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ABSTRACT

Variational quantum algorithms is one of the most representative algorithms in
quantum computing, which has a wide range of applications in quantum machine
learning, quantum simulation and other related fields. However, they face chal-
lenges associated with the barren plateau phenomenon, especially when dealing
with large numbers of qubits, deep circuit layers, or global cost functions, making
them often untrainable. In this paper, we propose a novel parameter initializa-
tion strategy based on Gaussian Mixture Models. We rigorously prove that, the
proposed initialization method consistently avoids the barren plateaus problem
for hardware-efficient ansatz with arbitrary length and qubits and any given cost
function. Specifically, we find that the gradient norm lower bound provided by the
proposed method is independent of the number of qubits N and increases with the
circuit depth L. Our results strictly highlight the significance of Gaussian Mixture
model initialization strategies in determining the trainability of quantum circuits,
which provides valuable guidance for future theoretical investigations and practi-
cal applications.

1 INTRODUCTION

In recent years, the rapid advancement of quantum computing technology has drawn attention to
Variational Quantum Algorithms (VQAs) McClean et al. (2016); Cı̂rstoiu et al. (2020); Cerezo et al.
(2022) as a promising quantum algorithm with broad application prospects. In the current era of
Noisy Intermediate-Scale Quantum (NISQ) devices Bharti et al. (2022); Arrasmith et al. (2019);
Preskill (2018), VQAs provides a feasible approach to solving complex problems, where challenges
such as noise and errors in quantum computing devices make large-scale fully quantum computa-
tions difficult Benedetti et al. (2019); Jerbi et al. (2023); Cerezo et al. (2021a); Moll et al. (2018).
On the other hand, VQAs utilizes Parametrized Quantum Circuits (PQCs), denoted as V (θ), as
its quantum computing framework. PQCs serving as a trainable model adjusts its parameters θ
through classical optimization to minimize or maximize a specified cost function. By employing
parametrized quantum circuits, VQAs can adapt flexibly to the characteristics of different problems,
providing a robust and practical option for quantum computation on NISQ devices Peruzzo et al.
(2014); Zhou et al. (2020); Tabares et al. (2023); Pan et al. (2023). VQAs exhibit immense potential
across a spectrum of applications, showcasing efficient quantum algorithms that excel in tasks rang-
ing from chemical molecular structure and energy calculations McArdle et al. (2020); Kandala et al.
(2017); Hempel et al. (2018) to combinatorial optimization problems Amaro et al. (2022); Akshay
et al. (2020) and machine learning Havlı́ček et al. (2019); Saggio et al. (2021); Schuld et al. (2020);
Schuld & Killoran (2019); Zhang et al. (2021); Tian et al. (2023); Zhang et al. (2020); Chen et al.
(2020). These applications not only have profound implications for scientific research but also offer
innovative solutions for practical applications.

Training VQAs encompasses various methodologies, including gradient-based Sweke et al. (2020);
Basheer et al. (2023); Qi et al. (2023) and gradient-free Nelder & Mead (1965); Powell (1964) ap-
proaches. However, regardless of the sampling method employed, it is susceptible to encountering
the notorious barren plateaus (BP) problem McClean et al. (2018); Arrasmith et al. (2021); Liu et al.
(2022); Larocca et al. (2024). The phenomenon of the barren plateau is characterized by the random-
ized initialization of parameters θ in VQAs, leading to an exponential vanishing of the cost function
gradient along any direction with the increasing number of qubits. We have observed that recent
work has employed Lie groups and Lie algebras to provide a unified framework for understanding
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the emergence of BP Ragone et al. (2024); Fontana et al. (2024). This framework reveals a close
relationship between BP and factors such as noise, the loss function, and circuit structure. Specif-
ically, noise is a significant cause of the barren plateau problem Wang et al. (2021); Stilck França
& Garcia-Patron (2021). While depolarizing noise leads to the emergence of BP when the circuit
depth L becomes sufficiently large Wang et al. (2021), however, in the case of non-unital noise,
barren plateaus do not appear for local cost functions, regardless of the circuit depth Singkanipa &
Lidar (2024). The essential cause of the emergence of BP lies in the entanglement within quantum
circuits Ortiz Marrero et al. (2021). Numerous strategies have emerged to address this issue, such
as optimizing initialization policies Zhang et al. (2022a); Wang et al. (2023); Friedrich & Maziero
(2022); Liu et al. (2023), refining circuit structures Liu et al. (2024); Zhao & Gao (2021); Pesah
et al. (2021); Cong et al. (2019); Martı́n et al. (2023); Park & Killoran (2024), or employing local
cost functions Arrasmith et al. (2021); Liu et al. (2022). However, whether noise is present or not,
avoiding the BP phenomenon for global loss functions remains a challenging problem Cerezo et al.
(2021b); Mele et al. (2024). The design of the circuit ansatz is crucial for capturing quantum cor-
relations, including physics-inspired Taube & Bartlett (2006); Wecker et al. (2015); Peruzzo et al.
(2014) and hardware-efficient ansatz designs Zhang et al. (2022b). While physics-inspired ansatz
exhibits some advantages in certain aspects Wecker et al. (2015); O’Malley et al. (2016), they also
face serious challenges in terms of computational resources. On the other hand, hardware-efficient
ansatz Kandala et al. (2017) caters to the limitations of NISQ devices, striking a balance between
achievability and performance Zhang et al. (2024). At the same time, in this structure, deeper layers
exhibit stronger expressibilityRagone et al. (2024); Fontana et al. (2024), and as a result, the BP
emerges regardless of the form of the measurement operator or the initial state. The quest for an
effective solution to mitigate BP and enhance the versatility of addressing linear combinations in the
context of a hardware-efficient ansatz continues to be a forefront challenge in the training of VQAs.

The Gaussian Mixture Model (GMM) Reynolds (2015) is a probability distribution model com-
posed of multiple Gaussian distributions. Each Gaussian distribution, referred to as a component,
contributes to the overall mixture distribution. Every component is characterized by its own mean,
variance, and weight. This versatile model finds widespread applications in statistics and machine
learning Rasmussen (1999); Xuan et al. (2001); Zong et al. (2018), particularly in tasks such as
clustering Yang et al. (2012); Manduchi et al. (2021), density estimation Glodek et al. (2013), and
generative modeling GM et al. (2020). GMM excels at fitting complex data distributions and, owing
to its flexibility and expressive power, is frequently employed for modeling diverse categories of
data.

In the training of VQAs, the parameter update expression for the cost function f(θ) based on
gradient optimization methods is f(θk+1) = f(θk) − α||∇θf(θk)||22 + o(α), where θk+1 =
θk − α∇θf(θk), α is the learning rate. Therefore, typically ||∇θf(θ)||22 is used to determine
whether the cost function f(θ) = Tr[OV (θ)ρinV

†(θ)] can be updated. Here, O is an observable,
V (θ) is a parameterized quantum circuit, and ρin is the input quantum state. In this paper, we em-
ploy GMM for parameter initialization in VQAs to address the barren plateau problem. Considering
arbitrary observables O which can be a single term or a linear combination of terms, by designing
specific GMM initialization methods based on O, we rigorously prove the following conclusions:
(1) When the observable O consists of a single term, the lower bound of ||∇θf(θ)||22 is independent
of the number of quantum bits N and increases with the circuit length; (2) When O is a linear com-
bination of many terms, the lower bound of ||∇θf(θ)||22 increases compared to the single-term case
and not decrease; (3) When O consists of non-negative terms, by adjusting GMM, we may achieve a
larger lower bound. Therefore, the barren plateau problem does not occur in these scenario, and the
model can undergo effective training. This is significant for reducing the cost and saving quantum
resources during model training. Additionally, numerical experiments show excellent performance
for both local and global cost functions using our method.

2 NOTATIONS AND FRAMEWORK

The probability density function of the GMM can be expressed as a weighted sum of individual com-
ponents. Assuming there are K components, for a given one-dimensional variable x, the GMM’s
probability density function can be represented as:
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p(x) =

K∑
i=1

πi · N (x|µi, σ
2
i ) (1)

where K is the number of Gaussian components, πi is the weight of the ith component, satisfying∑K
i=1 πi = 1, N (x|µi, σ

2
i ) is the probability density function of the ith Gaussian component, with

mean µi and variance σ2
i . Here are a few rules. Let G0 be an arbitrary distribution, and if the random

variable θ follows any distribution, it can be expressed as θ ∼ G0. Furthermore, G1(σ
2) denotes

the Gaussian distribution N (0, σ2). G2(σ
2) denotes the first GMM we used, where it’s probability

density function is p(x) = 1
2N (x|− π

2 , σ
2)+ 1

2N (x|π2 , σ
2). Similarly, G3(σ

2) is the second GMM,
where it’s probability density function is p(x) = 1

4N (x| − π, σ2) + 1
4N (x|π, σ2) + 1

2N (x|0, σ2).
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Figure 1: The fundamental framework of the variational quantum circuit, comprising L blocks. Each
block begins with the introduction of entanglement through CZl gates, followed by the application
of Rx and Ry gates on each qubit. Where CZl represents any number of CZ gates acting on any
two qubits.

In this paper, we employ the ansatz illustrated in Fig.1, which is a typical hardware-efficient
ansatz. It involves N qubits and L blocks. Its objective is to minimize the cost function
f(θ) = Tr[OV (θ)ρinV

†(θ)] by optimizing the parameters θ within the circuit. In this paper,
we assume that ρin is a pure state. In most cases, ρin = |0⟩⟨0| and |0⟩ = |0⟩⊗N . For an arbitrary
observable O = o1⊗o2⊗...⊗oN , where oi ∈ {I,X, Y, Z}. We define IS := {n|on ̸= I, n ∈ [N ]},
representing the set of qubits where the observable acts nontrivially, and there are S elements in this
set Wang et al. (2023); Zhang et al. (2022a).

