, where the sign indicates the predicted label
(+ for positive and − for negative classes). The learning trajectory is represented by • with ⋆ denoting the
initial point. The model traverses through a significantly greater number of levels in the probability map for
BC subgroups compared to BA subgroups, indicating more pronounced predictive variations in the learning
trajectory for BC samples.

time, denoted as ∂f(x)/∂t for a given input x. This quantity can be computed analytically using the neural
tangent kernel (NTK) framework (Lee et al., 2019; Jacot et al., 2018). Additionally, Wang et al. (2022)
also incorporated the notion of learning dynamics into their acquisition explicitly computed using NTKs.
However, this analytical approach faces practical challenges, particularly in the context of large-scale DNNs
with numerous parameters. The computational complexity escalates significantly, particularly in AL scenarios
where the computation must scale with the number of AL loops. This computational burden highlights the
necessity of exploring alternative methodologies. Thus, in this paper we aimed to propose an alternative
measure that offers scalability and computational efficiency.

θ1 θTtraining trajectory

`(
f

θ
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)
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0.6
BA BC

Figure 5: Pseudo-loss progression
along the training trajectory from
initial (left) to end (right).

Pseudo-labels can be misleading. Moreover, we explore the fea-
sibility of leveraging pseudo-loss for identification of underrepresented
samples. Figure 5 visualises the pseudo-loss ℓ(fθ(x), ȳ) across differ-
ent training steps, where ȳ = arg max fθ(x) denotes the pseudo-label
assigned to individual sample x. In the initial training phase, the
differences are primarily observable among the different spurious at-
tributes S = {red, blue}. A clearer differentiation emerges between BA
and BC subgroups, ultimately reaching disparate levels, as training
progresses. Eventually, with more training iterations, the pseudo-loss
tends to converge to a similar level. Although the pseudo-loss provides
a precise indication of a sample’s representativeness in the training set,

obtaining accurate pseudo labels can be challenging, requiring careful selection of hyperparameters such as
the number of training steps, early stopping, and etc. Otherwise, inaccurate pseudo-labels can mislead the
selection of unseen samples in AL.

5.3 Domain-Invariant Active Learning

Tracking training trajectory. Based on the above observations, we proposed an active learning strategy
DIAL, outlined in Algorithm 1. Unlike other AL methods, which typically rely on the inference from a single
trained model fDL

, DIAL leverages the complete training trajectory in the acquisition process. Prior to the
acquisition step, DIAL tracks the trajectory by collecting checkpointsM = {fθ1 , . . . , fθT

| DL} throughout the
training. This can be viewed as discretizing the evolution of the model over time fθ(t), akin to approximating
the quantity ∂f(x)/∂t. In practical implementation, DIAL does not track every single step but instead
samples a fixed number of checkpoints evenly across the training process. This enables us to capture the
differences in learning dynamics between overrepresented and underrepresented samples, a characteristic that
naturally emerges in the standard training procedure. Our empirical findings validate the efficacy of this
approach, particularly under biased scenarios.
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Algorithm 1 Domain-Invariant Active Learning
Input: number of gradient update steps T , num-

ber of acquisitions k
for n ∈ [N ] do

▷ Train fθ and collect checkpoints ◁
M← {}
for t ∈ [T ] do

θt+1 ← θt + η∇θt
ℓ(DL)

M←M∪ {θt+1}
▷ acquire new samples ◁
if n < N then

compute dM(x) for all x ∈ DU

acquire Q = {top-k dM}
DL ← DL ∪H(Q) ; DU ← DU \Q

output fDL

Acquisition function. After collecting the trajectory
of training M, DIAL computes the informativeness of
x ∈ DU using dM. Essentially, dM computes the pairwise
disparity of predictions between each θ ∈M

dM(x) =
∑

θ′∈M

∑
θ∈M

ϕ(fθ(x), fθ′(x)) (4)

where ϕ is the distance function measuring the discrepancy
between the outputs from two different models. A high
value of dM(x) indicates a slow evolution of predictions
for x during training, suggesting that x is either a chal-
lenging sample or belongs to a underrepresented group.
We also explored some existing ensemble-based acquisition
functions in our experiments (refer to Section 7) since the
set of trajectories M can be viewed as an ensemble of the
model.

BA BC
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ŷ

=
+
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0.590.58
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Figure 6: Illustration of DIAL along-
side pairwise distance matrices for
samples from each subgroup. Aver-
age values of distance matrices are
shown in the corner of the matrices.

Working principle. The working principle of DIAL is visually de-
tailed in Figure 6. Predictions for individual samples across various
subgroups by different checkpoints in the trajectory M = {θ1, . . . , θT }
are mapped onto the probability simplex located at the top left of
Figure 6. Here, it can be observed that the predictions associated with
BA samples typically tend to aggregate towards the vertices of the sim-
plex. In contrast, predictions of BC samples exhibit a more dispersed
pattern, spanning more uniformly across the simplex. This variation in
distribution across the simplex indicates a substantial difference in pre-
diction consistency between checkpoints, especially noticeable among
the BC samples. This phenomenon is further quantified through the
pairwise distances matrix, where distances are calculated with metric
ϕ(fθ(x), fθ′(x)). The distance matrices reveal greater discrepancies in
the predictions over successive training checkpoints for BC samples
compared to BA samples, suggesting less consistency in the model’s
performance across different training stages for BC samples. In light
of this observations, it becomes a useful strategy to enhance the bal-
ancedness of DL. By selecting samples x ∈ DU that demonstrate high
values of dM, it is likely to include more samples from underrepresented
subgroups into DL. Such targeted acquisition is instrumental in mitigating spurious correlations present in
the existing DL. Ultimately, this approach leads to the development of a model that is more robust and
better attuned to variations w.r.t. the spurious attribute.
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Figure 7: Distributions of informa-
tiveness across subgroups with ac-
quisition functions.

DIAL acquires more balanced underrepresented batches. In
Figure 7, we can see that the distributions for the BC subgroups are
long-tailed, skewing towards higher informativeness. This pattern is
especially pronounced for DIAL, where the distributions for both BC
subgroups are more symmetric. Conversely, other methods like Margin
and Entropy, while capturing the informativeness of the BC subgroups,
produce distributions that are less symmetric. For instance, the BC
subgroup (y = +1, s = red) demonstrates a higher density towards the
upper score range compared to its counterpart (y = −1, s = blue). This
disparity in distribution suggests bias in the acquisition process, where
one underrepresented subgroup will be disproportionately represented
over the other.4 Given this context, when adopting a greedy approach

4This might result improvements in certain underrepresented subgroups, while others will still remain underrepresented,
leading to only marginal improvements in worst-group accuracy.
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to sample selection (i.e., maximize the informativeness of each batch of samples), DIAL demonstrates a
superior capability to ensure a more balanced inclusion of samples from underrepresented subgroups. Moreover,
this implies that DIAL can achieve better group-wise performance, such as improved worst-group accuracy.

6 Experiments

In this section, we provide empirical evaluations on various benchmarks along with several baseline methods.
The results are averaged across five trials conducted with different random seeds. Mean and standard
deviation are presented in all figures and tables. All experimental details can be found in Appendix A.

Datasets and DNNs. We assess the performance of all AL algorithms using two categories of benchmark
datasets. The first category is datasets with spurious correlations for evaluating subgroup robustness, including
Waterbirds (Sagawa et al., 2020), CelebA (Liu et al., 2015) and Corrupted CIFAR-10 (Hendrycks & Dietterich,
2019). Waterbirds is the classification task for landbird vs. waterbird where samples are associated with
different backgrounds (spurious attribute): land or water; in the training set landbirds (or waterbirds) are
more likely to appear on land (or on water). In the CelebA dataset, the task is to determine if the person in the
image has black hair, where gender is considered the spurious attribute. The dataset predominantly consists
of females without black hair. Corrupted CIFAR-10 are construed using the standard CIFAR-10 dataset with
several types of textures applied onto the images where some classes are entangled with some specific textures
in the training set. The second category is the common AL benchmark datasets: CIFAR-10 (Krizhevsky
& Hinton, 2009) and SVHN (Netzer et al., 2011) for assessing the performance of DIAL in the unbiased
environment. Further details regarding the datasets are provided in Appendix A.1. In terms of network
architectures, we employ ResNet50 and ResNet18 (He et al., 2016). Comprehensive information such as
training hyperparameters can be found in Appendix A.2.

