000 001 002 AVOIDING BARREN PLATEAUS VIA GAUSSIAN MIX-TURE MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Variational quantum algorithms is one of the most representative algorithms in quantum computing, which has a wide range of applications in quantum machine learning, quantum simulation and other related fields. However, they face challenges associated with the barren plateau phenomenon, especially when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable. In this paper, we propose a novel parameter initialization strategy based on Gaussian Mixture Models. We rigorously prove that, the proposed initialization method consistently avoids the barren plateaus problem for hardware-efficient ansatz with arbitrary length and qubits and any given cost function. Specifically, we find that the gradient norm lower bound provided by the proposed method is independent of the number of qubits N and increases with the circuit depth L. Our results strictly highlight the significance of Gaussian Mixture model initialization strategies in determining the trainability of quantum circuits, which provides valuable guidance for future theoretical investigations and practical applications.

024 025 026

027

1 INTRODUCTION

028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 In recent years, the rapid advancement of quantum computing technology has drawn attention to Variational Quantum Algorithms (VQAs) [McClean et al.](#page-12-0) [\(2016\)](#page-12-0); Cîrstoiu et al. [\(2020\)](#page-10-0); [Cerezo et al.](#page-10-1) [\(2022\)](#page-10-1) as a promising quantum algorithm with broad application prospects. In the current era of Noisy Intermediate-Scale Quantum (NISQ) devices [Bharti et al.](#page-10-2) [\(2022\)](#page-10-2); [Arrasmith et al.](#page-9-0) [\(2019\)](#page-9-0); [Preskill](#page-13-0) [\(2018\)](#page-13-0), VQAs provides a feasible approach to solving complex problems, where challenges such as noise and errors in quantum computing devices make large-scale fully quantum computations difficult [Benedetti et al.](#page-10-3) [\(2019\)](#page-10-3); [Jerbi et al.](#page-11-0) [\(2023\)](#page-11-0); [Cerezo et al.](#page-10-4) [\(2021a\)](#page-10-4); [Moll et al.](#page-12-1) [\(2018\)](#page-12-1). On the other hand, VQAs utilizes Parametrized Quantum Circuits (PQCs), denoted as $V(\theta)$, as its quantum computing framework. PQCs serving as a trainable model adjusts its parameters θ through classical optimization to minimize or maximize a specified cost function. By employing parametrized quantum circuits, VQAs can adapt flexibly to the characteristics of different problems, providing a robust and practical option for quantum computation on NISQ devices [Peruzzo et al.](#page-13-1) [\(2014\)](#page-13-1); [Zhou et al.](#page-15-0) [\(2020\)](#page-15-0); [Tabares et al.](#page-14-0) [\(2023\)](#page-14-0); [Pan et al.](#page-13-2) [\(2023\)](#page-13-2). VQAs exhibit immense potential across a spectrum of applications, showcasing efficient quantum algorithms that excel in tasks ranging from chemical molecular structure and energy calculations [McArdle et al.](#page-12-2) [\(2020\)](#page-12-2); [Kandala et al.](#page-11-1) [\(2017\)](#page-11-1); [Hempel et al.](#page-11-2) [\(2018\)](#page-11-2) to combinatorial optimization problems [Amaro et al.](#page-9-1) [\(2022\)](#page-9-1); [Akshay](#page-9-2) [et al.](#page-9-2) (2020) and machine learning Havlíček et al. (2019) ; [Saggio et al.](#page-13-3) (2021) ; [Schuld et al.](#page-13-4) (2020) ; [Schuld & Killoran](#page-13-5) [\(2019\)](#page-13-5); [Zhang et al.](#page-15-1) [\(2021\)](#page-15-1); [Tian et al.](#page-14-1) [\(2023\)](#page-14-1); [Zhang et al.](#page-15-2) [\(2020\)](#page-15-2); [Chen et al.](#page-10-5) [\(2020\)](#page-10-5). These applications not only have profound implications for scientific research but also offer innovative solutions for practical applications.

047 048 049 050 051 052 053 Training VQAs encompasses various methodologies, including gradient-based [Sweke et al.](#page-14-2) [\(2020\)](#page-14-2); [Basheer et al.](#page-9-3) [\(2023\)](#page-9-3); [Qi et al.](#page-13-6) [\(2023\)](#page-13-6) and gradient-free [Nelder & Mead](#page-12-3) [\(1965\)](#page-12-3); [Powell](#page-13-7) [\(1964\)](#page-13-7) approaches. However, regardless of the sampling method employed, it is susceptible to encountering the notorious barren plateaus (BP) problem [McClean et al.](#page-12-4) [\(2018\)](#page-12-4); [Arrasmith et al.](#page-9-4) [\(2021\)](#page-9-4); [Liu et al.](#page-12-5) [\(2022\)](#page-12-5); [Larocca et al.](#page-11-4) [\(2024\)](#page-11-4). The phenomenon of the barren plateau is characterized by the randomized initialization of parameters θ in VQAs, leading to an exponential vanishing of the cost function gradient along any direction with the increasing number of qubits. We have observed that recent work has employed Lie groups and Lie algebras to provide a unified framework for understanding

054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 the emergence of BP [Ragone et al.](#page-13-8) [\(2024\)](#page-13-8); [Fontana et al.](#page-11-5) [\(2024\)](#page-11-5). This framework reveals a close relationship between BP and factors such as noise, the loss function, and circuit structure. Specif-ically, noise is a significant cause of the barren plateau problem [Wang et al.](#page-14-3) [\(2021\)](#page-14-3); Stilck França [& Garcia-Patron](#page-14-4) [\(2021\)](#page-14-4). While depolarizing noise leads to the emergence of BP when the circuit depth L becomes sufficiently large [Wang et al.](#page-14-3) [\(2021\)](#page-14-3), however, in the case of non-unital noise, barren plateaus do not appear for local cost functions, regardless of the circuit depth [Singkanipa &](#page-14-5) [Lidar](#page-14-5) [\(2024\)](#page-14-5). The essential cause of the emergence of BP lies in the entanglement within quantum circuits [Ortiz Marrero et al.](#page-12-6) [\(2021\)](#page-12-6). Numerous strategies have emerged to address this issue, such as optimizing initialization policies [Zhang et al.](#page-15-3) [\(2022a\)](#page-15-3); [Wang et al.](#page-14-6) [\(2023\)](#page-14-6); [Friedrich & Maziero](#page-11-6) [\(2022\)](#page-11-6); [Liu et al.](#page-11-7) [\(2023\)](#page-11-7), refining circuit structures [Liu et al.](#page-12-7) [\(2024\)](#page-12-7); [Zhao & Gao](#page-15-4) [\(2021\)](#page-15-4); [Pesah](#page-13-9) [et al.](#page-13-9) [\(2021\)](#page-13-9); [Cong et al.](#page-10-6) [\(2019\)](#page-10-6); Martín et al. [\(2023\)](#page-12-8); [Park & Killoran](#page-13-10) [\(2024\)](#page-13-10), or employing local cost functions [Arrasmith et al.](#page-9-4) [\(2021\)](#page-9-4); [Liu et al.](#page-12-5) [\(2022\)](#page-12-5). However, whether noise is present or not, avoiding the BP phenomenon for global loss functions remains a challenging problem [Cerezo et al.](#page-10-7) [\(2021b\)](#page-10-7); [Mele et al.](#page-12-9) [\(2024\)](#page-12-9). The design of the circuit ansatz is crucial for capturing quantum correlations, including physics-inspired [Taube & Bartlett](#page-14-7) [\(2006\)](#page-14-7); [Wecker et al.](#page-14-8) [\(2015\)](#page-14-8); [Peruzzo et al.](#page-13-1) [\(2014\)](#page-13-1) and hardware-efficient ansatz designs [Zhang et al.](#page-15-5) [\(2022b\)](#page-15-5). While physics-inspired ansatz exhibits some advantages in certain aspects [Wecker et al.](#page-14-8) [\(2015\)](#page-14-8); [O'Malley et al.](#page-12-10) [\(2016\)](#page-12-10), they also face serious challenges in terms of computational resources. On the other hand, hardware-efficient ansatz [Kandala et al.](#page-11-1) [\(2017\)](#page-11-1) caters to the limitations of NISQ devices, striking a balance between achievability and performance [Zhang et al.](#page-14-9) [\(2024\)](#page-14-9). At the same time, in this structure, deeper layers exhibit stronger expressibilit[yRagone et al.](#page-13-8) [\(2024\)](#page-13-8); [Fontana et al.](#page-11-5) [\(2024\)](#page-11-5), and as a result, the BP emerges regardless of the form of the measurement operator or the initial state. The quest for an effective solution to mitigate BP and enhance the versatility of addressing linear combinations in the context of a hardware-efficient ansatz continues to be a forefront challenge in the training of VQAs.

077 078 079 080 081 082 083 084 085 The Gaussian Mixture Model (GMM) [Reynolds](#page-13-11) [\(2015\)](#page-13-11) is a probability distribution model composed of multiple Gaussian distributions. Each Gaussian distribution, referred to as a component, contributes to the overall mixture distribution. Every component is characterized by its own mean, variance, and weight. This versatile model finds widespread applications in statistics and machine learning [Rasmussen](#page-13-12) [\(1999\)](#page-13-12); [Xuan et al.](#page-14-10) [\(2001\)](#page-14-10); [Zong et al.](#page-15-6) [\(2018\)](#page-15-6), particularly in tasks such as clustering [Yang et al.](#page-14-11) [\(2012\)](#page-14-11); [Manduchi et al.](#page-12-11) [\(2021\)](#page-12-11), density estimation [Glodek et al.](#page-11-8) [\(2013\)](#page-11-8), and generative modeling [GM et al.](#page-11-9) [\(2020\)](#page-11-9). GMM excels at fitting complex data distributions and, owing to its flexibility and expressive power, is frequently employed for modeling diverse categories of data.

086 087 088 089 090 091 092 093 094 095 096 097 098 099 In the training of VQAs, the parameter update expression for the cost function $f(\theta)$ based on gradient optimization methods is $f(\theta_{k+1}) = f(\bar{\theta_k}) - \alpha ||\nabla_{\theta} f(\theta_k)||_2^2 + o(\alpha)$, where $\theta_{k+1} =$ $\theta_k - \alpha \nabla_{\theta} f(\theta_k)$, α is the learning rate. Therefore, typically $||\nabla_{\theta} f(\theta)||_2^2$ is used to determine whether the cost function $f(\theta) = \text{Tr} [OV(\theta)\rho_{in}V^{\dagger}(\theta)]$ can be updated. Here, O is an observable, $V(\theta)$ is a parameterized quantum circuit, and ρ_{in} is the input quantum state. In this paper, we employ GMM for parameter initialization in VQAs to address the barren plateau problem. Considering arbitrary observables O which can be a single term or a linear combination of terms, by designing specific GMM initialization methods based on O , we rigorously prove the following conclusions: (1) When the observable O consists of a single term, the lower bound of $\|\nabla_{\theta} f(\theta)\|_2^2$ is independent of the number of quantum bits N and increases with the circuit length; (2) When O is a linear combination of many terms, the lower bound of $||\nabla_{\theta} f(\theta)||_2^2$ increases compared to the single-term case and not decrease; (3) When \bm{O} consists of non-negative terms, by adjusting GMM, we may achieve a larger lower bound. Therefore, the barren plateau problem does not occur in these scenario, and the model can undergo effective training. This is significant for reducing the cost and saving quantum resources during model training. Additionally, numerical experiments show excellent performance for both local and global cost functions using our method.

- **100**
- **101 102**

2 NOTATIONS AND FRAMEWORK

- **103 104**
- **105**

106 107 The probability density function of the GMM can be expressed as a weighted sum of individual components. Assuming there are K components, for a given one-dimensional variable x , the GMM's probability density function can be represented as:

$$
108 \\
$$

$$
\frac{109}{110}
$$

$$
p(x) = \sum_{i=1}^{K} \pi_i \cdot \mathcal{N}(x | \mu_i, \sigma_i^2)
$$
 (1)

112 113

where K is the number of Gaussian components, π_i is the weight of the ith component, satisfying $\sum_{i=1}^K \pi_i = 1$, $\mathcal{N}(x|\mu_i, \sigma_i^2)$ is the probability density function of the ith Gaussian component, with mean μ_i and variance σ_i^2 . Here are a few rules. Let \mathcal{G}_0 be an arbitrary distribution, and if the random variable θ follows any distribution, it can be expressed as $\theta \sim \mathcal{G}_0$. Furthermore, $\mathcal{G}_1(\sigma^2)$ denotes the Gaussian distribution $\mathcal{N}(0, \sigma^2)$. $\mathcal{G}_2(\sigma^2)$ denotes the first GMM we used, where it's probability density function is $p(x) = \frac{1}{2} \mathcal{N}(x - \frac{\pi}{2}, \sigma^2) + \frac{1}{2} \mathcal{N}(x - \frac{\pi}{2}, \sigma^2)$. Similarly, $\mathcal{G}_3(\sigma^2)$ is the second GMM, where it's probability density function is $p(x) = \frac{1}{4} \mathcal{N}(x - \pi, \sigma^2) + \frac{1}{4} \mathcal{N}(x|\pi, \sigma^2) + \frac{1}{2} \mathcal{N}(x|0, \sigma^2)$.

131 132 133 134 Figure 1: The fundamental framework of the variational quantum circuit, comprising L blocks. Each block begins with the introduction of entanglement through CZ_l gates, followed by the application of R_x and R_y gates on each qubit. Where CZ_l represents any number of CZ gates acting on any two qubits.

136 137 138 139 140 141 142 In this paper, we employ the ansatz illustrated in Fig[.1,](#page-2-0) which is a typical hardware-efficient ansatz. It involves N qubits and L blocks. Its objective is to minimize the cost function $f(\theta) = Tr[OV(\theta)\rho_{in}V^{\dagger}(\theta)]$ by optimizing the parameters θ within the circuit. In this paper, we assume that ρ_{in} is a pure state. In most cases, $\rho_{in} = |0\rangle\langle 0|$ and $|0\rangle = |0\rangle^{\otimes N}$. For an arbitrary observable $\boldsymbol{O} = o_1 \otimes o_2 \otimes ... \otimes o_N$, where $o_i \in \{I, X, Y, Z\}$. We define $I_S := \{n | o_n \neq I, n \in [N]\},$ representing the set of qubits where the observable acts nontrivially, and there are S elements in this set [Wang et al.](#page-14-6) [\(2023\)](#page-14-6); [Zhang et al.](#page-15-3) [\(2022a\)](#page-15-3).

143 144 145 146 For the sake of convenience, let's introduce some notations that will be used in the following theorem. When there are two observables $O_i = o_1^i \otimes o_2^i \otimes ... \otimes o_N^i$ and $O_j = o_1^j \otimes o_2^j \otimes ... \otimes o_N^j$, for all $m \in [N]$, the Pauli matrices at the m-th position are denoted by o_m^i and o_m^j . We provide the following definitions:

147

135

148

149 150 $S_3^{ij} := |\{m|o_m^i = o_m^j = Z, m \in [N]\}|$ (2)

$$
S_{1:3}^{ij} := |\{m|o_m^i = o_m^j \neq I, m \in [N]\}|
$$
\n(3)

$$
\frac{151}{152}
$$

153

$$
S_{0,3}^{ij} := |\{m|o_m^i = I, o_m^j = Z||o_m^i = Z, o_m^j = I, m \in [N]\}|.
$$
\n(4)

154 155 156 157 158 159 160 161 We will now delve into the relationship between observables and inactive parameters. Let's assume the observable O is a global observable, i.e., $O = o_1 \otimes o_2 \otimes ... \otimes o_N$, where $\forall k \in \{1, 2, ..., N\}, o_k \in$ $\{X, Y, Z\}$. Let the density matrix of the final quantum state be ρ_{2L} , and the quantum state just before the final R_y rotation gate in the last block be ρ_{2L-1} . We find that $f(\theta) = Tr[O(\rho_{2L})] =$ $\mathrm{Tr}[\boldsymbol{O}(R_y(\theta_{2L,1})\otimes R_y(\theta_{2L,2})\otimes...\otimes R_y(\theta_{2L,N}))\rho_{2L-1}(R_y^\dagger(\theta_{2L,1})\otimes R_y^\dagger(\theta_{2L,2})\otimes...\otimes R_y^\dagger(\theta_{2L,N}))]).$ Then, when $o_k = Y$, we notice that $\forall \theta_{2L,k}, R_y(\theta_{2L,k}) Y R_y^{\dagger}(\theta_{2L,k}) = Y$. Obviously, in this case, $\theta_{2L,k}$ is independent of the cost function $f(\theta)$, making it an "inactive parameter." When the observable $O = Y \otimes Y \otimes ... \otimes Y$, as shown in Fig. [2,](#page-3-0) all parameters in the last layer of R_y gates are inactive parameters.

Figure 2: When a term in the observable is Y, the parameters in the last block's $R_y(\theta)$ in the ansatz do not contribute to the training. Moreover, when the entire observable consists of Y, the θ parameters in the R_y gates of the last block have no impact on the cost function.