For the sake of convenience, let’s introduce some notations that will be used in the following the-
orem. When there are two observables Oi = oi1 ⊗ oi2 ⊗ ... ⊗ oiN and Oj = oj1 ⊗ oj2 ⊗ ... ⊗ ojN ,
for all m ∈ [N ], the Pauli matrices at the m-th position are denoted by oim and ojm. We provide the
following definitions:

Sij
3 := |{m|oim = ojm = Z,m ∈ [N ]}| (2)

Sij
1:3 := |{m|oim = ojm ̸= I,m ∈ [N ]}| (3)

Sij
0,3 := |{m|oim = I, ojm = Z||oim = Z, ojm = I,m ∈ [N ]}|. (4)

We will now delve into the relationship between observables and inactive parameters. Let’s assume
the observable O is a global observable, i.e., O = o1⊗o2⊗ ...⊗oN , where ∀k ∈ {1, 2, ..., N}, ok ∈
{X,Y, Z}. Let the density matrix of the final quantum state be ρ2L, and the quantum state just
before the final Ry rotation gate in the last block be ρ2L−1. We find that f(θ) = Tr[Oρ2L] =
Tr[O(Ry(θ2L,1)⊗Ry(θ2L,2)⊗ ...⊗Ry(θ2L,N ))ρ2L−1(R

†
y(θ2L,1)⊗R†

y(θ2L,2)⊗ ...⊗R†
y(θ2L,N ))]).

Then, when ok = Y , we notice that ∀θ2L,k, Ry(θ2L,k)Y R†
y(θ2L,k) = Y . Obviously, in this case,

θ2L,k is independent of the cost function f(θ), making it an ”inactive parameter.” When the observ-
able O = Y ⊗ Y ⊗ ... ⊗ Y , as shown in Fig. 2, all parameters in the last layer of Ry gates are
inactive parameters.
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active parameters

inactive parameters

Y

Y

Y

Figure 2: When a term in the observable is Y , the parameters in the last block’s Ry(θ) in the
ansatz do not contribute to the training. Moreover, when the entire observable consists of Y , the θ
parameters in the Ry gates of the last block have no impact on the cost function.

Table 1: On the i-th qubit, the parameters in Ry(θ) and Rx(θ) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable. When oi corresponds to Z, there are
two possible choices for the parameters in Rx and Ry .

The Pauli matrix of oi Init method of Ry(θ) Init method of Rx(θ)
X G2(σ

2) G1(σ
2)

Y G0 G2(σ
2)

Z G1(σ
2)/G3(σ

2) G1(σ
2)/G3(σ

2)
I G0 G0

3 MAIN RESULTS

We begin by considering the case where the observable consists of only one term, which can be
either global or local. Previous research has indicated that avoiding the barren plateau problem for
global observables is challenging Sharma et al. (2022); Liu et al. (2022); Cerezo et al. (2021b).
Nevertheless, regardless of the specifics, we will rigorously prove that it does not encounter the
barren plateau problem when we adopt the GMM as the parameter initialization strategy. The ansatz
that we consider is shown in Fig. 1. Here, parameters in different blocks will be initialized using
distinct methods, and the initialization approach is determined based on the observable O. For
convenience, as illustrated in Table 1, we adopt a tabular format to describe the distribution of the
parameter θ in the final block. Now, let’s formulate our first theorem.

Theorem 1 Consider a VQAs problem defined above, assuming that the parameters θ in the last
block defined in Table 1, and the parameters θ of the remaining blocks obey the distribution G1(σ

2),
where σ2 = 1

2LS . Then ∀q ∈ {1, ...2L}, n ∈ {1, ...N}, we have

E
θ
∂θq,nf(θ) = 0 (5)

E
θ
||∇θf(θ)||22 ≥ 1

4
− 1

8L
(6)

where ∇θf(θ) denotes the gradient of function f(θ) about θ.

The main idea is outlined here, with the detailed proof provided in Appendix A.2 . First, for dif-
ferent type of parameter distribution, by the relationship among observable, rotation matrix, and CZ
operation, we introduce some technical results in Appendix A.1. Then We expand the quantum state
ρout by the PQCs layer by layer. From the last block, we can prove Eq. (5) based on the lemma
in the Appendix A.1. Furthermore, it is easy to see that E

θ
||∇θf(θ)||22 determines the update of
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the cost function f(θ) = Tr[OV (θ)ρinV
†(θ)]. And E

θ
||∇θf(θ)||22 can be expanded into a sum of

terms composed of Tr2[Oiρ0], with coefficients determined by the powers of α = E
θ∼G1(σ2)

cos2 θ

and β = E
θ∼G1(σ2)

sin2 θ. Among these terms, we find that the observable Oi composing with only

I or Z that has the largest coefficient. In this case Tr2[Oiρ0] = 1, the lower bound of the gradient
norm is then determined by the lower bound of these coefficients, which results in the derivation of
Eq. (6) and completes the proof.

The above theorem indicates that, employing our initialization method, the issue of barren plateaus
can be consistently avoided, regardless of whether the cost function is global or local. From Eq. (6),
it is evident that our norm has a constant lower bound of 1

8 . This is in stark contrast to the exponential
lower bound O

(
1

LN

)
found in previous works for global cost functions Zhang et al. (2022a); Wang

et al. (2023). The utilization of GMM significantly improves this lower bound. Additionally, we
observe that for certain specific observables, not all parameters θ in the circuit impact the final value
of the cost function f(θ). We refer to those θ parameters that do not affect the cost function as
”inactive parameters”, while the others are named”active parameters”.

We will now delve into the relationship between observables and inactive parameters. Let’s assume
the observable O is a global observable, i.e., O = o1⊗o2⊗ ...⊗oN , where ∀k ∈ {1, 2, ..., N}, ok ∈
{X,Y, Z}. Let the density matrix of the final quantum state be ρ2L, and the quantum state just
before the final Ry rotation gate in the last block be ρ2L−1. We find that f(θ) = Tr[Oρ2L] =
Tr[O(Ry(θ2L,1)⊗Ry(θ2L,2)⊗ ...⊗Ry(θ2L,N ))ρ2L−1(R

†
y(θ2L,1)⊗R†

y(θ2L,2)⊗ ...⊗R†
y(θ2L,N ))]).

Then, when ok = Y , we notice that ∀θ2L,k, Ry(θ2L,k)Y R†
y(θ2L,k) = Y . Obviously, in this case,

θ2L,k is independent of the cost function f(θ), making it an ”inactive parameter.” When the observ-
able O = Y ⊗ Y ⊗ ... ⊗ Y , as shown in Fig. 2, all parameters in the last layer of Ry gates are
inactive parameters.

Using a similar approach, we can also demonstrate that when the cost function is global, for all
active parameters θq,n, Var∂θq,nf(θ) ≥ 1

8LN . This provides an additional perspective on how our
method enables escape from the barren plateau.

In Ref. Zhang et al. (2022a), it considered that the observable O contains only a single term. In
Ref. Wang et al. (2023), the observable O is extended to a sum of multiple terms, with the cross
terms in the gradient norm calculation being non-negative. However, if the coefficients of the terms
composing O are negative, these cross terms can become non-positive, complicating the escape from
barren plateaus. For example, when O = O1 +O2, ∀q ∈ {1, 2, ..., 2L}, n ∈ {1, 2, ..., N}, we have

E
θ

(
∂f(θ)
∂θq,n

)2
= E

θ

[
∂f1(θ)
∂θq,n

+ ∂f2(θ)
∂θq,n

]2
= E

θ

[
∂f1(θ)
∂θq,n

]2
+ E

θ

[
∂f2(θ)
∂θq,n

]2
+ 2E

θ

[
∂f1(θ)
∂θq,n

∂f2(θ)
∂θq,n

]
, where

f1(θ) = Tr(O1V (θ)ρinV
†(θ)) and f2(θ) = Tr(O2V (θ)ρinV

†(θ)). Ref. Wang et al. (2023) proves

that E
θ

[
∂f1(θ)
∂θq,n

]2
+E

θ

[
∂f2(θ)
∂θq,n

]2
≥ O

(
1
LS

)
, E

θ

[
∂f1(θ)
∂θq,n

∂f2(θ)
∂θq,n

]
≥ 0. However, when O = O1−O2,

the coefficient in front of the cross term is negative. Therefore, in this case, it cannot be guaranteed

that E
θ

(
∂f(θ)
∂θq,n

)2
≥ O

(
1
LS

)
. But in Theorem 2, we demonstrate that even when O is a linear

combination of arbitrary terms, the model remains trainable.

Now let’s assume O =
∑

i Oi −
∑

j Oj , where Oi and Oj can be either global or local. Also,
∀Oi, Oj , Oi ̸= Oj . This is the most general form of an observable. Here we randomly select one
term from the observable to construct the initialization method. The construction of the last block is
detailed in Table 2. Suppose there are S nontrivial Pauli matrices in the selected Ok. Additionally,
there are M terms that differ from Ok only by replacing Pauli Z with the identity matrix I or vice
versa among Oi and Oj at corresponding positions (including the original Ok itself). This setup
is because learning a generic Pauli string is challenging, while learning certain subclasses of these
strings is easier Nietner (2023). So, if O consists of a single term, then M = 1. When O is composed
of multiple terms, for example, O = o1+o2−o3 = X⊗Y ⊗Z⊗I+Y ⊗Y ⊗Z⊗I−X⊗Y ⊗I⊗Z,
if we choose the first term o1 for initializing θ according to Table 1, considering that the third term
o3 differs from the first term o1 only in the third and fourth Pauli matrices, changing Z to I or I
to Z, then we have M = 2. However, if we choose the second term o2 to initialize θ according to

5
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Table 1, since the first Pauli matrix of o1 and o3 is X while the first Pauli matrix of o2 is Y , neither
o1 nor o3 satisfies the condition. Thus M = 1 at this time.

As before, the PQC is illustrated in Fig. 1. Now we present our Theorem 2.

Table 2: On the i-th qubit, the parameters in Ry(θ) and Rx(θ) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of oi Init method of Ry(θ) Init method of Rx(θ)
X G2(σ

2) G1(σ
2)

Y G1(σ
2) G2(σ

2)
Z G1(σ

2) G1(σ
2)

I G1(σ
2) G1(σ

2)

Theorem 2 Considering the loss function f(θ) = Tr
[(∑

i Oi −
∑

j Oj

)
U(θ)ρoU(θ)†

]
, where

Oi and Oj are arbitrary tensor product forms of Pauli matrices. The parameters in the first L − 1
blocks all follow a Gaussian distribution G1(σ

2), where σ2 = 1
2LS . Then we randomly select one

Ok, from either Oi or Oj . The parameters in the last block are initialized according to the Pauli
matrices in Ok as shown in Table 2. With these considerations, we obtain a lower bound on its
squared norm of the gradient:

E
θ
||∇θf(θ)||22 ≥ M(

1

4
− 1

8L
) (7)

The full proof are in Appendix A.3. Since the parameter distributions for Z and I are the same
here, for Ok itself or by just changing Z to I or I to Z in Ok, it can undergo a similar proof using
Theorem 1. As for other quadratic terms, they are evidently greater than or equal to 0. For any
cross terms, when expanded into a series of summations, it becomes apparent that each term is 0.
Therefore, all cross terms are equal to 0. Thus, we obtain Eq. (7) and complete the proof.

