
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIVERSE TEXT DECODING VIA ITERATIVE
REWEIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have led to impressive results
in text generation. However, current decoding methods still lack diversity when
combined with popular sampling techniques. We propose a Reweighting-based
Iterative DEcoding (OverRIDE) approach that dynamically adjusts the decoding
process with history responses. Our method fine-tunes auxiliary output heads iter-
atively on previously generated sequences to capture and suppress semantic pat-
terns that appear in the history responses. This inference-time training process
only incurs minimal loss of efficiency. We conduct extensive experiments on var-
ious tasks, including code generation, mathematical reasoning and story genera-
tion, demonstrating that OverRIDE increases output diversity while maintaining
quality. We implement OverRIDE on LLM serving systems like vLLM, achieving
a 6.4% throughput loss for 72B models under parallel decoding.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have brought significant improvements to ap-
plications in natural language processing, such as creative writing (Fan et al., 2018; Brown et al.,
2020; Stiennon et al., 2020; Rafailov et al., 2023), mathematical reasoning(Cobbe et al., 2021; Yu
et al., 2023; Luo et al., 2023; Romera-Paredes et al., 2024), and code generation (Li et al., 2022b;
Roziere et al., 2023; Li et al., 2023; El-Kishky et al., 2025). To enhance the quality and diversity of
LLM generations, various sampling techniques have been proposed. For instance, top-k sampling
(Fan et al., 2018) and top-p nucleus sampling (Holtzman et al., 2019) work by filtering out low-
confidence tokens in the distribution tail, which helps ensure the overall quality of the generated
text; Temperature sampling (Ackley et al., 1985) controls the randomness of the sampling process,
allowing for more creative outputs.

Despite these advances in sampling techniques, current generation strategies still struggle to pro-
duce adequately diverse outputs. This limitation comes from the autoregressive nature of mod-
ern language models. The standard decoding process for autoregressive language models involves
sequentially predicting each token conditioned on all previously generated tokens, creating a path-
dependent generation process. In practice, this often leads to responses that share similar beginnings,
and only diverge toward the end, as illustrated in Figure 1. Often, the generated samples are struc-
turally similar, with only minor variations in local details. For example, in code generation tasks,
models may produce different variable names or formatting styles, but the underlying logic remains
the same, which leads to the same mistake acoss multiple generations.

The issue lies in the decoding strategy: given the same context, the same next-token probability
distribution is applied at every round of response, regardless of what has been generated in previous
rounds. Although various sampling methods adjust this distribution by, for example, truncating the
tail or rescaling the distribution, this process is done only at the token level independently. While
these sampling-based approaches enable stochastic decoding, they fail to learn from the history of
generated samples, and lead to redundant exploitation of high-probability regions in the generation
space. This often causes degeneration problems like repetitions or unfavorable outputs. (Holtzman
et al., 2019; Welleck et al., 2019; Su et al., 2022)

To address the aforementioned limitation, we introduce OverRIDE (Reweighting-based Iterative
DEcoding), a decoding method that dynamically adjusts token probabilities across different de-
coding rounds based on previously generated responses. OverRIDE iteratively fine-tunes a guide

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Next-Token Distribution

 To determine how many possible numbers Rick and Steve could be thinking of ...

Standard Decoding

 To solve this problem, we first need to identify all the positive factors ...

 To solve this problem, we need to determine the common factors of 14 and 42 ...

 To determine how many possible numbers Rick and Steve could be thinking of ...

OverRIDE

 Rick is thinking of a positive factor of 14, and Steve is thinking of a positive ...

 14 has factors $1, 2, 7, 14$ and 42 has factors $1, 2, 3, 6, 7, 14, 21, 42$...

To Rick

Round 2

$ Let First We Steve

Rick

Round 3

To $ First We SteveLet

To Rick $ Steve

Round 1

R
ew

ei
gh

tin
g Let First We

Figure 1: Standard autoregressive decoding often leads to similar outputs. OverRIDE dynamically
reweights token probabilities by learning from the patterns of previous generations.

model on previously generated samples to identify common semantic patterns. This guide model
is then used to reweight the next-token distribution of the original model by suppressing the prob-
ability of tokens that lead to previously seen patterns. In such a way, we encourage exploration of
less-traveled paths in the generation space. By learning from previous generations, OverRIDE can
effectively suppress repetitive patterns, leading to more diverse outputs, as illustrated in Figure 1.
Although the training of the auxiliary model is performed at inference time, it is relatively efficient
compared to the cost of autoregressively generating an entire response. Additionally, OverRIDE can
be combined with existing sampling methods to further improve the generation process.

Furthermore, we design a parallel version of OverRIDE, which allows seamless integration with
LLM serving systems like vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024), and benefits
from the efficiency of parallel decoding. We restrict the trainable parameters to a tiny amount in the
output head, allowing for minimal efficiency loss. We also synchronize the sampling and fine-tuning
processes, which makes it compatible with the decoding mechanism of LLM serving systems.

We evaluate OverRIDE on a variety of tasks, including code generation (HumanEval (Chen et al.,
2021b)), mathematical reasoning (MATH500 (Hendrycks et al., 2021), GSM8K (Cobbe et al.,
2021)) and story generation (CCNews (Common Crawl, 2007)). Our experiments demonstrate that
OverRIDE improves the response diversity while maintaining or improving quality. Additionally,
OverRIDE prevents models from generating over-confident responses. We further analyze the de-
coding dynamics of OverRIDE, showing how it explores high- and low-probability regions in the
generation space to achieve better diversity. We implement OverRIDE on vLLM (Kwon et al.,
2023), and achieve a 6.4% throughput loss for 72B models under parallel decoding. We test on
models ranging from 3B to 72B, and verify that OverRIDE is effective on models of different sizes.

2 METHODOLOGY

2.1 OVERVIEW

Let Mp be a pretrained LLM, and C = {ci}Ni=1 be a set of contexts. For each context ci, our goal
is to generate T diverse responses. As illustrated in Figure 2, at each round t ∈ {1, 2, ..., T}, we: 1)
Generate a new response for each context; 2) Fine-tune a guide model Mqt on previously generated
responses; 3) Use Mqt to reweight the next-token distribution of Mp, producing the reweighted
distribution pt; 4) Use pt to generate new responses in the next round. The core idea is that the
reweighted distribution should be close enough to the next-token distribution of the original model
Mp, while avoiding the distribution that would likely result in previously generated responses. In
this way, we encourage the model to explore less-traveled paths at every decoding round.

In the following sections, we explain each component of OverRIDE: Section 2.2 describes how
to capture common patterns from history responses by fine-tuning the guide model Mqt ; Section
2.3 describes the reweighting mechanism that adjusts token probabilities. Section 2.4 describes
a parallel implementation of OverRIDE, which allows for efficient parallel decoding, and can be
directly integrated with existing LLM serving systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

WeTo Rick $ SteveLet First

WeTo Rick $ SteveLet First

Round

WeTo Rick $ SteveLet First

Reweight
Rick and Steve are each thinking of a positive
factor of 14 and 42 respectively. If Rick and
Steve are thinking of the same number, how many
possible numbers could they be thinking of ?