Table 1: On the *i*-th qubit, the parameters in $R_y(\theta)$ and $R_x(\theta)$ are intricately designed, dynamically adjusted based on the distinct Pauli matrices of the observable. When o_i corresponds to Z, there are two possible choices for the parameters in R_x and R_y .

The Pauli matrix of o_i	Init method of $R_u(\theta)$	Init method of $R_x(\theta)$
	$\mathcal{G}_2(\sigma^2)$	
	$\mathcal{G}_1(\sigma^2)/\mathcal{G}_3(\sigma^2)$	$\mathcal{G}_1(\sigma^2)/\mathcal{G}_3(\sigma^2)$

3 MAIN RESULTS

190 191 192 193 194 195 196 We begin by considering the case where the observable consists of only one term, which can be either global or local. Previous research has indicated that avoiding the barren plateau problem for global observables is challenging [Sharma et al.](#page-14-12) [\(2022\)](#page-14-12); [Liu et al.](#page-12-5) [\(2022\)](#page-12-5); [Cerezo et al.](#page-10-7) [\(2021b\)](#page-10-7). Nevertheless, regardless of the specifics, we will rigorously prove that it does not encounter the barren plateau problem when we adopt the GMM as the parameter initialization strategy. The ansatz that we consider is shown in Fig. [1.](#page-2-0) Here, parameters in different blocks will be initialized using distinct methods, and the initialization approach is determined based on the observable O. For convenience, as illustrated in Table [1,](#page-3-1) we adopt a tabular format to describe the distribution of the parameter θ in the final block. Now, let's formulate our first theorem.

Theorem 1 *Consider a VQAs problem defined above, assuming that the parameters* θ *in the last* block defined in Table [1,](#page-3-1) and the parameters θ of the remaining blocks obey the distribution $\mathcal{G}_1(\sigma^2)$, where $\sigma^2 = \frac{1}{2LS}$ *. Then* $\forall q \in \{1, ... 2L\}, n \in \{1, ... N\}$ *, we have*

$$
\mathop{\mathbb{E}}_{\boldsymbol{\theta}} \partial_{\theta_{q,n}} f(\boldsymbol{\theta}) = 0 \tag{5}
$$

206 207 208

209

$$
\mathbb{E} \|\nabla_{\theta} f(\theta)\|_{2}^{2} \ge \frac{1}{4} - \frac{1}{8L}
$$
 (6)

210 211 *where* $\nabla_{\theta} f(\theta)$ *denotes the gradient of function* $f(\theta)$ *about* θ *.*

212 213 214 215 The main idea is outlined here, with the detailed proof provided in Appendix [A.2](#page-20-0) . First, for different type of parameter distribution, by the relationship among observable, rotation matrix, and CZ operation, we introduce some technical results in Appendix [A.1.](#page-15-7) Then We expand the quantum state ρ_{out} by the PQCs layer by layer. From the last block, we can prove Eq. [\(5\)](#page-3-2) based on the lemma in the Appendix [A.1.](#page-15-7) Furthermore, it is easy to see that $\frac{1}{\theta} \|\nabla_{\theta} f(\theta)\|_2^2$ determines the update of

4

182 183 184

185 186

180 181

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 the cost function $f(\theta) = \text{Tr}[\bm{O}V(\theta)\rho_{in}V^{\dagger}(\theta)].$ And $\mathbb{E}||\nabla_{\theta}f(\theta)||_2^2$ can be expanded into a sum of terms composed of Tr²[$O_i \rho_0$], with coefficients determined by the powers of $\alpha = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \cos^2 \theta$ and $\beta = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \sin^2 \theta$. Among these terms, we find that the observable O_i composing with only I or Z that has the largest coefficient. In this case $\text{Tr}^2[O_i\rho_0] = 1$, the lower bound of the gradient norm is then determined by the lower bound of these coefficients, which results in the derivation of Eq. [\(6\)](#page-3-3) and completes the proof. The above theorem indicates that, employing our initialization method, the issue of barren plateaus can be consistently avoided, regardless of whether the cost function is global or local. From Eq. [\(6\)](#page-3-3), it is evident that our norm has a constant lower bound of $\frac{1}{8}$. This is in stark contrast to the exponential lower bound $O\left(\frac{1}{LN}\right)$ found in previous works for global cost functions [Zhang et al.](#page-15-3) [\(2022a\)](#page-15-3); [Wang](#page-14-6) [et al.](#page-14-6) [\(2023\)](#page-14-6). The utilization of GMM significantly improves this lower bound. Additionally, we observe that for certain specific observables, not all parameters θ in the circuit impact the final value of the cost function $f(\theta)$. We refer to those θ parameters that do not affect the cost function as "inactive parameters", while the others are named"active parameters". We will now delve into the relationship between observables and inactive parameters. Let's assume

233 234 235 236 237 238 239 240 241 the observable O is a global observable, i.e., $O = o_1 \otimes o_2 \otimes ... \otimes o_N$, where $\forall k \in \{1, 2, ..., N\}, o_k \in$ $\{X, Y, Z\}$. Let the density matrix of the final quantum state be ρ_{2L} , and the quantum state just before the final R_y rotation gate in the last block be ρ_{2L-1} . We find that $f(\theta) = Tr[O\rho_{2L}]$ $\mathrm{Tr}[\boldsymbol{O}(R_y(\theta_{2L,1})\otimes R_y(\theta_{2L,2})\otimes...\otimes R_y(\theta_{2L,N}))\rho_{2L-1}(R_y^\dagger(\theta_{2L,1})\otimes R_y^\dagger(\theta_{2L,2})\otimes...\otimes R_y^\dagger(\theta_{2L,N}))]).$ Then, when $o_k = Y$, we notice that $\forall \theta_{2L,k}, R_y(\theta_{2L,k}) Y R_y^{\dagger}(\theta_{2L,k}) = Y$. Obviously, in this case, $\theta_{2L,k}$ is independent of the cost function $f(\theta)$, making it an "inactive parameter." When the observable $O = Y \otimes Y \otimes ... \otimes Y$, as shown in Fig. [2,](#page-3-0) all parameters in the last layer of R_y gates are inactive parameters.

242 243 244 Using a similar approach, we can also demonstrate that when the cost function is global, for all active parameters $\theta_{q,n}$, Var $\partial_{\theta_{q,n}} f(\theta) \geq \frac{1}{8LN}$. This provides an additional perspective on how our method enables escape from the barren plateau.

245 246 247 248 249 250 251 252 253 254 255 256 257 In Ref. [Zhang et al.](#page-15-3) [\(2022a\)](#page-15-3), it considered that the observable O contains only a single term. In Ref. [Wang et al.](#page-14-6) [\(2023\)](#page-14-6), the observable \bm{O} is extended to a sum of multiple terms, with the cross terms in the gradient norm calculation being non-negative. However, if the coefficients of the terms composing O are negative, these cross terms can become non-positive, complicating the escape from barren plateaus. For example, when $O = O_1 + O_2$, $\forall q \in \{1, 2, ..., 2L\}, n \in \{1, 2, ..., N\}$, we have E θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 = \mathop{\mathbb{E}}_{\boldsymbol{\theta}}$ \int $\frac{\partial f_1(\boldsymbol{\theta})}{\partial f_2(\boldsymbol{\theta})}$ $\frac{\partial f_1(\bm{\theta})}{\partial \theta_{q,n}} + \frac{\partial f_2(\bm{\theta})}{\partial \theta_{q,n}} \Big]^2 \, = \, \frac{\mathop{\mathbb{E}}\nolimits}{\bm{\theta}}$ $\left[\frac{\partial f_1(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right]^2 + \mathop{\mathbb{E}}_{\boldsymbol{\theta}}$ $\left[\frac{\partial f_2(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right]^2 + 2 \mathbb{E}_{\boldsymbol{\theta}}$ \int $\frac{\partial f_1(\boldsymbol{\theta})}{\partial f_2(\boldsymbol{\theta})}$ $\partial \theta_{q,n}$ $\frac{\partial f_2(\boldsymbol{\theta})}{\partial \theta_{q,n}}$, where $f_1(\theta) = \text{Tr}(O_1 V(\theta) \rho_{\text{in}} V^{\dagger}(\theta))$ and $f_2(\theta) = \text{Tr}(O_2 V(\theta) \rho_{\text{in}} V^{\dagger}(\theta))$. Ref. [Wang et al.](#page-14-6) [\(2023\)](#page-14-6) proves that \mathbb{E}_{θ} $\left[\frac{\partial f_1(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right]^2 + \mathop{\mathbb{E}}_{\boldsymbol{\theta}}$ $\left[\frac{\partial f_2(\theta)}{\partial \theta_{q,n}}\right]^2 \geq O\left(\frac{1}{L^S}\right), \quad \mathbb{E}_{\theta}$ \int $\frac{\partial f_1(\boldsymbol{\theta})}{\partial f_2(\boldsymbol{\theta})}$ $\partial \theta_{q,n}$ $\left\{\frac{\partial f_2(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right\} \geq 0$. However, when $O = O_1 - O_2$, the coefficient in front of the cross term is negative. Therefore, in this case, it cannot be guaranteed that \mathbb{E}_{θ} $\left(\frac{\partial f(\theta)}{\partial \theta_{q,n}}\right)^2 \geq O\left(\frac{1}{L^5}\right)$. But in Theorem [2,](#page-5-0) we demonstrate that even when O is a linear combination of arbitrary terms, the model remains trainable.

258 259 260 261 262 263 264 265 266 267 268 269 Now let's assume $O = \sum_i O_i - \sum_j O_j$, where O_i and O_j can be either global or local. Also, $\forall O_i, O_j, O_i \neq O_j$. This is the most general form of an observable. Here we randomly select one term from the observable to construct the initialization method. The construction of the last block is detailed in Table [2.](#page-5-1) Suppose there are S nontrivial Pauli matrices in the selected O_k . Additionally, there are M terms that differ from O_k only by replacing Pauli Z with the identity matrix I or vice versa among O_i and O_j at corresponding positions (including the original O_k itself). This setup is because learning a generic Pauli string is challenging, while learning certain subclasses of these strings is easier [Nietner](#page-12-12) [\(2023\)](#page-12-12). So, if O consists of a single term, then $M = 1$. When O is composed of multiple terms, for example, $O = o_1 + o_2 - o_3 = X \otimes Y \otimes Z \otimes I + Y \otimes Y \otimes Z \otimes I - X \otimes Y \otimes I \otimes Z$, if we choose the first term o_1 for initializing θ according to Table [1,](#page-3-1) considering that the third term o_3 differs from the first term o_1 only in the third and fourth Pauli matrices, changing Z to I or I to Z, then we have $M = 2$. However, if we choose the second term o_2 to initialize θ according to **270 271 272** Table [1,](#page-3-1) since the first Pauli matrix of o_1 and o_3 is X while the first Pauli matrix of o_2 is Y, neither o_1 nor o_3 satisfies the condition. Thus $M = 1$ at this time.

273 As before, the PQC is illustrated in Fig. [1.](#page-2-0) Now we present our Theorem [2.](#page-5-0)

Table 2: On the *i*-th qubit, the parameters in $R_y(\theta)$ and $R_x(\theta)$ are intricately designed, dynamically adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of o_i	Init method of $R_u(\theta)$	Init method of $R_x(\theta)$

Theorem 2 Considering the loss function $f(\bm{\theta}) = Tr \left[\left(\sum_i \bm{O}_i - \sum_j \bm{O}_j \right) U(\bm{\theta}) \rho_o U(\bm{\theta})^{\dagger} \right]$, where O_i and O_j are arbitrary tensor product forms of Pauli matrices. The parameters in the first $L-1$ *blocks all follow a Gaussian distribution* $G_1(\sigma^2)$, where $\sigma^2 = \frac{1}{2LS}$ *. Then we randomly select one* O_k , from either O_i or O_j . The parameters in the last block are initialized according to the Pauli *matrices in* O_k *as shown in Table [2.](#page-5-1) With these considerations, we obtain a lower bound on its squared norm of the gradient:*

$$
\mathbb{E} \|\nabla_{\theta} f(\theta)\|_2^2 \ge M(\frac{1}{4} - \frac{1}{8L})
$$
\n(7)

294 295 296 297 298 The full proof are in Appendix [A.3.](#page-23-0) Since the parameter distributions for Z and I are the same here, for O_k itself or by just changing Z to I or I to Z in O_k , it can undergo a similar proof using Theorem [1.](#page-3-4) As for other quadratic terms, they are evidently greater than or equal to 0. For any cross terms, when expanded into a series of summations, it becomes apparent that each term is 0. Therefore, all cross terms are equal to 0. Thus, we obtain Eq. [\(7\)](#page-5-2) and complete the proof.

299 300 301 302 303 304 305 306 307 308 309 From Theorem [2,](#page-5-0) it can be observed that as the number of terms increases, even if there are some terms with negative coefficients, the lower bound on its norm might become larger. This enables us to update the parameters more effectively. However, when we face a situation where the coefficients in its loss are all non-negative, we propose a new initialization method that can provide a larger lower bound in certain specific cases. Assuming our cost function at this stage is $f(\theta) = \text{Tr} \left[\sum_i \mathbf{O}_i U(\theta) \rho_{\text{in}} U(\theta)^{\dagger} \right]$. Once again, we randomly select a term $\mathbf{O}_{k'}$, and following the previous notation, let S denote the number of non-identity matrices in $O_{k'}$. We determine the distribution of θ in the final layer based on the Pauli matrices in $O_{k'}$, as shown in Table [3.](#page-6-0) As before, we assume that among the remaining terms, there are M terms that differ from $O_{k'}$ only by replacing Pauli Z with the identity matrix I or vice versa at corresponding positions(including the original $O_{k'}$ itself). We denote the set of indices satisfying these conditions, along with k' , as K. Next, we present our Theorem [3.](#page-5-3)

311 312 313 314 Theorem 3 *In accordance with the aforementioned definition of the cost function, the parameters of the* L*-th block in the ansatz are defined as presented in Table [3.](#page-6-0) The parameters in the preceding* L− 1 *blocks all adhere to a Gaussian distribution* $\mathcal{G}_1(\sigma^2)$, where $\sigma^2 = \frac{1}{2LS}$ *. With these considerations, we derive a lower bound on its norm:*

315 316 317

318 319

310

$$
\mathbb{E}_{\theta} ||\nabla_{\theta} f(\theta)||_{2}^{2} \geq M(\frac{1}{4} - \frac{1}{8L}) + \sum_{\substack{i,j \in \mathcal{K} \\ i \neq j}} \frac{(2L-1)S_{3}^{ij}}{2LS}(1 - \frac{1}{2LS})^{2LS_{1:3}^{ij}} e^{-\frac{S_{0,3}^{ij}}{2S}}
$$
\n(8)

320 321 322

323 The proof of this theorem is similar to that of Theorem [2,](#page-5-0) but there will be differences in the cross terms. The details can be found in Appendix [A.4.](#page-27-0) Theorem [3](#page-5-3) informs us that when the objective

324 325

Table 3: On the *i*-th qubit, the parameters in $R_y(\theta)$ and $R_x(\theta)$ are intricately designed, dynamically adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of o_i	Init method of $R_u(\theta)$	Init method of $R_x(\theta)$

function does not contain negative terms, compared to Theorem [2,](#page-5-0) we can achieve initialization for all parameters using only the distributions $G_1(\sigma^2)$ and $G_2(\sigma^2)$, no need for $G_3(\sigma^2)$. Moreover, in specific cases, the lower bound on its norm is large or equal to the bound proposed in Theorem [2.](#page-5-0)

4 EXPERIMENTS

341 342 343 344 345 346 347 348 VQAs play a crucial role in various domains, including the modeling of quantum spins Bharti $\&$ [Haug](#page-10-8) [\(2021\)](#page-10-8), quantum machine learning [Romero et al.](#page-13-13) [\(2017\)](#page-13-13); [Biamonte et al.](#page-10-9) [\(2017\)](#page-10-9); [Maria Schuld](#page-12-13) [& Petruccione](#page-12-13) [\(2015\)](#page-12-13), and quantum chemistry [Arute et al.](#page-9-5) [\(2020\)](#page-9-5); [Levine et al.](#page-11-10) [\(2009\)](#page-11-10); [Cao et al.](#page-10-10) [\(2019\)](#page-10-10). In this section, we embark on a comprehensive exploration of our proposed method, drawing comparisons with existing approaches across the spectrum of local and global cost functions. This comparative analysis aims to illuminate the efficacy and adaptability of our strategy in diverse scenarios, shedding light on its potential to enhance quantum computational tasks in both theoretical modeling and practical applications.

Figure 3: In the training process of the 1D Transverse Field Ising Model, the cost function and gradient norm undergo transformations. Since it is a local cost function, the majority of initialization methods converge to its minimum value.