Baselines. In addition to Random sampling, which selects samples randomly to simulate passive learning,
we include the following baseline methods: BADGE (Ash et al., 2020), CoreSet (Sener & Savarese, 2018),
Margin (Roth & Small, 2006), Confidence (Wang & Shang, 2014), Entropy (Wang & Shang, 2014), BAIT (Ash
et al., 2021) and Cluster-Margin (Citovsky et al., 2021). Further details on these baseline methods can be
found in Appendix A.3.

Metrics. Regarding performance evaluation, we use worst-group accuracy as the primary metric for
Waterbirds and CelebA, and average accuracy for Corrupted CIFAR-10 (as suggested by Nam et al. (2020),
given the unbiased test split). While for all common AL datasets, we rely on the average accuracy. Additionally,
we also incorporate the area under learning curve (ALC) metric, which quantifies the area under the respective
metric curve (y-axis) across the number of queried batches (x-axis).

6.1 Results
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Figure 8: Performance vs. number of AL steps. The figures display worst-group accuracy for Waterbirds and
CelebA, alongside average accuracy for Corrupted CIFAR-10.
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Does AL improve subgroup performance? Figure 8 presents the performance achieved by various
AL algorithms. With the exception of CoreSet on Waterbirds, all baseline methods consistently outperform
passive learning (Random) throughout the run. This observation indicates that AL methods inherently
possess the capability to enhance subgroup robustness in a sample-efficient manner, validating our research
hypothesis. Particularly noteworthy is the performance of DIAL, which consistently outperforms all baseline
methods, especially on Waterbirds. At its peak performance, DIAL achieves approximately 74% accuracy
with only around 13% of the total training samples, surpassing state of the art (SOTA) algorithms such as
those by Sagawa et al. (2020) (73.1%) and Liu et al. (2021) (71.2%)5. A comprehensive comparison with the
SOTA methods is provided in Appendix B.4.3.
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Figure 9: Balancedness6of DL on
Waterbirds throughout the run.
Higher implies that DL is more bal-
anced, i.e., a value of 1 means that
the numbers of samples from every
subgroups g ∈ G are equal.

While uncertainty methods demonstrate competitive performance,
diversity-based approaches (BADGE, CoreSet and Cluster-Margin)
exhibit less potency. This discrepancy can be attributed to the en-
forced diversity criteria, which result in a certain proportion of queried
samples being drawn from overrepresented subgroups, thereby failing
to adequately address spurious correlations in the labelled pool. It is
important to note the decreasing trend observed for DIAL after reaching
peak performance on Waterbirds, which is attributed to the insufficient
underrepresented samples in DU (see Figure 10a), exacerbating spurious
correlations upon continued sample acquisition. Consequently, we use
relatively small query batch sizes to prevent excessive consumption
of underrepresented samples, ensuring optimal performance (further
analysis is provided in Section 7).

Additionally, Figure 9 illustrates the balancedness of DL, quantified by
the normalized entropy of subgroup proportions:

∑
g∈G −pg log pg/ log |G|, where pg represents the proportion

of subgroup g. Due to space limit, the balancedness for other datasets are presented in Appendix B. The
analysis reveals a correlation between balancedness and subgroup performance, as observed in Figure 8:
higher balancedness in DL corresponds to improved robustness. The performance trend of Random remains
consistent throughout, indicating that performance gains over AL steps stem primarily from the overall growth
of the labelled set rather than the acquisition of underrepresented samples. During the early steps, when
the balancedness achieved by DIAL is comparable to that of other methods, the subgroup performance of
DIAL aligns closely with that of its counterparts. However, as DIAL approaches peak balancedness, subgroup
performance reaches its zenith. This observation reinforces our core objective of designing a subgroup-robust
AL method: acquiring new samples to balance the training pool, thereby achieving optimal robustness.
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Figure 10: (a) Evolution of DU on Waterbirds. Each line represents an individual subgroup. Due to the bias,
there are substantially more BA subgroup samples initially. Observably, DIAL tends to “consume” a greater
proportion of BC samples, extending to even the secondary subgroup within BA. (b) Performance vs. number
of AL steps for common datasets. The y-axis represents the relative improvement (percentage change) in
comparison to Random.

5The numerical values are directly taken from Yang et al. (2023)
6The curves of Margin and Entropy overlap.
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Standard AL setting. Figure 10b shows the performance curves for the standard datasets. DIAL exhibits
competitive performance on both datasets, with its advantage being particularly pronounced on SVHN
dataset. This observation underscores the versatility of DIAL: not only does it excel in imbalanced settings,
but it also proves effective in conventional settings.

First 10 AL steps Full run

Algorithm Waterbirds CelebA Co. CIFAR-10 SVHN CIFAR-10 Rank Waterbirds CelebA Co. CIFAR-10 SVHN CIFAR-10 Rank

Random 2.89± 1.0 4.99± 0.5 3.81± 0.1 5.89± 0.1 4.64± 0.1 6.4± 2.0 28.36± 2.6 21.66± 1.1 20.00± 0.4 39.58± 0.2 28.62± 0.1 5.6± 2.0

Margin 5.54± 0.4 5.39± 0.3 3.83± 0.1 6.30± 0.1 4.70± 0.1 5.8± 1.6 41.02± 0.6 23.58± 1.0 22.38± 0.2 42.00± 0.2 29.06± 0.3 5.6± 2.3

Certainty 5.47± 0.3 5.23± 0.2 3.89± 0.1 6.21± 0.1 4.56± 0.0 4.4± 1.6 40.72± 0.4 23.50± 0.7 23.10± 0.3 41.71± 0.2 28.48± 0.1 5.0± 2.5

Entropy 5.51± 0.5 5.36± 0.3 3.89± 0.1 6.26± 0.1 4.58± 0.0 2.4± 0.5 40.92± 0.6 23.57± 0.9 23.10± 0.2 41.97± 0.2 28.70± 0.2 3.8± 1.5

CoreSet 3.61± 1.0 5.08± 0.4 4.05± 0.1 5.79± 0.1 4.53± 0.1 5.8± 1.2 28.20± 8.1 21.20± 1.5 23.17± 0.3 40.64± 0.2 28.45± 0.2 5.2± 1.3

BAIT 5.44± 0.5 5.30± 0.3 – – – – 40.94± 0.6 23.61± 0.9 – – – –
BADGE 5.32± 0.4 5.37± 0.5 3.87± 0.1 6.23± 0.1 4.69± 0.0 3.8± 1.5 40.69± 0.4 23.83± 1.9 22.68± 0.3 41.86± 0.2 29.10± 0.2 5.2± 1.3

Cluster-Margin 5.36± 0.4 5.27± 0.5 3.85± 0.1 6.26± 0.1 4.59± 0.1 6.4± 1.2 40.35± 0.8 23.48± 1.2 22.31± 0.3 41.84± 0.2 29.18± 0.4 4.6± 2.1

DIAL 6.16± 0.4 5.84± 0.5 4.07± 0.1 6.30± 0.1 4.74± 0.0 1.0± 0.0 43.10± 0.6 24.83± 1.0 23.79± 0.3 42.09± 0.1 29.25± 0.1 1.0± 0.0

Table 1: The ALC for all datasets with their corresponding metrics. The left section of the table shows the
ALC over the initial 10 AL steps, while the right section displays the ALC for the entire run. The highest
and second-highest values are highlighted in bold red and bold blue, respectively.

Table 1 provides a comprehensive numerical overview of the performance of all methods. Throughout the
early stages and the entire run, DIAL consistently outperforms all baseline methods across all datasets.
Following closely, uncertainty-based methods exhibit the second-best performance on all datasets except for
Corrupted CIFAR-10 (and CIFAR-10 in full run). Margin and Entropy methods, on average, demonstrate
competitive performance. Furthermore, while DIAL may not exhibit notably superior performance on
SVHN, it remains comparable to baseline methods, indicating its applicability to problems where imbalance
or spurious correlations are not present, without compromising performance. Refer to Appendix B for
comprehensive summaries of other metrics per dataset, similar to those presented in Yang et al. (2023).

7 Ablation study
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Figure 11: Learning curve (worst-group accuracy for Waterbirds and CelebA, and average accuracy for
Corrupted CIFAR-10) across different query batch sizes. The solid line and dashed line represent DIAL and
Margin, respectively.