Context

Response

Rick is thinking of a positive factor of 14, and
Steve is thinking of a positive factor of 42.
We need to find how many positive numbers are
common factors of both 14 and 42. First, let's
list the positive factors of 14:

Next, let's list the positive factors of 42: ...

Response Set

{Rick is thinking of a positive factor ... could they be thinking of?

Rick is thinking of ... Therefore, the final answer is:Rick is thinking of ... Therefore, the final answer is: }Fine-tune
Round :
Round :

Rick is thinking of a positive factor ... could they be thinking of?Rick is thinking of a positive factor ... could they be thinking of?Rick and Steve are each thinking of ... could they be thinking of ?

Rick is thinking of a positive ... Therefore, the final answer is:

§

§

Figure 2: The overall framework of OverRIDE, implemented sequentially.

2.2 CAPTURE HISTORY PATTERNS

A standard autoregressive language model Mp predicts the next token with probability p(xi | x<i),
where xi is the i-th token in the sequence, and x<i is the sequence of tokens before xi. In the initial
round, the model generates a response ri for each context ci by sampling each token sequentially
from the original distribution p(xi | x<i). The generated responses and corresponding contexts are
stored in a response set D = {(ci, ri)}Ni=1. Since no prior generations exist at the initial round, we
decode responses with the original model to explore its default behavior and high-probability paths.

Starting from the second round, we fine-tune a guide model Mqt from the original model Mp, using
the previously generated responses in D:

Lqt = −
1

|D|
∑

(c,r)∈D

log qt(r | c). (1)

This guide model Mqt learns to predict the common semantic patterns that appeared in previous
samples. The key insight here is that we cannot directly use previously generated samples to guide
new generations, since the sampling process is non-deterministic, and responses vary at each round.
By fine-tuning a guide model on previous responses, we enable it to learn and generalize the common
patterns that have emerged across samples. This allows us to capture and suppress these patterns for
more diverse responses in subsequent rounds.

2.3 REWEIGHTING THE NEXT-TOKEN DISTRIBUTION

After fine-tuning the guide model Mqt , we use it to reweight the original model’s next-token dis-
tribution. We construct a reweighted probability distribution pt(xi | x<i) that leverages both the
original model Mp and the guide model Mpt

:

pt(xi | x<i) =
1

Z

(
p(xi | x<i)

qt(xi | x<i)

)λ

p(xi | x<i), (2)

where p(xi | x<i) is the next-token distribution from the original model, qt(xi | x<i) is the next-
token distribution from the guide model, λ is a hyperparameter that controls the strength of reweight-
ing, and Z is the normalization term.

The intuition behind this reweighting mechanism is that since the guide model Mpt
predicts pat-

terns that appear in previous samples, if it assigns higher probability to a token, the weighting
ratio p(xi|x<i)

qt(xi|x<i)
becomes smaller, reducing the probability of selecting this token in a new round.

Conversely, tokens that were less frequently chosen in previous rounds receive relatively higher
probability, encouraging exploration of alternative responses. The hyperparameter λ controls the
diversity-quality trade-off. This reweighting process is performed at each decoding round, allowing
the model to adaptively adjust its generation strategy based on the history of generated responses.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.4 PARALLEL IMPLEMENTATION FOR LLM SERVING SYSTEMS

The described OverRIDE method operates sequentially, requiring all responses to be collected and
the guide model to be fine-tuned before proceeding to the next round. However, modern LLM serv-
ing systems like vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024) have implemented
parallel decoding that significantly reduces sampling time and computational overhead. These effi-
ciency gains primarily come from the reuse of the KV cache. For example, when generating multiple
responses for the same context, the KV cache for the context only needs to be computed once, and
subsequent sampled tokens or generation paths can also be reused if they are identical.

Transformer Layers

Output
Head

hidden states

logits

Softmax

Frozen during inference

Update during inference

Figure 3: Architecture of a sin-
gle output head. h is the dimen-
sion of the hidden states, r is the
rank of the adapter, and v is the
dimension of the vocabulary.

Transformer Layers

hidden states

Next
Token

Sampler

H
ead 1

H
ead 2

H
ead t

H
ead t+1

H
ead T

... ...

Reweight Sample

Fine-tune

Figure 4: Decoding process at
round t. Head 1 is the original
head. Head t consists of the orig-
inal head and the adapter. Here,
we simplify them as a whole.

We now describe our architectural and procedural improvements
for parallelizing OverRIDE. Our design is directly compatible
with existing LLM serving systems, as demonstrated by our
implementation, which maintains high-performance parallel de-
coding without compromising the method’s core objective of
generating diverse responses.

Output head adapters To minimize the efficiency loss from
fine-tuning, we restrict the trainable parameters to the output
heads. As shown in Figure 3, we set a low-rank adapter for each
decoding round, with a structure and training approach similar to
LoRA (Hu et al., 2022). This allows us to compute both pt and
qt simultaneously in a single forward pass given hidden states h:

logitp = Wh, and logitqt = Wh+W t
BW

t
Ah. (3)

Intuitively, the adapter captures the difference between the
model’s original distribution and the categorical distribution of
the actual sampled token. In the next decoding round, this dif-
ference is suppressed by a factor of λ to avoid previous patterns.
Since the guide model Mqt only drifts slightly from the original
distribution, this tiny amount of trainable parameters is sufficient
to capture the difference.

Additionally, the use of adapters come with a satisfactory bene-
fit: as the model size grows larger, the efficiency loss gets even
smaller, since the adapter takes up a smaller proportion of the
total parameters. We conduct experiments on different model
sizes, and show that this method is still effective.

Synchronized fine-tuning The original OverRIDE method
requires collecting all the sampled responses before fine-tuning,
which is not acceptable in the case of parallel decoding. To solve
this problem, we propose to perform fine-tuning right after the
sampling process. As shown in Figure 4, at the t-th round, we
use head t to compute the reweighted distribution pt and sam-
ple the next token. Then, we update the adapter weights in head
t+1 using cross entropy loss with respect to the sampled token,
which is the same as Equation 1 but at the token level.

This design aligns with the implementation of LLM serving sys-
tems. To perform parallel decoding, the same context is dupli-
cated into T identical requests, and sent to the model for exe-
cution. These requests are consecutively processed in order to
reuse KV cache in the memory. While this original implementa-
tion doesn’t require an execution order, we sort these requests by
the order of their round number. In this way, after the t-th request
is processed by head t, head t + 1 is updated subsequently, and
is immediately used to perform the t + 1-th round of decoding.
The parallel version of OverRIDE is described in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 OverRIDE: Reweighting-based Iterative Decoding

Input: model Mp; context c; number of rounds T ; reweighting parameter λ.
1: for t← 1 to T do
2: if t = 1 then
3: r1 ∼ p(· | c) ▷ Sample response with the original model
4: else
5: pt(xi | x<i) = normalize(

(
p(xi|x<i)
qt(xi|x<i)

)λ

p(xi | x<i)) ▷ Reweighting
6: rt ∼ pt(· | c) ▷ Sample response with the reweighted distribution
7: end if
8: if t < T then
9: Mqt+1

← train(Mqt+1
,Lqt , {(c, rt)}) ▷ Fine-tune head t+1 with the sampled response

10: end if
11: end for
12: Output: Diverse responses {r1, r2, . . . , rT }.