From Theorem 2, it can be observed that as the number of terms increases, even if there are some
terms with negative coefficients, the lower bound on its norm might become larger. This enables
us to update the parameters more effectively. However, when we face a situation where the co-
efficients in its loss are all non-negative, we propose a new initialization method that can pro-
vide a larger lower bound in certain specific cases. Assuming our cost function at this stage is
f(θ) = Tr

[∑
i OiU(θ)ρinU(θ)†

]
. Once again, we randomly select a term Ok′ , and following the

previous notation, let S denote the number of non-identity matrices in Ok′ . We determine the distri-
bution of θ in the final layer based on the Pauli matrices in Ok′ , as shown in Table 3. As before, we
assume that among the remaining terms, there are M terms that differ from Ok′ only by replacing
Pauli Z with the identity matrix I or vice versa at corresponding positions(including the original
Ok′ itself). We denote the set of indices satisfying these conditions, along with k′, as K. Next, we
present our Theorem 3.

Theorem 3 In accordance with the aforementioned definition of the cost function, the parameters of
the L-th block in the ansatz are defined as presented in Table 3. The parameters in the preceding L−
1 blocks all adhere to a Gaussian distribution G1(σ

2), where σ2 = 1
2LS . With these considerations,

we derive a lower bound on its norm:

E
θ
||∇θf(θ)||22 ≥ M(

1

4
− 1

8L
)+

∑
i,j∈K
i ̸=j

(2L− 1)Sij
3

2LS
(1− 1

2LS
)2LSij

1:3e−
S
ij
0,3
2S (8)

The proof of this theorem is similar to that of Theorem 2, but there will be differences in the cross
terms. The details can be found in Appendix A.4. Theorem 3 informs us that when the objective
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Table 3: On the i-th qubit, the parameters in Ry(θ) and Rx(θ) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of oi Init method of Ry(θ) Init method of Rx(θ)
X G2(σ

2) G1(σ
2)

Y G1(σ
2) G2(σ

2)
Z G1(σ

2) G1(σ
2)

I G1(σ
2) G1(σ

2)

function does not contain negative terms, compared to Theorem 2, we can achieve initialization for
all parameters using only the distributions G1(σ

2) and G2(σ
2), no need for G3(σ

2). Moreover, in
specific cases, the lower bound on its norm is large or equal to the bound proposed in Theorem 2.

4 EXPERIMENTS

VQAs play a crucial role in various domains, including the modeling of quantum spins Bharti &
Haug (2021), quantum machine learning Romero et al. (2017); Biamonte et al. (2017); Maria Schuld
& Petruccione (2015), and quantum chemistry Arute et al. (2020); Levine et al. (2009); Cao et al.
(2019). In this section, we embark on a comprehensive exploration of our proposed method, draw-
ing comparisons with existing approaches across the spectrum of local and global cost functions.
This comparative analysis aims to illuminate the efficacy and adaptability of our strategy in diverse
scenarios, shedding light on its potential to enhance quantum computational tasks in both theoretical
modeling and practical applications.
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Figure 3: In the training process of the 1D Transverse Field Ising Model, the cost function and
gradient norm undergo transformations. Since it is a local cost function, the majority of initialization
methods converge to its minimum value.

First, we initially focus on a local observable in the 1D transverse field Ising model (TFIM) Stinch-
combe (1973); Heyl et al. (2013), described by the Hamiltonian HTFIM =

∑
i,i+1 ZiZi+1 −

∑
i Xi.

Setting the initial state ρin = |0⟩⟨0|, with N = 15, and L = 15, we aim to compute the ground
state of the system. We choose the observable X1 ⊗ I2 ⊗ ... ⊗ IN to initialize the circuit parame-
ters. In addition, we compare our proposed method with existing initialization strategies, such as the
uniform distribution U [−π, π], Gaussian distribution N (0, 1

4S(L+2) ), and the reduced-domain dis-
tribution U [−aπ, aπ], where a is set to 0.07. The experimental results are illustrated in Fig. 3, where
(a) depicts the variation of the cost function during the training process, and (b) shows the ℓ2 norm
of corresponding gradients throughout the optimization. Considering that choosing the observable
Z1⊗Z2⊗...⊗IN for initialization could also involve initializing all parameters with a Gaussian dis-
tribution, our proposed method offers a broader range of distribution choices. The reduced-domain
distribution, similar to the Gaussian distribution, concentrates data around zero. Consequently, our
method, along with Gaussian distribution and reduced-domain distribution, proves effective in find-
ing the ground state, significantly outperforming the uniform distribution U [−π, π].
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Figure 4: In the training process, when the observable is entirely composed of X , the cost function
and gradient norm undergo transformations. The gradients for Gaussian, uniform, and reduced-
domain distributions remain near zero, resulting in almost non-decreasing cost functions for these
distributions. In contrast, our method maintains relatively large gradients throughout the training
process and is able to descend to the final results.

Table 4: Comparison of initial gradients norm E
θ
||∇θf(θ)||22 for different methods at various num-

bers of qubits.
Number of qubits N GMM Gaussian Uniform Reduced-domain

5 1.26 0.99 2.02 1.21
10 0.75 2.86× 10−2 0.41 6.22× 10−2

15 0.73 1.92× 10−7 6.65× 10−2 8.56× 10−4

20 0.74 3.47× 10−16 8.78× 10−3 4.61× 10−6

25 0.74 2.55× 10−23 1.37× 10−3 6.87× 10−8

However, Gaussian and reduced-domain distributions do not always perform well. For instance,
on global cost functions, they can only provide exponential lower bounds, which can not avoid the
barren plateau problem in general. Now, we consider the cost function f(θ) = Tr[OU(θ)ρinU

†(θ)],
where O = X1 ⊗X2 ⊗ ...⊗XN , ρin = |0⟩⟨0|. We set N = 20 and L = 8, the results are depicted
in Fig. 4. Clearly, in this scenario, neither the Gaussian distribution nor the uniform distribution
can induce parameter updates, as their gradient norms tend towards zero. In contrast, our method’s
gradient norm starts with an initial value greater than 1

4 − 1
8L ≈ 0.23, significantly surpassing

others. Moreover, the gradient norm remains within a relatively large range throughout the entire
training process. This enables our approach to escape what is commonly referred to as the vanishing
gradient problem on plateaus. These observations are entirely consistent with the conclusions drawn
in Theorem 1.

Finally, we randomly generate some global observables to calculate their initial gradients. In this
case, the cost function is given by f(θ) = Tr[(

∑10
i=1 Oi −

∑10
j=1 Oj)U(θ)ρinU

†(θ)], where the
Pauli matrices in Oi and Oj are randomly selected from {X,Y, Z}. We set L to be 2 and computed
E
θ
||∇θf(θ)||22 for different numbers of qubits N . The results are presented in Table 4. Given that

each term is global and excludes Pauli I , in this case, M = 1. Consequently, according to Theorem
2, our lower bound on E

θ
||∇θf(θ)||22 is 0.25. From the results, it is evident that with an increase in

the number of qubits, the E
θ
||∇θf(θ)||22 for Gaussian, uniform, and reduced-domain distributions

undergoes a sharp reduction. While our method also exhibits a decreasing trend in E
θ
||∇θf(θ)||22, it

aligns closely with the outcome predicted by Theorem 2 and significantly surpasses other methods
by several orders of magnitude.

Additionally, we conducted simulation experiments in quantum chemistry to validate the effective-
ness of this initialization method. We compared the changes in the loss function as the number of
layers L increased, both under noisy and noise-free conditions, as well as the impact of different
variances σ2 in the GMM on the results. Specific details can be found in the Appendix B.
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Table 5: For the Ry − Rx gate structure, we initialize the parameters θ in both Ry(θ) and Rx(θ)
gates using a Gaussian distribution G1(σ

2).
The Pauli matrix of oi Init method of Rx(θ) Init method of Ry(θ)

X G2(σ
2) G1(σ

2)
Y G1(σ

2) G2(σ
2)

Z G3(σ
2) G3(σ

2)
I G3(σ

2) G3(σ
2)

Table 6: For the Ry − Rx gate structure, we initialize the parameters θ in both Ry(θ) and Rx(θ)
gates using a Gaussian distribution G1(σ

2).
The Pauli matrix of oi Init method of Rx(θ) Init method of Ry(θ)

X G2(σ
2) G1(σ

2)
Y G1(σ

2) G2(σ
2)

Z G3(σ
2) G3(σ

2)
I G3(σ

2) G3(σ
2)

5 DISCUSSION

We observe that when Pauli matrices are limited to I and Z, the CZ gate does not alter their forms.
In other words, CZ†(oi ⊗ oj)CZ = oi ⊗ oj for all oi, oj ∈ {I, Z}. Therefore, CZl can be any
combination of CZ gates, and it only changes the conditions for ’flip,’ which does not affect our
results. Also, although our method is specifically effective for the Rx −Ry gate structure, it can be
readily extended to other combinations of rotation gates. For instance, as shown in Theorem 2, if we
interchange the positions of Rx and Ry in the arrangement of rotation gates, i.e., the arrangement is
Ry−Rx, then we initialize the parameters of the last block according to Table 6, and the initialization
of parameters in other layers follows the distribution G1(σ

2). Alternatively, when the rotation gates
consist of three Rx − Ry − Rx gates, under the same conditions as in Theorem 1, we initialize the
parameters of the last block as shown in Table 7, and the initialization of parameters in other layers
follows the distribution G1(σ

2). In both cases, the results are consistent with those of Theorem 1.
Certainly, our analysis method remains applicable when using CNOT to provide entanglement.

6 CONCLUSION

In this paper, we introduce GMM into the parameter initialization of PQCs to circumvent the notori-
ous barren plateau problem. Results indicate the universality of our approach, as it applies to various
cost functions, and we rigorously prove that its gradient norms is no less than 1

8 . We validate our
algorithm for diverse problems, which is crucial for VQAs as it enables the training of larger and
deeper quantum circuits, unlocking the potential of quantum computation.