365 366 367 368 369 370 371 372 373 374 375 376 377 First, we initially focus on a local observable in the 1D transverse field Ising model (TFIM) [Stinch](#page-14-13)[combe](#page-14-13) [\(1973\)](#page-14-13); [Heyl et al.](#page-11-11) [\(2013\)](#page-11-11), described by the Hamiltonian $H_{\text{TFIM}} = \sum_{i,i+1} Z_i Z_{i+1} - \sum_i X_i$. Setting the initial state $\rho_{in} = |0\rangle\langle 0|$, with $N = 15$, and $L = 15$, we aim to compute the ground state of the system. We choose the observable $X_1 \otimes I_2 \otimes ... \otimes I_N$ to initialize the circuit parameters. In addition, we compare our proposed method with existing initialization strategies, such as the uniform distribution $\mathcal{U}[-\pi, \pi]$, Gaussian distribution $\mathcal{N}(0, \frac{1}{4S(L+2)})$, and the reduced-domain distribution $U[-a\pi, a\pi]$, where a is set to 0.07. The experimental results are illustrated in Fig. [3,](#page-6-1) where (a) depicts the variation of the cost function during the training process, and (b) shows the ℓ_2 norm of corresponding gradients throughout the optimization. Considering that choosing the observable $Z_1 \otimes Z_2 \otimes \ldots \otimes I_N$ for initialization could also involve initializing all parameters with a Gaussian distribution, our proposed method offers a broader range of distribution choices. The reduced-domain distribution, similar to the Gaussian distribution, concentrates data around zero. Consequently, our method, along with Gaussian distribution and reduced-domain distribution, proves effective in finding the ground state, significantly outperforming the uniform distribution $\mathcal{U}[-\pi, \pi]$.

Figure 4: In the training process, when the observable is entirely composed of X , the cost function and gradient norm undergo transformations. The gradients for Gaussian, uniform, and reduceddomain distributions remain near zero, resulting in almost non-decreasing cost functions for these distributions. In contrast, our method maintains relatively large gradients throughout the training process and is able to descend to the final results.

Table 4: Comparison of initial gradients norm $\mathbb{E} \|\nabla_{\theta} f(\theta)\|_2^2$ for different methods at various num-

bers of qubits.					
	Number of qubits N	GMM	Gaussian	Uniform	Reduced-domain
		1.26	0.99	2.02	1 21
	10	0.75	2.86×10^{-2}	0.41	6.22×10^{-2}
	15	0.73	1.92×10^{-7}	6.65×10^{-2}	8.56×10^{-4}
	20	0.74	3.47×10^{-16}	8.78×10^{-3}	4.61×10^{-6}
	25	0.74	2.55×10^{-23}	1.37×10^{-3}	6.87×10^{-8}

406 407 408 409 410 411 412 413 414 415 416 However, Gaussian and reduced-domain distributions do not always perform well. For instance, on global cost functions, they can only provide exponential lower bounds, which can not avoid the barren plateau problem in general. Now, we consider the cost function $f(\bm{\theta}) = \text{Tr}[\bm{O}U(\bm{\theta})\rho_{in}U^{\dagger}(\bm{\theta})],$ where $\mathbf{O} = X_1 \otimes X_2 \otimes \ldots \otimes X_N$, $\rho_{in} = |0\rangle\langle 0|$. We set $N = 20$ and $L = 8$, the results are depicted in Fig. [4.](#page-7-0) Clearly, in this scenario, neither the Gaussian distribution nor the uniform distribution can induce parameter updates, as their gradient norms tend towards zero. In contrast, our method's gradient norm starts with an initial value greater than $\frac{1}{4} - \frac{1}{8L} \approx 0.23$, significantly surpassing others. Moreover, the gradient norm remains within a relatively large range throughout the entire training process. This enables our approach to escape what is commonly referred to as the vanishing gradient problem on plateaus. These observations are entirely consistent with the conclusions drawn in Theorem [1.](#page-3-4)

417 418 419 420 421 422 423 424 425 426 427 428 429 Finally, we randomly generate some global observables to calculate their initial gradients. In this case, the cost function is given by $f(\theta) = \text{Tr}[(\sum_{i=1}^{10} O_i - \sum_{j=1}^{10} O_j)U(\theta)\rho_{in}U^{\dagger}(\theta)],$ where the Pauli matrices in O_i and O_j are randomly selected from $\{X, Y, Z\}$. We set L to be 2 and computed $\mathbb{E} \|\nabla_{\theta} f(\theta)\|_{2}^{2}$ for different numbers of qubits N. The results are presented in Table [4.](#page-7-1) Given that θ
each term is global and excludes Pauli I, in this case, $M = 1$. Consequently, according to Theorem [2,](#page-5-0) our lower bound on $\mathbb{E} \|\nabla_{\theta} f(\theta)\|_2^2$ is 0.25. From the results, it is evident that with an increase in the number of qubits, the $\frac{1}{\theta} ||\nabla_{\theta} f(\theta)||_2^2$ for Gaussian, uniform, and reduced-domain distributions undergoes a sharp reduction. While our method also exhibits a decreasing trend in $\mathbb{E} \|\nabla_{\theta} f(\theta)\|_2^2$, it aligns closely with the outcome predicted by Theorem [2](#page-5-0) and significantly surpasses other methods by several orders of magnitude. Additionally, we conducted simulation experiments in quantum chemistry to validate the effective-

430 431 ness of this initialization method. We compared the changes in the loss function as the number of layers L increased, both under noisy and noise-free conditions, as well as the impact of different variances σ^2 in the GMM on the results. Specific details can be found in the Appendix [B.](#page-30-0)

433 434 Table 5: For the $R_y - R_x$ gate structure, we initialize the parameters θ in both $R_y(\theta)$ and $R_x(\theta)$ gates using a Gaussian distribution $\mathcal{G}_1(\sigma^2)$.

μ ₂₁₁₁ a Saassian distribution μ ₁₁				
	The Pauli matrix of o_i	Init method of $R_n(\theta)$	Init method of $R_u(\theta)$	

Table 6: For the $R_y - R_x$ gate structure, we initialize the parameters θ in both $R_y(\theta)$ and $R_x(\theta)$ gates using a Gaussian distribution $\mathcal{G}_1(\sigma^2)$.

5 DISCUSSION

455 456 We observe that when Pauli matrices are limited to I and Z , the CZ gate does not alter their forms. In other words, $CZ^{\dagger} (o_i \otimes o_j) CZ = o_i \otimes o_j$ for all $o_i, o_j \in \{I, Z\}$. Therefore, CZ_l can be any combination of CZ gates, and it only changes the conditions for 'flip,' which does not affect our results. Also, although our method is specifically effective for the $R_x - R_y$ gate structure, it can be readily extended to other combinations of rotation gates. For instance, as shown in Theorem [2,](#page-5-0) if we interchange the positions of R_x and R_y in the arrangement of rotation gates, i.e., the arrangement is R_y-R_x , then we initialize the parameters of the last block according to Table [6,](#page-8-0) and the initialization of parameters in other layers follows the distribution $G_1(\sigma^2)$. Alternatively, when the rotation gates consist of three $R_x - R_y - R_x$ gates, under the same conditions as in Theorem [1,](#page-3-4) we initialize the parameters of the last block as shown in Table [7,](#page-9-6) and the initialization of parameters in other layers follows the distribution $G_1(\sigma^2)$. In both cases, the results are consistent with those of Theorem [1.](#page-3-4) Certainly, our analysis method remains applicable when using CNOT to provide entanglement.

463 464 465

466

432

6 CONCLUSION

467 468 469 470 471 In this paper, we introduce GMM into the parameter initialization of PQCs to circumvent the notorious barren plateau problem. Results indicate the universality of our approach, as it applies to various cost functions, and we rigorously prove that its gradient norms is no less than $\frac{1}{8}$. We validate our algorithm for diverse problems, which is crucial for VQAs as it enables the training of larger and deeper quantum circuits, unlocking the potential of quantum computation.

472 473 474 475 476 477 478 479 480 481 While the theorems presented in our paper are tailored to the ansatz in Fig. [1,](#page-2-0) the applicability of our theorems and proof techniques can extend to other ansatz structures. Furthermore, considering the analogous BP issues in tensor network simulations [Liu et al.](#page-12-5) [\(2022\)](#page-12-5); [Garcia et al.](#page-11-12) [\(2023\)](#page-11-12), we anticipate incorporating our method into the initialization of tensor networks in the future. However, due to the sharp-P completeness of classical simulations in tensor networks, even without facing BP, computing their derivatives remains challenging for large-scale problems. In contrast, VQAs can efficiently obtain expected values through quantum devices, making them implementable. Certainly, for effective training of VQAs, overcoming the barren plateau is just one step, as they still face challenges such as local minima [Bittel & Kliesch](#page-10-11) [\(2021\)](#page-10-11); [Anschuetz & Kiani](#page-9-7) [\(2022\)](#page-9-7) that need to consider.

482 483 484 485 We note that recent articles claim all BP-free ansatzes are classically simulable [Cerezo et al.](#page-10-12) [\(2023\)](#page-10-12). As stated in Ref. [Park et al.](#page-13-14) [\(2024\)](#page-13-14), HEA can be interpreted as a many-body localized (MBL) system [Shtanko et al.](#page-14-14) [\(2023\)](#page-14-14), and currently, no efficient classical algorithm can simulate MBL systems for exponentially long times. Additionally, even when using tensor networks to simulate, the barren plateau problem arises when dealing with global loss function[sLiu et al.](#page-12-5) [\(2022\)](#page-12-5). Although the work

512

Table 7: For the $R_x - R_y - R_x$ gate structure, we initialize the parameters θ in both $R_y(\theta)$ and $R_x(\theta)$ gates using a Gaussian distribution $\mathcal{G}_1(\sigma^2)$.

$I_{\alpha}(\nu)$ gailed using a Gaussian distribution $g_{\perp}(\nu)$.					
O_i	Init method of first $R_x(\theta)$	Init method of $R_u(\theta)$	Init method of second $R_x(\theta)$		

in Ref. [Cerezo et al.](#page-10-12) [\(2023\)](#page-10-12) has sparked new thoughts on VQAs, some of its statements require more detailed proof and analysis in future work.

REFERENCES

- V. Akshay, H. Philathong, M. E. S. Morales, and J. D. Biamonte. Reachability deficits in quantum approximate optimization. *Phys. Rev. Lett.*, 124:090504, Mar 2020. doi: 10.1103/PhysRevLett. 124.090504. URL [https://link.aps.org/doi/10.1103/PhysRevLett.124.](https://link.aps.org/doi/10.1103/PhysRevLett.124.090504) [090504](https://link.aps.org/doi/10.1103/PhysRevLett.124.090504).
- **505 506 507 508** David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch. Filtering variational quantum algorithms for combinatorial optimization. *Quantum Science and Technology*, 7(1):015021, feb 2022. doi: 10.1088/2058-9565/ac3e54. URL <https://dx.doi.org/10.1088/2058-9565/ac3e54>.
- **509 510 511** Eric R. Anschuetz and Bobak T. Kiani. Quantum variational algorithms are swamped with traps. *Nature Communications*, 13(1):7760, Dec 2022. ISSN 2041-1723. doi: 10.1038/ s41467-022-35364-5. URL <https://doi.org/10.1038/s41467-022-35364-5>.
- **513 514 515 516** Andrew Arrasmith, Lukasz Cincio, Andrew T. Sornborger, Wojciech H. Zurek, and Patrick J. Coles. Variational consistent histories as a hybrid algorithm for quantum foundations. *Nature Communications*, 10(1):3438, Jul 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-11417-0. URL <https://doi.org/10.1038/s41467-019-11417-0>.
- **517 518 519 520** Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles. Effect of barren plateaus on gradient-free optimization. *Quantum*, 5:558, October 2021. ISSN 2521-327X. doi: 10.22331/q-2021-10-05-558. URL [https://doi.org/10.22331/](https://doi.org/10.22331/q-2021-10-05-558) [q-2021-10-05-558](https://doi.org/10.22331/q-2021-10-05-558).
- **521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537** Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O'Brien, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Theodore White, Nathan Wiebe, Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Hartree-fock on a superconducting qubit quantum computer. *Science*, 369(6507):1084–1089, 2020. doi: 10.1126/science.abb9811. URL [https://www.science.org/doi/abs/10.](https://www.science.org/doi/abs/10.1126/science.abb9811) [1126/science.abb9811](https://www.science.org/doi/abs/10.1126/science.abb9811).
- **538 539** Afrad Basheer, Yuan Feng, Christopher Ferrie, and Sanjiang Li. Alternating layered variational quantum circuits can be classically optimized efficiently using classical shadows. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 6770–6778, 2023.
- **540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591** Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as machine learning models. *Quantum Science and Technology*, 4(4):043001, nov 2019. doi: 10.1088/2058-9565/ab4eb5. URL [https://dx.doi.org/10.1088/2058-9565/](https://dx.doi.org/10.1088/2058-9565/ab4eb5) [ab4eb5](https://dx.doi.org/10.1088/2058-9565/ab4eb5). Kishor Bharti and Tobias Haug. Iterative quantum-assisted eigensolver. *Phys. Rev. A*, 104:L050401, Nov 2021. doi: 10.1103/PhysRevA.104.L050401. URL [https://link.aps.org/doi/](https://link.aps.org/doi/10.1103/PhysRevA.104.L050401) [10.1103/PhysRevA.104.L050401](https://link.aps.org/doi/10.1103/PhysRevA.104.L050401). Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. *Rev. Mod. Phys.*, 94:015004, Feb 2022. doi: 10.1103/RevModPhys.94.015004. URL <https://link.aps.org/doi/10.1103/RevModPhys.94.015004>. Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. *Nature*, 549(7671):195–202, Sep 2017. ISSN 1476-4687. doi: 10.1038/nature23474. URL <https://doi.org/10.1038/nature23474>. Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is np-hard. *Phys. Rev.* Lett., 127:120502, Sep 2021. doi: 10.1103/PhysRevLett.127.120502. URL [https://link.](https://link.aps.org/doi/10.1103/PhysRevLett.127.120502) [aps.org/doi/10.1103/PhysRevLett.127.120502](https://link.aps.org/doi/10.1103/PhysRevLett.127.120502). Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Maria ´ Kieferova, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Li- ´ bor Veis, and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum computing. *Chemical Reviews*, 119(19):10856–10915, Oct 2019. ISSN 0009-2665. doi: 10.1021/acs.chemrev. 8b00803. URL <https://doi.org/10.1021/acs.chemrev.8b00803>. M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. *Nature Reviews Physics*, 3(9):625–644, Sep 2021a. ISSN 2522-5820. doi: 10.1038/s42254-021-00348-9. URL [https://doi.org/10.1038/](https://doi.org/10.1038/s42254-021-00348-9) [s42254-021-00348-9](https://doi.org/10.1038/s42254-021-00348-9). M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. *Nature Communications*, 12(1):1791, Mar 2021b. ISSN 2041-1723. doi: 10.1038/s41467-021-21728-w. URL [https://doi.org/](https://doi.org/10.1038/s41467-021-21728-w) [10.1038/s41467-021-21728-w](https://doi.org/10.1038/s41467-021-21728-w). M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. Variational quantum state eigensolver. *npj Quantum Information*, 8(1):113, Sep 2022. ISSN 2056-6387. doi: 10.1038/ s41534-022-00611-6. URL <https://doi.org/10.1038/s41534-022-00611-6>. Marco Cerezo, Martin Larocca, Diego García-Martín, Nelson L Diaz, Paolo Braccia, Enrico Fontana, Manuel S Rudolph, Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, et al. Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing. *arXiv preprint arXiv:2312.09121*, 2023. Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement learning. *IEEE access*, 8:141007– 141024, 2020. Cristina Cˆırstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, and Andrew Sorn- ¨ borger. Variational fast forwarding for quantum simulation beyond the coherence time. *npj Quantum Information*, 6(1):82, Sep 2020. ISSN 2056-6387. doi: 10.1038/s41534-020-00302-0. URL <https://doi.org/10.1038/s41534-020-00302-0>.
- **592 593** Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. *Nature Physics*, 15(12):1273–1278, Dec 2019. ISSN 1745-2481. doi: 10.1038/s41567-019-0648-8. URL <https://doi.org/10.1038/s41567-019-0648-8>.