Effect of query batch size Figure 11 presents the subgroup robustness performance w.r.t. the query batch
size k. Similar to standard AL outcomes, the subgroup performance tends to decline as k increases. This
decline occurs because larger values of k compel the querying of uninformative samples, which, in this context,
correspond to overrepresented or BC samples. Remarkably, with a batch size of 25, DIAL achieved 76.1% on
Waterbirds, outperforming most passive baselines as reported in Yang et al. (2023). Thus, when dealing with
imbalance in AL, it is recommanded to use smaller query batch sizes. Additionally, it is noteworthy that
DIAL consistently outperforms Margin, which is the best-performing baseline overall, across all query batch
sizes.

Effect of |M| Figure 12 depicts the learning curve across different densities of learning dynamics for DIAL.
We uniformly sample model checkpoints throughout the training process. We observed that a larger size of
M (denser sampling) generally leads to higher performance, as it provides a more accurate estimation of
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Figure 12: Learning curve (worst-group accuracy) across different size of checkpoints |M|.

the learning dynamics. In the case of Waterbirds, the slow increase in performance in the beginning when
using |M| = 20 could be attributed to noise caused training instability. However, despite this, it achieved
higher peak performance compared to other configurations. Overall, it’s crucial to strike a balance in the
sampling rate. Sampling rates should not be excessively high (resulting in larger M), as this may capture
training noise. Conversely, they should not be too low (resulting in smaller M), as this could lead to missing
information of learning dynamics. In the experiments presented in Figure 8, we used |M| = 10 for Waterbirds,
CelebA, CIFAR-10, and SVHN, while using |M| = 50 for Corrupted CIFAR-10.
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Figure 13: Performance of DIAL (worst-group accuracy) across different configurations evaluated on Water-
birds. (a) Evaluation of various distance functions ϕ. (b) Assessment of different common acquisition criteria
on training dynamics dM. (c) Assessment of the approach proposed by Jung et al. (2022).

Effect of distance functions ϕ. We conducted a comparison of distance functions utilized to capture
predictive discrepancies among checkpoints. The discrepancy is evaluated using the softmax output and
we found that this approach resulted in much better performance, even with L2 norm. The comparison in
Figure 12a shows that both the L2 norm and Kullback-Leibler (KL) divergence demonstrate similar peak
performance. However, the L2 norm achieves this with significantly fewer acquisition steps. Jensen-Shannon
(JS) divergence, a symmetric version of the KL divergence, initially behaves similarly to the KL divergence
but diverges after approximately 10 acquisition steps, eventually converging to a comparable level. Overall,
the L2 norm proves adept at accurately detecting predictive discrepancies, particularly on underrepresented
samples, leading to rapid improvements in robustness. The diminished performance with divergence metrics
may be attributed to the non-linear operation, which tends to neglect very small discrepancies. We used the
L2 norm for DIAL in all the experiments.

Effect of discrepancy criteria dM. In addition to Equation (4), we also explored alternative criteria
for assessing informativeness with training dynamics M. One such criteria is Entropy, defined as dM(x) =
H(fM(x)), where fM(x) = 1

|M|
∑

θ∈M fθ(x) and H is the entropy measure which evaluates the overall
predictive entropy of a sample x throughout the training. Additionally, we also incorporate BALD (Houlsby
et al., 2011) dM(x) = H(fM(x)) + 1

|M|
∑

θ∈M H(fθ(x)) to measure the predictive disagreement among models
throughout the training. Figure 12b shows that both variants (DIALEntropy and DIALBALD) do not yield
performance gain compared to the proposed criteria (in Equation (4)).
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Comparison with Snapshot-AL We conducted a comparison between DIAL and Snapshot-AL as
proposed by Jung et al. (2022). To ensure a fair comparison, we obtained an equal number of checkpoints
for both DIAL and Snapshot-AL, and employed the same disagreement criteria as outlined in Equation (4).
The primary distinction lies in the application of the cosine annealing learning rate scheduler (Loshchilov &
Hutter, 2017) during training with Snapshot-AL. As illustrated in Figure 12c, Snapshot-AL, which utilizes
diverse checkpoints generated with the learning rate scheduler, consistently underperforms DIAL throughout
run. This further corroborates our assertion that the diversity of ensembles or checkpoints does not effectively
facilitate the identification of underrepresented samples. Rather, tracking the learning dynamics provides a
more accurate means of identification of such samples. Nevertheless, Snapshot-AL demonstrates superior
peak performance compared to Margin, despite its relatively lower performance in the early rounds.

8 Conclusion, limitations and future work

In this work, we investigate spurious correlations within in the AL settings. We demonstrate a potential
failure mode of uncertainty-based AL approaches in handling spurious correlations. To address this, we
propose a simple AL method that effectively identifies underrepresented samples from the unlabelled pool.
Our experiments on real-world datasets show that our proposed method mitigates bias in the labelled dataset
and outperforms baseline methods. Additionally, we provide a detailed analysis highlighting the effectiveness
of our approach with respect to various AL hyperparameters.

Despite demonstrating promising results, DIAL has some limitations regarding the computational complexity.
The time complexity for the forward pass of DIAL is O(mn), where m = |M| is the number of checkpoints,
and n = |DU | is the number of unlabelled samples, as opposed to O(n) for simpler methods like Margin. The
acquisition function of DIAL compares the predictions fθ(x) between checkpoints (θ, θ′) ∈M×M, resulting
in an overall time complexity of O(mn(1 + m)), requiring (m + m2) more computations compared to Margin.
Moreover, DIAL only computes acquisition scores based on the model outputs fθ(x), which correspond to the
number of classes and are typically much smaller than high-dimensional feature embeddings. Consequently,
when the dimension of the model output is small, the complexity is primarily dominated by the forward
passes of the checkpoints, resulting in an approximate complexity of O(mn). However, as shown in our
ablation study, m does not need to be extremely large to achieve good performance. Thus, the computational
complexity of DIAL remains manageable in practical applications.

Future work could explore techniques to reduce this computational burden, such as using approximation
methods with fewer checkpoints to estimate prediction deviations along the training trajectory. Furthermore,
DIAL’s runtime scales linearly with the number of samples (i.e., O(n)), making it far more efficient than
methods that rely on costly matrix operations, such as matrix inversion or multiplication with the kernel
matrix (Ash et al., 2021), which can scale up to O(n3). Another limitation of DIAL is that it requires a
pre-defined number of checkpoints to be sampled during training, which can be challenging to determine in
practice.

Additionally, in the current framework, all acquired samples in the labelled pool are treated with equal
importance as the existing ones. One potential direction for future work is to develop a reweighting mechanism
alongside the AL acquisition process to assign greater importance to the acquired underrepresented samples
for better correcting the bias in the labelled pool. Additionally, future research could explore the use of
foundation models to enhance performance and accelerate the AL process (Gupte et al., 2024).

Broader Impact Statement

In this work, we introduced DIAL, an AL method which makes more efficient use of data by focusing on areas
of imbalance particularly when dealing with underrepresented samples. This approach not only improves
the accuracy of models but also promotes fairness and equity by ensuring that marginalised or rare cases
are properly represented. This is particularly crucial in domains where biased or erroneous predictions can
have serious consequences, such as predicting medical outcomes or making financial decisions. By mitigating
spurious correlations, we also reduce the risk of overfitting models to patterns that do not hold across diverse
populations, thereby improving their generalization to real-world data. Furthermore, as AL methods improve
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model efficiency, organisations can make more informed decisions with less data, reducing the environmental
costs of large-scale data collection and processing. Thus, our work not only improves model performance and
fairness but also contributes to sustainable AI practices.
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A Experimental setup

A.1 Datasets

In all experiments, we use the training split as the unlabelled pool and evaluate the performance using the
test split. At the start of the AL loops, a subset of samples is randomly labelled to form the initial labelled
pool. Dataset statistics are provided in Figure A.1.
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Figure A.1: (left) The subgroup distribution of the training and the test splits over all subgroups. (right)
The balancedness of the dataset.
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Waterbirds. The Waterbirds dataset is a synthetic dataset created by overlaying
bird images from Wah et al. (2011) onto various scene images from Zhou et al.
(2018). The target labels are landbird and waterbird, while the spurious attribute is
the background: land or water. In the training set, there is a spurious correlation
between the bird class and the background, with the majority subgroups (or BA
subgroups) being landbirds on land and waterbirds on water. Both the target and
spurious labels are binary: Y = landbird, waterbird and S = land, water, resulting
in four subgroups (|G| = 4). The train and test splits consist of 4,795 and 5,794
samples, respectively.

female male

no
t

bl
ac

k
ha

ir
bl

ac
k

ha
ir

CelebA. The CelebA dataset (Liu et al., 2015) comprises over 200,000 celebrity
images annotated with 40 different attributes. In our experiment, we use the
Black_Hair attribute as the target and the Male attribute as the spurious attribute.
The dataset exhibits a spurious correlation between hair colour and gender;
specifically, with most females having non-black hair. Both target and spurious
labels are binary: Y = not black hair, black hair and S = female, male, resulting
in four subgroups (|G| = 4). Due to computational constraints, we randomly
subsampled 10,000 samples from the training split and used the original test split,
which contains 19,962 samples.