While the theorems presented in our paper are tailored to the ansatz in Fig. 1, the applicability of
our theorems and proof techniques can extend to other ansatz structures. Furthermore, considering
the analogous BP issues in tensor network simulations Liu et al. (2022); Garcia et al. (2023), we
anticipate incorporating our method into the initialization of tensor networks in the future. However,
due to the sharp-P completeness of classical simulations in tensor networks, even without facing BP,
computing their derivatives remains challenging for large-scale problems. In contrast, VQAs can
efficiently obtain expected values through quantum devices, making them implementable. Certainly,
for effective training of VQAs, overcoming the barren plateau is just one step, as they still face
challenges such as local minima Bittel & Kliesch (2021); Anschuetz & Kiani (2022) that need to
consider.

We note that recent articles claim all BP-free ansatzes are classically simulable Cerezo et al. (2023).
As stated in Ref. Park et al. (2024), HEA can be interpreted as a many-body localized (MBL) system
Shtanko et al. (2023), and currently, no efficient classical algorithm can simulate MBL systems for
exponentially long times. Additionally, even when using tensor networks to simulate, the barren
plateau problem arises when dealing with global loss functionsLiu et al. (2022). Although the work
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Table 7: For the Rx − Ry − Rx gate structure, we initialize the parameters θ in both Ry(θ) and
Rx(θ) gates using a Gaussian distribution G1(σ

2).
oi Init method of first Rx(θ) Init method of Ry(θ) Init method of second Rx(θ)
X G3(σ

2) G1(σ
2) G1(σ

2)
Y G3(σ

2) G2(σ
2) G2(σ

2)
Z G3(σ

2) G3(σ
2) G3(σ

2)
I G3(σ

2) G3(σ
2) G3(σ

2)

in Ref. Cerezo et al. (2023) has sparked new thoughts on VQAs, some of its statements require more
detailed proof and analysis in future work.
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A APPENDIX

A.1 TECHNICAL LEMMAS

For convenience, let’s introduce some notation that will be used in the subsequent proof. Consider
a special case where the Pauli matrices Oi and Oj at all corresponding positions are either identical
or involve the Pauli Z and the identity matrix. Specifically, ∀l ∈ [N ], the single observables oil and
ojl at their corresponding positions belong to the set {X,X;Y, Y ;Z,Z; I, Z;Z, I; I, I}. We define:

Sij
1 := |{m|oim = ojm = X,m ∈ [N ]}| (9)

P ij
0 := {m|oim = I||ojm = I,m ∈ [N ]} (10)

P ij
1:3 := {m|oim = ojm ̸= I,m ∈ [N ]} (11)

(12)

Also, the random variable θ is distributed according to G0, G1(σ
2), G2(σ

2), G3(σ
2), adhering to

the same definitions as presented in the main text. Assuming θ follows the distribution G1(σ
2), we

define α, β, and γ as follows:

α = E
θ∼G1(σ2)

cos2θ =
1 + e−2σ2

2
(13)

β = E
θ∼G1(σ2)

sin2θ =
1− e−2σ2

2
(14)

γ = E
θ∼G1(σ2)

cosθ = e−
σ2

2 (15)
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By straightforward application of a Taylor expansion, it is evident that α ≥ 1− σ2 and β ≥ σ2(1−
σ2). Next, we will now present the lemma.

Lemma 1 Let ρ be an arbitrary linear operator, G be a Hermitian unitary and V = e−i θ
2G. Con-

sider an arbitrary Hamiltonian operator O that commutes with G. Moreover, let θ be a random
variable following an arbitrary distribution, i.e., θ ∼ G0. Then:

E
θ∼G0

Tr[OV ρV †] = Tr[Oρ] (16)

E
θ∼G0

Tr2[OV ρV †] = Tr2[Oρ] (17)

E
θ∼G0

∂

∂θ
Tr[OV ρV †] = 0 (18)

where Tr2[·] = (Tr[·])2

Proof. Consider that V = e−i θ
2G = I cos

(
θ
2

)
− iG sin

(
θ
2

)
, for any arbitrary operator O, we obtain:

Tr[OV ρV †] = Tr
[
O

(
I cos

(
θ

2

)
− iG sin

(
θ

2

))
ρ

(
I cos

(
θ

2

)
+ iG sin

(
θ

2

))]
=

1 + cos θ

2
Tr [Oρ] +

1− cos θ

2
Tr[OGρG] +

sin θ

2
(Tr[iOρG]− Tr[iOGρ]) (19)

Given that G is unitary and [O,G] = 0, the above expression simplifies to:

Tr[OV ρV †] = Tr[Oρ] (20)

Hence, Tr[OV ρV †] is independent of θ. Consequently, for any random variable θ, we establish that
E

θ∼G0

Tr[OV ρV †] = Tr[Oρ], E
θ∼G0

Tr2[OV ρV †] = Tr2[Oρ] and E
θ∼G0

∂
∂θTr[OV ρV †] = 0.

Lemma 2 Let ρ be an arbitrary linear operator, and let G be a Hermitian unitary and V = e−i θ
2G.

Consider arbitrary Hamiltonian operator O1, O2, Õ1, and Õ2, where O1, O2 anti-commute with G

and Õ1, Õ2 commute with G, implying {O1, G} = 0, {O2, G} = 0, [Õ1, G] = 0, and [Õ2, G] = 0.
And θ is a random variable following a Gaussian distribution N (0, σ2), i.e., θ ∼ G1(σ

2). Then:

E
θ∼G1(σ2)

Tr[O1V ρV †] = γTr[O1ρ] (21)

E
θ∼G1(σ2)

∂

∂θ
Tr[O1V ρV †] = γTr[iGO1ρ] (22)

E
θ∼G1(σ2)

Tr[Õ1V ρV †]Tr[O1V ρV †] = γTr[Õ1ρ]Tr[O1ρ] (23)

E
θ∼G1(σ2)

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[O2V ρV †] = E

θ∼G1(σ2)

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[Õ2V ρV †] = 0 (24)
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E
θ∼G1(σ2)

Tr[O1V ρV †]Tr[O2V ρV †] = αTr[O1ρ]Tr[O2ρ] + βTr[iGO1ρ]Tr[iGO2ρ] (25)

E
θ∼G1(σ2)

∂

∂θ
Tr[O1V ρV †]

∂

∂θ
Tr[O2V ρV †] = βTr[O1ρ]Tr[O2ρ] + αTr[iGO1ρ]Tr[iGO2ρ] (26)

where i is the imaginary unit.

proof. According to Eq. (19), it can be see that for any operator O, we have

Tr[OV ρV †] =
1 + cos θ

2
Tr[Oρ] +

1− cos θ

2
Tr[GOGρ] +

sin θ

2
(Tr[iGOρ]− Tr[iOGρ]) (27)

Considering the unitary of G and the conditions {O1, G} = 0, as indicated in Eq. (27), we can
deduce that

Tr[O1V ρV †] = cos θTr[O1ρ] + sin θTr[iGO1ρ] (28)

Based on Eq. (28), we obtain that

∂

∂θ
Tr[O1V ρV †] = − sin θTr[O1ρ] + cos θTr[iGO1ρ] (29)

Given that E
θ∼G1(σ2)

sin θ = E
θ∼G1(σ2)

sin 2θ = 0, and combining it with Eq. (20), Eq. (28) and Eq.

(29) . Therefore, we can deduce Eq. (21) to Eq. (26).

Lemma 3 Let ρ, G, V , O1, O2, Õ1 and Õ2 be defined in the same manner as presented in Lemma
2. Random variable θ follows distribution G2(σ

2). Then

E
θ∼G2(σ2)

Tr[O1V ρV †] = 0 (30)

E
θ∼G2(σ2)

∂

∂θ
Tr[O1V ρV †] = 0 (31)

E
θ∼G2(σ2)

Tr[Õ1V ρV †]Tr[O1V ρV †] = 0 (32)

E
θ∼G2(σ2)

Tr[Õ1V ρV †]Tr[Õ2V ρV †] = Tr[Õ1ρ]Tr[Õ2ρ] (33)

E
θ∼G2(σ2)

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[O2V ρV †] = E

θ∼G2(σ2)

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[Õ2V ρV †] = 0 (34)

E
θ∼G2(σ2)

Tr[O1V ρV †]Tr[O2V ρV †] = βTr[O1ρ]Tr[O2ρ] + αTr[iGO1ρ]Tr[iGO2ρ] (35)

E
θ∼G2(σ2)

∂

∂θ
Tr[O1V ρV †]

∂

∂θ
Tr[O2V ρV †] = αTr[O1ρ]Tr[O2ρ] + βTr[iGO1ρ]Tr[iGO2ρ] (36)
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proof. Since θ ∼ G2(σ
2), we have

E
θ∼G2(σ2)

cosθ =
1

2

∫ +∞

−∞

1√
2πσ

e−
(x+π

2
)2

2σ2 cos(x)dx+
1

2

∫ +∞

−∞

1√
2πσ

e−
(x−π

2
)2

2σ2 cos(x)dx (37)

= −1

2

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 sin(x)dx+
1

2

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 sin(x)dx (38)

= 0 (39)

By following the similar calculations, we obtain E
θ∼G2(σ2)

sin(2θ) = 0, E
θ∼G2(σ2)

cos2(θ) =

β, E
θ∼G2(σ2)

sin2(θ) = α. Combining them with Eq. (20) and Eq. (28), it is straightforward to

have Eq. (30) to Eq. (36).