3 EXPERIMENTS AND ANALYSIS

3.1 DATASETS AND METRICS

Datasets We evaluate OverRIDE’s effectiveness across different domains, including code gen-
eration (HumanEval(Chen et al., 2021b)), mathematical reasoning (MATH500 (Hendrycks et al.,
2021), GSM8K(Cobbe et al., 2021)), and story generation (CCNews Common Crawl (2007)).

Evaluation metrics To evaluate the quality and diversity of multiple generated responses, we
employ the following metrics: (1) PASS@k: the pass rate of a problem if allowed to sample k
times; (2) Cosine similarity: the average pairwise cosine similarity between the embeddings of
generated responses; (3) CodeBLEU (Ren et al., 2020): the average pairwise CodeBLEU score
between all generated code snippets, which indicates the degree of matching between different code;
(4) MAUVE (Pillutla et al., 2021): a metric to determine the similarity between model generations
and human answers. Details of the datasets and metrics can be found in Appendix A.

3.2 MAIN RESULTS

We evaluate OverRIDE using Qwen-2.5-7B (Yang et al., 2024) and Mistral-7B (Jiang et al., 2023) as
our base models. For each model, we implement OverRIDE with the following sampling methods:
(1) Greedy decoding; (2) Top-p sampling (Holtzman et al., 2019) with different temperature settings
(τ = 0.6, 1.0); (3) Top-k sampling (Fan et al., 2018); (4) Min-p sampling (Nguyen et al., 2024).
The implementation details can be found in Appendix B.

OverRIDE balances quality and diversity. Table 1 shows the results on HumanEval(Chen et al.,
2021b) and MATH500(Hendrycks et al., 2021). Results on GSM8K(Cobbe et al., 2021) are pre-
sented in Appendix D. We report PASS@k accuracy, pairwise CodeBLEU score and pairwise cosine
similarity. While PASS@k accuracy mainly indicates generation quality, it also reflects generation
diversity. Lower CodeBLEU score and cosine similarity indicates higher diversity between gener-
ated responses. For PASS@5 accuracy, PASS@10 accuracy, and the similarity score, we present
paired results where the left value represents the baseline sampling method, and the right value
represents the same method integrated with OverRIDE.

OverRIDE increases PASS@5 and PASS@10 accuracy while reducing response similarity across
sampling methods with both models. Additionally, OverRIDE’s effectiveness persists across differ-
ent temperature settings. This derives from OverRIDE’s ability to dynamically explore both high
and low probability responses, avoiding the typical trade-off between diversity and quality. This
insight suggests that when implementing OverRIDE, it is advantageous to base on high-probability
decoding methods. This allows OverRIDE to explore high-probability paths in the initial rounds,
and lower-probability alternatives in later rounds, thus maximizing OverRIDE’s effectiveness.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results of different sampling methods on HumanEval and MATH500.

Model Method HumanEval MATH

PASS@1 PASS@5 PASS@10 CodeBLEU ↓ PASS@1 PASS@5 PASS@10 Similarity ↓

Qwen
2.5-7B

Greedy 64.9 64.9 / 81.2 64.9 / 86.0 1.000 / 0.626 72.5 72.5 / 84.3 72.5 / 87.0 1.000 / 0.938
Top-p, τ = 0.6 63.7 78.4 / 81.6 81.4 / 86.4 0.754 / 0.610 72.1 84.1 / 84.8 86.8 / 87.3 0.950 / 0.936
Top-p, τ = 1.0 60.3 82.1 / 83.6 85.5 / 88.5 0.666 / 0.578 71.6 84.8 / 84.9 87.2 / 87.6 0.940 / 0.929
Top-k 62.5 80.0 / 83.2 84.4 / 87.9 0.715 / 0.603 72.2 84.2 / 84.7 86.7 / 87.5 0.948 / 0.937
Min-p 63.2 79.7 / 83.7 83.2 / 88.1 0.736 / 0.610 71.8 84.3 / 84.3 87.2 / 87.6 0.946 / 0.932

Mistral
7B

Greedy 31.3 31.3 / 45.9 31.3 / 52.4 1.000 / 0.537 13.1 13.1 / 27.5 13.1 / 36.6 1.000 / 0.874
Top-p, τ = 0.6 29.9 47.4 / 49.0 54.9 / 56.9 0.563 / 0.474 11.3 27.7 / 28.4 36.4 / 37.4 0.871 / 0.862
Top-p, τ = 1.0 29.6 49.3 / 51.5 58.1 / 58.5 0.448 / 0.400 10.9 27.1 / 28.0 36.2 / 37.2 0.854 / 0.850
Top-k 29.7 48.9 / 49.8 56.0 / 57.6 0.521 / 0.450 11.8 27.1 / 28.5 36.4 / 37.2 0.870 / 0.863
Min-p 30.0 48.7 / 48.6 57.1 / 57.6 0.547 / 0.469 11.5 27.0 / 28.5 36.4 / 37.3 0.867 / 0.860

OverRIDE generates human-like responses. Table 2 shows the results on CCNews(Common
Crawl, 2007). Models are provided with the first 32 tokens of each news text sample, and required
to generate the subsequent 256 tokens. We use MAUVE (Pillutla et al., 2021) to evaluate how all 10
rounds of model generations match the original news. Cosine similarity is still measured pairwise
between generations. We present paired results where the left value represents the baseline sampling
method, and the right value represents the same method integrated with OverRIDE.

Table 2: Results of methods on CCNews.

Model Method CCNews

MAUVE ↑ Similarity ↓

Qwen
2.5-7B

Greedy 0.803 / 0.753 1.000 / 0.606
Top-p, τ = 0.6 0.901 / 0.938 0.726 / 0.678
Top-p, τ = 1.0 0.974 / 0.977 0.651 / 0.641
Top-k 0.953 / 0.960 0.715 / 0.679
Min-p 0.946 / 0.946 0.714 / 0.668

Mistral
7B

Greedy 0.883 / 0.891 1.000 / 0.675
Top-p, τ = 0.6 0.937 / 0.952 0.758 / 0.703
Top-p, τ = 1.0 0.942 / 0.947 0.697 / 0.685
Top-k 0.904 / 0.937 0.744 / 0.713
Min-p 0.903 / 0.934 0.759 / 0.707

The results demonstrate that OverRIDE can
improve human-like generation quality while
enhancing generation diversity. OverRIDE
achieves consistent improvements in MAUVE
scores and reduction in cosine similarity scores
across all settings, indicating better alignment
with human writing patterns while increasing di-
versity between generated responses. OverRIDE
alleviates the typical LLM generation issues of
repetition (Holtzman et al., 2019). For repetitive
patterns generated by the original model in the
first round, OverRIDE avoids generating similar
patterns in subsequent rounds through reweight-
ing, thereby improving generation quality.