Corrupted CIFAR-10. The Corrupted CIFAR-10 dataset is generated from the standard CIFAR-
10 (Krizhevsky & Hinton, 2009) by applying corruptions as proposed by Hendrycks & Dietterich (2019). The
target labels are the original CIFAR-10 labels, while the spurious labels correspond to the types of corruption:
(1) Gaussian Noise, (2) Shot Noise, (3) Impulse Noise, (4) Speckle Noise, (5) Gaussian Blur, (6) Defocus Blur,
(7) Glass Blur, (8) Motion Blur, (9) Zoom Blur, (10) Original. Following the procedure defined by Nam et al.
(2020), we generate the dataset with a corruption severity of 1 and a ratio of 95% BA samples to create the
spurious correlation. Subgroups where the numeric index of target label and that of spurious label coincide
(y = s) are considered BA subgroups, while others are BC subgroups. Both target and spurious labels have a
cardinality of 10, resulting in 100 subgroups (|G| = 100). The subgroups are uniformly distributed, with BA
and BC subgroups having proportions of 95%/10 and 5%/90, respectively. The train and test splits consist of
50,000 and 10,000 samples, respectively, with the test split being unbiased (uniformly distributed across all
subgroups).
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A.2 Implementation details and hyperparameter settings

Our code for the experiments is based on the Baal AL framework (Atighehchian et al., 2022). We use Baal
implementations for Random, Margin, and Entropy, while BADGE, Coreset and BAIT are sourced from
the repository by Ash et al. (2020), and Cluster-Margin is sourced from the unofficial implementation.
We construct the Waterbirds and CelebA datasets using the WILDS package (Koh et al., 2021) and the
Corrupted CIFAR-10 dataset using the repository by Nam et al. (2020). For SOTA and robustness evaluation,
we use the code by Yang et al. (2023). Additionally, for visualizing the training trajectories in Section 5,
we deploy the loss-landscape-anim repository. We also followed some hyperparameters setting and data
preprocessing procedure specified in Yang et al. (2023) and Nam et al. (2020). The code for the experiments
in this work is available at https://anonymous.4open.science/r/jSYaklvh, and it will be made publicly
available upon acceptance.

Dataset # of initial samples query batch size architecture pre-trained weights optimizer learning rate weight decay momentum batch size

Waterbirds 5% of total 0.625% of total ResNet50 ImageNet-1K SGD 1× 10−3 1× 10−4 0.9 108
CelebA 5% of total 0.25% of total ResNet50 ImageNet-1K SGD 1× 10−3 1× 10−4 0.9 108
Corrupted CIFAR-10 500 200 ResNet18 ImageNet-1K Adam 1× 10−3 1× 10−4 – 128
CIFAR-10 500 500 ResNet18 – SGD 1× 10−3 5× 10−4 0.9 128
SVHN 500 500 ResNet18 ImageNet-1K SGD 1× 10−3 1× 10−4 0.9 128

A.3 Baselines

Random Uniformly label k samples from the unlabelled pool, resembling the passive setting.

Margin An uncertainty-based AL method that selects samples based on the difference between the
top two predictive class probabilities: arg maxx∈DU

f(x)0 − f(x)1, where f(x)0 and f(x)1

are the largest and second largest softmax entries of f(x) (Roth & Small, 2006).

Entropy An uncertainty-based AL method that selects the most uncertain samples based on
predictive entropy: arg maxx∈DU

H(f(x)), where H is the entropy defined as H(p) =∑C
i=1−pi log (1/pi) (Wang & Shang, 2014).

Confidence An uncertainty-based AL method that selects samples with the smallest predictive proba-
bility: arg minx∈DU

maxi∈[C] f(x)i (Wang & Shang, 2014).

BADGE A diversity-based AL method. For each unlabelled sample, it computes the gradient
embeddings (the first derivative of the pseudo-loss with respect to the output of the
penultimate layer). It then selects a subset of k samples using the k-MEANS++ seeding
algorithm on the gradient embeddings (Ash et al., 2020).

Coreset A diversity-based AL method that selects a subset of k samples by solving the coreset
problem on the feature embeddings (the output of the penultimate layer) (Sener & Savarese,
2018).

BAIT A neural AL method that selects samples by minimising the expected risk, estimated using
Fisher information, which is computed using gradient embeddings (Ash et al., 2021).

Cluster-Margin An AL method that selects samples by balancing exploration (diversity) and exploitation
(uncertainty). It first perform clustering on DU ∪ DL and then selects samples based on
the margin criterion within each cluster (Citovsky et al., 2021).

B Additional results

In this section, we present additional results and analysis on datasets with spurious correlations. We include
the ALC over evaluation metrics as presented in Yang et al. (2023) (refer to Section B.3 in Yang et al. (2023)
for details). Additionally, we report the robust accuracy, defined as the worst-case expected accuracy over
attribute (Sohoni et al., 2020): mins′∈S E(x,y)|s=s′ [1 [f(x) = y]].
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B.1 Waterbirds
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B.1.1 ALC over evaluation metrics across different AL methods

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 50.2± 1.4 28.4± 2.6 45.3± 1.4 33.0± 2.3 46.2± 1.5 37.7± 2.0 48.0± 1.4 48.0± 1.4 54.5± 1.2 9.7± 1.4

Margin 55.2± 0.3 41.0± 0.6 51.1± 0.4 42.2± 0.8 52.1± 0.4 46.1± 0.5 53.6± 0.3 53.6± 0.3 58.9± 0.2 6.1± 0.3

Confidence 55.2± 0.4 40.7± 0.4 51.1± 0.4 42.3± 0.8 52.1± 0.4 46.0± 0.5 53.6± 0.3 53.6± 0.3 58.9± 0.2 6.1± 0.3

Entropy 55.2± 0.4 40.9± 0.6 51.0± 0.5 42.1± 0.8 52.1± 0.4 46.0± 0.6 53.6± 0.3 53.6± 0.3 58.9± 0.2 6.1± 0.3

CoreSet 50.1± 3.4 28.2± 8.1 45.3± 3.5 33.0± 5.6 46.0± 3.8 37.5± 5.2 47.8± 3.6 47.8± 3.6 54.2± 3.0 9.4± 2.5

BAIT 55.3± 0.3 40.9± 0.6 51.2± 0.4 42.3± 0.7 52.2± 0.4 46.1± 0.5 53.6± 0.3 53.6± 0.3 58.9± 0.2 6.0± 0.3

BADGE 55.1± 0.2 40.7± 0.4 51.0± 0.3 42.1± 0.5 52.0± 0.3 45.9± 0.3 53.5± 0.2 53.5± 0.2 58.8± 0.2 6.1± 0.2

Cluster-Margin 54.9± 0.5 40.4± 0.8 50.7± 0.6 41.5± 1.1 51.7± 0.5 45.5± 0.7 53.3± 0.4 53.3± 0.4 58.7± 0.3 6.3± 0.4

DIAL 55.4± 0.3 43.1± 0.6 51.4± 0.3 42.4± 0.6 52.5± 0.3 46.7± 0.4 54.2± 0.3 54.2± 0.3 59.2± 0.2 6.0± 0.2

B.1.2 ALC over evaluation metrics across different number of checkpoints

|M| Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

2 55.3± 0.3 41.3± 0.5 51.2± 0.3 42.4± 0.6 52.2± 0.3 46.2± 0.4 53.7± 0.3 53.7± 0.3 59.0± 0.2 6.0± 0.2

5 55.2± 0.4 41.4± 0.8 51.1± 0.5 42.2± 0.9 52.2± 0.4 46.2± 0.6 53.7± 0.4 53.7± 0.4 58.9± 0.3 6.1± 0.4

10 55.4± 0.3 43.1± 0.6 51.4± 0.3 42.4± 0.6 52.5± 0.3 46.7± 0.4 54.2± 0.3 54.2± 0.3 59.2± 0.2 6.0± 0.2

20 55.1± 0.4 42.5± 1.2 51.0± 0.4 41.9± 0.7 52.1± 0.4 46.2± 0.6 53.9± 0.4 53.9± 0.4 59.0± 0.4 6.3± 0.3