Lemma 4 The definitions of ρ, G, V , O1, O2, Õ1 and Õ2 align with those outlined in Lemma 2.
Random variable θ follows distribution G3(σ

2). Then

E
θ∼G3(σ2)

Tr[O1V ρV †] = 0 (40)

E
θ∼G3(σ2)

∂

∂θ
Tr[O1V ρV †] = 0 (41)

E
θ∼G3(σ2)

Tr[Õ1V ρV †]Tr[O1V ρV †] = 0 (42)

E
θ∼G3(σ2)

Tr[Õ1V ρV †]Tr[Õ2V ρV †] = Tr[Õ1ρ]Tr[Õ2ρ] (43)

E
θ∼G3(σ2)

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[O2V ρV †] = E

θ

∂

∂θ
Tr[Õ1V ρV †]

∂

∂θ
Tr[Õ2V ρV †] = 0 (44)

E
θ∼G3(σ2)

Tr[O1V ρV †]Tr[O2V ρV †] = αTr[O1ρ]Tr[O2ρ] + βTr[iGO1ρ]Tr[iGO2ρ] (45)

E
θ∼G3(σ2)

∂

∂θ
Tr[O1V ρV †]

∂

∂θ
Tr[O2V ρV †] = βTr[O1ρ]Tr[O2ρ] + αTr[iGO1ρ]Tr[iGO2ρ] (46)

proof. Since θ ∼ G3(σ
2), we have

E
θ∼G3(σ2)

cosθ =
1

4

∫ +∞

−∞

1√
2πσ

e−
(x+π)2

2σ2 cos(x)dx+
1

4

∫ +∞

−∞

1√
2πσ

e−
(x−π)2

2σ2 cos(x)dx

+
1

2

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 cos(x)dx (47)

=− 1

4

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 cos(x)dx− 1

4

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 cos(x)dx

+
1

2

∫ +∞

−∞

1√
2πσ

e−
x2

2σ2 cos(x)dx (48)

=0 (49)
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By following the similar calculations, we obtain E
θ
sin(2θ) = 0, E

θ
cos2(θ) = α, E

θ
sin2(θ) = β.

Again using Eq. (20) and Eq. (28), it is straightforward to have Eq. (40) to Eq. (46).

When O1 = O2 and Õ1 = Õ2, we can derive the following corollary:

Corollary: Let ρ be an arbitrary linear operator, and let G be a Hermitian unitary and V = e−i θ
2G.

Consider arbitrary quantum observables O, where O anti-commute with G.

If random variable θ follows distribution θ ∼ G1(σ
2) or θ ∼ G3(σ

2) . Then

E
θ

Tr2[OV ρV †] = αTr2[Oρ] + βTr2[iGOρ], (50)

E
θ

(
∂

∂θ
Tr[OV ρV †]

)2

= βTr2[Oρ] + αTr2[iGOρ]. (51)

If random variable θ follows a Gaussian mixture model θ ∼ G2(σ
2). Then

E
θ

Tr2[OV ρV †] = βTr2[Oρ] + αTr2[iGOρ], (52)

E
θ

(
∂

∂θ
Tr[OV ρV †]

)2

= αTr2[Oρ] + βTr2[iGOρ], (53)

For clarity, we employ graphical representations to illustrate the evolution of Pauli matrices. Con-
sider Eq. (45):

E
θ∼G3(σ2)

Tr[O1V ρV †]Tr[O2V ρV †] = αTr[O1ρ]Tr[O2ρ] + βTr[iGO1ρ]Tr[iGO2ρ] (54)

Suppose O1 = X,O2 = Z,G = Y . Then, iGO1 = Z and iGO2 = −X . Therefore,
E

θ∼G3(σ2)
Tr[XV ρV †]Tr[ZV ρV †] = αTr[Xρ]Tr[Zρ] − βTr[Zρ]Tr[Xρ]. The original operators O1

and O2 are now split into two terms, X,Z and Z,X , with coefficients α and −β respectively. The
corresponding graphical representation, as depicted in Fig. 5, illustrates the evolution of Pauli matri-
ces after applying the gates, with arrows indicating the resulting Pauli matrices and lines representing
their parameters.

The following lemma pertains to the transformations of 2-qubit Pauli tensor products after the ap-
plication of a controlled-Z gate.

Lemma 5 Let CZ represent a controlled-Z gate, and oi ⊗ oj denote a 2-qubit Pauli tensor product,
where oi and oj are Pauli matrices. When oi′ ⊗ oj′ is equivalent to CZ†(oi ⊗ oj)CZ, we denote
this transformation as oi ⊗ oj → oi′ ⊗ oj′ . To encapsulate all specific transformations succinctly,
we present the following summary:

X ⊗ I ↔ X ⊗ Z,X ⊗X ↔ Y ⊗ Y,X ⊗ Y ↔ −Y ⊗X,Y ⊗ I ↔ Y ⊗ Z

Y ⊗ Z ↔ Y ⊗ I, Z ⊗ I ↔ Z ⊗ I, Z ⊗X ↔ I ⊗X,Z ⊗ Y ↔ I ⊗ Y,

Z ⊗ Z ↔ Z ⊗ Z, I ⊗ I ↔ I ⊗ I, I ⊗ Z ↔ I ⊗ Z
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X, Z

X, Z

Z, X

α

−β

Figure 5: In the scenario where the density matrix ρ remains invariant, the Pauli matrix XZ under-
goes a transformation resulting in two components. One component corresponds to αXZ, while the
other corresponds to −βZX .

A.2 PROOF OF THEOREM 1

Here, we consider an observable with only one term, i.e. O = o1 ⊗ o2 ⊗ ... ⊗ oN , where oi ∈
{I,X, Y, Z}. For subsequent calculations, we establish the following notations. We define O3:i;1

to mean replacing all the Pauli matrices of X in O with Z, and O3:i means replacing all Pauli
matrices of X and Y in O with Z. The parameterized quantum circuit U(θ) comprising L blocks
can be represented as

U(θ) = UL(θ2L,θ2L−1)UL−1(θ2L−2,θ2L−3)...U1(θ2,θ1) (55)

For each block U(θl), where l ∈ {0, 1, ..., 2L}, it can be represented as

Ul(θ2l,θ2l−1) = R2l(θ2l)R2l−1(θ2l−1)CZl (56)

where

R2l(θ2l) = e−i
θ2l,1

2 Y ⊗ e−i
θ2l,2

2 Y ...⊗ e−i
θ2l,N

2 Y (57)

R2l−1(θ2l−1) = e−i
θ2l−1,1

2 X ⊗ e−i
θ2l−1,2

2 X ...⊗ e−i
θ2l−1,N

2 X , (58)

CZl denotes that the circuit induces entanglement through the inclusion of multiple CZ gates in the
l-th block.

Next, we consider the intermediate state. For any k ∈ {0, 1, ..., 2L}, assuming that the quantum
state obtained after passing through the k-th block is ρk, we define

ρk :=

{
Rk(θk)ρk−1Rk(θk)

† for k = 2l ≤ 2L

Rk(θk)CZ k+1
2
ρk−1CZ†

k+1
2

Rk(θk)
† for k = 2l + 1 ≤ 2L− 1 (59)

Additionally, we define Is := {m|om ̸= I,m ∈ [N ]} to denote the set of qubits whose observables
act nontrivially. Next, we proceed to prove the content of Theorem 1.

From Theorem 1, we know that when there exists i ∈ {1, 2, ..., N} such that oi = I/Z, the param-
eters in the last block’s Rx(θ) and Ry(θ) gates can follow either the G1(σ

2) or G3(σ
2) distribution.

For simplicity, we assume the parameters follow the distribution G1(σ
2), the other case can be

proven similarly.
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We first consider the case where there is a Pauli matrix X or Y in O, i.e., there exists j such that
oj = X/Y . Then, the parameters θ in the last block follow the distributions G1(σ

2) or G2(σ
2).

According to Eq. (18) and Eq. (31), it is evident that for all q and n, E
θ
∂θq,nf(θ) = 0.

Furthermore, when all the Pauli matrices in O are either I or Z, we proceed as follows. Assume
θq,n is in the last block, i.e., q = 2L − 1 or q = 2L. If the n-th Pauli matrix of O is on = I , then
according to Eq. (16) and Eq. (18), it is easy to see that E

θ
∂θq,nf(θ) = 0.

When on = Z, using Eq. (21) and Eq. (22), the Pauli matrix inevitably transforms into X or Y .
Combining this with Eq. (21) and Lemma 5, in the final Tr[O′ρ], the Pauli matrix at the n-th position
of O′ must be X or Y . Furthermore, due to ⟨0|X|0⟩ = ⟨1|X|1⟩ = ⟨0|Y |0⟩ = ⟨1|Y |1⟩ = 0, we have
E
θ
∂θq,nf(θ) = 0.

When q ∈ {1, ..., 2L− 2}, we have:

E
θ
∂θq,nf(θ) = E

θ1

... E
θ2L

∂θq,nTr[Oρ2L] (60)

= γS3 E
θ1

... E
θ2L−1

∂θq,nTr[Oρ2L−1] (61)

= γ2S3 E
θ1

... E
θ2L−2

∂θq,nTr[CZ†
l OCZlρ2L−2] (62)

= γ2S3 E
θ1

... E
θ2L−2

∂θq,nTr[Oρ2L−2] (63)

= γ(2L−q−1)S3 E
θ1

... E
θq

∂θq,nTr[Oρq] (64)

According to Eq. (16) and (21), we can infer that when n ∈ Is, the expectation of θn yields γ, and
when n /∈ Is, the expectation of θn results in a constant 1. Thus, we obtain Eq. (61). Similarly, we
can derive Eq. (62). Eq. (63) is derived from Lemma 5. By repeating this process, we arrive at Eq.
(64).

We are currently directing our attention to the subscript n. If n /∈ IS , then, based on Eq. (18), we
can obtain,

E
θ1

... E
θq

∂θq,nTr[Oρq] = 0 (65)

which means

E
θ1

... E
θ2L

∂θq,nf(θ) = 0. (66)

When n ∈ IS , according to Eq. (22), we have

E
θ1

... E
θq

∂θq,nTr[Oρ2L−2] = γS3 E
θ1

... E
θq−1

∂θq,nTr[O′ρ2L−2] (67)

Among these, O′ entails transforming the Pauli Z matrix at the nth position of the Hamiltonian
O into Y or −X . Subsequently, Eq. (16) and Eq. (21) elucidate that applying an expectation to
θ1,θ2, ...,θq does not alter the form of the observable but merely augments certain coefficients from
the previous state. Additionally, considering that the observable at this juncture comprises only Y or
−X at the nth position, with the remaining positions being Z or I , Lemma 5 implies that we have

E
θ1

... E
θ2L

∂θq,nTr[Oρ2L−2] = γcTr[O′′ρ0] (68)
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Here, c is a constant greater than or equal to L and less than or equal to 2L. Considering that the
observable O′′ involves the Pauli operators X or Y at position n, and ⟨0|X|0⟩ = 0, ⟨0|Y |0⟩ = 0,
we obtain

E
θ1

... E
θ2L

∂θq,nTr[Oρ2L−2] = 0 (69)

Thus far, we have successfully demonstrated that its expectation is equal to 0. Thus we complete the
proof of Eq. (5).