OverRIDE can scale up. To validate whether OverRIDE remains effective across different model
sizes, we test models of varying scales. Table 3 shows the results on HumanEval and MATH500
across Qwen-2.5 model series ranging from 3B to 72B parameters. OverRIDE demonstrates consis-
tent improvements across all model sizes, enhancing both quality and diversity.

Table 3: Results of different size models on HumanEval and MATH500.

Model HumanEval MATH

PASS@1 PASS@5 PASS@10 CodeBLEU ↓ PASS@1 PASS@5 PASS@10 Similarity ↓
Qwen-2.5-3B 58.2 78.7 / 79.0 82.9 / 83.2 0.629 / 0.547 63.3 78.3 / 79.2 82.8 / 83.5 0.944 / 0.937
Qwen-2.5-7B 63.7 78.4 / 81.6 81.4 / 86.4 0.754 / 0.610 72.1 84.1 / 84.8 86.8 / 87.3 0.950 / 0.936
Qwen-2.5-14B 40.0 63.4 / 70.5 77.1 / 77.2 0.698 / 0.588 75.8 85.1 / 85.7 87.7 / 88.0 0.941 / 0.929
Qwen-2.5-32B 67.8 78.8 / 80.5 81.2 / 84.2 0.695 / 0.579 78.5 86.4 / 87.2 88.6 / 89.3 0.945 / 0.933
Qwen-2.5-72B 73.5 82.1 / 83.8 83.4 / 87.0 0.803 / 0.674 78.9 87.0 / 88.0 88.8 / 90.5 0.955 / 0.941

Furthermore, compared to smaller models (3B), larger models (72B) achieve greater performance
gains through OverRIDE, despite the trainable adapter parameters constituting a smaller proportion
of the total parameters. We attribute this to the enhanced capacity of larger models, which provides
more expressive hidden states that enable adapters to easily capture the differences between the
original next-token distribution and the distribution of the sampled tokens.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 DECODING DYNAMICS

To better understand OverRIDE’s behavior and its impact on generation diversity, we analyze the
entropy of token distributions and the log-likelihood of generated sequences across decoding rounds.
For the following experiments, we implement OverRIDE with greedy decoding using the Qwen-2.5-
7B model, and evaluate on the MATH500 dataset.

1 2 3 4 5 6 7 8 9 10
Round

0.2

0.4

0.6

0.8

1.0

1.2

1.4

En
tro

py

Entropy over Rounds
=0.2
=0.4
=0.6
=0.8
=1.0

Figure 5: Next-token distribution entropy across
decoding rounds for different λ values. Higher
entropy indicates greater diversity.

1 2 3 4 5 6 7 8 9 10
Round

80

70

60

50

40

30

20

Lo
g-

Lik
el

ih
oo

d

Log-Likelihood over Rounds

OverRIDE
Top-p, =0.3
Top-p, =0.6
Top-p, =0.9
Top-p, =1.2
Top-p, =1.5

Figure 6: Log-likelihood of responses across
decoding rounds, under OverRIDE and top-p
sampling with different temperatures.

Figure 5 shows how the reweighting parameter λ controls the diversity of token selection during
the decoding process. We observe a similar pattern across all λ values: In round 1, the average
token entropy starts at a low level because of greedy decoding. In round 2, a significant spike in
entropy occurs as OverRIDE begins actively suppressing high-probability patterns. In later rounds,
the entropy gradually decreases and eventually stabilizes. Higher λ values lead to higher entropies,
with λ = 1.0 reaching a peak of nearly 10 times its initial value. This demonstrates that stronger
reweighting leads to more aggressive exploration and higher diversity in the generated responses,
particularly in early rounds where the model actively diverges from previous generation patterns.

Figure 6 shows the average log-likelihood of generated responses across decoding rounds. Over-
RIDE initially experiences a sharp decline in log-likelihood in early rounds as it actively suppresses
previously seen patterns, forcing exploration into low-probability regions of the original distribu-
tion. The log-likelihood partially recovers in later rounds and eventually stabilizes at an intermediate
level. This reveals OverRIDE’s decoding dynamics – the interplay between OverRIDE’s suppres-
sion mechanism and the model’s original distribution. As the response set grows, it contains both
high and low likelihood generations. When suppressing patterns common to all previous responses,
the model discovers alternative paths that, while distinct from the initially preferred responses, still
represent valid solutions with higher likelihood.

The comparison with top-p sampling at various temperatures reveals the differences in how these
methods approach diversity. While sampling with higher temperatures consistently produces low
log-likelihood across all rounds, OverRIDE’s strategy is more dynamic: exploring between low-
and high-probability responses. This indicates that OverRIDE’s approach to increasing diversity is
fundamentally different from temperature scaling, which is only flattening the distribution.

3.4 EFFICIENCY ANALYSIS

To assess the efficiency impact of our parallel implementation, we apply the parallel version of
OverRIDE on vLLM (Kwon et al., 2023). We conduct experiments using Qwen-2.5 model series,
with size ranging from 3B to 72B. All models are deployed using on a single node, and distributed
on a single or multiple GPUs. Specifically, for 3B, 7B, 14B, 32B, 72B models, we use 1, 1, 2, 4, 8
GPUs respectively. More details about the setup can be found in Appendix B. Models are evaluated
on the MATH500 dataset with top-p sampling (τ = 0.6). For each context, we sample 10 rounds
with parallel decoding. Throughput is measured as output tokens per second.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison of throughput across different
model sizes under parallel decoding.

Model Throughput (token/s) Drop
Baseline OverRIDE

Qwen-2.5-3B 5439.9 4992.2 -8.2%
Qwen-2.5-7B 3709.6 3435.8 -7.4%
Qwen-2.5-14B 2798.0 2600.3 -7.1%
Qwen-2.5-32B 2091.3 1947.4 -6.9%
Qwen-2.5-72B 1463.0 1369.9 -6.4%

Table 4 shows the throughput comparison
across different model sizes. As the model
size increases from 3B to 72B parameters,
the throughput loss gradually decreases from
8.2% to 6.4%. This validates our hypoth-
esis in Section 2.4 that, since the adapter
parameters constitute a smaller proportion
of total parameters as the model scales up,
OverRIDE becomes more efficient for larger
models. This provides assurance for deploy-
ing OverRIDE with even larger models in
production environments.

3.5 OUTPUT HEAD CONFIGURATION

To determine the optimal rank for the output head adapters in our parallel implementation, we con-
duct experiments with different rank settings. Experiments are conducted with Qwen-2.5-7B on the
MATH500 dataset with top-p sampling (τ = 0.6). The rank r refers to the rank of the adapter ma-
trices W t

A and W t
B in the output heads. We compare against a ”Full” setting that uses independent

output head parameters W t for each decoding round to compute qt without adapters.

Table 5: Comparison of performance and effi-
ciency across different rank settings.