B.1.3 ALC over evaluation metrics across different query batch size and AL methods

Algorithm k Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

DIAL
25

69.0± 0.5 52.8± 1.1 63.9± 0.6 52.5± 0.9 65.2± 0.6 57.8± 0.8 67.3± 0.5 67.3± 0.5 73.8± 0.4 7.7± 0.4

Margin 69.0± 0.4 51.3± 0.4 63.8± 0.5 52.7± 1.0 65.1± 0.5 57.6± 0.6 67.0± 0.3 67.0± 0.3 73.7± 0.2 7.7± 0.4

DIAL
50

34.6± 0.2 26.5± 0.6 32.0± 0.2 26.4± 0.4 32.7± 0.2 29.0± 0.3 33.7± 0.2 33.7± 0.2 36.9± 0.2 3.8± 0.2

Margin 34.5± 0.2 25.6± 0.4 31.9± 0.3 26.4± 0.5 32.6± 0.3 28.8± 0.4 33.5± 0.2 33.5± 0.2 36.8± 0.1 3.8± 0.2

DIAL
100

17.2± 0.1 13.1± 0.4 16.0± 0.2 13.1± 0.3 16.3± 0.2 14.4± 0.2 16.8± 0.2 16.8± 0.2 18.4± 0.1 1.9± 0.1

Margin 17.2± 0.1 12.9± 0.1 15.9± 0.1 13.1± 0.2 16.2± 0.1 14.3± 0.1 16.7± 0.1 16.7± 0.1 18.4± 0.1 2.0± 0.1

DIAL
200

8.6± 0.1 6.4± 0.3 7.9± 0.1 6.5± 0.1 8.1± 0.1 7.1± 0.1 8.3± 0.1 8.3± 0.1 9.2± 0.1 1.0± 0.1

Margin 8.6± 0.1 6.4± 0.1 7.9± 0.1 6.5± 0.1 8.1± 0.1 7.1± 0.1 8.3± 0.0 8.3± 0.0 9.2± 0.0 1.0± 0.0

B.2 CelebA
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B.2.1 The ALC over evaluation metrics across different AL methods

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 33.5± 0.1 21.7± 1.1 32.4± 0.2 30.5± 0.7 31.1± 0.1 26.5± 0.3 30.3± 0.3 30.4± 0.3 36.0± 0.2 2.9± 0.1

Margin 34.0± 0.1 23.6± 1.0 32.9± 0.1 30.9± 0.2 31.9± 0.2 27.8± 0.3 31.2± 0.2 31.3± 0.2 36.5± 0.2 2.3± 0.2

Confidence 34.0± 0.1 23.5± 0.7 32.9± 0.1 31.0± 0.2 31.8± 0.3 27.6± 0.5 31.1± 0.4 31.1± 0.3 36.4± 0.1 2.4± 0.2

Entropy 34.0± 0.1 23.6± 0.9 32.9± 0.1 30.8± 0.1 31.9± 0.2 27.8± 0.3 31.2± 0.3 31.3± 0.2 36.4± 0.2 2.3± 0.2

CoreSet 33.1± 0.3 21.2± 1.5 31.7± 0.5 29.4± 1.0 30.6± 0.4 25.7± 0.7 29.8± 0.5 29.9± 0.5 35.5± 0.4 2.6± 0.3

BAIT 34.0± 0.0 23.6± 0.9 33.0± 0.1 31.1± 0.4 31.9± 0.1 27.8± 0.2 31.2± 0.2 31.3± 0.2 36.5± 0.1 2.3± 0.1

BADGE 34.0± 0.1 23.8± 1.9 33.0± 0.1 31.0± 0.4 32.0± 0.3 27.9± 0.6 31.3± 0.5 31.4± 0.5 36.5± 0.1 2.4± 0.3

Cluster-Margin 34.0± 0.1 23.5± 1.2 32.9± 0.2 31.0± 0.4 31.9± 0.2 27.7± 0.4 31.1± 0.3 31.2± 0.3 36.4± 0.1 2.3± 0.2

DIAL 34.1± 0.1 24.8± 1.0 33.1± 0.2 31.2± 0.5 32.0± 0.2 28.0± 0.4 31.3± 0.3 31.4± 0.3 36.6± 0.1 2.6± 0.2

B.2.2 ALC over evaluation metrics across different number of checkpoints

|M| Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

2 34.1± 0.1 25.2± 1.4 32.9± 0.1 30.6± 0.5 32.1± 0.2 28.2± 0.5 31.5± 0.4 31.6± 0.4 36.5± 0.1 2.3± 0.2

4 34.0± 0.1 24.6± 1.6 33.0± 0.2 31.1± 0.7 32.0± 0.3 27.9± 0.5 31.2± 0.4 31.3± 0.4 36.5± 0.1 2.6± 0.3

5 34.1± 0.1 24.8± 1.0 33.1± 0.2 31.2± 0.5 32.0± 0.2 28.0± 0.4 31.3± 0.3 31.4± 0.3 36.6± 0.1 2.6± 0.2

10 34.0± 0.1 24.3± 1.0 33.0± 0.1 31.2± 0.5 31.9± 0.2 27.7± 0.4 31.1± 0.3 31.2± 0.3 36.5± 0.1 2.7± 0.2

20 34.0± 0.1 24.2± 1.4 33.0± 0.2 31.4± 0.6 31.8± 0.4 27.5± 0.7 31.0± 0.5 31.0± 0.5 36.5± 0.1 2.8± 0.3

B.2.3 ALC over evaluation metrics across different query batch size and AL methods

Algorithm k Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

DIAL
10

85.1± 0.2 61.4± 2.8 82.5± 0.5 77.8± 1.5 79.9± 0.6 69.6± 1.1 78.1± 0.9 78.2± 0.9 91.3± 0.3 6.6± 0.5

Margin 85.0± 0.3 59.2± 3.0 82.2± 0.3 77.0± 0.9 79.8± 0.6 69.6± 1.1 78.1± 0.9 78.3± 0.8 91.2± 0.3 5.8± 0.6

DIAL
20

42.6± 0.1 30.8± 1.4 41.3± 0.2 39.1± 0.7 40.0± 0.3 34.8± 0.5 39.0± 0.4 39.1± 0.4 45.7± 0.1 3.3± 0.2

Margin 42.5± 0.1 29.7± 1.1 41.1± 0.3 38.6± 0.7 39.9± 0.2 34.8± 0.3 39.0± 0.2 39.1± 0.2 45.6± 0.2 2.8± 0.2

DIAL
25

34.1± 0.1 24.8± 1.0 33.1± 0.2 31.2± 0.5 32.0± 0.2 28.0± 0.4 31.3± 0.3 31.4± 0.3 36.6± 0.1 2.6± 0.2

Margin 34.0± 0.1 23.6± 1.0 32.9± 0.1 30.9± 0.2 31.9± 0.2 27.8± 0.3 31.2± 0.2 31.3± 0.2 36.5± 0.2 2.3± 0.2

DIAL
50

17.0± 0.1 12.2± 0.7 16.5± 0.1 15.6± 0.3 16.0± 0.2 13.9± 0.3 15.6± 0.2 15.6± 0.2 18.3± 0.0 1.4± 0.2

Margin 17.0± 0.1 11.9± 0.4 16.4± 0.1 15.4± 0.3 16.0± 0.1 13.9± 0.1 15.6± 0.1 15.7± 0.1 18.2± 0.1 1.2± 0.1

DIAL
100

8.5± 0.0 6.0± 0.4 8.3± 0.0 7.8± 0.1 8.0± 0.1 6.9± 0.2 7.8± 0.1 7.8± 0.1 9.1± 0.0 0.7± 0.1

Margin 8.5± 0.0 6.0± 0.1 8.2± 0.0 7.7± 0.1 8.0± 0.0 7.0± 0.0 7.8± 0.0 7.8± 0.0 9.1± 0.0 0.6± 0.0

B.3 Corrupted CIFAR-10
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B.3.1 ALC over evaluation metrics across different AL methods

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 20.0± 0.4 0.2± 0.0 20.8± 0.4 11.2± 0.4 20.1± 0.4 11.4± 0.5 20.0± 0.4 20.0± 0.4 39.3± 0.2 24.7± 0.4

Margin 22.4± 0.2 0.6± 0.1 23.0± 0.2 12.7± 0.1 22.5± 0.2 13.1± 0.4 22.4± 0.2 22.4± 0.2 41.0± 0.1 22.4± 0.2