Next, we will establish the lower bound of its gardient norm. That is we prove Eq. (6) in Theorem
1. Note that

E
θ
||∇θf(θ)||2 =

2L∑
q=1

N∑
n=1

E
θ

(
∂f(θ)

∂θq,n

)2

=

2L∑
q=1

∑
n∈IS

E
θ

(
∂f(θ)

∂θq,n

)2

+

2L∑
q=1

∑
n/∈IS

E
θ

(
∂f(θ)

∂θq,n

)2

≥
2L∑
q=1

∑
n∈IS

E
θ

(
∂f(θ)

∂θq,n

)2

(70)

For each term within the first L− 1 blocks of E
θ
(∂f(θ)∂θq,n

)2, it follows that

E
θ

(
∂f(θ)

∂θq,n

)2

= E
θ

(
∂

∂θq,n
Tr[Oρ2L]

)2

(71)

= E
θ1

... E
θ2L

(
∂

∂θq,n
Tr[OR2L(θ2L)ρ2L−1R

†
2L(θ2L)]

)2

(72)

≥ αS1+S3 E
θ1

... E
θ2L−1

(
∂

∂θq,n
Tr[O3:i;1ρ2L−1]

)2

(73)

= αS1+S3 E
θ1

... E
θ2L−1

(
∂

∂θq,n
Tr[O3:i;1R2L−1(θ2L−1)CZLρ2L−2CZ†

LR
†
2L(θ2L−1)

)2

(74)

≥ αS1+S3αS1+S3+S2 E
θ1

... E
θ2L−2

(
∂

∂θq,n
Tr[O3:iCZLρ2L−2CZ†

L]

)2

(75)

= αS1+S3αS1+S3+S2 E
θ1

... E
θ2L−2

(
∂

∂θq,n
Tr[O3:iρ2L−2]

)2

(76)

≥ αS1+S3αS(2L−1−q) E
θ1

... E
θq

(
∂

∂θq,n
Tr[O3:iρq]

)2

(77)

In Eq. (73), the formulation arises from the utilization of Eq. (50) when n is in Is3 and Eq. (52)
when n is in Is1 , contributing a parameter α for each term. Conversely, when n is in either Is0 or
Is2 , Eq. (17) is employed without altering the preceding coefficients. Through analogous analysis,
Eq. (75) is derived. Eq. (76) is a consequence of the deductions stemming from Lemma 5. By
iterating through these steps, we arrive at Eq. (77).
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E
θ
(
∂f(θ)

∂θq,n
)2 ≥ αS1+S3αS(2L−1−q)αS−1β E

θ1

... E
θq−1

(Tr[O3:iρq−1])
2 (78)

≥ αS1+S3αS(2L−1−q)αS−1βαS(q−1)Tr2[O3:iρ0] (79)

≥ α2LS−1β (80)

≥ (1− σ2)2LS−1σ2(1− σ2) (81)

=
1

2LS
(1− 1

2LS
)2LS (82)

≥ 1

8LS
(83)

In Eq. (78), the coefficient β is determined by taking the expectation with respect to θq,n based on
Eq. (51). Here, we retain the terms with the coefficient β instead of α. The remaining αS−1 terms
remain consistent with Eq. (50). Eq. (79) follows a process similar to Eq. (77), obtained by taking
the expectation over the remaining θ. Considering Tr[O3:iρ0] = 1, S1 + S3 ≤ S, and α < 1, we
arrive at Eq. (80). Eq. (81) is derived from a Taylor expansion. Taking into account h(x) = (1− 1

x )
x

being monotonically increasing when x ≥ 2, Eq. (83) is thus proven.

Applying the identical methodology for analysis, we can similarly derive the same results for the
RX rotation layer in the final block. Thus, we can conclude that

E
θ
||∇θf(θ)||2 ≥

2L−1∑
q=1

∑
n∈IS

E
θ
(
∂f(θ)

∂θq,n
)2

≥
2L−1∑
q=1

∑
n∈IS

1

8LS

= (2L− 1)× S × 1

8LS

=
1

4
− 1

8L
(84)

A.3 PROOF OF THEOREM 2

Before proving Theorem 2, let’s first consider a special case where both Oi and Oj are global. We
can provide the following lemma:

Lemma 6 Considering a quantum circuit U(θ) with N qubits, initialized with ρ0 as a pure state,
and employing a hardware-efficient ansatz with L blocks, as depicted in Fig. 1, the cost function
is defined as f(θ) = Tr[(

∑
i Oi −

∑
j Oj)U(θ)ρoU(θ)†], where observable Oi,Oj are global

observables, denoted as oi, oj ∈ {X,Y, Z}. Randomly choose either Oi or Oj and initialize it in
accordance with the procedure outlined in Theorem 2. Consequently, we obtain:

E
θ
||∇θf(θ)||22 ≥ 1

4
− 1

8L
(85)

proof: Without loss of generality, let us opt to specify O1 and initialize the parameters within U(θ)
following the methodology expounded in Theorem 1. Subsequently, we have
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E
θ
||∇θf(θ)||2 =

∑
q,n

E
θ

(
∂f(θ)

∂θq,n

)2

(86)

=
∑
q,n

E
θ

∑
i

∂fi(θ)

∂θq,n
−
∑
j

∂fj(θ)

∂θq,n

2

(87)

=
∑
q,n

E
θ

(∑
i

∂fi(θ)

∂θq,n

)2

− 2
∑
q,n

E
θ

∑
i,j

∂fi(θ)

∂θq,n
· ∂fj(θ)
∂θq,n

+
∑
q,n

E
θ

∑
j

∂fj(θ)

∂θq,n

2

(88)

=
∑
q,n,i

E
θ

(
∂fi(θ)

∂θq,n

)2

+
∑

q,n,i1 ̸=i2

E
θ

(
∂fi1(θ)

∂θq,n
· ∂fi2(θ)

∂θq,n

)

− 2
∑

q,n,i,j

E
θ

(
∂fi(θ)

∂θq,n
· ∂fj(θ)
∂θq,n

)

+
∑
q,n,j

E
θ

(
∂fj(θ)

∂θq,n

)2

+
∑

q,n,j1 ̸=j2

E
θ

(
∂fj1(θ)

∂θq,n
· ∂fj2(θ)

∂θq,n

)
(89)

We expand the function f(θ), resulting in Eq. (89). Here, fi(θ) = Tr[OiU(θ)ρ0U(θ)†] and
fj(θ) = Tr[OjU(θ)ρ0U(θ)†]. Moving forward, let’s consider the cross terms. Without loss of
generality, let’s examine each element in the third term. Let’s denote Oi = σ⃗i,2L = σ1,i,2L ⊗
σ2,i,2L ⊗ ... ⊗ σN,i,2L and Oj = σ⃗j,2L = σ̃1,j,2L ⊗ σ̃2,j,2L ⊗ ... ⊗ σ̃N,j,2L. Next, we focus on the
evolution of these Pauli matrices throughout the process, we have:

E
θ

(
∂fi(θ)

∂θq,n

∂fj(θ)

∂θq,n

)
= E

θ

(
∂

∂θq,n
Tr[σ⃗i,2Lρ2L]

∂

∂θq,n
Tr[σ⃗j,2Lρ2L]

)
(90)

= E
θ

(
Tr[σ⃗i,2LR2L(θ)

∂ρ2L−1

∂θq,n
R†

2L(θ)]Tr[σ⃗j,2LR2L(θ)
∂ρ2L−1

∂θq,n
R†

2L(θ)]

)
(91)

=
∑
k1

hk1 E
θ

(
Tr[σ⃗k1

i,2L−1

∂ρ2L−1

∂θq,n
]Tr[σ⃗k1

j,2L−1

∂ρ2L−1

∂θq,n
]

)
(92)

=
∑
k2

hk2 E
θ

(
Tr[CZ†σ⃗k2

i,2L−2CZ
∂ρ2L−2

∂θq,n
]Tr[CZ†σ⃗k2

j,2L−2CZ
∂ρ2L−2

∂θq,n
]

)
(93)

=
∑
k′
2

hk′
2
E
θ

(
Tr[σ⃗

k′
2

i,2L−2

∂ρ2L−2

∂θq,n
]Tr[σ⃗

k′
2

j,2L−2

∂ρ2L−2

∂θq,n
]

)
(94)

. . . (95)

=
∑
k′
2L

hk′
2L
Tr[σ⃗

k′
2L

i,0 ρ0]Tr[σ⃗
k′
2L

j,0 ρ0] (96)

Among these, the coefficients hk1 , hk2 , hk′
2
, . . . , hk2L

, hk′
2L

take the form ±αg1βg2γg3 , where

g1, g2, g3 ∈ N. σ⃗
k′
2L

i,0 , σ⃗k2L
i,0 , . . . , σ⃗k1

i,2L−1, σ⃗i,2L, σ⃗
k′
2L

j,0 , σ⃗k2L
j,0 , . . . , σ⃗k1

j,2L−1, σ⃗j,2L are all in the form
of Pauli matrix tensor product. Furthermore, since Oi and Oj are both globally observable opera-
tors, and Oi ̸= Oj , there exists k ∈ [N ] such that the Pauli matrix on the k-th qubit of σk,i,2L and
σ̃k,j,2L is one of the cases {X,Y ;Y,X;X,Z;Z,X;Y,Z;Z, Y }. Next, we will prove that for all

these combinations, E
θ

(
∂fi(θ)
∂θq,n

∂fj(θ)
∂θq,n

)
= 0. Without loss of generality, let’s assume that there exists

k such that the k-th position of σk,i,2L is X and the k-th position of σ̃k,j,2L is Z.
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Next, let’s consider the changes in observables. According to Lemma 1, 2, 3, and 4, after the last
block’s Ry rotation gate, regardless of the distribution followed by θ in Rx(θ), based on Eq. (25), Eq.
(35) and Eq. (45), the value at position k becomes {X,Z} or {Z,X}, the coefficients for the other
terms are zero. However, different distributions will result in varying coefficients in front of {X,Z}
or {Z,X}. {X,Z}, {Z,X} remains {X,Z}, {Z,X} or 0 after the Rx rotation gate, according to
Eq. (23), Eq. (33) and Eq. (43). If it’s non-zero, according to Lemma 5, the CZ operation can
transform the original X or Y into X or Y , without changing them into Z or I . Similarly, it cannot
transform Z and I into X or Y . If, after the application of CZ, the original Pauli matrix undergoes
a change, such as turning X into Y or Z into I , we refer to this process as a ”flip.” Clearly, for
any observable C = c1 ⊗ c2 ⊗ ... ⊗ cn, if it aims to achieve a ”flip” operation at its k-th position,
it must satisfy the condition that the Pauli matrix at the (k − 1)-th position belongs to X,Y , the
Pauli matrix at the (k + 1)-th position belongs to I, Z, or the Pauli matrix at the (k − 1)-th position
belongs to I, Z, and the Pauli matrix at the (k + 1)-th position belongs to Z, I . Therefore, after the
CZ entanglement gate, its situation becomes one of {X,Z;Z,X;Y,Z;Z, Y ;X, I; I,X;Y, I; I, Y }.
Furthermore, taking partial derivatives with respect to any position θq,n only alters the coefficients in
front, and it does not lead to the appearance of the four possible combinations {I, I;Z,Z; I, Z;Z, I}
for Pauli matrices.