605

- **594 595 596** Enrico Fontana, Dylan Herman, Shouvanik Chakrabarti, Niraj Kumar, Romina Yalovetzky, Jamie Heredge, Shree Hari Sureshbabu, and Marco Pistoia. Characterizing barren plateaus in quantum ansatze with the adjoint representation. *Nature Communications*, 15(1):7171, 2024.
- **598 599 600** Lucas Friedrich and Jonas Maziero. Avoiding barren plateaus with classical deep neural networks. *Phys. Rev. A*, 106:042433, Oct 2022. doi: 10.1103/PhysRevA.106.042433. URL [https://](https://link.aps.org/doi/10.1103/PhysRevA.106.042433) link.aps.org/doi/10.1103/PhysRevA.106.042433.
- **601 602 603 604** Roy J. Garcia, Chen Zhao, Kaifeng Bu, and Arthur Jaffe. Barren plateaus from learning scramblers with local cost functions. *Journal of High Energy Physics*, 2023(1):90, Jan 2023. ISSN 1029-8479. doi: 10.1007/JHEP01(2023)090. URL [https://doi.org/10.1007/](https://doi.org/10.1007/JHEP01(2023)090) [JHEP01\(2023\)090](https://doi.org/10.1007/JHEP01(2023)090).
- **606 607 608 609** Michael Glodek, Martin Schels, and Friedhelm Schwenker. Ensemble gaussian mixture models for probability density estimation. *Computational Statistics*, 28(1):127–138, Feb 2013. ISSN 1613-9658. doi: 10.1007/s00180-012-0374-5. URL [https://doi.org/10.1007/](https://doi.org/10.1007/s00180-012-0374-5) [s00180-012-0374-5](https://doi.org/10.1007/s00180-012-0374-5).
- **610 611 612 613 614** Harshvardhan GM, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup Rautaray. A comprehensive survey and analysis of generative models in machine learning. *Computer Science Review*, 38:100285, 2020. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev. 2020.100285. URL [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S1574013720303853) [S1574013720303853](https://www.sciencedirect.com/science/article/pii/S1574013720303853).
- **615 616 617 618 619** Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature spaces. *Nature*, 567(7747):209–212, Mar 2019. ISSN 1476-4687. doi: 10.1038/ s41586-019-0980-2. URL <https://doi.org/10.1038/s41586-019-0980-2>.
- **620 621 622 623 624** Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. *Phys. Rev. X*, 8:031022, Jul 2018. doi: 10.1103/PhysRevX.8.031022. URL [https://link.aps.](https://link.aps.org/doi/10.1103/PhysRevX.8.031022) [org/doi/10.1103/PhysRevX.8.031022](https://link.aps.org/doi/10.1103/PhysRevX.8.031022).
- **625 626 627 628 629** M. Heyl, A. Polkovnikov, and S. Kehrein. Dynamical quantum phase transitions in the transversefield ising model. *Phys. Rev. Lett.*, 110:135704, Mar 2013. doi: 10.1103/PhysRevLett. 110.135704. URL [https://link.aps.org/doi/10.1103/PhysRevLett.110.](https://link.aps.org/doi/10.1103/PhysRevLett.110.135704) [135704](https://link.aps.org/doi/10.1103/PhysRevLett.110.135704).
- **630 631 632 633** Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kubler, Hans J. Briegel, and ¨ Vedran Dunjko. Quantum machine learning beyond kernel methods. *Nature Communications*, 14(1):517, Jan 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-36159-y. URL [https:](https://doi.org/10.1038/s41467-023-36159-y) [//doi.org/10.1038/s41467-023-36159-y](https://doi.org/10.1038/s41467-023-36159-y).
	- Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. *Nature*, 549(7671):242–246, Sep 2017. ISSN 1476-4687. doi: 10.1038/nature23879. URL <https://doi.org/10.1038/nature23879>.
	- Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J Coles, Lukasz Cincio, Jarrod R McClean, Zoë Holmes, and M Cerezo. A review of barren plateaus in variational quantum computing. *arXiv preprint arXiv:2405.00781*, 2024.
	- Ira N Levine, Daryle H Busch, and Harrison Shull. *Quantum chemistry*, volume 6. Pearson Prentice Hall Upper Saddle River, NJ, 2009.
- **645 646 647** Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo. Mitigating barren plateaus with transfer-learning-inspired parameter initializations. *New Journal of Physics*, 25 (1):013039, feb 2023. doi: 10.1088/1367-2630/acb58e. URL [https://dx.doi.org/10.](https://dx.doi.org/10.1088/1367-2630/acb58e) [1088/1367-2630/acb58e](https://dx.doi.org/10.1088/1367-2630/acb58e).

663 664 665

673

687

- **648 649 650** Xia Liu, Geng Liu, Hao-Kai Zhang, Jiaxin Huang, and Xin Wang. Mitigating barren plateaus of variational quantum eigensolvers. *IEEE Transactions on Quantum Engineering*, 2024.
- **651 652 653 654** Zidu Liu, Li-Wei Yu, L.-M. Duan, and Dong-Ling Deng. Presence and absence of barren plateaus in tensor-network based machine learning. *Phys. Rev. Lett.*, 129:270501, Dec 2022. doi: 10.1103/PhysRevLett.129.270501. URL [https://link.aps.org/doi/10.1103/](https://link.aps.org/doi/10.1103/PhysRevLett.129.270501) [PhysRevLett.129.270501](https://link.aps.org/doi/10.1103/PhysRevLett.129.270501).
- **655 656 657 658** Laura Manduchi, Kieran Chin-Cheong, Holger Michel, Sven Wellmann, and Julia E Vogt. Deep conditional gaussian mixture model for constrained clustering. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=Blq2djlaP9U>.
- **660 661 662** Ilya Sinayskiy Maria Schuld and Francesco Petruccione. An introduction to quantum machine learning. *Contemporary Physics*, 56(2):172–185, 2015. doi: 10.1080/00107514.2014.964942. URL <https://doi.org/10.1080/00107514.2014.964942>.
	- Enrique Cervero Mart´ın, Kirill Plekhanov, and Michael Lubasch. Barren plateaus in quantum tensor network optimization. *Quantum*, 7:974, 2023.
- **666 667 668** Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. Quantum computational chemistry. *Rev. Mod. Phys.*, 92:015003, Mar 2020. doi: 10.1103/RevModPhys.92. 015003. URL <https://link.aps.org/doi/10.1103/RevModPhys.92.015003>.
- **669 670 671 672** Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik. The theory of varia- ´ tional hybrid quantum-classical algorithms. *New Journal of Physics*, 18(2):023023, feb 2016. doi: 10.1088/1367-2630/18/2/023023. URL [https://dx.doi.org/10.1088/1367-2630/](https://dx.doi.org/10.1088/1367-2630/18/2/023023) [18/2/023023](https://dx.doi.org/10.1088/1367-2630/18/2/023023).
- **674 675 676 677** Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. *Nature Communications*, 9(1): 4812, Nov 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-07090-4. URL [https://doi.](https://doi.org/10.1038/s41467-018-07090-4) [org/10.1038/s41467-018-07090-4](https://doi.org/10.1038/s41467-018-07090-4).
- **678 679 680** Antonio Anna Mele, Armando Angrisani, Soumik Ghosh, Sumeet Khatri, Jens Eisert, Daniel Stilck França, and Yihui Quek. Noise-induced shallow circuits and absence of barren plateaus. *arXiv preprint arXiv:2403.13927*, 2024.
- **681 682 683 684 685 686** Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Muller, Walter Riess, Gian Salis, John Smolin, Ivano Tavernelli, and Kris- ¨ tan Temme. Quantum optimization using variational algorithms on near-term quantum devices. *Quantum Science and Technology*, 3(3):030503, jun 2018. doi: 10.1088/2058-9565/aab822. URL <https://dx.doi.org/10.1088/2058-9565/aab822>.
- **688 689** John A. Nelder and Roger Mead. A simplex method for function minimization. *Computer Journal*, 7:308–313, 1965.
- **690 691** Alexander Nietner. Unifying (quantum) statistical and parametrized (quantum) algorithms. *arXiv preprint arXiv:2310.17716*, 2023.
- **693 694 695 696 697 698 699** P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. *Phys. Rev. X*, 6:031007, Jul 2016. doi: 10.1103/PhysRevX.6.031007. URL [https://link.aps.org/doi/10.](https://link.aps.org/doi/10.1103/PhysRevX.6.031007) [1103/PhysRevX.6.031007](https://link.aps.org/doi/10.1103/PhysRevX.6.031007).
- **700 701** Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. Entanglement-induced barren plateaus. *PRX Quantum*, 2:040316, Oct 2021. doi: 10.1103/PRXQuantum.2.040316. URL [https://](https://link.aps.org/doi/10.1103/PRXQuantum.2.040316) link.aps.org/doi/10.1103/PRXQuantum.2.040316.

- **810 811 812** Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao. Toward trainability of quantum neural networks. *arXiv preprint arXiv:2011.06258*, 2020.
- **813 814** Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao. Toward trainability of deep quantum neural networks. *arXiv preprint arXiv:2112.15002*, 2021.
- **815 816 817 818** Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, and Dacheng Tao. Escaping from the barren plateau via gaussian initializations in deep variational quantum circuits. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022a. URL <https://openreview.net/forum?id=jXgbJdQ2YIy>.
- **819 820 821 822 823** Shi-Xin Zhang, Zhou-Quan Wan, Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Variational quantum-neural hybrid eigensolver. *Phys. Rev. Lett.*, 128:120502, Mar 2022b. doi: 10.1103/PhysRevLett.128.120502. URL [https://link.aps.org/doi/10.1103/](https://link.aps.org/doi/10.1103/PhysRevLett.128.120502) [PhysRevLett.128.120502](https://link.aps.org/doi/10.1103/PhysRevLett.128.120502).
- **824 825 826** Chen Zhao and Xiao-Shan Gao. Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus. *Quantum*, 5:466, June 2021. ISSN 2521-327X. doi: 10. 22331/q-2021-06-04-466. URL <https://doi.org/10.22331/q-2021-06-04-466>.
- **827 828 829 830** Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. *Phys. Rev. X*, 10:021067, Jun 2020. doi: 10.1103/PhysRevX.10.021067. URL [https:](https://link.aps.org/doi/10.1103/PhysRevX.10.021067) [//link.aps.org/doi/10.1103/PhysRevX.10.021067](https://link.aps.org/doi/10.1103/PhysRevX.10.021067).
	- Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *International Conference on Learning Representations*, 2018. URL [https://openreview.](https://openreview.net/forum?id=BJJLHbb0-) [net/forum?id=BJJLHbb0-](https://openreview.net/forum?id=BJJLHbb0-).

A APPENDIX

A.1 TECHNICAL LEMMAS

For convenience, let's introduce some notation that will be used in the subsequent proof. Consider a special case where the Pauli matrices O_i and O_j at all corresponding positions are either identical or involve the Pauli Z and the identity matrix. Specifically, $\forall l \in [N]$, the single observables o_l^i and o_l^j at their corresponding positions belong to the set $\{X, X; Y, Y; Z, Z; I, Z; Z, I; I, I\}$. We define:

$$
S_1^{ij} := |\{m|o_m^i = o_m^j = X, m \in [N]\}|
$$
\n(9)

$$
P_0^{ij} := \{ m | o_m^i = I | | o_m^j = I, m \in [N] \}
$$
\n⁽¹⁰⁾

$$
P_{1:3}^{ij} := \{ m | o_m^i = o_m^j \neq I, m \in [N] \}
$$
\n⁽¹¹⁾

(12)

Also, the random variable θ is distributed according to \mathcal{G}_0 , $\mathcal{G}_1(\sigma^2)$, $\mathcal{G}_2(\sigma^2)$, $\mathcal{G}_3(\sigma^2)$, adhering to the same definitions as presented in the main text. Assuming θ follows the distribution $\mathcal{G}_1(\sigma^2)$, we define α , β , and γ as follows:

$$
\alpha = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \cos^2 \theta = \frac{1 + e^{-2\sigma^2}}{2} \tag{13}
$$

858 859

861

860

$$
\beta = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \sin^2 \theta = \frac{1 - e^{-2\sigma^2}}{2} \tag{14}
$$

 $\overline{2}$

$$
862
$$
\n
$$
863
$$
\n
$$
863
$$
\n
$$
863
$$
\n
$$
863
$$

$$
\gamma = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \cos \theta = e^{-\frac{\sigma^2}{2}} \tag{15}
$$

By straightforward application of a Taylor expansion, it is evident that $\alpha \geq 1 - \sigma^2$ and $\beta \geq \sigma^2(1 - \sigma^2)$ σ^2). Next, we will now present the lemma.

Lemma 1 Let ρ be an arbitrary linear operator, G be a Hermitian unitary and $V = e^{-i\frac{\theta}{2}G}$. Con*sider an arbitrary Hamiltonian operator* O *that commutes with* G*. Moreover, let* θ *be a random variable following an arbitrary distribution, i.e.,* $\theta \sim \mathcal{G}_0$ *. Then:*

$$
\underset{\theta \sim \mathcal{G}_0}{\mathbb{E}} \operatorname{Tr}[OV_{\rho}V^{\dagger}] = \operatorname{Tr}[O_{\rho}] \tag{16}
$$

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_0} \text{Tr}^2[OV\rho V^{\dagger}] = \text{Tr}^2[O\rho]
$$
\n(17)

878 879 880

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_0} \frac{\partial}{\partial \theta} \text{Tr}[OV \rho V^{\dagger}] = 0 \tag{18}
$$

where $\text{Tr}^2[\cdot] = (\text{Tr}[\cdot])^2$

Proof. Consider that $V = e^{-i\frac{\theta}{2}G} = I \cos(\frac{\theta}{2}) - iG \sin(\frac{\theta}{2})$, for any arbitrary operator O, we obtain: $\sqrt{2}$

$$
\begin{split} \operatorname{Tr}[OV\rho V^{\dagger}] &= \operatorname{Tr}\left[O\left(I\cos\left(\frac{\theta}{2}\right) - iG\sin\left(\frac{\theta}{2}\right)\right)\rho\left(I\cos\left(\frac{\theta}{2}\right) + iG\sin\left(\frac{\theta}{2}\right)\right)\right] \\ &= \frac{1+\cos\theta}{2}\operatorname{Tr}[O\rho] + \frac{1-\cos\theta}{2}\operatorname{Tr}[OG\rho G] + \frac{\sin\theta}{2}\left(\operatorname{Tr}[iO\rho G] - \operatorname{Tr}[iOG\rho]\right) \end{split} \tag{19}
$$

Given that G is unitary and $[O, G] = 0$, the above expression simplifies to:

$$
\operatorname{Tr}[OV\rho V^{\dagger}] = \operatorname{Tr}[O\rho] \tag{20}
$$

Hence, $\text{Tr}[OV \rho V^{\dagger}]$ is independent of θ . Consequently, for any random variable θ , we establish that E $\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_0} \text{Tr}[O V \rho V^\dagger] = \text{Tr}[O \rho], \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_0} \text{Tr}^2 [O V \rho V^\dagger] = \text{Tr}^2 [O \rho] \text{ and } \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_0}$ $\frac{\partial}{\partial \theta} \text{Tr}[OV \rho V^{\dagger}] = 0.$

Lemma 2 Let ρ be an arbitrary linear operator, and let G be a Hermitian unitary and $V = e^{-i\frac{\theta}{2}G}$. *Consider arbitrary Hamiltonian operator* O_1 , O_2 , \tilde{O}_1 , and \tilde{O}_2 , where O_1 , O_2 anti-commute with G *and* \widetilde{O}_1 , \widetilde{O}_2 *commute with G*, *implying* $\{O_1, G\} = 0$, $\{O_2, G\} = 0$, $[\widetilde{O}_1, G] = 0$, *and* $[\widetilde{O}_2, G] = 0$. And θ is a random variable following a Gaussian distribution $\mathcal{N}(0,\sigma^2)$, i.e., $\theta \sim \mathcal{G}_1(\sigma^2)$. Then:

$$
\mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] = \gamma \text{Tr}[O_1 \rho] \tag{21}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] = \gamma \text{Tr}[i G O_1 \rho] \tag{22}
$$

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \text{Tr}[O_1 V \rho V^{\dagger}] = \gamma \text{Tr}[\widetilde{O}_1 \rho] \text{Tr}[O_1 \rho]
$$
(23)

914 915 916

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_1(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_2 V \rho V^{\dagger}] = 0 \quad (24)
$$

E $\mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] \text{Tr}[O_2 V \rho V^{\dagger}] = \alpha \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \beta \text{Tr}[iGO_1 \rho] \text{Tr}[iGO_2 \rho]$ (25)

918 919

$$
\mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \beta \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \alpha \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho]
$$
(26)

where i *is the imaginary unit.*

proof. According to Eq. [\(19\)](#page-16-0), it can be see that for any operator O , we have

$$
\text{Tr}[OV\rho V^{\dagger}] = \frac{1+\cos\theta}{2}\text{Tr}[O\rho] + \frac{1-\cos\theta}{2}\text{Tr}[GOG\rho] + \frac{\sin\theta}{2}(\text{Tr}[iGO\rho] - \text{Tr}[iOG\rho]) \tag{27}
$$

Considering the unitary of G and the conditions $\{O_1, G\} = 0$, as indicated in Eq. [\(27\)](#page-17-0), we can deduce that

$$
Tr[O_1 V \rho V^{\dagger}] = \cos \theta Tr[O_1 \rho] + \sin \theta Tr[i G O_1 \rho]
$$
\n(28)

Based on Eq. [\(28\)](#page-17-1), we obtain that

$$
\frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] = -\sin \theta \text{Tr}[O_1 \rho] + \cos \theta \text{Tr}[i G O_1 \rho]
$$
(29)

942 944 Given that $\mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \sin \theta = \mathbb{E}_{\theta \sim \mathcal{G}_1(\sigma^2)} \sin 2\theta = 0$, and combining it with Eq. [\(20\)](#page-16-1), Eq. [\(28\)](#page-17-1) and Eq. (29) . Therefore, we can deduce Eq. (21) to Eq. (26) .