Rank PASS@10 Throughput Drop

Baseline 86.8 3709.6 /
r = 4 86.9 3453.1 -6.9%
r = 16 87.5 3435.8 -7.4%
r = 64 87.3 3301.0 -11.0%
r = 256 87.1 2569.2 -30.7%
Full 87.3 1984.1 -46.5%

Table 5 reveals a trade-off between model ca-
pacity and computational efficiency. When the
rank is too small (r = 4), the adapter lacks
sufficient parameters to accurately model the
distribution qt, leading to suboptimal perfor-
mance. When the rank becomes too large (r =
256), we observe severe efficiency degradation
with a 30.6% throughput drop, while perfor-
mance gains are minimal compared to smaller
ranks. We eventually set r = 16, which pro-
vides sufficient modeling capacity while main-
taining reasonable computational overhead.

3.6 SENSITIVITY ANALYSIS

To understand how pattern suppression in OverRIDE affects model performance, we conduct a
sensitivity analysis on the hyperparameter λ, which controls the intensity of the reweighting ef-
fect. Higher values of λ lead to more aggressive suppression of patterns in previously generated
responses. Figure 7 shows the performance of OverRIDE with varying values of λ. Results are
evaluated on the MATH500 dataset with top-p sampling (τ = 0.6).

The results show that the reweighting parameter λ is model-specific. For Qwen-2.5-7B, we observe
PASS@5 and PASS@10 reaching their highest at λ = 0.8. In contrast, Mistral-7B shows an optimal
performance with lower λs, with PASS@5 and PASS@10 reaching their highest at λ = 0.4. Beyond

0.2 0.4 0.6 0.8 1.0
84.0

84.5

85.0

85.5

86.0

86.5

87.0

Ac
cu

ra
cy

 (%
)

PASS@5
PASS@10
Similarity

0.91

0.92

0.93

0.94

0.95

0.96

Si
m

ila
rit

y

Qwen-2.5-7b

0.2 0.4 0.6 0.8 1.0

28

30

32

34

36

Ac
cu

ra
cy

 (%
)

PASS@5
PASS@10
Similarity

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Si
m

ila
rit

y

Mistral-7B

Figure 7: Effect of reweighting parameter λ on PASS@k performance (%) and similarity. The left
figure shows results for Qwen-2.5-7B, while the right figure shows results for Mistral-7B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

this range, performance gradually declines as λ increases. This shows that Mistral-7B is more
sensitive to the reweighting mechanism. For both models, similarity scores consistently decrease
with higher λ values, confirming that stronger reweighting leads to more diverse responses.

Such sensitivity to λ can be attributed to the characteristics of output diversity for different models.
From our main results in Tables 1, we observe that Mistral-7B consistently produces more diverse
outputs than Qwen-2.5-7B with different sampling methods, as evidenced by their lower CodeBLRU
and cosine similarity scores across all settings. This suggests that models with already sufficiently
diverse responses benefit from lower λ values, since excessive pattern suppression becomes coun-
terproductive and may cause degradation in performance.

4 RELATED WORK

Stochastic Decoding Deterministic decoding approaches like greedy search and beam search
(Freitag and Al-Onaizan, 2017) tend to select tokens that maximize model confidence, resulting in
outputs that lack diversity, and often suffer from issues such as repetition or dull content. Stochastic
decoding methods address these limitations by introducing randomness in the generation process.
Temperature sampling (Ackley et al., 1985) flattens or sharpens the probability distribution to control
randomness. Top-p sampling (Holtzman et al., 2019) and top-k sampling (Fan et al., 2018) truncate
the distribution tail to exclude low-confidence tokens. More adaptive approaches (Basu et al., 2020;
Hewitt et al., 2022; Nguyen et al., 2024) dynamically adjust sampling parameters based on distri-
bution entropy or model confidence to generate creative and coherent responses. However, these
methods operate independently at the token level without considering previous responses, which
systematically limits their ability to produce diverse outputs across multiple generations.

Decoding with Guidance Recent works have explored guiding the decoding process with addi-
tional models or in-context information. A series of contrastive methods enhance generation faith-
fulness and quality by contrasting between different models (Li et al., 2022a), different layers within
the same model (Gera et al., 2023; Chuang et al., 2023; Das et al., 2024), or model outputs with dif-
ferent contexts (Shi et al., 2024). Speculative decoding approaches (Xia et al., 2022; Leviathan et al.,
2023; Chen et al., 2023) use lightweight draft models to predict multiple tokens in parallel, so as to
improve decoding efficiency. Multi-token prediction methods (Fu et al., 2024; Gloeckle et al., 2024;
Cai et al., 2024; Li et al., 2024; Guo et al., 2025) introduce additional decoding heads or branches to
accelerate inference while maintaining output quality. Guided search methods (Yao et al., 2023; Xie
et al., 2023; Zhu et al., 2024) employ verifiers or evaluators to navigate complex reasoning. While
unlikelihood training (Welleck et al., 2019) and SimCTG (Su et al., 2022) also attempt to encourage
diversity by addressing degeneration, they require extensive training on large corpora. In contrast,
our method dynamically guides generation based on the specific patterns observed in previous re-
sponses. This requires only lightweight fine-tuning during inference without depending on external
knowledge or models. Additionally, our method enables context-specific diversity that adaptively
evolves with each decoding round.

5 CONCLUSION

In this paper, we propose OverRIDE, an iterative decoding method that enhances the diversity of
LLM outputs. OverRIDE works by reweighting the next-token distribution of autoregressive mod-
els based on previously generated responses. By fine-tuning a guide model on previously generated
responses, OverRIDE effectively suppresses patterns in history responses and encourages explo-
ration of diverse alternatives across decoding rounds. To extend OverRIDE to parallel decoding
for higher efficiency, we propose improvements in architecture and procedural design, and further
implement OverRIDE on existing LLM serving systems.

Our experimental results demonstrate that OverRIDE improves generation diversity while maintain-
ing or improving quality across various models and sampling methods. We also provide insights
into OverRIDE’s decoding dynamics, revealing how it balances exploration and exploitation during
the generation process. Experiments with different size models show that OverRIDE can scale up
to larger models, while maintaining performance and efficiency with parallel decoding. Our work
suggests that OverRIDE is a promising approach for enhancing the diversity of LLM outputs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

OverRIDE dynamically modifies the next-token distribution of LLMs. By suppressing previously
patterns and encouraging exploration of low-probability regions, our method could potentially dam-
age the safety alignment of the original model. This might lead to the generation of harmful or biased
contents. The primary negative effect we observe is repetitive content generation at high reweighting
parameter values λ. However, there exists cases where OverRIDE can produce unexpected outputs,
see Table 10 for an example. We recommend using moderate reweighting parameters and imple-
menting additional safety filters when applying OverRIDE in production environments. We have
used LLM tools to polish the writing of this paper.

REPRODUCIBILITY STATEMENT

We provide the following materials for reproducing the experiments in our paper: source code in the
supplementary material; datasets and metrics information in Appendix A; implementation details in
Appendix B; prompts used for generation in Appendix C.