This analysis applies to each block similarly. Consequently, it generates numerous terms,
but in each term, on the k-th qubit, all possible situations that eventually arise are
{X,Z;Z,X;Y, Z;Z, Y ;X, I; I,X;Y, I; I, Y }. This implies that in σ⃗

k′
2L

i,0 , σ⃗
k′
2L

j,0 , there is at least one
term with X or Y . Additionally, since ⟨0|X|0⟩ = ⟨0|Y |0⟩ = ⟨1|X|1⟩ = ⟨1|Y |1⟩ = 0, it follows
that Tr[σ⃗k′

2L
i,0 ρ0]Tr[σ⃗

k′
2L

j,0 ρ0] = 0. Therefore, we conclude that when σk,i,2L = X and σ̃k,j,2L = Z,
Eq. (96) equals 0.

In an analogous manner, when the initial Pauli matrix of the k-th qubit is
{X,Y ;Y,X;Y, Z;Z,X;Z, Y }, we can still obtain Tr[σ⃗

k′
2L

i,0 ρ0]Tr[σ⃗
k′
2L

j,0 ρ0] = 0. Only when

the initial state is one of {X,X;Y, Y ;Z,Z;Z, I; I, Z; I, I}, Tr[σ⃗
k′
2L

i,0 ρ0]Tr[σ⃗
k′
2L

j,0 ρ0] ̸= 0. In
light of the fact that both Oi and Oj are global observables, and Oi ̸= Oj , it follows that there
exists at least one position, such that the Pauli matrices at the k-th position of Oi and Oj belong
to the set {X,Y ;Y,X;Y, Z;Z,X;Z, Y }. Thus, for global observable operators Oi and Oj ,

E
θ

(
∂fi(θ)
∂θq,n

∂fj(θ)
∂θq,n

)
= 0.

Following a similar analysis, we obtain E
θ

(
∂fi1 (θ)

∂θq,n

∂fi2 (θ)

∂θq,n

)
= E

θ

(
∂fj1 (θ)

∂θq,n

∂fj2 (θ)

∂θq,n

)
= 0. Thus, Eq.

(89) can be simplified to:

E
θ
||∇θf(θ)||2 =

∑
q,n,i

E
θ

(
∂fi(θ)

∂θq,n

)2

+
∑
q,n,j

E
θ

(
∂fj(θ)

∂θq,n

)2

(97)

≥
∑
q,n

E
θ

(
∂f1(θ)

∂θq,n

)2

(98)

≥ 1

4
− 1

8L
(99)

Thus, we have completed the proof of the lemma.

Next, let’s proceed with the proof of Theorem 2. Without loss of generality, we select O1 and
initialize the parameters of the quantum circuit according to it. Next, we will expand f(θ) to obtain
its expression:
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E
θ
||∇θf(θ)||2 =

∑
q,n

E
θ

(
∂f(θ)

∂θq,n

)2

(100)

=
∑
q,n

E
θ

∑
i1

∂f ′
i1
(θ)

∂θq,n
−
∑
j1

∂f ′
j1
(θ)

∂θq,n
+
∑
i2

∂f ′′
i2
(θ)

∂θq,n
−
∑
j2

∂f ′′
j2
(θ)

∂θq,n

2

(101)

=
∑
q,n

E
θ

∑
i1

∂f ′
i1
(θ)

∂θq,n
−
∑
j1

∂f ′
j1
(θ)

∂θq,n

2

+ 2
∑
q,n

E
θ

∑
i1

∂f ′
i1
(θ)

∂θq,n
−
∑
j1

∂f ′
j1
(θ)

∂θq,n

∑
i2

∂f ′′
i2
(θ)

∂θq,n
−
∑
j2

∂f ′′
j2
(θ)

∂θq,n


+
∑
q,n

E
θ

∑
i2

∂f ′′
i2
(θ)

∂θq,n
−
∑
j2

∂f ′′
j2
(θ)

∂θq,n

2

(102)

where f ′
i1
(θ) = Tr[O′

i1
U(θ)ρ0U(θ)†], f ′

j1
(θ) = Tr[O′

j1
U(θ)ρ0U(θ)†], f ′′

i2
(θ) =

Tr[O′′
i2
U(θ)ρ0U(θ)†], f ′′

j2
(θ) = Tr[O′′

j2
U(θ)ρ0U(θ)†]. The notations O′

i1
and O′

j1
suggest that,

in comparison to O1, they simply involve replacing some Pauli matrices Z with I or vice versa. For
instance, consider X⊗Y ⊗Z⊗ I and X⊗Y ⊗ I⊗Z. On the other hand, O′′

i2
, O′′

j2
represent other

observables.

Following similar analyses from Lemma 6, we determine that the second term in Eq. 102 is equal
to 0. Now, let’s expand the remaining terms. Therefore:

E
θ
||∇θf(θ)||2 =

∑
q,n

E
θ

(
∑
i1

∂f ′
i1
(θ)

∂θq,n
−
∑
j1

∂f ′
j1
(θ)

∂θq,n
)2 + (

∑
i2

∂f ′′
i2
(θ)

∂θq,n
−
∑
j2

∂f ′′
j2
(θ)

∂θq,n
)2


(103)

≥
∑
q,n

E
θ

∑
i1

∂f ′
i1
(θ)

∂θq,n
−
∑
j1

∂f ′
j1
(θ)

∂θq,n

2

(104)

=
∑
q,n,i1

E
θ

(
∂f ′

i1
(θ)

∂θq,n

)2

+
∑

q,n,i′1 ̸=i′′1

E
θ

(
∂f ′

i′1
(θ)

∂θq,n
·
∂f ′

i′′1
(θ)

∂θq,n

)

− 2
∑

q,n,i1,j1

E
θ

(
∂f ′

i1
(θ)

∂θq,n
·
∂f ′

j1
(θ)

∂θq,n

)

+
∑
q,n,j1

E
θ

(
∂f ′

j1
(θ)

∂θq,n

)2

+
∑

q,n,j′1 ̸=j′′1

E
θ

(
∂f ′

j′1
(θ)

∂θq,n
·
∂f ′

j′′1
(θ)

∂θq,n

)
(105)

It is easy to see that all the cross terms in this expression differ in the positions where I and Z
occur. Therefore, there exists a k such that the k-th position in f ′

i1
(θ) and f ′

j1
(θ) is either I, Z or

Z, I . According to Eq. (42) and Eq. (44), we know that the third term in Eq. (105) is equal to 0.
Similarly, we can analyze the other cross terms in Eq. (105) and conclude that they are all equal to
0. Therefore, we have:

E
θ
||∇θf(θ)||2 ≥

∑
q,n,i1

E
θ

(
∂f ′

i1
(θ)

∂θq,n

)2

+
∑
q,n,j1

E
θ

(
∂f ′

j1
(θ)

∂θq,n

)2

(106)
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Given that O′
i1

and O1 differ only in certain terms that flip I to Z or Z to I , and during the initializa-
tion of quantum circuit parameters, the k-th position in O1 follows G3(σ

2) if it is I or Z. Therefore,

for all i1,
∑

q,n E
θ

(
∂f ′

i1
(θ)

∂θq,n

)2
are all equal. According to Eq. (50) and Eq. (51), and employing a

similar analysis to Theorem 1, we obtain:

∑
q,n

E
θ

(
∂f ′

i1
(θ)

∂θq,n

)2

≥ 1

4
− 1

8L
(107)

Thus, we have:

E
θ
||∇θf(θ)||2 ≥ M

(
1

4
− 1

8L

)
(108)

A.4 PROOF OF THEOREM 3

Without loss of generality, we select O1 and initialize according to O1. Let O1 = o11⊗o12⊗ ...⊗o1N .
We expand f(θ) to obtain:

E
θ
||∇θf(θ)||2 =

∑
q,n

E
θ

(
∂f(θ)

∂θq,n

)2

(109)

=
∑
q,n

E
θ

∑
i

∂f ′
i(θ)

∂θq,n
+
∑
j

∂f ′′
j (θ)

∂θq,n

2

(110)

=
∑
q,n

E
θ

(∑
i

∂f ′
i(θ)

∂θq,n

)2

+ 2
∑
q,n

E
θ

∑
i,j

∂f ′
i(θ)

∂θq,n
·
∂f ′′

j (θ)

∂θq,n

+
∑
q,n

E
θ

∑
j

∂f ′′
j (θ)

∂θq,n

2

(111)

≥
∑
q,n,i

E
θ

(
∂f ′

i(θ)

∂θq,n

)2

+
∑

q,n,i1 ̸=i2

E
θ

(
∂f ′

i1
(θ)

∂θq,n
·
∂f ′

i2
(θ)

∂θq,n

)
+ 2

∑
q,n,i,j

E
θ

(
∂f ′

i(θ)

∂θq,n
·
∂f ′′

j (θ)

∂θq,n

)
(112)

where f ′
i(θ) = Tr[O′

iU(θ)ρ0U(θ)†] and f ′′
j (θ) = Tr[O′

jU(θ)ρ0U(θ)†]. O′
i implies that, compared

to O1, they might have operations that flip some I to Z or Z to I , while the rest of the Pauli matrices
are the same. O′

j represents observables that do not satisfy these conditions.