Lemma 3 Let ρ , G, V, O_1 , O_2 , \widetilde{O}_1 and \widetilde{O}_2 be defined in the same manner as presented in Lemma [2.](#page-16-3) Random variable θ follows distribution $\mathcal{G}_2(\sigma^2)$. Then

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{30}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{31}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{32}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \text{Tr}[\widetilde{O}_2 V \rho V^{\dagger}] = \text{Tr}[\widetilde{O}_1 \rho] \text{Tr}[\widetilde{O}_2 \rho]
$$
(33)

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_2 V \rho V^{\dagger}] = 0 \quad (34)
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] \text{Tr}[O_2 V \rho V^{\dagger}] = \beta \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \alpha \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho]
$$
(35)

968 969 970

971

$$
\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \alpha \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \beta \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho] \tag{36}
$$

946 947 948

943

proof. Since $\theta \sim \mathcal{G}_2(\sigma^2)$, we have

E $\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} cos \theta = \frac{1}{2}$ 2 $\int^{+\infty}$ −∞ $\frac{1}{\sqrt{1}}$ $rac{1}{2\pi\sigma}e^{-\frac{(x+\frac{\pi}{2})^2}{2\sigma^2}}cos(x)dx+\frac{1}{2}$ 2 $\int^{+\infty}$ $-\infty$ $\frac{1}{\sqrt{1}}$ $rac{1}{2\pi\sigma}e^{-\frac{(x-\frac{\pi}{2})^2}{2\sigma^2}}cos(x)dx$ (37)

$$
= -\frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \sin(x) dx + \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \sin(x) dx \tag{38}
$$

979 980 981

 $= 0$ (39)

982 By following the similar calculations, we obtain $\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} sin(2\theta) = 0, \mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} cos^2(\theta) = 0$ β , $\mathbb{E}_{\theta \sim \mathcal{G}_2(\sigma^2)} sin^2(\theta) = \alpha$. Combining them with Eq. [\(20\)](#page-16-1) and Eq. [\(28\)](#page-17-1), it is straightforward to have Eq. [\(30\)](#page-17-4) to Eq. [\(36\)](#page-17-5).

987 988 Lemma 4 The definitions of ρ , G, V, O₁, O₂, O₁ and O₂ align with those outlined in Lemma [2.](#page-16-3)
Random variable θ follows distribution $\mathcal{G}_3(\sigma^2)$. Then

 θ

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_3(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{40}
$$

$$
\mathbb{E}_{\mathcal{G}_3(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{41}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_3(\sigma^2)} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \text{Tr}[O_1 V \rho V^{\dagger}] = 0 \tag{42}
$$

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_3(\sigma^2)} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \text{Tr}[\widetilde{O}_2 V \rho V^{\dagger}] = \text{Tr}[\widetilde{O}_1 \rho] \text{Tr}[\widetilde{O}_2 \rho] \tag{43}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_3(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \mathbb{E}_{\theta} \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[\widetilde{O}_2 V \rho V^{\dagger}] = 0 \tag{44}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_3(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] \text{Tr}[O_2 V \rho V^{\dagger}] = \alpha \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \beta \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho] \tag{45}
$$

1008 1009 1010

1011 1012

$$
\mathop{\mathbb{E}}_{\theta \sim \mathcal{G}_3(\sigma^2)} \frac{\partial}{\partial \theta} \text{Tr}[O_1 V \rho V^{\dagger}] \frac{\partial}{\partial \theta} \text{Tr}[O_2 V \rho V^{\dagger}] = \beta \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \alpha \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho] \tag{46}
$$

proof. Since $\theta \sim \mathcal{G}_3(\sigma^2)$, we have

$$
\begin{array}{c} 1013 \\ 1014 \\ 1015 \\ 1016 \end{array}
$$

$$
\mathbb{E}_{\theta \sim \mathcal{G}_3(\sigma^2)} cos \theta = \frac{1}{4} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x+\pi)^2}{2\sigma^2}} cos(x) dx + \frac{1}{4} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\pi)^2}{2\sigma^2}} cos(x) dx
$$

$$
+ \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} cos(x) dx \tag{47}
$$

1020 1021 1022 1023 1024 1025 = − 1 4 Z ⁺[∞] −∞ 1 √ 2πσ e − ^x 2 ²σ² cos(x)dx − 1 4 Z ⁺[∞] −∞ 1 √ 2πσ e − ^x 2 ²σ² cos(x)dx + 1 2 Z ⁺[∞] −∞ 1 √ 2πσ e − ^x 2 ²σ² cos(x)dx (48)

$$
=0\tag{49}
$$

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 By following the similar calculations, we obtain $\mathbb{E} \sin(2\theta) = 0$, $\mathbb{E} \cos^2(\theta) = \alpha$, $\mathbb{E} \sin^2(\theta) = \beta$. Again using Eq. [\(20\)](#page-16-1) and Eq. [\(28\)](#page-17-1), it is straightforward to have Eq. [\(40\)](#page-18-0) to Eq. [\(46\)](#page-18-1). When $O_1 = O_2$ and $\tilde{O}_1 = \tilde{O}_2$, we can derive the following corollary: **Corollary**: Let ρ be an arbitrary linear operator, and let G be a Hermitian unitary and $V = e^{-i\frac{\theta}{2}G}$. *Consider arbitrary quantum observables* O*, where* O *anti-commute with* G*. If random variable* θ *follows distribution* $\theta \sim \mathcal{G}_1(\sigma^2)$ *or* $\theta \sim \mathcal{G}_3(\sigma^2)$ *. Then* \overline{E} $\mathbb{E}_{\theta} \text{Tr}^2[OV \rho V^{\dagger}] = \alpha \text{Tr}^2[O\rho] + \beta \text{Tr}^2[iGO\rho],$ (50) \overline{E} θ $\left(\frac{\partial}{\partial \theta} \text{Tr}[OV \rho V^{\dagger}]\right)^2 = \beta \text{Tr}^2[O\rho] + \alpha \text{Tr}^2[iGO\rho].$ (51) *If random variable* θ *follows a Gaussian mixture model* $\theta \sim \mathcal{G}_2(\sigma^2)$ *. Then* E $\mathbb{E} \operatorname{Tr}^2[OV \rho V^{\dagger}] = \beta \operatorname{Tr}^2[O\rho] + \alpha \operatorname{Tr}^2[iGO\rho],$ (52)

$$
\mathbb{E}\left(\frac{\partial}{\partial \theta}\text{Tr}[OV\rho V^{\dagger}]\right)^{2} = \alpha \text{Tr}^{2}[O\rho] + \beta \text{Tr}^{2}[iGO\rho],\tag{53}
$$

1051 1052 1053 For clarity, we employ graphical representations to illustrate the evolution of Pauli matrices. Consider Eq. [\(45\)](#page-18-2):

1054 1055

1056 1057

1049 1050

$$
\mathbb{E}_{\theta \sim \mathcal{G}_3(\sigma^2)} \text{Tr}[O_1 V \rho V^{\dagger}] \text{Tr}[O_2 V \rho V^{\dagger}] = \alpha \text{Tr}[O_1 \rho] \text{Tr}[O_2 \rho] + \beta \text{Tr}[i G O_1 \rho] \text{Tr}[i G O_2 \rho] \tag{54}
$$

1058 1059 1060 1061 1062 Suppose $O_1 = X$, $O_2 = Z$, $G = Y$. Then, $iGO_1 = Z$ and $iGO_2 = -X$. Therefore, $\mathbb{\hat{E}}$ $\int_{\theta \sim \mathcal{G}_3(\sigma^2)}^{\mathbb{R}} \text{Tr}[X V \rho V^{\dagger}] \text{Tr}[Z V \rho V^{\dagger}] = \alpha \text{Tr}[X \rho] \text{Tr}[Z \rho] - \beta \text{Tr}[Z \rho] \text{Tr}[X \rho]$. The original operators O_1 and O_2 are now split into two terms, X, Z and Z, X, with coefficients α and $-\beta$ respectively. The corresponding graphical representation, as depicted in Fig. [5,](#page-20-1) illustrates the evolution of Pauli matrices after applying the gates, with arrows indicating the resulting Pauli matrices and lines representing

1063 1064 their parameters. The following lemma pertains to the transformations of 2-qubit Pauli tensor products after the ap-

1065 1066 plication of a controlled-Z gate.

1067 1068 1069 1070 Lemma 5 *Let CZ represent a controlled-Z gate, and* $o_i \otimes o_j$ *denote a 2-qubit Pauli tensor product,* where o_i and o_j are Pauli matrices. When $o_{i'} \otimes o_{j'}$ is equivalent to $CZ^{\dagger}(o_i \otimes o_j)CZ$, we denote *this transformation as* $o_i \otimes o_j \to o_{i'} \otimes o_{j'}$. To encapsulate all specific transformations succinctly, *we present the following summary:*

 $X \otimes I \leftrightarrow X \otimes Z$, $X \otimes X \leftrightarrow Y \otimes Y$, $X \otimes Y \leftrightarrow -Y \otimes X$, $Y \otimes I \leftrightarrow Y \otimes Z$

$$
Y\otimes Z \leftrightarrow Y\otimes I, Z\otimes I \leftrightarrow Z\otimes I, Z\otimes X \leftrightarrow I\otimes X, Z\otimes Y \leftrightarrow I\otimes Y,
$$

$$
Z\otimes Z\leftrightarrow Z\otimes Z, I\otimes I\leftrightarrow I\otimes I, I\otimes Z\leftrightarrow I\otimes Z
$$

where

X, *Z X*, *Z Z*, *X α* −*β* Figure 5: In the scenario where the density matrix ρ remains invariant, the Pauli matrix XZ undergoes a transformation resulting in two components. One component corresponds to αXZ , while the other corresponds to $-\beta ZX$. A.2 PROOF OF THEOREM [1](#page-3-4) Here, we consider an observable with only one term, i.e. $\mathbf{O} = o_1 \otimes o_2 \otimes ... \otimes o_N$, where $o_i \in \mathbf{O}$ $\{I, X, Y, Z\}$. For subsequent calculations, we establish the following notations. We define $O_{3:i:1}$ to mean replacing all the Pauli matrices of X in O with Z, and $O_{3:i}$ means replacing all Pauli matrices of X and Y in O with Z. The parameterized quantum circuit $U(\theta)$ comprising L blocks can be represented as $U(\theta) = U_L(\theta_{2L}, \theta_{2L-1})U_{L-1}(\theta_{2L-2}, \theta_{2L-3})...U_1(\theta_2, \theta_1)$ (55) For each block $U(\theta_l)$, where $l \in \{0, 1, ..., 2L\}$, it can be represented as $U_l(\theta_{2l}, \theta_{2l-1}) = R_{2l}(\theta_{2l})R_{2l-1}(\theta_{2l-1})CZ_l$ (56) $R_{2l}(\pmb{\theta}_{2l})=e^{-i\frac{\pmb{\theta}_{2l,1}}{2}Y}\otimes e^{-i\frac{\pmb{\theta}_{2l,2}}{2}Y}...\otimes e^{-i\frac{\pmb{\theta}_{2l,N}}{2}Y}$ (57) $R_{2l-1}(\theta_{2l-1}) = e^{-i\frac{\theta_{2l-1,1}}{2}X} \otimes e^{-i\frac{\theta_{2l-1,2}}{2}X} \dots \otimes e^{-i\frac{\theta_{2l-1,N}}{2}X},$ (58) CZ_l denotes that the circuit induces entanglement through the inclusion of multiple CZ gates in the l-th block. Next, we consider the intermediate state. For any $k \in \{0, 1, ..., 2L\}$, assuming that the quantum state obtained after passing through the k-th block is ρ_k , we define $\rho_k := \begin{cases} R_k(\boldsymbol{\theta}_k) \rho_{k-1} R_k(\boldsymbol{\theta}_k)^{\dagger} & \text{for } k = 2l \leq 2L \\ R_k(\boldsymbol{\theta}_k) C Z_{k+1} \rho_{k-1} C Z_{k+1}^{\dagger} & R_k(\boldsymbol{\theta}_k)^{\dagger} & \text{for } k = 2l + 1 \leq k \end{cases}$ $R_k(\boldsymbol{\theta}_k) CZ_{\frac{k+1}{2}} \rho_{k-1} CZ_{\frac{k+1}{2}}^\dagger R_k(\boldsymbol{\theta}_k)^\dagger \quad \text{for } k=2l+1 \leq 2L-1$ (59) Additionally, we define $I_s := \{m | o_m \neq I, m \in [N]\}$ to denote the set of qubits whose observables act nontrivially. Next, we proceed to prove the content of Theorem [1.](#page-3-4)

 From Theorem [1,](#page-3-4) we know that when there exists $i \in \{1, 2, ..., N\}$ such that $o_i = I/Z$, the parameters in the last block's $R_x(\theta)$ and $R_y(\theta)$ gates can follow either the $G_1(\sigma^2)$ or $G_3(\sigma^2)$ distribution. For simplicity, we assume the parameters follow the distribution $G_1(\sigma^2)$, the other case can be proven similarly.

1134 1135 1136 1137 We first consider the case where there is a Pauli matrix X or Y in O, i.e., there exists j such that $o_j = X/Y$. Then, the parameters θ in the last block follow the distributions $\mathcal{G}_1(\sigma^2)$ or $\mathcal{G}_2(\sigma^2)$. According to Eq. [\(18\)](#page-16-4) and Eq. [\(31\)](#page-17-6), it is evident that for all q and n , $\mathbb{E}\partial_{\theta_{q,n}}f(\theta) = 0$.

1138 1139 1140 Furthermore, when all the Pauli matrices in O are either I or Z , we proceed as follows. Assume $\theta_{q,n}$ is in the last block, i.e., $q = 2L - 1$ or $q = 2L$. If the *n*-th Pauli matrix of O is $o_n = I$, then according to Eq. [\(16\)](#page-16-5) and Eq. [\(18\)](#page-16-4), it is easy to see that $\mathbb{E}_{\theta} \partial_{\theta_{q,n}} f(\theta) = 0$.

1142 1143 1144 1145 When $o_n = Z$, using Eq. [\(21\)](#page-16-2) and Eq. [\(22\)](#page-16-6), the Pauli matrix inevitably transforms into X or Y. Combining this with Eq. [\(21\)](#page-16-2) and Lemma [5,](#page-19-0) in the final $Tr[O/\rho]$, the Pauli matrix at the *n*-th position of O' must be X or Y. Furthermore, due to $\langle 0|X|0\rangle = \langle 1|X|1\rangle = \langle 0|Y|0\rangle = \langle 1|Y|1\rangle = 0$, we have E $\mathop{\mathbb{E}}_{\boldsymbol{\theta}} \partial_{\theta_{q,n}} f(\boldsymbol{\theta}) = 0.$

1146

1141

When $q \in \{1, ..., 2L - 2\}$, we have:

1147 1148 1149

1150

$$
\mathbb{E}_{\theta} \partial_{\theta_{q,n}} f(\theta) = \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L}} \partial_{\theta_{q,n}} \text{Tr}[O \rho_{2L}]
$$
\n(60)

$$
= \gamma^{S_3} \underset{\boldsymbol{\theta}_1}{\mathbb{E}} \dots \underset{\boldsymbol{\theta}_{2L-1}}{\mathbb{E}} \partial_{\theta_{q,n}} \text{Tr}[\boldsymbol{O} \rho_{2L-1}] \tag{61}
$$

1153
\n
$$
= \gamma^{2S_3} \mathop{\mathbb{E}}_{\theta_1} ... \mathop{\mathbb{E}}_{\theta_{2L-2}} \partial_{\theta_{q,n}} \text{Tr}[C Z_l^{\dagger} \mathbf{O} C Z_l \rho_{2L-2}]
$$
\n(62)

$$
= \gamma^{2S_3} \mathbb{E} \dots \mathbb{E} \partial_{\theta_1 \dots} \partial_{\theta_{2L-2}} \text{Tr}[\mathbf{O} \rho_{2L-2}]
$$
(63)

$$
= \gamma^{(2L-q-1)S_3} \mathbb{E} \dots \mathbb{E} \partial_{\theta_q, n} \text{Tr}[\mathbf{O}\rho_q]
$$
\n(64)

$$
\frac{1158}{1159}
$$

1160 1161 1162 1163 According to Eq. [\(16\)](#page-16-5) and [\(21\)](#page-16-2), we can infer that when $n \in I_s$, the expectation of θ_n yields γ , and when $n \notin I_s$, the expectation of θ_n results in a constant 1. Thus, we obtain Eq. [\(61\)](#page-21-0). Similarly, we can derive Eq. [\(62\)](#page-21-1). Eq. [\(63\)](#page-21-2) is derived from Lemma [5.](#page-19-0) By repeating this process, we arrive at Eq. [\(64\)](#page-21-3).