Confidence 23.1± 0.3 0.9± 0.1 23.7± 0.2 13.5± 0.2 23.2± 0.3 14.1± 0.3 23.1± 0.3 23.1± 0.3 41.6± 0.1 21.8± 0.3

Entropy 23.1± 0.2 0.9± 0.1 23.7± 0.2 13.5± 0.1 23.2± 0.2 14.2± 0.2 23.1± 0.2 23.1± 0.2 41.6± 0.1 21.8± 0.2

CoreSet 23.2± 0.3 0.7± 0.1 23.7± 0.3 13.1± 0.4 23.3± 0.3 13.6± 0.5 23.2± 0.3 23.2± 0.3 41.5± 0.2 21.3± 0.3

BADGE 22.7± 0.3 0.8± 0.1 23.3± 0.2 13.1± 0.2 22.8± 0.3 13.5± 0.2 22.7± 0.3 22.7± 0.3 41.3± 0.2 22.0± 0.3

Cluster-Margin 22.3± 0.3 0.7± 0.0 22.9± 0.3 12.9± 0.2 22.4± 0.3 13.2± 0.4 22.3± 0.3 22.3± 0.3 41.0± 0.2 22.4± 0.3

DIAL 23.8± 0.3 1.0± 0.2 24.3± 0.3 13.7± 0.2 23.9± 0.3 14.4± 0.3 23.8± 0.3 23.8± 0.3 42.1± 0.2 20.8± 0.3
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B.3.2 ALC over evaluation metrics across different number of checkpoints

|M| Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

2 21.8± 0.3 0.5± 0.1 22.4± 0.3 12.3± 0.3 21.9± 0.3 12.6± 0.3 21.8± 0.3 21.8± 0.3 40.6± 0.2 22.6± 0.3

5 23.4± 0.3 1.2± 0.2 23.9± 0.2 13.6± 0.2 23.5± 0.2 14.3± 0.3 23.4± 0.3 23.4± 0.3 41.8± 0.1 21.3± 0.2

20 23.6± 0.2 1.2± 0.3 24.2± 0.2 13.6± 0.3 23.7± 0.2 14.4± 0.3 23.6± 0.2 23.6± 0.2 42.0± 0.1 21.0± 0.2

50 23.8± 0.3 1.0± 0.2 24.3± 0.3 13.7± 0.2 23.9± 0.3 14.4± 0.3 23.8± 0.3 23.8± 0.3 42.1± 0.2 20.8± 0.3

B.3.3 ALC over evaluation metrics across different query batch size and AL methods

Algorithm k Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Margin
100

44.1± 0.4 1.1± 0.1 45.3± 0.3 25.0± 0.6 44.3± 0.4 25.9± 0.8 44.1± 0.4 44.1± 0.4 81.6± 0.3 46.0± 0.5

DIAL 46.9± 0.3 1.8± 0.1 47.9± 0.3 27.0± 0.5 47.1± 0.3 28.2± 0.3 46.9± 0.3 46.9± 0.3 83.8± 0.2 43.0± 0.4

Margin
200

22.4± 0.2 0.6± 0.1 23.0± 0.2 12.7± 0.1 22.5± 0.2 13.1± 0.4 22.4± 0.2 22.4± 0.2 41.0± 0.1 22.4± 0.2

DIAL 23.8± 0.3 1.0± 0.2 24.3± 0.3 13.7± 0.2 23.9± 0.3 14.4± 0.3 23.8± 0.3 23.8± 0.3 42.1± 0.2 20.8± 0.3

Margin
250

17.8± 0.2 0.6± 0.2 18.4± 0.2 10.2± 0.2 17.9± 0.2 10.6± 0.2 17.8± 0.2 17.8± 0.2 32.8± 0.1 17.8± 0.2

DIAL 19.0± 0.1 0.9± 0.1 19.4± 0.1 11.1± 0.1 19.1± 0.1 11.5± 0.1 19.0± 0.1 19.0± 0.1 33.7± 0.1 16.6± 0.1

Margin
500

8.9± 0.1 0.3± 0.1 9.2± 0.1 5.2± 0.1 9.0± 0.1 5.3± 0.2 8.9± 0.1 8.9± 0.1 16.4± 0.1 8.7± 0.1

DIAL 9.5± 0.1 0.4± 0.0 9.7± 0.1 5.6± 0.1 9.5± 0.1 5.7± 0.2 9.5± 0.1 9.5± 0.1 16.9± 0.0 8.1± 0.1

Margin
1000

4.5± 0.0 0.1± 0.0 4.6± 0.0 2.6± 0.1 4.5± 0.0 2.7± 0.1 4.5± 0.0 4.5± 0.0 8.2± 0.0 4.2± 0.0

DIAL 4.7± 0.0 0.2± 0.0 4.8± 0.0 2.8± 0.1 4.7± 0.0 2.9± 0.1 4.7± 0.0 4.7± 0.0 8.4± 0.0 4.0± 0.0

B.4 Some analysis

B.4.1 DIAL upweights the minority subgroups
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Figure B.2: The change of the distribution of DL over (Y, S) relative to the initial labelled pool across
different AL methods. The subgroups (L , W) and (W , L) correspond landbird in water and waterbird in land
respectively. Similarly, the subgroups (�B , F) and (B , M) correspond to female with non-black hair and male
with black hair, respectively.

Discussion. Figure B.2 shows that AL effectively enhance the representation of underrepresented subgroups.
As more samples are queried, the proportion of these underrepresented (or overrepresented) subgroups shifts:
underrepresented subgroups increase while overrepresented ones decrease. Notably, DIAL demonstrates a low
preference for querying the overrepresented subgroups, such as “landbird in land” for the Waterbirds dataset
and “non-black hair female” for CelebA, surpassing other AL methods in this aspect.
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Figure B.3: (top) Waterbirds (middle) CelebA (bottom) Corrupted CIFAR-10. The horizontal dashed
line indicates the passive performance (ERM on the compete labelled training set). The y-axis and x-axis
represent the performance and the portion of labelled pool, respectively.

B.4.2 Comparison of performance with passive setting

Discussion. Figure B.3 shows the performance comparison between active and passive settings. Each
performance value for the AL methods is the peak achieved throughout the run. The results indicate
that most AL methods consistently outperform the ERM baseline with significantly fewer samples across
various performance metrics, except for Corrupted CIFAR-10. Especially, DIAL stands out as the most
sample-efficient AL method among the baselines (i.e., located at the top-left corner of the plot, indicating
high performance with the small number of samples), particularly for the worst-group accuracy metric.

B.4.3 Comparison of performance with SOTA

Dataset Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Waterbirds

GroupDRO 100.0 86.9± 0.9 73.1± 0.4 80.7± 1.1 66.1± 2.2 82.8± 0.9 74.4± 1.2 86.3± 0.5 86.3± 0.5 94.0± 0.3 10.5± 0.8

JTT 100.0 88.9± 0.6 71.2± 0.5 83.2± 0.8 71.4± 1.6 84.7± 0.6 76.8± 0.8 86.8± 0.2 86.8± 0.2 94.2± 0.1 9.2± 0.3

LfF 100.0 86.6± 0.5 75.0± 0.7 80.3± 0.6 65.1± 1.1 82.5± 0.5 74.0± 0.7 86.3± 0.3 86.3± 0.3 93.4± 0.2 10.0± 0.8

DIAL 12.8 87.4± 0.6 76.4± 1.1 81.2± 0.8 66.5± 1.1 83.5± 0.8 75.4± 1.2 87.3± 0.9 87.3± 0.9 94.2± 0.7 10.1± 0.6

CelebA

GroupDRO 100.0 88.5± 0.4 82.8± 2.7 85.0± 0.8 76.2± 2.5 85.9± 0.3 79.8± 0.3 86.8± 0.6 87.1± 0.7 95.0± 0.2 4.0± 1.1

JTT 100.0 88.7± 0.4 73.8± 6.5 86.7± 0.9 82.4± 3.7 85.3± 1.1 78.1± 2.1 84.2± 2.3 84.4± 2.3 95.2± 0.1 4.7± 1.3

LfF 100.0 80.0± 1.1 64.8± 7.1 75.5± 1.3 61.7± 3.3 75.9± 1.5 66.1± 3.2 77.3± 3.0 77.7± 3.2 87.6± 1.4 6.8± 2.1