According to a similar analysis as in Lemma 6, we can see that the third term in Eq. (112) is
equal to 0. In the context of the final block, where the positions of I and Z in O1 follow Gaussian
distributions N (0, σ2), and considering that O′

i, compared to O1, only involves flipping Pauli I to
Pauli Z or Pauli Z to Pauli I, we can apply a similar analysis as in Theorem 1. As a result, in the first

term of Eq. (112), for each O′
i, we find that

∑
q,n E

θ

(
∂f ′

i(θ)
∂θq,n

)2
≥ 1

4 − 1
8L . For the second term in

Eq. (112), when n ∈ P ij
1:3 and q ∈ [2L− 2], note that:
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E
θ

(
∂f ′

i1
(θ)

∂θq,n

∂f ′
i2
(θ)

∂θq,n

)
= E

θ

(
∂

∂θq,n
Tr[O′

i1ρ2L]
∂

∂θq,n
Tr[O′

i2ρ2L]

)
(113)

= E
θ1

. . . E
θ2L

(
∂

∂θq,n
Tr[O′

i1R2L(θ2L)ρ2L−1R
†
2L(θ2L)]

∂

∂θq,n
Tr[O′

i2R2L(θ2L)ρ2L−1R
†
2L(θ2L)]

)
(114)

≥ αS
i1i2
1 +S

i1i2
3 γS

i1i2
0,3 E

θ1

. . . E
θ2L−1

(
∂

∂θq,n
Tr[O′

3:i1;1ρ2L−1]
∂

∂θq,n
Tr[O′

3:i2;1ρ2L−1]

)
(115)

≥ αS
i1i2
1 +S

i1i2
3 γS

i1i2
0,3 E

θ1

. . . E
θ2L−1

(
∂

∂θq,n
Tr[O′

3:i1;1R2L−1(θ2L−1)CZLρ2L−2CZ†
LR

†
2L−1(θ2L−1)]

∂

∂θq,n
Tr[O′

3:i2;1R2L−1(θ2L−1)CZLρ2L−2CZ†
LR

†
2L−1(θ2L−1)]

)
(116)

≥ αS
i1i2
1 +S

i1i2
3 αS

i1i2
1:3 γ2S
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)
(117)
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i1i2
1 +S

i1i2
3 αS
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1:3 γ2S

i1i2
0,3 E
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θ2L−2
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∂θq,n
Tr[O′
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)
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≥ αS
i1i2
1 +S

i1i2
3 α(2L−q−1)S

i1i2
1:3 γ(2L−q)S

i1i2
0,3 E

θ1

. . . E
θq

(
∂

∂θq,n
Tr[O′

3:i1ρq]
∂

∂θq,n
Tr[O′

3:i2ρq]

)
(119)

Similar to Eq. (73), Eq. (115) is derived from Eq. (17), (23), (50) and (52). Similarly, we obtain Eq.
(117). Eq. (118) is simplified through Lemma 5. Continuing this analysis up to layer q, we arrive at
Eq. (119).

E
θ

(
∂f ′

i1
(θ)

∂θq,n

∂f ′
i2
(θ)
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)
= E

θ

(
∂

∂θq,n
Tr[O′

i1ρ2L]
∂

∂θq,n
Tr[O′

i2ρ2L]

)
(120)

≥ αS
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1 +S
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i1i2
0,3 αS
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3:i1ρq−1]Tr[O′
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(121)
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1 +S
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3 α(2L−1)S
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0,3 βTr[O′

3:i1ρ0]Tr[O′
3:i2ρ0] (122)

≥ α2LS
i1i2
1:3 −1γ2LS

i1i2
0,3 β (123)

≥ (1− σ2)2LS
i1i2
1:3 −1e−Lσ2S

i1i2
0,3 σ2(1− σ2) (124)

=
1

2LS

(
1− 1

2LS

)2LS
i1i2
1:3

e−
S
i1i2
0,3
2S , (125)

Eq. (120) to Eq. (125) follow a similar analysis to Eq. (78) and Eq. (82). When n ∈ P ij
1:3, a similar

analysis reveals that when q = 2L− 1,

E
θ
(
∂f(θ)

∂θq,n
)2 ≥ 1

2LS
(1− 1

2LS
)2LS

i1i2
1:3 e−

S
i1i2
0,3
2S , (126)

and when q = 2L, E
θ
(∂f(θ)∂θq,n

)2 ≥ 0. Fig. 6 and 7 illustrate the evolution of the first cross-terms

in Eq. 112 for different configurations of Pauli matrices at each position. According to Lemma 5,
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Figure 6: At each position, depending on the different initial Pauli matrices, various terms
are generated. This indicates that when the initial Pauli matrix at any position belongs to
{XX,Y Y,ZZ, II, IZ, ZI}, it shows the transformation of the Pauli matrix and the correspond-
ing coefficients. When the Pauli matrix undergoes a CZ gate, according to Lemma 5, it may involve
flipping operations. Here, it illustrates the scenario when no flips exist, showcasing the changes in
the Pauli matrix. Here, the dashed line to the left of CZL represents the change in different Pauli
matrices as they pass through the two rotation gates in the L-th block. The transition from CZL to
CZL−1 indicates the transformation of the Pauli matrices as they pass through the (L− 1)-th block.

CZ may execute a flip operation. Therefore, we discuss two scenarios: one where no flip occurs,
as shown in Fig. 6, and another where CZ causes a flip of Pauli matrices, as depicted in Fig 7.
As mentioned earlier, we find that if the k-th Pauli matrix is to undergo a flip operation, we require
the (k-1)-th position to have a Pauli matrix of X or Y , and the (k+1)-th position to have a Pauli
matrix of Z or I , or vice versa. Taking into account that some terms in the evolution of iGOρ may
yield coefficients with negative signs, our specific setup ensures that when the coefficient for the
preceding Pauli matrix becomes negative, the succeeding Pauli matrix will also inevitably have a
negative coefficient. Consequently, the final coefficients are positive. When n /∈ P ij

1:3, i.e., n ∈ P ij
0 ,

we can easily deduce that E
θ
(∂f(θ)∂θq,n

)2 ≥ 0. In conclusion, we can draw the following conclusions:
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Figure 7: As before, it illustrates changes in the Pauli matrix. However, in this case, we assume that
the CZ gate introduces flip operations.
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(2L− 1)Sij
3

2LS
(1− 1

2LS
)2LSij

1:3e−
S
ij
0,3
2S (128)

B SIMULATED EXPERIMENTS IN QUANTUM CHEMISTRY

In the following, we explore the application of our initialization method to compute the ground-state
energy of the LiH molecule, a benchmark in quantum chemistry. Its loss function is global. For an
electronic system with N electrons distributed over M spin molecular orbitals, the initial state is the
Hartree-Fock (HF) state:
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Figure 8: When L = 10, we examine the variation of the cost function and E
θ
||∇θf(θ)||2 under

noisy and noise-free conditions, using both uniform distribution (U [−π, π]) and GMM-initialized
parameters. Where (a) and (b) represent the noise-free scenario, while (c) and (d) represent the case
with noise.
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Figure 9: When L = 20, (a) and (c) depict the loss function under noise-free and noisy conditions,
respectively, with a uniform distribution (U [−π, π]) and GMM-initialized parameters. On the other
hand, (b) and (d) illustrate the changes in E

θ
||∇θf(θ)||2 under noise-free and noisy conditions,

respectively.

|Φ⟩HF = |
N︷ ︸︸ ︷

11...11 00...00︸ ︷︷ ︸
M

⟩.

In the LiH molecule, with an electron count of N = 2 and M = 10 free spin orbitals, simu-
lating electronic structure problems on a quantum computer requires establishing a mapping that
transforms fermionic operators of electrons into Pauli operators. Common mappings include the
Jordan-Wigner (JW) transformation, Bravyi-Kitaev (BK) transformation, and Parity transformation.
Here, we adopt the JW mapping to compute its ground-state energy.
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Figure 10: When L = 30, (a) illustrates the variation of the loss under noise-free conditions; (b)
depicts E

θ
||∇θf(θ)||2 under noise-free conditions; (c) shows the change in loss under noisy condi-

tions; and (d) displays E
θ
||∇θf(θ)||2 under noisy conditions.
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We set the number of layers (L) to 10, 20, and 30, using a gradient descent optimizer with a learning
rate of 0.01. Additionally, we consider the impact of the noise on the barren plateau problem by
introducing a moderate amount of noise during training to simulate real-world quantum computer
operation. We compare the evolution of the cost function and E

θ
||∇θf(θ)||2 during training when

initializing parameters using GMM and uniform distribution U [−π, π]. The results are shown in
Fig. 8, 9, and 10. In each figure, (a) and (b) represent the condition without noise, while (c) and
(d) represent the noisy condition. From the results, we observe that regardless of the value of L
or the presence of noise, initializing parameters using the GMM method consistently provides a
larger E

θ
||∇θf(θ)||2 at the beginning of training and it consistently stays much higher than the

lower bound we have provided. This value remains relatively high before the convergence of the
cost function, therefore, the GMM initialization ensures a rapid convergence. On the other hand, the
uniform distribution U [−π, π] maintains a consistently lower level of gradient norm, resulting in a
significantly slower convergence process.

Next, let’s consider the impact of the parameter σ2 in the GMM. In the main text, we set σ2 to
be 1

2LS . We compare the training scenarios with different σ2 values under noisy and noise-free
conditions when L = 10, 20, 30. Here, σ2 is chosen as 0.1× 1

2LS , 1
2LS , and 10× 1

2LS . The results
are shown in Fig. 11, 12, and 13.

As before, (a) and (b) represent noise-free conditions, while (c) and (d) represent scenarios with
noise. The results in the figures indicate that when σ2 = 10 × 1

2LS , the convergence of the cost
function is significantly slower. On the other hand, when σ2 = 0.1 × 1

2LS , although the cost
function converges, its results are often inferior to the original case, especially in the presence of
noise. We believe that as σ2 increases, the peaks of the probability density function in the GMM
become lower, and its distribution becomes closer to the uniform distribution, leading to a smaller
KL divergence between them. Conversely, when σ2 decreases, the peaks of the GMM’s probability
density function become higher. Therefore, the data becomes more concentrated around the peaks,
making it less dispersed. This may be the reason why the convergence results are not as good as
when σ2 = 1

2LS .
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Figure 11: In the configuration with L = 10, the impact of different σ2 on training under noisy and
noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and
(d) represent the noisy scenario.
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Figure 12: For a 20-layer configuration, the impact of different σ2 on training under noisy and
noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and
(d) represent the noisy situation.
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Figure 13: In the L = 30 configuration, (a) and (b) illustrate the impact of different σ2 on training
under noise-free conditions, while (c) and (d) depict the influence of various σ2 under noisy condi-
tions.
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