1164 1165 We are currently directing our attention to the subscript n. If $n \notin I_S$, then, based on Eq. [\(18\)](#page-16-4), we can obtain,

$$
\mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_q} \partial_{\theta_{q,n}} \text{Tr}[O\rho_q] = 0 \tag{65}
$$

1170 which means

1171

1172 1173 1174

1187

 \overline{E} $\mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L}} \partial_{\theta_{q,n}} f(\theta) = 0.$ (66)

1175 When $n \in I_S$, according to Eq. [\(22\)](#page-16-6), we have

$$
\mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_q} \partial_{\theta_{q,n}} \text{Tr}[O\rho_{2L-2}] = \gamma^{S_3} \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{q-1}} \partial_{\theta_{q,n}} \text{Tr}[O'\rho_{2L-2}] \tag{67}
$$

1180 1181 1182 1183 1184 1185 1186 Among these, O' entails transforming the Pauli Z matrix at the nth position of the Hamiltonian O into Y or $-X$. Subsequently, Eq. [\(16\)](#page-16-5) and Eq. [\(21\)](#page-16-2) elucidate that applying an expectation to $\theta_1, \theta_2, ..., \theta_q$ does not alter the form of the observable but merely augments certain coefficients from the previous state. Additionally, considering that the observable at this juncture comprises only Y or $-X$ at the *n*th position, with the remaining positions being Z or I, Lemma [5](#page-19-0) implies that we have

$$
\mathop{\mathbb{E}}_{\theta_1} \dots \mathop{\mathbb{E}}_{\theta_{2L}} \partial_{\theta_{q,n}} \text{Tr}[O\rho_{2L-2}] = \gamma^c \text{Tr}[O''\rho_0]
$$
\n(68)

1188 1189 1190 Here, c is a constant greater than or equal to L and less than or equal to $2L$. Considering that the observable O'' involves the Pauli operators X or Y at position n, and $\langle 0|X|0 \rangle = 0, \langle 0|Y|0 \rangle = 0$, we obtain

1191 1192

1193 1194 1195

1196

$$
\mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L}} \partial_{\theta_{q,n}} \text{Tr}[O\rho_{2L-2}] = 0 \tag{69}
$$

1197 1198 Thus far, we have successfully demonstrated that its expectation is equal to 0. Thus we complete the proof of Eq. [\(5\)](#page-3-2).

1199 1200 1201 Next, we will establish the lower bound of its gardient norm. That is we prove Eq. [\(6\)](#page-3-3) in Theorem [1.](#page-3-4) Note that

1202 1203

1216

E $\mathop{\mathbb{E}}_{\boldsymbol{\theta}}||\nabla_{\boldsymbol{\theta}}f(\boldsymbol{\theta})||^2 = \sum_{i=1}^{2L}$ $q=1$ $\sum_{i=1}^{N}$ $n=1$ E θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$ $=\sum^{2L}$ $q=1$ \sum $n \in I_S$ E θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 + \sum_{q=1}^{2L}$ $q=1$ \sum $n{\notin}I_S$ \overline{E} θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$ $\geq \sum_{i=1}^{2L}$ $q=1$ \sum $n \in I_S$ E θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$ (70)

1214 1215 For each term within the first $L - 1$ blocks of $\mathbb{E}(\frac{\partial f(\theta)}{\partial \theta_{q,n}})$ $\frac{\partial f(\theta)}{\partial \theta_{q,n}})^2$, it follows that

$$
\begin{array}{ll}\n\text{1213} \\
1219 & \text{E} \\
\hline\n\end{array}\n\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 = \mathbb{E}\left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\boldsymbol{O} \rho_{2L}]\right)^2\n\tag{71}
$$

$$
= \mathop{\mathbb{E}}_{\boldsymbol{\theta}_1} \dots \mathop{\mathbb{E}}_{\boldsymbol{\theta}_{2L}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\boldsymbol{O} R_{2L}(\boldsymbol{\theta}_{2L}) \rho_{2L-1} R_{2L}^{\dagger}(\boldsymbol{\theta}_{2L})] \right)^2 \tag{72}
$$

$$
\geq \alpha^{S_1+S_3} \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L-1}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i;1} \rho_{2L-1}] \right)^2 \tag{73}
$$

$$
= \alpha^{S_1+S_3} \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L-1}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i;1} R_{2L-1}(\theta_{2L-1}) C Z_L \rho_{2L-2} C Z_L^{\dagger} R_{2L}^{\dagger}(\theta_{2L-1}) \right)^2
$$
\n(74)

$$
\geq \alpha^{S_1+S_3} \alpha^{S_1+S_3+S_2} \mathbb{E}_{\theta_1 \cdots \theta_{2L-2}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i} CZ_{L}\rho_{2L-2} CZ_L^{\dagger}] \right)^2 \tag{75}
$$

$$
= \alpha^{S_1+S_3} \alpha^{S_1+S_3+S_2} \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L-2}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i} \rho_{2L-2}] \right)^2 \tag{76}
$$

$$
\geq \alpha^{S_1+S_3} \alpha^{S(2L-1-q)} \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_q} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i} \rho_q] \right)^2 \tag{77}
$$

1235 1236 1237

1238 1239 1240 1241 In Eq. [\(73\)](#page-22-0), the formulation arises from the utilization of Eq. [\(50\)](#page-19-1) when n is in I_{s_3} and Eq. [\(52\)](#page-19-2) when *n* is in I_{s_1} , contributing a parameter α for each term. Conversely, when *n* is in either I_{s_0} or I_{s_2} , Eq. [\(17\)](#page-16-7) is employed without altering the preceding coefficients. Through analogous analysis, Eq. [\(75\)](#page-22-1) is derived. Eq. [\(76\)](#page-22-2) is a consequence of the deductions stemming from Lemma 5. By iterating through these steps, we arrive at Eq. [\(77\)](#page-22-3).

E $\mathop{\mathbb{E}}\limits_{\boldsymbol{\theta}}(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}})$ $\frac{\partial \mathcal{G}(\mathbf{U})}{\partial \theta_{\boldsymbol{q},n}})^2 \geq \alpha^{S_1+S_3} \alpha^{S(2L-1-q)} \alpha^{S-1} \beta \operatornamewithlimits{\mathbb{E}}_{\boldsymbol{\theta_1}} \ldots \operatornamewithlimits{\mathbb{E}}_{\boldsymbol{\theta_{q-1}}} (\text{Tr}[\boldsymbol{O}_{3:i}\rho_{q-1}])^2.$ (78)

$$
\geq \alpha^{S_1 + S_3} \alpha^{S(2L - 1 - q)} \alpha^{S - 1} \beta \alpha^{S(q - 1)} \text{Tr}^2[\mathbf{O}_{3 : i} \rho_0]
$$
\n(79)

$$
\geq \alpha^{2LS-1}\beta \tag{80}
$$

$$
\geq (1 - \sigma^2)^{2LS - 1} \sigma^2 (1 - \sigma^2)
$$
\n(81)

$$
=\frac{1}{2LS}(1-\frac{1}{2LS})^{2LS}
$$
\n(82)

$$
\geq \frac{1}{8LS} \tag{83}
$$

1254 1255

1256 1257 1258 1259 1260 1261 In Eq. [\(78\)](#page-23-1), the coefficient β is determined by taking the expectation with respect to $\theta_{q,n}$ based on Eq. [\(51\)](#page-19-3). Here, we retain the terms with the coefficient β instead of α . The remaining α^{S-1} terms remain consistent with Eq. [\(50\)](#page-19-1). Eq. [\(79\)](#page-23-2) follows a process similar to Eq. [\(77\)](#page-22-3), obtained by taking the expectation over the remaining θ . Considering Tr[$O_{3:i}\rho_0] = 1$, $S_1 + S_3 \leq S$, and $\alpha < 1$, we arrive at Eq. [\(80\)](#page-23-3). Eq. [\(81\)](#page-23-4) is derived from a Taylor expansion. Taking into account $h(x) = (1 - \frac{1}{x})^x$ being monotonically increasing when $x \ge 2$, Eq. [\(83\)](#page-23-5) is thus proven.

1262 1263 1264 Applying the identical methodology for analysis, we can similarly derive the same results for the R_X rotation layer in the final block. Thus, we can conclude that

$$
\mathbb{E} \|\nabla_{\theta} f(\theta)\|^2 \ge \sum_{q=1}^{2L-1} \sum_{n \in I_S} \mathbb{E} \left(\frac{\partial f(\theta)}{\partial \theta_{q,n}}\right)^2
$$

$$
\ge \sum_{q=1}^{2L-1} \sum_{n \in I_S} \frac{1}{8LS}
$$

$$
= (2L-1) \times S \times \frac{1}{8LS}
$$

$$
= \frac{1}{4} - \frac{1}{8L}
$$
 (84)

1276 1277 1278

1279

A.3 PROOF OF THEOREM [2](#page-5-0)

1280 1281 1282 Before proving Theorem [2,](#page-5-0) let's first consider a special case where both O_i and O_j are global. We can provide the following lemma:

1283 1284 1285 1286 1287 1288 Lemma 6 Considering a quantum circuit $U(\theta)$ with N qubits, initialized with ρ_0 as a pure state, *and employing a hardware-efficient ansatz with* L *blocks, as depicted in Fig. [1,](#page-2-0) the cost function* is defined as $f(\bm{\theta}) = Tr[(\sum_i \bm{O}_i - \sum_j \bm{O}_j) U(\bm{\theta}) \rho_o U(\bm{\theta})^\dagger]$, where observable \bm{O}_i , \bm{O}_j are global *observables, denoted as* $o_i, o_j \in \{X, Y, Z\}$. Randomly choose either O_i or O_j and initialize it in *accordance with the procedure outlined in Theorem [2.](#page-5-0) Consequently, we obtain:*

$$
\mathop{\mathbb{E}}_{\theta} ||\nabla_{\theta} f(\theta)||_2^2 \ge \frac{1}{4} - \frac{1}{8L}
$$
\n(85)

1295 *proof:* Without loss of generality, let us opt to specify O_1 and initialize the parameters within $U(\theta)$ following the methodology expounded in Theorem [1.](#page-3-4) Subsequently, we have

1297
\n1298
$$
\mathbb{E} \left| |\nabla_{\theta} f(\theta)| \right|^2 = \sum_{q,n} \mathbb{E} \left(\frac{\partial f(\theta)}{\partial \theta_{q,n}} \right)^2
$$
\n(86)

1300 1301

1302 1303

1305 1306

$$
= \sum_{q,n} \mathbb{E}\left(\sum_{i} \frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}} - \sum_{j} \frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 \tag{87}
$$

1304
\n1305
\n1306
\n1307
\n
$$
= \sum_{q,n} \mathbb{E} \left(\sum_{i} \frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)^2 - 2 \sum_{q,n} \mathbb{E} \left(\sum_{i,j} \frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right) + \sum_{q,n} \mathbb{E} \left(\sum_{j} \frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)^2
$$
\n(88)

1308
\n1309
\n1310
\n
$$
= \sum_{q,n,i} \mathbb{E} \left(\frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)^2 + \sum_{q,n,i_1 \neq i_2} \mathbb{E} \left(\frac{\partial f_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)
$$

1311
1312
$$
-2\sum \mathbb{E}_{\mathbf{a}}\left(\frac{\partial f_i(\boldsymbol{\theta})}{\partial \mathbf{a}} \cdot \frac{\partial f_j(\boldsymbol{\theta})}{\partial \mathbf{a}}\right)
$$

$$
\begin{array}{ccc}\n\mathbf{1}_{312} & -\mathbf{1}_{q,n,i,j} & \mathbf{0} \\
\mathbf{1}_{313} & \mathbf{0} & \mathbf{0} \\
\mathbf{0}_{q,n} & \mathbf{0} & \mathbf{0}\n\end{array}
$$

1314
\n1315\n
$$
+\sum_{q,n,j}\mathbb{E}\left(\frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2+\sum_{q,n,j_1\neq j_2}\mathbb{E}\left(\frac{\partial f_{j_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\cdot\frac{\partial f_{j_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)
$$
\n(89)

1317 1318 1319 1320 1321 1322 We expand the function $f(\theta)$, resulting in Eq. [\(89\)](#page-24-0). Here, $f_i(\theta) = Tr[O_i U(\theta) \rho_0 U(\theta)^\dagger]$ and $f_j(\theta) = \text{Tr}[\mathbf{O}_j U(\theta) \rho_0 U(\theta)^\dagger]$. Moving forward, let's consider the cross terms. Without loss of generality, let's examine each element in the third term. Let's denote $O_i = \vec{\sigma}_{i,2L} = \sigma_{1,i,2L} \otimes$ $\sigma_{2,i,2L} \otimes ... \otimes \sigma_{N,i,2L}$ and $O_j = \vec{\sigma}_{j,2L} = \widetilde{\sigma}_{1,j,2L} \otimes \widetilde{\sigma}_{2,j,2L} \otimes ... \otimes \widetilde{\sigma}_{N,j,2L}$. Next, we focus on the evolution of these Pauli matrices throughout the process, we have:

$$
\mathbb{E}\left(\frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}}\frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right) = \mathbb{E}\left(\frac{\partial}{\partial \theta_{q,n}}\text{Tr}[\vec{\sigma}_{i,2L}\rho_{2L}]\frac{\partial}{\partial \theta_{q,n}}\text{Tr}[\vec{\sigma}_{j,2L}\rho_{2L}]\right)
$$
(90)

$$
= \mathbb{E}_{\boldsymbol{\theta}} \left(\text{Tr}[\vec{\sigma}_{i,2L} R_{2L}(\boldsymbol{\theta}) \frac{\partial \rho_{2L-1}}{\partial \theta_{q,n}} R_{2L}^{\dagger}(\boldsymbol{\theta})] \text{Tr}[\vec{\sigma}_{j,2L} R_{2L}(\boldsymbol{\theta}) \frac{\partial \rho_{2L-1}}{\partial \theta_{q,n}} R_{2L}^{\dagger}(\boldsymbol{\theta})] \right)
$$
(91)

$$
= \sum_{k_1} h_{k_1} \mathbb{E}\left(\text{Tr}[\vec{\sigma}_{i,2L-1}^{k_1} \frac{\partial \rho_{2L-1}}{\partial \theta_{q,n}}] \text{Tr}[\vec{\sigma}_{j,2L-1}^{k_1} \frac{\partial \rho_{2L-1}}{\partial \theta_{q,n}}] \right)
$$
(92)

$$
= \sum_{k_2} h_{k_2} \mathbb{E}_{\theta} \left(\text{Tr}[C Z^{\dagger} \vec{\sigma}_{i,2L-2}^{k_2} C Z \frac{\partial \rho_{2L-2}}{\partial \theta_{q,n}}] \text{Tr}[C Z^{\dagger} \vec{\sigma}_{j,2L-2}^{k_2} C Z \frac{\partial \rho_{2L-2}}{\partial \theta_{q,n}}] \right)
$$
\n(93)

$$
= \sum_{k_2'} h_{k_2'} \mathbb{E}\left(\text{Tr}[\vec{\sigma}_{i,2L-2}^{k_2'} \frac{\partial \rho_{2L-2}}{\partial \theta_{q,n}}] \text{Tr}[\vec{\sigma}_{j,2L-2}^{k_2'} \frac{\partial \rho_{2L-2}}{\partial \theta_{q,n}}] \right)
$$
(94)

$$
\begin{array}{c}\n \cdots \\
 \end{array}\n \tag{95}
$$

$$
= \sum_{k'_{2L}} h_{k'_{2L}} \text{Tr}[\vec{\sigma}_{i,0}^{k'_{2L}} \rho_0] \text{Tr}[\vec{\sigma}_{j,0}^{k'_{2L}} \rho_0] \tag{96}
$$

1343 1344 1345 1346 1347 1348 1349 Among these, the coefficients $h_{k_1}, h_{k_2}, h_{k'_2}, \ldots, h_{k_{2L}}, h_{k'_{2L}}$ take the form $\pm \alpha^{g_1} \beta^{g_2} \gamma^{g_3}$, where $g_1, g_2, g_3 \in \mathbb{N}.$ $\vec{\sigma}_{i,0}^{k'_{2L}}, \vec{\sigma}_{i,0}^{k_{2L}}, \ldots, \vec{\sigma}_{i,2L-1}^{k_1}, \vec{\sigma}_{i,2L}, \vec{\sigma}_{j,0}^{k'_{2L}}, \ldots, \vec{\sigma}_{j,2L-1}^{k_1}, \vec{\sigma}_{j,2L}$ are all in the form of Pauli matrix tensor product. Furthermore, since O_i and O_j are both globally observable operators, and $O_i \neq O_j$, there exists $k \in [N]$ such that the Pauli matrix on the k-th qubit of $\sigma_{k,i,2L}$ and $\tilde{\sigma}_{k,j,2L}$ is one of the cases $\{X, Y; Y, X; X, Z; Z, X; Y, Z; Z, Y\}$. Next, we will prove that for all $\widetilde{\sigma}_{k,j,2L}$ is one of the cases $\{X, Y; Y, X; X, Z; Z, X; Y, Z; Z, Y\}$. Next, we will prove that for all these combinations, \mathbb{E}_{θ} $\int \frac{\partial f_i(\boldsymbol{\theta})}{\partial f_j(\boldsymbol{\theta})}$ $\partial \theta_{q,n}$ $\left(\frac{\partial f_j(\theta)}{\partial \theta_{q,n}}\right) = 0$. Without loss of generality, let's assume that there exists k such that the k-th position of $\sigma_{k,i,2L}$ is X and the k-th position of $\widetilde{\sigma}_{k,j,2L}$ is Z.