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R Varsh-
ney. Mirostat: A neural text decoding algorithm that directly controls perplexity. arXiv preprint
arXiv:2007.14966, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. arXiv preprint
arXiv:2309.03883, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Common Crawl. Common crawl: Open repository of web crawl data. https://commoncrawl.
org/, 2007.

Souvik Das, Lifeng Jin, Linfeng Song, Haitao Mi, Baolin Peng, and Dong Yu. Entropy
guided extrapolative decoding to improve factuality in large language models. arXiv preprint
arXiv:2404.09338, 2024.

10

https://commoncrawl.org/
https://commoncrawl.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806, 2017.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder, Noam Slonim,
and Eyal Shnarch. The benefits of bad advice: Autocontrastive decoding across model layers.
arXiv preprint arXiv:2305.01628, 2023.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model
desmoothing. arXiv preprint arXiv:2210.15191, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pages 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097, 2022a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Minh Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. arXiv preprint
arXiv:2407.01082, 2024.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
gence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
Trusting your evidence: Hallucinate less with context-aware decoding. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 783–791, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. Advances in Neural Information Processing Systems, 35:
21548–21561, 2022.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Process-
ing Systems, 36:41618–41650, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

Tinghui Zhu, Kai Zhang, Jian Xie, and Yu Su. Deductive beam search: Decoding deducible rationale
for chain-of-thought reasoning. arXiv preprint arXiv:2401.17686, 2024.

A DATASETS AND METRICS

Datasets We consider four datasets to evaluate OverRIDE’s effectiveness across different do-
mains, including code generation, mathematical reasoning, and story generation:

• HumanEval (Chen et al., 2021b): a code generation dataset consisting of 164 program-
ming problems that require to generate Python functions based on function descriptions;

• MATH500 (Hendrycks et al., 2021): a standard 500-sample subset of the original MATH
dataset with 12,500 competition mathematics problems;

• GSM8K (Cobbe et al., 2021): a dataset of 8,500 grade school math word problems;
• CCNews: a subset of the Common Crawl (Common Crawl, 2007) corpus that contains

news articles from news sites all over the world.

Evaluation metrics To evaluate the quality and diversity of multiple generated responses, we
employ the following metrics:

• PASS@k: Following previous work (Chen et al., 2021a; Grattafiori et al., 2024), we use
the PASS@k accuracy to evaluate the correctness of multiple generated solutions. PASS@k
estimates the pass rate of a problem if allowed to sample k times.

• CodeBLEU (Ren et al., 2020): For code generation tasks, we use CodeBLEU to evaluate
the similarity of generated code snippets. CodeBLEU is a weighted combination of BLEU,
BLEU-weighted, AST match and data-flow match scores. We calculate the pairwise Code-
BLEU scores between all generated code snippets for each context:

CodeBLEUi =
1(
n
2

) n∑
j=1

n∑
k=j+1

CodeBLEU(ri,j , ri,k), (4)

where ri,j is the j-th code snippet for the i-th context, and n is the number of code snippets.
• Cosine similarity: To measure output diversity, we compute pairwise cosine similarities

between the embeddings of generated responses. For each context ci, we obtain embed-
dings ϕ(ri,j) for each response ri,j using the OpenAI text-embedding-3-small1 embedding
model, and calculate the average pairwise similarity:

Similarityi =
1(
n
2

) n∑
j=1

n∑
k=j+1

⟨ϕ(ri,j), ϕ(ri,k)⟩
∥ϕ(ri,j)∥2∥ϕ(ri,k)∥2

, (5)

where ri,j is the j-th response for the i-th context, and n is the number of responses.
1https://platform.openai.com/docs/models/text-embedding-3-small

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• MAUVE (Pillutla et al., 2021): We use MAUVE to measure the similarity between model
generations and human answers. MAUVE is obtained by computing the KL divergence
between the two distributions in a quantized embedding space of a foundation model.

B IMPLEMENTATION DETAILS

OverRIDE Configuration We conduct all experiments on 8 NVIDIA L40S GPUs. For the
reweighting parameter λ, we use λ = 0.8 for Qwen-2.5-7B (Yang et al., 2024) and λ = 0.4 for
Mistral-7B (Jiang et al., 2023), based on our sensitivity analysis in Section 3.6. When fine-tuning
the output head adapters, we use a learning rate of 1e-3.

vLLM Configuration We use the default settings of vLLM (Kwon et al., 2023) except for the
following: gpu memory utilization is set to 0.8 for all the experiments; we use a tensor parallel size
of 1 for 3B and 7B models, 2 for 14B models, 4 for 32B models, and 8 for 72B models.

Sampling Methods We implement sampling methods with the following parameters on all the
datasets: (1) Top-p sampling (Holtzman et al., 2019) with top-p = 0.9; (2) Top-k sampling (Fan
et al., 2018) with k = 20 and temperature τ = 0.6; (3) Min-p sampling (Nguyen et al., 2024) with
min-p = 0.05 and temperature τ = 0.6.

C PROMPTS

Table 6 shows the prompts used in our experiments. The prompt for HumanEval (Chen et al., 2021b)
is adjusted from EvalPlus (Liu et al., 2023).

Table 6: Prompts used in our experiments on HumanEval, MATH, GSM8K, and CCNews.

Dataset Prompt
HumanEval Please provide a self-contained Python script that solves

the following problem in a markdown code block:
```python
〈 Problem 〉
```

MATH 〈 Problem 〉
Let’s think step by step and output the final answer within
\boxed{}.

GSM8K 〈 Problem 〉
Let’s think step by step and output the final answer within
\boxed{}.

CCNews 〈 First 32 tokens of the news 〉

D RESULTS ON GSM8K

Table 7 shows the results on GSM8K (Cobbe et al., 2021). We report PASS@k accuracy and pair-
wise cosine similarity. For PASS@5 accuracy, PASS@10 accuracy, and the similarity score, we
present paired results where the left value represents the baseline sampling method, and the right
value represents the same method integrated with OverRIDE.

The results on GSM8K further validate our main findings. OverRIDE consistently improves both
quality (PASS@5 and PASS@10) and diversity (lower similarity scores) across all sampling meth-
ods and temperature settings for both models. These results confirm OverRIDE’s effectiveness in
mathematical reasoning tasks, suggesting that the dynamic reweighting mechanism prevents over-
confidence and encourages exploration of diverse yet accurate responses.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Results of different sampling methods on GSM8K.