DIAL 13.5 87.0± 0.2 70.6± 2.8 84.3± 0.5 79.0± 1.6 83.1± 0.4 74.9± 0.8 82.0± 0.9 82.1± 0.9 92.9± 0.1 9.2± 0.3

Corrupted CIFAR-10

GroupDRO 100.0 23.3± 1.2 – 23.3± 1.9 – 20.6± 1.5 – 23.0± 1.1 23.2± 1.2 68.0± 2.2 7.4± 0.8

JTT 100.0 23.8± 1.1 – 20.3± 0.8 – 18.2± 0.9 – 23.5± 1.0 23.6± 1.0 71.1± 1.1 4.0± 0.7

LfF 100.0 21.4± 1.4 – 22.2± 2.9 – 17.2± 1.8 – 21.2± 1.3 21.4± 1.3 67.8± 3.6 7.5± 6.4

DIAL 16.6 56.4± 0.9 – 56.8± 0.7 – 56.4± 0.8 – 56.1± 0.9 56.4± 0.9 90.0± 0.6 30.5± 1.1

Table B.2: Performance summary of DIAL and SOTA algorithms.7

7The values of SOTA on Waterbirds are directly taken from Yang et al. (2023), with subscripts denoting the standard error.
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Discussion. Table B.2 presents the performance comparison between DIAL and SOTA methods: JTT (Liu
et al., 2021), GroupDRO (Sagawa et al., 2020) and LfF (Nam et al., 2020). For a fair comparison, we followed
the same protocol as Yang et al. (2023), performing random hyperparameter searches with 16 trials and
reporting the best performance (based on the validation set without spurious attributes) over 5 trials with
different random seeds. The performance of DIAL is reported at the selected step (based on the validation
set), while SOTA methods report results over the full training set.

DIAL outperforms all SOTA baselines on the Waterbirds and Corrupted CIFAR-10 datasets, achieving the
highest worst-group accuracy and highest average accuracy, respectively, with fewer samples. However, on
CelebA, GroupDRO demonstrates superior performance, particularly in terms of worst-group accuracy. This
is because GroupDRO, a robust optimization framework, explicitly minimises the worst-group expected
accuracy. In the absence of spurious attribute annotations, the worst-group defaults to the worst class-wise
scenario, i.e., the lowest recall across all classes. Due to class imbalance in the CelebA dataset (as shown in
Figure A.1), where the two minority subgroups fall into the minority class, GroupDRO effectively improves
robustness for these minority subgroups by optimising for the worst-class scenario.

Nonetheless, on CelebA, DIAL still outperforms LfF and performs close to JTT in terms of worst-group
accuracy, despite using far fewer samples. For average accuracy, DIAL achieves 87%, which is comparable to
JTT (88.7%) and GroupDRO (88.5%). This comparison highlights that DIAL is a competitive AL method
that can achieve robustness performance under subpopulation shifts, and in some cases, outperforms the
SOTA methods.

C Early stopping active learning

The stopping criteria in AL is used to terminate the AL loops, balancing the performance and labeling cost.
Since this is not main scope in this work, we only present the early stopped results retrospectively based
on some metrics proposed by Yang et al. (2023): (1) test worst-group accuracy (C.1): oracle criteria based
on the worst-group accuracy on the test split. (2) validation worst-group accuracy (C.2): criteria based on
the worst-group accuracy on the validation split, assuming the spurious attributes are known. (3) validation
average accuracy (C.3): criteria based on the average accuracy on the validation split, assuming the spurious
attributes are unknown.

C.1 Test worst-group accuracy

C.1.1 Waterbirds

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 42.5 82.4± 1.3 55.4± 4.4 75.1± 1.5 58.1± 2.5 76.8± 1.5 65.3± 2.2 79.6± 1.5 79.6± 1.5 89.0± 1.1 11.9± 1.1

Margin 10.4 86.9± 1.1 69.5± 2.9 80.6± 1.5 66.8± 2.8 82.4± 1.2 73.6± 1.7 85.1± 0.9 85.1± 0.9 92.8± 0.5 8.6± 0.9

Confidence 10.4 87.1± 0.6 67.1± 3.4 80.9± 0.8 67.6± 1.9 82.5± 0.7 73.5± 0.9 84.7± 0.7 84.7± 0.7 92.6± 0.3 8.2± 0.6

Entropy 10.4 86.8± 1.5 68.2± 3.3 80.5± 1.9 66.8± 3.8 82.2± 1.6 73.2± 2.3 84.8± 1.1 84.8± 1.1 92.6± 0.7 8.5± 1.4

BAIT 13.5 87.1± 0.7 68.0± 1.2 80.9± 1.0 67.4± 1.8 82.6± 0.9 73.7± 1.2 85.1± 0.6 85.1± 0.6 92.8± 0.4 8.7± 0.6

CoreSet 36.4 79.3± 5.4 47.5± 14.4 71.7± 5.9 53.0± 9.2 73.1± 6.3 60.2± 8.8 76.0± 6.2 76.0± 6.2 85.7± 5.1 13.9± 3.4

Cluster-Margin 21.9 86.6± 0.6 66.2± 0.6 80.2± 0.8 66.2± 1.5 81.9± 0.7 72.7± 0.9 84.4± 0.4 84.4± 0.4 92.5± 0.2 9.5± 0.5

BADGE 14.1 87.3± 0.5 68.2± 1.1 81.1± 0.7 67.8± 1.5 82.8± 0.5 74.0± 0.7 85.2± 0.2 85.2± 0.2 92.9± 0.2 8.6± 0.6

DIAL 12.8 87.0± 1.0 74.0± 1.7 80.7± 1.1 66.0± 2.3 82.8± 1.0 74.4± 1.3 86.4± 0.5 86.4± 0.5 93.5± 0.4 9.4± 1.0

C.1.2 CelebA

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 14.5 84.7± 0.4 59.5± 3.1 81.7± 0.4 76.3± 1.2 79.5± 1.0 69.2± 1.8 77.8± 1.4 78.0± 1.3 91.0± 0.4 6.8± 0.9

Margin 15.0 86.0± 0.2 64.3± 3.0 83.3± 0.3 78.4± 1.2 81.4± 0.5 72.1± 0.9 79.8± 0.8 80.0± 0.8 92.2± 0.2 4.7± 1.0

Confidence 15.0 86.0± 0.3 65.3± 3.1 83.2± 0.4 78.0± 0.7 81.5± 0.5 72.4± 0.8 80.1± 0.6 80.2± 0.6 92.2± 0.3 5.0± 0.7

Entropy 15.0 86.0± 0.2 65.0± 3.5 83.2± 0.2 78.0± 1.3 81.5± 0.6 72.4± 1.1 80.1± 1.0 80.2± 1.0 92.2± 0.1 4.8± 0.9

BAIT 12.8 86.0± 0.2 64.1± 2.1 83.3± 0.3 78.1± 0.9 81.5± 0.4 72.3± 0.8 80.0± 0.7 80.1± 0.7 92.3± 0.1 5.0± 0.5

CoreSet 10.8 82.8± 0.9 55.2± 4.3 79.1± 1.2 72.4± 2.1 76.9± 1.3 65.2± 2.2 75.1± 1.5 75.4± 1.5 88.8± 1.0 5.9± 1.0

Cluster-Margin 15.0 85.9± 0.2 64.6± 2.2 83.1± 0.4 77.9± 1.3 81.4± 0.4 72.2± 0.7 79.9± 0.7 80.1± 0.7 92.1± 0.3 5.1± 0.6

BADGE 15.0 86.2± 0.3 64.1± 3.2 83.7± 0.2 79.0± 0.7 81.6± 0.6 72.5± 1.0 80.1± 0.8 80.2± 0.8 92.4± 0.2 5.4± 0.5

DIAL 11.0 85.6± 0.2 64.5± 2.3 82.9± 0.2 78.0± 0.5 80.9± 0.3 71.3± 0.6 79.2± 0.5 79.4± 0.5 91.8± 0.1 6.2± 0.2
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C.2 Validation worst-group accuracy

C.2.1 Waterbirds

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 41.9 82.0± 1.4 55.2± 2.9 74.7± 1.5 57.2± 2.6 76.3± 1.5 64.8± 2.0 79.4± 1.3 79.4± 1.3 88.8± 1.1 12.3± 1.3

Margin 10.4 86.9± 1.1 69.5± 2.9 80.6± 1.5 66.8± 2.8 82.4± 1.2 73.6± 1.7 85.1± 0.9 85.1± 0.9 92.8± 0.5 8.6± 0.9