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 Next, let's consider the changes in observables. According to Lemma [1,](#page-15-8) [2,](#page-16-3) [3,](#page-17-7) and [4,](#page-18-3) after the last block's R_y rotation gate, regardless of the distribution followed by θ in $R_x(\theta)$, based on Eq. [\(25\)](#page-17-8), Eq. [\(35\)](#page-17-9) and Eq. [\(45\)](#page-18-2), the value at position k becomes $\{X, Z\}$ or $\{Z, X\}$, the coefficients for the other terms are zero. However, different distributions will result in varying coefficients in front of $\{X, Z\}$ or $\{Z, X\}$. $\{X, Z\}$, $\{Z, X\}$ remains $\{X, Z\}$, $\{Z, X\}$ or 0 after the R_x rotation gate, according to Eq. (23) , Eq. (33) and Eq. (43) . If it's non-zero, according to Lemma [5,](#page-19-0) the CZ operation can transform the original X or Y into X or Y, without changing them into Z or I. Similarly, it cannot transform Z and I into X or Y. If, after the application of CZ , the original Pauli matrix undergoes a change, such as turning X into Y or Z into I, we refer to this process as a "flip." Clearly, for any observable $C = c_1 \otimes c_2 \otimes ... \otimes c_n$, if it aims to achieve a "flip" operation at its k-th position, it must satisfy the condition that the Pauli matrix at the $(k - 1)$ -th position belongs to X, Y, the Pauli matrix at the $(k + 1)$ -th position belongs to I, Z, or the Pauli matrix at the $(k - 1)$ -th position belongs to I, Z, and the Pauli matrix at the $(k + 1)$ -th position belongs to Z, I. Therefore, after the CZ entanglement gate, its situation becomes one of $\{X, Z, Z, X; Y, Z, Z, Y; X, I; I, X; Y, I; I, Y\}$. Furthermore, taking partial derivatives with respect to any position $\theta_{q,n}$ only alters the coefficients in front, and it does not lead to the appearance of the four possible combinations $\{I, I; Z, Z; I, Z; Z, I\}$ for Pauli matrices.

1366 1367 1368 1369 1370 1371 1372 This analysis applies to each block similarly. Consequently, it generates numerous terms, but in each term, on the k -th qubit, all possible situations that eventually arise are $\{X,Z,Z,X;Y,Z;Z,Y;X,I;I,X;Y,I;I,Y\}$. This implies that in $\vec{\sigma}_{i,0}^{k'_{2L}}, \vec{\sigma}_{j,0}^{k'_{2L}}$, there is at least one term with X or Y. Additionally, since $\langle 0|X|0\rangle = \langle 0|Y|0\rangle = \langle 1|X|1\rangle = \langle 1|Y|1\rangle = 0$, it follows that $\text{Tr}[\vec{\sigma}_{i,0}^{k'_{2L}} \rho_0] \text{Tr}[\vec{\sigma}_{j,0}^{k'_{2L}} \rho_0] = 0$. Therefore, we conclude that when $\sigma_{k,i,2L} = X$ and $\tilde{\sigma}_{k,j,2L} = Z$, Eq. [\(96\)](#page-24-1) equals 0.

1373 1374 1375 1376 1377 1378 1379 1380 In an analogous manner, when the initial Pauli matrix of the k -th qubit is $\{X, Y; Y, X; Y, Z; Z, X; Z, Y\}$, we can still obtain $\text{Tr}[\vec{\sigma}_{i,0}^{k'_{2L}} \rho_0] \text{Tr}[\vec{\sigma}_{j,0}^{k'_{2L}} \rho_0] = 0$. Only when the initial state is one of $\{X, X; Y, Y; Z, Z; Z, I; I, Z; I, I\}$, $\text{Tr}[\vec{\sigma}_{i,0}^{k_{2L}'} \rho_0] \text{Tr}[\vec{\sigma}_{j,0}^{k_{2L}'} \rho_0] \neq 0$. In light of the fact that both O_i and O_j are global observables, and $O_i \neq O_j$, it follows that there exists at least one position, such that the Pauli matrices at the k-th position of O_i and O_j belong to the set $\{X, Y; Y, X; Y, Z; Z, X; Z, Y\}$. Thus, for global observable operators O_i and O_j , E θ $\int \frac{\partial f_i(\boldsymbol{\theta})}{\partial f_j(\boldsymbol{\theta})}$ $\partial \theta_{q,n}$ $\frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\Big)=0.$

1382 1383 1384 Following a similar analysis, we obtain \mathbb{E}_{θ} $\int \frac{\partial f_{i_1}(\boldsymbol{\theta})}{\partial f_{i_2}(\boldsymbol{\theta})}$ $\frac{\partial f_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \frac{\partial f_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \Big) = \frac{1}{\boldsymbol{\theta}}$ $\int \frac{\partial f_{j_1}(\boldsymbol{\theta})}{\partial f_j(\boldsymbol{\theta})}$ $\frac{\partial f_{j_1}(\theta)}{\partial \theta_{q,n}} \frac{\partial f_{j_2}(\theta)}{\partial \theta_{q,n}}$ = 0. Thus, Eq. [\(89\)](#page-24-0) can be simplified to:

 $\left(\frac{\partial f_i(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 + \sum_{q,n \neq q}$

 $\left(\frac{\partial f_1(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$

 q,n,j E θ

 $\left(\frac{\partial f_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$

(97)

(98)

(99)

1385

1386 1387

1381

1388

1389 1390

1391 1392

1393

$$
\begin{array}{c} 1394 \\ 1395 \end{array}
$$

$$
\frac{1396}{1397}
$$

1398

1399

1400 1401 Thus, we have completed the proof of the lemma.

E

 $\mathop{\mathbb{E}}_\boldsymbol{\theta}||\nabla_{\boldsymbol{\theta}}f(\boldsymbol{\theta})||^2 = \sum_{\mathbf{k} \in \mathbb{Z}^d}$

 q,n,i E θ

 \geq \sum q, n E θ

 $\geq \frac{1}{4}$ $\frac{1}{4} - \frac{1}{81}$ 8L

¹⁴⁰² 1403 Next, let's proceed with the proof of Theorem [2.](#page-5-0) Without loss of generality, we select O_1 and initialize the parameters of the quantum circuit according to it. Next, we will expand $f(\theta)$ to obtain its expression:

q,n \overline{E} θ

 $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$

1404

$$
\begin{array}{c} 1405 \\ 1406 \end{array}
$$

$$
\frac{1407}{1400}
$$

 \overline{E}

 $\mathop{\mathbb{E}}_\boldsymbol{\theta}||\nabla_{\boldsymbol{\theta}}f(\boldsymbol{\theta})||^2 = \sum_{\boldsymbol{\theta} \in \mathbb{R}^n}$

1410

$$
\begin{array}{c}\n 1408 \\
 1409\n \end{array}
$$

$$
= \sum_{q,n} \mathbb{E}_{\theta} \left(\sum_{i_1} \frac{\partial f'_{i_1}(\theta)}{\partial \theta_{q,n}} - \sum_{j_1} \frac{\partial f'_{j_1}(\theta)}{\partial \theta_{q,n}} + \sum_{i_2} \frac{\partial f''_{i_2}(\theta)}{\partial \theta_{q,n}} - \sum_{j_2} \frac{\partial f''_{j_2}(\theta)}{\partial \theta_{q,n}} \right)^2 \tag{101}
$$

(100)

1411 1412 1413 1414 = X q,n E θ X i1 ∂f′ i1 (θ) ∂θq,n − X j1 ∂f′ j1 (θ) ∂θq,n 2

1415
\n1416
\n1417
\n1418
\n1419
\n
$$
+ 2 \sum_{q,n} \mathbb{E}_{q,n} \left(\sum_{i_1} \frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} - \sum_{j_1} \frac{\partial f'_{j_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right) \left(\sum_{i_2} \frac{\partial f''_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}} - \sum_{j_2} \frac{\partial f''_{j_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)
$$
\n1419

$$
+ \sum_{q,n} \mathbb{E}\left(\sum_{i_2} \frac{\partial f''_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}} - \sum_{j_2} \frac{\partial f''_{j_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2
$$
(102)

1422

1423 1424 1425 1426 1427 where $f'_{i_1}(\theta) = \text{Tr}[\mathbf{O}'_{i_1}U(\theta)\rho_0U(\theta)^{\dagger}], f'_{j_1}(\theta) = \text{Tr}[\mathbf{O}'_{j_1}U(\theta)\rho_0U(\theta)^{\dagger}], f''_{i_2}(\theta) =$ $\text{Tr}[O''_{i_2}U(\theta)\rho_0U(\theta)^{\dagger}], f''_{j_2}(\theta) = \text{Tr}[O''_{j_2}U(\theta)\rho_0U(\theta)^{\dagger}].$ The notations O'_{i_1} and O'_{j_1} suggest that, in comparison to O_1 , they simply involve replacing some Pauli matrices Z with I or vice versa. For instance, consider $X \otimes Y \otimes Z \otimes I$ and $X \otimes Y \otimes I \otimes Z$. On the other hand, O''_{i_2} , O''_{j_2} represent other observables.

1428 1429 1430 Following similar analyses from Lemma [6,](#page-23-6) we determine that the second term in Eq. [102](#page-26-0) is equal to 0. Now, let's expand the remaining terms. Therefore:

1431 1432

$$
\mathbb{E} \|\nabla_{\theta} f(\theta)\|^2 = \sum_{q,n} \mathbb{E} \left((\sum_{i_1} \frac{\partial f'_{i_1}(\theta)}{\partial \theta_{q,n}} - \sum_{j_1} \frac{\partial f'_{j_1}(\theta)}{\partial \theta_{q,n}})^2 + (\sum_{i_2} \frac{\partial f''_{i_2}(\theta)}{\partial \theta_{q,n}} - \sum_{j_2} \frac{\partial f''_{j_2}(\theta)}{\partial \theta_{q,n}})^2 \right)
$$
(103)

 \geq \sum q,n \overline{E} θ $\sqrt{ }$ \sum $\frac{i_1}{1}$ $\partial f_{i_1}'(\boldsymbol{\theta})$ $\frac{\partial f_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} - \sum_{i_1}$ \mathfrak{j}_1 $\partial f_{j_1}'(\boldsymbol{\theta})$ $\partial \theta_{q,n}$ \setminus \perp 2 (104)

$$
=\sum_{q,n,i_1}\mathop{\mathbb{E}}\limits_{\boldsymbol{\theta}}\left(\frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2+\sum_{q,n,i'_1\neq i''_1}\mathop{\mathbb{E}}\limits_{\boldsymbol{\theta}}\left(\frac{\partial f'_{i'_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\cdot\frac{\partial f'_{i''_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)
$$

1443
1444
$$
-2 \sum_{\alpha, \alpha, i_1, i_2, \beta} \mathbb{E} \left(\frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f'_{j_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \right)
$$

$$
\overbrace{q,n,i_1,j_1}^{1444} \qquad \qquad \partial \nabla q_n \qquad \partial \theta_q,
$$

$$
+ \sum_{q,n,j_1} \mathbb{E}\left(\frac{\partial f'_{j_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 + \sum_{q,n,j'_1 \neq j''_1} \mathbb{E}\left(\frac{\partial f'_{j'_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f'_{j''_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right) \tag{105}
$$

1449 1450 1451 1452 1453 It is easy to see that all the cross terms in this expression differ in the positions where I and Z occur. Therefore, there exists a k such that the k-th position in $f'_{i_1}(\theta)$ and $f'_{j_1}(\theta)$ is either I, Z or Z, I . According to Eq. [\(42\)](#page-18-5) and Eq. [\(44\)](#page-18-6), we know that the third term in Eq. [\(105\)](#page-26-1) is equal to 0. Similarly, we can analyze the other cross terms in Eq. [\(105\)](#page-26-1) and conclude that they are all equal to 0. Therefore, we have:

- **1454**
- **1455**

1456
\n
$$
\mathbb{E} \left| |\nabla_{\theta} f(\theta)| \right|^2 \ge \sum_{q,n,i_1} \mathbb{E} \left(\frac{\partial f'_{i_1}(\theta)}{\partial \theta_{q,n}} \right)^2 + \sum_{q,n,j_1} \mathbb{E} \left(\frac{\partial f'_{j_1}(\theta)}{\partial \theta_{q,n}} \right)^2 \tag{106}
$$

1458 1459 1460 1461 1462 Given that O'_{i_1} and O_1 differ only in certain terms that flip I to Z or Z to I, and during the initialization of quantum circuit parameters, the k-th position in O_1 follows $\mathcal{G}_3(\sigma^2)$ if it is I or Z. Therefore, for all i_1 , $\sum_{q,n} \mathop{\mathbb{E}}_{\boldsymbol{\theta}}$ $\left(\frac{\partial f'_{i_1}(\theta)}{\partial \theta_{q,n}}\right)^2$ are all equal. According to Eq. [\(50\)](#page-19-1) and Eq. [\(51\)](#page-19-3), and employing a similar analysis to Theorem [1,](#page-3-4) we obtain:

> \sum q,n E θ $\left(\frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 \geq \frac{1}{4}$ $\frac{1}{4} - \frac{1}{8}$ 8L (107)

Thus, we have:

1472 1473 1474

> $\overline{\mathbb{E}}$ $\mathop{\mathbb{E}}_\boldsymbol{\theta}||\nabla_{\boldsymbol{\theta}}f(\boldsymbol{\theta})||^2 \geq M\left(\frac{1}{4}\right)$ $\frac{1}{4} - \frac{1}{81}$ 8L \setminus (108)

1479 A.4 PROOF OF THEOREM [3](#page-5-3)

1481 1482 1483 Without loss of generality, we select O_1 and initialize according to O_1 . Let $O_1 = o_1^1 \otimes o_2^1 \otimes ... \otimes o_N^1$. We expand $f(\boldsymbol{\theta})$ to obtain:

1484 1485

1480

1486 1487 1488 1489 E $\mathop{\mathbb{E}}_\boldsymbol{\theta}||\nabla_{\boldsymbol{\theta}}f(\boldsymbol{\theta})||^2 = \sum_{\boldsymbol{\theta} \in \mathbb{R}^n}$ q,n E θ $\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2$ (109) \setminus^2

$$
= \sum_{q,n} \mathbb{E}_{\theta} \left(\sum_{i} \frac{\partial f'_{i}(\theta)}{\partial \theta_{q,n}} + \sum_{j} \frac{\partial f''_{j}(\theta)}{\partial \theta_{q,n}} \right)^{2}
$$
(110)

$$
= \sum_{q,n} \mathbb{E}\left(\sum_{i} \frac{\partial f'_{i}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^{2} + 2 \sum_{q,n} \mathbb{E}\left(\sum_{i,j} \frac{\partial f'_{i}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f''_{j}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right) + \sum_{q,n} \mathbb{E}\left(\sum_{j} \frac{\partial f''_{j}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^{2} \tag{111}
$$

$$
\geq \sum \mathbb{E}\left(\frac{\partial f'_{i}(\boldsymbol{\theta})}{\partial \theta}\right)^{2} + \sum \mathbb{E}\left(\frac{\partial f'_{i,1}(\boldsymbol{\theta})}{\partial \theta} \cdot \frac{\partial f'_{i,2}(\boldsymbol{\theta})}{\partial \theta}\right) + 2 \sum \mathbb{E}\left(\frac{\partial f'_{i}(\boldsymbol{\theta})}{\partial \theta} \cdot \frac{\partial f''_{j}(\boldsymbol{\theta})}{\partial \theta}\right)
$$

$$
\geq \sum_{q,n,i} \mathbb{E}\left(\frac{\partial f'_i(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 + \sum_{q,n,i_1 \neq i_2} \mathbb{E}\left(\frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f'_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right) + 2 \sum_{q,n,i,j} \mathbb{E}\left(\frac{\partial f'_i(\boldsymbol{\theta})}{\partial \theta_{q,n}} \cdot \frac{\partial f''_j(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right) \tag{112}
$$

1500 1501 1502

1503 1504 1505 where $f_i'(\bm{\theta}) = \text{Tr}[\bm{O}_i'U(\bm{\theta})\rho_0U(\bm{\theta})^\dagger]$ and $f_j''(\bm{\theta}) = \text{Tr}[\bm{O}_j'U(\bm{\theta})\rho_0U(\bm{\theta})^\dagger]$. \bm{O}_i' implies that, compared to O_1 , they might have operations that flip some I to Z or Z to I, while the rest of the Pauli matrices are the same. \tilde{O}'_j represents observables that do not satisfy these conditions.