Model Method GSM8K

PASS@1 PASS@5 PASS@10 Similarity ↓

Qwen
2.5-7B

Greedy 89.8 89.8 / 94.7 89.8 / 95.6 1.000 / 0.951
Top-p, τ = 0.6 89.6 94.8 / 95.2 95.8 / 96.3 0.960 / 0.947
Top-p, τ = 1.0 88.8 95.1 / 95.1 96.0 / 96.5 0.947 / 0.940
Top-k 89.6 94.9 / 95.2 96.0 / 96.3 0.955 / 0.945
Min-p 89.7 95.0 / 95.0 95.8 / 96.3 0.957 / 0.947

Mistral
7B

Greedy 39.5 39.5 / 65.6 39.5 / 74.2 1.000 / 0.938
Top-p, τ = 0.6 39.2 68.5 / 69.4 77.4 / 78.2 0.927 / 0.920
Top-p, τ = 1.0 36.9 69.6 / 69.9 79.6 / 80.2 0.910 / 0.907
Top-k 37.9 69.1 / 69.6 78.0 / 80.0 0.921 / 0.915
Min-p 38.5 68.9 / 69.6 77.8 / 79.1 0.924 / 0.918

E CASE STUDY

To intuitively illustrate how OverRIDE works, we provide a qualitative analysis on the token proba-
bility changes across decoding rounds in two distinct scenarios in Table 8. These examples highlight
how our method balances between improving diversity and preserving quality.

Table 8: Next-token probability (%) comparison across decoding rounds for OverRIDE.

(a) Case 1: Diversity
Prompt: To calculate the area of a triangle,
the first step is to

Token Round 1 Round 2 Round 10

measure 21.3 17.2 18.7
determine 18.0 19.2 19.4
calculate 17.0 11.8 15.4
find 15.8 19.7 14.6
identify 14.7 11.7 15.2
know 1.6 2.6 1.5

(b) Case 2: Quality
Prompt: The Fibonacci sequence can be de-
fined recursively: $F(n) = F(n-2) + F(n-)$

Token Round 1 Round 2 Round 10

1 100.0 100.0 100.0
2 0.0 0.0 0.0
〈space〉 0.0 0.0 0.0
3 0.0 0.0 0.0
)$ 0.0 0.0 0.0
0 0.0 0.0 0.0

Case 1 illustrates OverRIDE’s effectiveness in encouraging diversity when multiple valid continu-
ations exist. For the same mathematical problem with multiple valid choices as the first step, the
model’s token preferences evolve over the rounds. This dynamic reweighting illustrates how Over-
RIDE continuously adapts based on previously generated responses, encouraging exploration of
equally valid but less-traveled paths in the generation space.

Case 2 illustrates OverRIDE’s ability to preserve quality when there is only a single correct answer.
For the definition of Fibonacci sequence, F (n) = F (n− 2) + F (n− 1) is the only mathematically
correct completion in this case. OverRIDE maintains 100% probability for the token ”1” across all
rounds, demonstrating that our method does not force diversity at the expense of correctness.

These cases highlight OverRIDE’s core strength: the ability to distinguish between scenarios where
diversity should be encouraged and where precision should be maintained. This ability derives from
the reweighting mechanism. When a token is originally assigned with high probability, reweighting
does not dramatically increaes the probability of other tokens. When multiple tokens are assigned
with similar probabilities, reweighting encourages the model to explore less likely options.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F EXAMPLES OF GENERATED OUTPUTS

Table 9: Examples of Qwen-2.5-7B generated responses on MATH500.

Method Top-p, τ = 0.3 Top-p, τ = 0.3 + OverRIDE

Context Determine if the graph of the equation below is a parabola, circle, ellipse, hyperbola, point, line, two lines, or empty.(
x
2 − 3

)2 + y2 = 10

Response 1 The given equation is
(
x
2 − 3

)2 +y2 = 10. To determine the
type of conic section this represents, we can compare it to the
standard forms of conic sections. The general form for a circle is
(x−h)2+(y−k)2 = r2, where (h, k) is the center and r is
the radius. We can rewrite the given equation to match this form:(
x
2 − 3

)2+y2 = 10. Notice that
(
x
2 − 3

)2 can be rewritten

as
(

x−6
2

)2
. So the equation becomes:

(
x−6
2

)2
+y2 = 10.

This is in the form (x− h)2 + (y− k)2 = r2 where h = 6,
k = 0, and r2 = 10. Therefore, r =

√
10. Since the equation

matches the standard form of a circle, the graph of the equation

is a circle. Thus, the answer is circle . ×

The given equation is
(
x
2 − 3

)2 + y2 = 10. This equation is
in the standard form of a circle, which is (x−h)2+(y−k)2 =
r2, where (h, k) is the center of the circle and r is the radius.
To see this more clearly, we can rewrite the given equation as:(
x
2 − 3

)2 + (y − 0)2 = 10. Here, we can identify h = 6

(since x
2 − 3 = x−6

2), k = 0, and r2 = 10. Therefore, the
center of the circle is (6, 0) and the radius is

√
10. Since the

equation matches the standard form of a circle, the graph of the

given equation is a circle. Thus, the answer is circle . ×

Response 2 The given equation is
(
x
2 − 3

)2 +y2 = 10. To determine the
type of conic section this represents, we can compare it to the
standard forms of conic sections. First, let’s rewrite the equation
in a more recognizable form:

(
x
2 − 3

)2 + y2 = 10. This
equation is in the form (X − h)2 + (Y − k)2 = r2, which
is the standard form of a circle. Here, X = x

2 and Y = y, and
the center of the circle is at (h, k) = (6, 0) because x

2 − 3 =
X implies X = x

2 − 3 and thus x = 2(X +3), so the center
in terms of x and y is (6, 0). The radius r is

√
10. Therefore,

the given equation represents a circle. The answer is circle . ×

To determine the type of conic section represented by the equa-
tion

(
x
2 − 3

)2 + y2 = 10, we can compare it to the stan-
dard forms of conic sections. First, let’s rewrite the equation
in a more recognizable form by expanding and simplifying it:
1. The given equation is

(
x
2 − 3

)2 + y2 = 10. 2. Ex-
pand

(
x
2 − 3

)2:
(
x
2 − 3

)2 =
(
x
2

)2 − 2 · x
2 · 3 + 32 =

x2

4 − 3x + 9. 3. Substitute this back into the original equa-

tion: x2

4 − 3x + 9 + y2 = 10. 4. Simplify by moving

10 to the left side: x2

4 − 3x + y2 − 1 = 0. 5. To bet-
ter understand the form, we can complete the square for the x

terms: x2

4 − 3x = 1
4 (x

2 − 12x). Completing the square
inside the parentheses: x2 − 12x = (x − 6)2 − 36. Thus,
1
4 (x

2−12x) = 1
4 ((x−6)2−36) =

(x−6)2

4 −9. Substitute

this back into the equation: (x−6)2

4 −9+y2−1 = 0. Simplify

the constants: (x−6)2

4 +y2 = 10. Divide through by 10 to get

the equation in standard form: (x−6)2

40 + y2

10 = 1. This is the

standard form of an ellipse, (x−h)2

a2 +
(y−k)2

b2
= 1, where

(h, k) is the center of the ellipse, a2 = 40, and b2 = 10.
Therefore, the graph of the equation

(
x
2 − 3

)2 + y2 = 10 is

an ellipse. The final answer is: ellipse ✓

Response 3 The given equation is
(
x
2 − 3

)2 +y2 = 10. To determine the
type of conic section this represents, we can compare it to the
standard forms of conic sections. First, let’s rewrite the equation
in a more recognizable form:

(
x
2 − 3

)2 + y2 = 10. This
equation is in the form (X −h)2 +(Y −k)2 = r2, which is
the standard form of a circle. Here, X = x

2 , h = 3, Y = y,
k = 0, and r2 = 10. Therefore, r =

√
10. So, the equation(

x
2 − 3

)2 + y2 = 10 represents a circle with center (6, 0)

and radius
√
10. Thus, the answer is circle . ×

The given equation is
(
x
2 − 3

)2 +y2 = 10. To determine the
type of conic section this equation represents, we can rewrite it
in a more recognizable form. Let’s start by simplifying and com-
paring it to the standard forms of conic sections. 1. **Rewrite
the equation:**

(
x
2 − 3

)2+y2 = 10. 2. **Isolate the squared
terms:** This equation is already in a form that resembles the

standard form of an ellipse, (x−h)2

a2 +
(y−k)2

b2
= 1, but we

need to manipulate it to match this form. 3. **Divide both sides

by 10:**

(
x
2
−3

)2
10 + y2

10 = 1. 4. **Simplify the denomina-

tors:**

(
x
2
−3

)2
10 =

(
x−6
2

)2
10 =

(x−6)2

40 . So the equation

becomes: (x−6)2

40 + y2

10 = 1. 5. **Compare with the standard

form of an ellipse:** The equation (x−6)2

40 + y2

10 = 1 matches

the standard form of an ellipse (x−h)2

a2 +
(y−k)2

b2
= 1, where

a2 = 40 and b2 = 10. Since the equation matches the stan-
dard form of an ellipse, the graph of the given equation is an

ellipse. ellipse ✓

Similarity 0.983 0.795

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Examples of Qwen-2.5-7B generated responses on GSM8K.

Method Top-k Top-k + OverRIDE

Context How much does it cost you for lunch today at Subway if you pay $40 for a foot-long fish sub and thrice as much for a six-inch
cold-cut combo sub?

Response 1 To determine the total cost of lunch today at Subway, we need to
add the cost of the foot-long fish sub to the cost of the six-inch
cold-cut combo sub. First, we know that the cost of the foot-long
fish sub is $40. Next, we need to calculate the cost of the six-
inch cold-cut combo sub. According to the problem, this cost is
three times the cost of the foot-long fish sub. So, we multiply the
cost of the foot-long fish sub by 3: 40× 3 = 120 Now, we add
the cost of the foot-long fish sub to the cost of the six-inch cold-
cut combo sub to find the total cost of lunch: 40 + 120 = 160

Therefore, the total cost for lunch today at Subway is 160 . ✓

To determine the total cost for lunch today at Subway, we need
to calculate the cost of the items mentioned and then sum them
up. 1. The cost of the foot-long fish sub is given as $40. 2. The
cost of the six-inch cold-cut combo sub is three times the cost
of the foot-long fish sub. Therefore, we calculate the cost of the
six-inch cold-cut combo sub as follows: 3×40 = 120 3. Now,
we add the cost of the foot-long fish sub and the six-inch cold-
cut combo sub to find the total cost: 40 + 120 = 160 Thus,
the total cost for lunch today is 160 . ✓

Response 2 To determine the total cost of lunch for the day, we need to cal-
culate the cost of both the foot-long fish sub and the six-inch
cold-cut combo sub.
First, we know the cost of the foot-long fish sub is $40.
Next, we are told that the six-inch cold-cut combo sub costs
three times as much as the foot-long fish sub. Therefore, we
calculate the cost of the six-inch cold-cut combo sub as follows:
3 × 40 = 120
Now, we add the cost of the foot-long fish sub and the six-inch
cold-cut combo sub to find the total cost of lunch: 40 + 120 =
160
Thus, the total cost for lunch today is 160 . ✓

It appears there’s a misunderstanding in your question. As an AI,
I don’t consume food or have a cost for meals. The information
you’ve provided about the prices of the foot-long fish sub and
the six-inch cold-cut combo sub at Subway is unrelated to my
functioning or costs. These prices are for illustrative purposes
and are not related to any actual expenses for me.
If you’re asking about the cost of a meal for an AI, it would be
zero because AI entities do not consume food or require payment
for functionality. If you have any other questions or need further
assistance with calculations or information related to Subway’s
menu prices, feel free to ask! ×

Response 3 To determine the total cost of the lunch, we need to calculate the
cost of each item and then sum them up. First, we know the cost
of the foot-long fish sub is $40. Next, we need to find out the
cost of the six-inch cold-cut combo sub. The problem states that
the six-inch cold-cut combo sub costs three times as much as the
foot-long fish sub. Therefore, we calculate: 3× 40 = 120. So,
the six-inch cold-cut combo sub costs $120. Now, we add the
cost of the foot-long fish sub and the six-inch cold-cut combo
sub to get the total cost of the lunch: 40 + 120 = 160. Thus,
the total cost of the lunch is 160 . ✓

To calculate the total cost of the lunch, we start by iden-
tifying the cost of each item and then summing them up.
1. The cost of the foot-long fish sub is given as $40. 2.
The cost of the six-inch cold-cut combo sub is three times
the cost of the foot-long fish sub. Therefore, we calculate:
Cost of six-inch cold-cut combo sub = 3 × $40 = $120 3.
Adding the two costs together gives the total cost of the lunch:
Total cost = $40 + $120 = $160 So, the total cost for the
lunch today at Subway is 160 . ✓

Response 4 To determine the total cost of lunch for Subway, we need to cal-
culate the cost of both the foot-long fish sub and the six-inch
cold-cut combo sub. 1. The cost of the foot-long fish sub is
given as $40. 2. The cost of the six-inch cold-cut combo sub
is three times the cost of the foot-long fish sub. Therefore, we
calculate: 3 × 40 = 120 So, the six-inch cold-cut combo sub
costs $120. 3. To find the total cost of lunch, we add the cost
of the foot-long fish sub and the six-inch cold-cut combo sub:
40 + 120 = 160 Thus, the total cost for lunch today at Sub-
way is 160 . ✓

It seems there might be a bit of a misunderstanding. As an arti-
ficial intelligence, I don’t consume food or require meals, so the
concept of paying for lunch doesn’t apply to me. The scenario
you’ve presented involves costs for food, but since I’m not a
physical entity, I don’t have personal expenses or the need to pur-
chase lunch. Therefore, the question about how much it costs me

for lunch today at Subway is not applicable. Not Applicable
×

Similarity 0.927 0.626

17

	Introduction
	Methodology
	Overview
	Capture History Patterns
	Reweighting the Next-token Distribution
	Parallel Implementation for LLM Serving Systems

	Experiments and Analysis
	Datasets and Metrics
	Main Results
	Decoding Dynamics
	Efficiency Analysis
	Output Head Configuration
	Sensitivity Analysis

	Related Work
	Conclusion
	Datasets and Metrics
	Implementation Details
	Prompts
	Results on GSM8K
	Case Study
	Examples of Generated Outputs