Confidence 10.4 87.1± 0.6 67.1± 3.4 80.9± 0.8 67.6± 1.9 82.5± 0.7 73.5± 0.9 84.7± 0.7 84.7± 0.7 92.6± 0.3 8.2± 0.6

Entropy 10.4 86.8± 1.5 68.2± 3.3 80.5± 1.9 66.8± 3.8 82.2± 1.6 73.2± 2.3 84.8± 1.1 84.8± 1.1 92.6± 0.7 8.5± 1.4

BAIT 13.5 87.1± 0.7 68.0± 1.2 80.9± 1.0 67.4± 1.8 82.6± 0.9 73.7± 1.2 85.1± 0.6 85.1± 0.6 92.8± 0.4 8.7± 0.6

CoreSet 36.4 79.3± 5.4 47.5± 14.4 71.7± 5.9 53.0± 9.2 73.1± 6.3 60.2± 8.8 76.0± 6.2 76.0± 6.2 85.7± 5.1 13.9± 3.4

Cluster-Margin 21.3 86.7± 0.7 66.0± 1.6 80.4± 0.9 66.7± 1.7 82.0± 0.8 72.9± 1.1 84.4± 0.6 84.4± 0.6 92.5± 0.3 9.4± 0.5

BADGE 14.1 87.3± 0.5 68.2± 1.1 81.1± 0.7 67.8± 1.5 82.8± 0.5 74.0± 0.7 85.2± 0.2 85.2± 0.2 92.9± 0.2 8.6± 0.6

DIAL 12.8 87.0± 1.0 74.0± 1.7 80.7± 1.1 66.0± 2.3 82.8± 1.0 74.4± 1.3 86.4± 0.5 86.4± 0.5 93.5± 0.4 9.4± 1.0

C.2.2 CelebA

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 14.5 84.7± 0.4 59.5± 3.1 81.7± 0.4 76.3± 1.2 79.5± 1.0 69.2± 1.8 77.8± 1.4 78.0± 1.3 91.0± 0.4 6.8± 0.9

Margin 14.5 86.1± 0.3 64.1± 2.5 83.4± 0.2 78.3± 0.6 81.6± 0.5 72.4± 1.0 80.1± 0.8 80.2± 0.8 92.2± 0.2 4.8± 0.5

Confidence 15.0 86.0± 0.3 65.3± 3.1 83.2± 0.4 78.0± 0.7 81.5± 0.5 72.4± 0.8 80.1± 0.6 80.2± 0.6 92.2± 0.3 5.0± 0.7

Entropy 13.3 85.9± 0.1 64.4± 1.1 82.9± 0.3 77.3± 0.6 81.4± 0.2 72.3± 0.3 80.1± 0.2 80.3± 0.2 92.0± 0.2 4.9± 0.5

BAIT 14.8 86.1± 0.2 64.1± 2.3 83.4± 0.4 78.3± 1.4 81.6± 0.5 72.5± 1.0 80.1± 0.9 80.3± 0.9 92.4± 0.1 4.9± 0.6

CoreSet 10.8 82.8± 0.9 55.2± 4.3 79.1± 1.2 72.4± 2.1 76.9± 1.3 65.2± 2.2 75.1± 1.5 75.4± 1.5 88.8± 1.0 5.9± 1.0

Cluster-Margin 15.0 85.9± 0.2 64.6± 2.2 83.1± 0.4 77.9± 1.3 81.4± 0.4 72.2± 0.7 79.9± 0.7 80.1± 0.7 92.1± 0.3 5.1± 0.6

BADGE 14.5 86.1± 0.3 63.8± 3.4 83.5± 0.2 78.6± 0.5 81.5± 0.6 72.4± 1.0 80.0± 0.8 80.1± 0.8 92.4± 0.1 5.4± 0.6

DIAL 11.0 85.6± 0.2 64.5± 2.3 82.9± 0.2 78.0± 0.5 80.9± 0.3 71.3± 0.6 79.2± 0.5 79.4± 0.5 91.8± 0.1 6.2± 0.2

C.3 Validation average accuracy

C.3.1 Waterbirds

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 42.5 82.4± 1.3 55.4± 4.4 75.1± 1.5 58.1± 2.5 76.8± 1.5 65.3± 2.2 79.6± 1.5 79.6± 1.5 89.0± 1.1 11.9± 1.1

Margin 17.7 87.9± 0.7 65.1± 2.8 82.0± 1.0 70.0± 2.2 83.3± 0.8 74.5± 1.0 85.0± 0.6 85.0± 0.6 93.0± 0.3 8.3± 0.7

Confidence 13.5 87.6± 0.8 65.4± 2.3 81.6± 1.0 69.1± 2.0 83.0± 0.9 74.1± 1.2 84.9± 0.7 84.9± 0.7 92.9± 0.3 7.9± 0.7

Entropy 11.0 87.6± 1.0 67.1± 4.4 81.5± 1.3 68.7± 2.0 83.0± 1.3 74.2± 1.9 85.1± 1.4 85.1± 1.4 92.8± 0.6 7.8± 0.6

BAIT 11.6 87.7± 0.9 65.5± 4.1 81.7± 1.2 69.4± 2.5 83.0± 1.1 74.1± 1.5 84.8± 1.0 84.8± 1.0 92.6± 0.5 7.9± 0.8

CoreSet 38.9 80.0± 5.2 44.7± 13.8 72.3± 5.9 54.4± 9.3 73.6± 6.2 60.6± 8.7 75.9± 6.0 75.9± 6.0 85.9± 4.8 13.2± 3.5

Cluster-Margin 24.9 87.0± 0.6 64.7± 2.3 80.7± 0.8 67.6± 1.5 82.3± 0.7 73.1± 0.9 84.4± 0.6 84.4± 0.6 92.6± 0.3 9.1± 0.5

BADGE 13.5 87.6± 0.3 66.4± 1.2 81.5± 0.4 69.0± 0.8 83.0± 0.3 74.2± 0.4 85.0± 0.2 85.0± 0.2 92.9± 0.2 8.1± 0.3

DIAL 20.7 88.1± 0.5 69.2± 1.5 82.2± 0.8 69.7± 1.7 83.7± 0.6 75.3± 0.7 85.9± 0.3 85.9± 0.3 93.5± 0.2 8.2± 0.5

C.3.2 CelebA

Algorithm % of samples Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

Random 14.8 84.8± 0.3 59.3± 1.1 81.8± 0.5 76.4± 1.1 79.6± 0.4 69.4± 0.6 77.9± 0.5 78.1± 0.5 91.0± 0.3 6.6± 0.5

Margin 14.5 86.1± 0.3 64.1± 2.5 83.4± 0.2 78.3± 0.6 81.6± 0.5 72.4± 1.0 80.1± 0.8 80.2± 0.8 92.2± 0.2 4.8± 0.5

Confidence 14.2 85.9± 0.3 63.9± 2.5 83.3± 0.2 78.4± 0.6 81.2± 0.6 71.9± 1.1 79.7± 0.9 79.8± 0.9 92.1± 0.3 5.3± 0.5

Entropy 14.5 86.0± 0.2 63.9± 2.2 83.3± 0.2 78.1± 0.7 81.5± 0.4 72.3± 0.8 80.0± 0.6 80.2± 0.6 92.1± 0.1 4.7± 0.5

BAIT 14.2 86.1± 0.2 63.6± 2.2 83.5± 0.2 78.7± 0.7 81.6± 0.5 72.4± 0.9 80.0± 0.7 80.1± 0.7 92.3± 0.2 5.0± 0.6

CoreSet 7.8 82.8± 1.1 52.2± 3.3 79.6± 1.7 74.2± 3.0 76.4± 1.4 64.0± 2.1 74.3± 1.4 74.5± 1.3 88.8± 1.4 6.5± 0.9

Cluster-Margin 14.8 86.0± 0.1 64.1± 0.9 83.2± 0.3 78.1± 0.9 81.4± 0.1 72.2± 0.3 79.9± 0.3 80.0± 0.3 92.2± 0.3 5.0± 0.5

BADGE 14.5 86.1± 0.3 63.8± 3.4 83.5± 0.2 78.6± 0.5 81.5± 0.6 72.4± 1.0 80.0± 0.8 80.1± 0.8 92.4± 0.1 5.4± 0.6

DIAL 14.8 85.9± 0.2 63.7± 1.8 83.6± 0.2 79.4± 0.6 81.1± 0.3 71.5± 0.6 79.2± 0.5 79.4± 0.5 92.2± 0.1 6.5± 0.5
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