1506 1507 1508 1509 1510 1511 According to a similar analysis as in Lemma [6,](#page-23-6) we can see that the third term in Eq. [\(112\)](#page-27-1) is equal to 0. In the context of the final block, where the positions of I and Z in O_1 follow Gaussian distributions $\mathcal{N}(0, \sigma^2)$, and considering that O'_i , compared to O_1 , only involves flipping Pauli I to Pauli Z or Pauli Z to Pauli I, we can apply a similar analysis as in Theorem [1.](#page-3-4) As a result, in the first term of Eq. [\(112\)](#page-27-1), for each O'_i , we find that $\sum_{q,n} \frac{\mathbb{E}}{\theta}$ $\left(\frac{\partial f'_i(\theta)}{\partial \theta_{q,n}}\right)^2 \geq \frac{1}{4} - \frac{1}{8L}$. For the second term in Eq. [\(112\)](#page-27-1), when $n \in P_{1:3}^{ij}$ and $q \in [2L - 2]$, note that:

 $\frac{\partial f_{i_2}'(\boldsymbol{\theta})}{\partial \theta_{q,n}}\bigg)$

 $\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\boldsymbol{O}_{i_1}' \rho_{2L}] \frac{\partial}{\partial \theta_{q}}$

1512

$$
\begin{array}{c} 1513 \\ 1514 \end{array}
$$

E θ

 $\int \partial f'_{i_1}(\boldsymbol{\theta})$ $\partial \theta_{q,n}$

∂

 $=\mathbb{E}_{\theta}$

1515 1516

$$
\begin{array}{c} 1517 \\ 1518 \\ 1519 \end{array}
$$

$$
= \mathbb{E}_{\theta_1} \cdots \mathbb{E}_{\theta_{2L}} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{i_1} R_{2L}(\theta_{2L}) \rho_{2L-1} R_{2L}^{\dagger}(\theta_{2L})] \frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{i_2} R_{2L}(\theta_{2L}) \rho_{2L-1} R_{2L}^{\dagger}(\theta_{2L})] \right)
$$
\n(114)

 $\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\bm{O}'_{i_2} \rho_{2L}]\bigg)$

$$
\geq \alpha^{S_1^{i_1 i_2} + S_3^{i_1 i_2}} \gamma^{S_{0,3}^{i_1 i_2}} \mathbb{E} \cdots \mathbb{E} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_1;1} \rho_{2L-1}] \frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_2;1} \rho_{2L-1}] \right) \tag{115}
$$
\n
$$
\geq \alpha^{S_1^{i_1 i_2} + S_3^{i_1 i_2}} \gamma^{S_{0,3}^{i_1 i_2}} \mathbb{E} \cdots \mathbb{E} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_1;1} R_{2L-1}(\theta_{2L-1}) C Z_L \rho_{2L-2} C Z_L^{\dagger} R_{2L-1}^{\dagger}(\theta_{2L-1})] \right)
$$

$$
\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i_2;1}^{\prime} R_{2L-1}(\theta_{2L-1}) C Z_L \rho_{2L-2} C Z_L^{\dagger} R_{2L-1}^{\dagger}(\theta_{2L-1})]
$$
\n(116)

$$
\geq \alpha^{S_1^{i_1i_2}+S_3^{i_1i_2}} \alpha^{S_{1:3}^{i_1i_2}} \gamma^{2S_{0,3}^{i_1i_2}} \mathbb{E} \cdots \mathbb{E} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i_1}^{\prime} CZ_{L}\rho_{2L-2} CZ_L^{\dagger}] \frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}_{3:i_2}^{\prime} CZ_{L}\rho_{2L-2} CZ_L^{\dagger}] \right)
$$
\n(117)

$$
= \alpha^{S_1^{i_1 i_2} + S_3^{i_1 i_2}} \alpha^{S_{1;3}^{i_1 i_2}} \gamma^{2S_{0,3}^{i_1 i_2}} \mathbb{E} \cdots \mathbb{E} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_1} \rho_{2L-2}] \frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_2} \rho_{2L-2}] \right) (118)
$$

\n
$$
\geq \alpha^{S_1^{i_1 i_2} + S_3^{i_1 i_2}} \alpha^{(2L-q-1)S_{1;3}^{i_1 i_2}} \gamma^{(2L-q)S_{0,3}^{i_1 i_2}} \mathbb{E} \cdots \mathbb{E} \left(\frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_1} \rho_q] \frac{\partial}{\partial \theta_{q,n}} \text{Tr}[\mathbf{O}'_{3:i_2} \rho_q] \right)
$$

\n(119)

1538 1539 1540 1541 Similar to Eq. (73) , Eq. (115) is derived from Eq. (17) , (23) , (50) and (52) . Similarly, we obtain Eq. [\(117\)](#page-28-1). Eq. [\(118\)](#page-28-2) is simplified through Lemma 5. Continuing this analysis up to layer q , we arrive at Eq. [\(119\)](#page-28-3).

1542
\n1543
\n1544
\n1545
\n
$$
\mathbb{E}\left(\frac{\partial f'_{i_1}(\boldsymbol{\theta})}{\partial \theta_{q,n}} \frac{\partial f'_{i_2}(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)
$$
\n1545
\n1546
\n1547
\n1548
\n
$$
\geq \alpha^{S_1^{i_1 i_2} + S_3^{i_3 i_2}} \alpha^{(2L-q-1)S_{1,3}^{i_1 i_3}} \gamma^{(2L-q+1)S_{0,3}^{i_1 i_2}} \alpha^{S_1^{i_1 i_2} - 1} \beta \mathbb{E} \dots \mathbb{E}\left(\text{Tr}[\mathbf{O}'_{3:i_1} \rho_{q-1}] \text{Tr}[\mathbf{O}'_{3:i_2} \rho_{q-1}]\right)
$$
\n(120)

$$
(121)
$$

(113)

$$
\geq \alpha^{S_1^{i_1 i_2} + S_3^{i_1 i_2}} \alpha^{(2L-1)S_{1;3}^{i_1 i_2}} \gamma^{2LS_{0,3}^{i_1 i_2}} \beta \text{Tr}[\mathbf{O}'_{3;i_1} \rho_0] \text{Tr}[\mathbf{O}'_{3;i_2} \rho_0]
$$
\n(122)

$$
\geq \alpha^{2LS_{1:3}^{i_1 i_2} - 1} \gamma^{2LS_{0,3}^{i_1 i_2}} \beta \tag{123}
$$

$$
\geq (1 - \sigma^2)^{2LS_{1:3}^{i_1 i_2} - 1} e^{-L\sigma^2 S_{0,3}^{i_1 i_2}} \sigma^2 (1 - \sigma^2)
$$
\n(124)

$$
=\frac{1}{2LS}\left(1-\frac{1}{2LS}\right)^{2LS_{1:3}^{i_1i_2}}e^{-\frac{S_{0,3}^{i_1i_2}}{2S}},\tag{125}
$$

1559 1560 Eq. [\(120\)](#page-28-4) to Eq. [\(125\)](#page-28-5) follow a similar analysis to Eq. [\(78\)](#page-23-1) and Eq. [\(82\)](#page-23-7). When $n \in P_{1:3}^{ij}$, a similar analysis reveals that when $q = 2L - 1$,

$$
\mathbb{E}\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}}\right)^2 \ge \frac{1}{2LS} (1 - \frac{1}{2LS})^{2LS_{1:3}^{i_1 i_2}} e^{-\frac{S_{0,3}^{i_1 i_2}}{2S}},\tag{126}
$$

1562 1563

1561

1564 1565 and when $q = 2L$, $\mathbb{E}(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{q,n}})$ $\frac{\partial f(\theta)}{\partial \theta_{q,n}}$)² ≥ 0. Fig. [6](#page-29-0) and [7](#page-30-1) illustrate the evolution of the first cross-terms in Eq. [112](#page-27-1) for different configurations of Pauli matrices at each position. According to Lemma 5,

1566		
1567	CZ_{L-1} CZ_L	
1568	x, x + x, x + x, x = x, x	
1569		
1570		
1571		
1572	X, X	
1573		
1574	Ζ.	
1575		
1576		
1577		
1578		
1579		
1580		
1581		
1582		
1583		
1584		
1585		
1586		
1587		
1588		
1589		
1590		
1591		
1592		
1593		
1594	$I, I \longrightarrow I, I \longrightarrow I$	
1595		
1596	$I, Z \rightarrow I, Z \rightarrow I$	
1597		
1598	$Z, I \rightarrow Z, I \rightarrow Z$	
1599		
1600		

1601

1602 1603 1604 1605 1606 1607 1608 1609 Figure 6: At each position, depending on the different initial Pauli matrices, various terms are generated. This indicates that when the initial Pauli matrix at any position belongs to $\{XX,YY,ZZ,II,IZ,ZI\}$, it shows the transformation of the Pauli matrix and the corresponding coefficients. When the Pauli matrix undergoes a CZ gate, according to Lemma 5, it may involve flipping operations. Here, it illustrates the scenario when no flips exist, showcasing the changes in the Pauli matrix. Here, the dashed line to the left of CZ_L represents the change in different Pauli matrices as they pass through the two rotation gates in the L-th block. The transition from CZ_L to CZ_{L-1} indicates the transformation of the Pauli matrices as they pass through the $(L-1)$ -th block.

1612 1613 1614 1615 1616 1617 1618 1619 CZ may execute a flip operation. Therefore, we discuss two scenarios: one where no flip occurs, as shown in Fig. [6,](#page-29-0) and another where CZ causes a flip of Pauli matrices, as depicted in Fig [7.](#page-30-1) As mentioned earlier, we find that if the k-th Pauli matrix is to undergo a flip operation, we require the $(k-1)$ -th position to have a Pauli matrix of X or Y, and the $(k+1)$ -th position to have a Pauli matrix of Z or I, or vice versa. Taking into account that some terms in the evolution of $iGO\rho$ may yield coefficients with negative signs, our specific setup ensures that when the coefficient for the preceding Pauli matrix becomes negative, the succeeding Pauli matrix will also inevitably have a negative coefficient. Consequently, the final coefficients are positive. When $n \notin P_{1:3}^{ij}$, i.e., $n \in P_0^{ij}$, we can easily deduce that $\mathbb{E}(\frac{\partial f(\theta)}{\partial \theta_{q,n}})$ $\frac{\partial f(\theta)}{\partial \theta_{q,n}}$)² ≥ 0. In conclusion, we can draw the following conclusions:

1655 1656 1657 Figure 7: As before, it illustrates changes in the Pauli matrix. However, in this case, we assume that the CZ gate introduces flip operations.

$$
\mathbb{E} \|\nabla_{\theta} f(\theta)\|_{2}^{2} \geq M(\frac{1}{4} - \frac{1}{8L}) + \sum_{i \neq j=1}^{M} \frac{(2L-1)S_{3}^{ij}}{2LS} (1 - \frac{1}{2LS})^{2LS_{1:3}^{ij}} e^{-\frac{S_{0,3}^{ij}}{2S}} + \sum_{q,n,j} E\left(\frac{\partial f_{j}''(\theta)}{\partial \theta_{q,n}}\right)^{2}
$$
\n(127)

$$
\geq M\left(\frac{1}{4} - \frac{1}{8L}\right) + \sum_{i \neq j=1}^{M} \frac{(2L-1)S_3^{ij}}{2LS} \left(1 - \frac{1}{2LS}\right)^{2LS_{1:3}^{ij}} e^{-\frac{S_{0,3}^{ij}}{2S}} \tag{128}
$$

1667 1668 1669

1670

B SIMULATED EXPERIMENTS IN QUANTUM CHEMISTRY

1671 1672 1673 In the following, we explore the application of our initialization method to compute the ground-state energy of the LiH molecule, a benchmark in quantum chemistry. Its loss function is global. For an electronic system with N electrons distributed over M spin molecular orbitals, the initial state is the Hartree-Fock (HF) state:

1683 1684 1685 1686 1687 Figure 8: When $L = 10$, we examine the variation of the cost function and $\frac{d}{d} ||\nabla_{\theta} f(\theta)||^2$ under noisy and noise-free conditions, using both uniform distribution $(\mathcal{U}|\neg \pi, \pi)$ and GMM-initialized parameters. Where (a) and (b) represent the noise-free scenario, while (c) and (d) represent the case with noise.

1698 1699 1700 1701 Figure 9: When $L = 20$, (a) and (c) depict the loss function under noise-free and noisy conditions, respectively, with a uniform distribution $(U[-\pi, \pi])$ and GMM-initialized parameters. On the other hand, (b) and (d) illustrate the changes in $\frac{1}{\theta} ||\nabla_{\theta} f(\theta)||^2$ under noise-free and noisy conditions, respectively.

N

 $\overline{11...11}$ 00...00 ${\frac{1}{M}}$

⟩.

1702 1703

1704

1705

1706 1707

1708

1709

1714

1724

1710 1711 1712 1713 In the LiH molecule, with an electron count of $N = 2$ and $M = 10$ free spin orbitals, simulating electronic structure problems on a quantum computer requires establishing a mapping that transforms fermionic operators of electrons into Pauli operators. Common mappings include the Jordan-Wigner (JW) transformation, Bravyi-Kitaev (BK) transformation, and Parity transformation. Here, we adopt the JW mapping to compute its ground-state energy.

 $|\Phi\rangle_{HF} = |$

1725 1726 1727 Figure 10: When $L = 30$, (a) illustrates the variation of the loss under noise-free conditions; (b) depicts $\frac{1}{\theta} ||\nabla_{\theta} f(\theta)||^2$ under noise-free conditions; (c) shows the change in loss under noisy conditions; and (d) displays $\frac{\mathbb{E}}{\theta} \|\nabla_{\theta} f(\theta)\|^2$ under noisy conditions.

significantly slower convergence process.

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 We set the number of layers (L) to 10, 20, and 30, using a gradient descent optimizer with a learning rate of 0.01. Additionally, we consider the impact of the noise on the barren plateau problem by introducing a moderate amount of noise during training to simulate real-world quantum computer operation. We compare the evolution of the cost function and $\mathbb{E} \|\nabla_{\theta} f(\theta)\|^2$ during training when initializing parameters using GMM and uniform distribution $\mathcal{U}[-\pi,\pi]$. The results are shown in Fig. [8,](#page-31-0) [9,](#page-31-1) and [10.](#page-31-2) In each figure, (a) and (b) represent the condition without noise, while (c) and (d) represent the noisy condition. From the results, we observe that regardless of the value of L or the presence of noise, initializing parameters using the GMM method consistently provides a larger $\mathbb{E} \|\nabla_{\theta} f(\theta)\|^2$ at the beginning of training and it consistently stays much higher than the θ lower bound we have provided. This value remains relatively high before the convergence of the cost function, therefore, the GMM initialization ensures a rapid convergence. On the other hand, the uniform distribution $\mathcal{U}[-\pi, \pi]$ maintains a consistently lower level of gradient norm, resulting in a

1740

1741 1742 1743 1744 1745 Next, let's consider the impact of the parameter σ^2 in the GMM. In the main text, we set σ^2 to be $\frac{1}{2LS}$. We compare the training scenarios with different σ^2 values under noisy and noise-free conditions when $L = 10, 20, 30$. Here, σ^2 is chosen as $0.1 \times \frac{1}{2LS}$, $\frac{1}{2LS}$, and $10 \times \frac{1}{2LS}$. The results are shown in Fig. [11,](#page-32-0) [12,](#page-32-1) and [13.](#page-33-0)

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 As before, (a) and (b) represent noise-free conditions, while (c) and (d) represent scenarios with noise. The results in the figures indicate that when $\sigma^2 = 10 \times \frac{1}{2LS}$, the convergence of the cost function is significantly slower. On the other hand, when $\sigma^2 = 0.1 \times \frac{1}{2LS}$, although the cost function converges, its results are often inferior to the original case, especially in the presence of noise. We believe that as σ^2 increases, the peaks of the probability density function in the GMM become lower, and its distribution becomes closer to the uniform distribution, leading to a smaller KL divergence between them. Conversely, when σ^2 decreases, the peaks of the GMM's probability density function become higher. Therefore, the data becomes more concentrated around the peaks, making it less dispersed. This may be the reason why the convergence results are not as good as when $\sigma^2 = \frac{1}{2LS}$.

Figure 11: In the configuration with $L = 10$, the impact of different σ^2 on training under noisy and noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and (d) represent the noisy scenario.

1779 1780 1781 Figure 12: For a 20-layer configuration, the impact of different σ^2 on training under noisy and noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and (d) represent the noisy situation.

Figure 13: In the $L = 30$ configuration, (a) and (b) illustrate the impact of different σ^2 on training under noise-free conditions, while (c) and (d) depict the influence of various σ^2 under noisy conditions.

-
-
-