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ABSTRACT

Variational quantum algorithms is one of the most representative algorithms in
quantum computing, which has a wide range of applications in quantum machine
learning, quantum simulation and other related fields. However, they face chal-
lenges associated with the barren plateau phenomenon, especially when dealing
with large numbers of qubits, deep circuit layers, or global cost functions, making
them often untrainable. In this paper, we propose a novel parameter initializa-
tion strategy based on Gaussian Mixture Models. We rigorously prove that, the
proposed initialization method consistently avoids the barren plateaus problem
for hardware-efficient ansatz with arbitrary length and qubits and any given cost
function. Specifically, we find that the gradient norm lower bound provided by the
proposed method is independent of the number of qubits /V and increases with the
circuit depth L. Our results strictly highlight the significance of Gaussian Mixture
model initialization strategies in determining the trainability of quantum circuits,
which provides valuable guidance for future theoretical investigations and practi-
cal applications.

1 INTRODUCTION

In recent years, the rapid advancement of quantum computing technology has drawn attention to
Variational Quantum Algorithms (VQAs) McClean et al.[(2016); Cirsto1u et al.[(2020); Cerezo et al.
(2022) as a promising quantum algorithm with broad application prospects. In the current era of
Noisy Intermediate-Scale Quantum (NISQ) devices |[Bharti et al.| (2022); |/Arrasmith et al.| (2019);
Preskill| (2018), VQAs provides a feasible approach to solving complex problems, where challenges
such as noise and errors in quantum computing devices make large-scale fully quantum computa-
tions difficult Benedett1 et al.| (2019); Jerbi et al.| (2023)); (Cerezo et al.| (2021al); Moll et al.| (2018)).
On the other hand, VQAs utilizes Parametrized Quantum Circuits (PQCs), denoted as V' (0), as
its quantum computing framework. PQCs serving as a trainable model adjusts its parameters 6
through classical optimization to minimize or maximize a specified cost function. By employing
parametrized quantum circuits, VQAs can adapt flexibly to the characteristics of different problems,
providing a robust and practical option for quantum computation on NISQ devices [Peruzzo et al.
(2014);Zhou et al.[(2020); Tabares et al.|(2023); Pan et al.[(2023). VQAs exhibit immense potential
across a spectrum of applications, showcasing efficient quantum algorithms that excel in tasks rang-
ing from chemical molecular structure and energy calculations McArdle et al.|(2020); Kandala et al.
(2017); Hempel et al.| (2018)) to combinatorial optimization problems |Amaro et al.| (2022); |Akshay
et al.| (2020) and machine learning Havlicek et al.|(2019); Saggio et al.|(2021)); Schuld et al.| (2020);
Schuld & Killoran| (2019); Zhang et al.|(2021)); Tian et al.| (2023)); [Zhang et al.| (2020); |Chen et al.
(2020). These applications not only have profound implications for scientific research but also offer
innovative solutions for practical applications.

Training VQAs encompasses various methodologies, including gradient-based [Sweke et al.| (2020);
Basheer et al.| (2023); |Q1 et al.| (2023)) and gradient-free Nelder & Mead| (1965); Powell| (1964) ap-
proaches. However, regardless of the sampling method employed, it is susceptible to encountering
the notorious barren plateaus (BP) problem McClean et al|(2018));|Arrasmith et al.[(2021); Liu et al.
(2022); Larocca et al.|(2024). The phenomenon of the barren plateau is characterized by the random-
ized initialization of parameters 8 in VQAs, leading to an exponential vanishing of the cost function
gradient along any direction with the increasing number of qubits. We have observed that recent
work has employed Lie groups and Lie algebras to provide a unified framework for understanding



Under review as a conference paper at ICLR 2025

the emergence of BP [Ragone et al.| (2024); [Fontana et al.| (2024). This framework reveals a close
relationship between BP and factors such as noise, the loss function, and circuit structure. Specif-
ically, noise is a significant cause of the barren plateau problem Wang et al.| (2021); |Stilck Franca
& Garcia-Patron| (2021). While depolarizing noise leads to the emergence of BP when the circuit
depth L becomes sufficiently large [Wang et al.| (2021), however, in the case of non-unital noise,
barren plateaus do not appear for local cost functions, regardless of the circuit depth Singkanipa &
Lidar| (2024). The essential cause of the emergence of BP lies in the entanglement within quantum
circuits |Ortiz Marrero et al.| (2021). Numerous strategies have emerged to address this issue, such
as optimizing initialization policies Zhang et al.| (2022a)); Wang et al|(2023); Friedrich & Maziero
(2022); [L1u et al.| (2023), refining circuit structures [Liu et al| (2024)); [Zhao & Gao| (2021)); Pesah
et al.[(2021); |Cong et al.| (2019); Martin et al.[(2023)); |[Park & Killoran| (2024), or employing local
cost functions |Arrasmith et al.|(2021)); |Liu et al.|(2022). However, whether noise is present or not,
avoiding the BP phenomenon for global loss functions remains a challenging problem (Cerezo et al.
(2021b); [Mele et al.[(2024). The design of the circuit ansatz is crucial for capturing quantum cor-
relations, including physics-inspired [Taube & Bartlett] (2006); Wecker et al.| (2015); |Peruzzo et al.
(2014) and hardware-efficient ansatz designs Zhang et al.| (2022b). While physics-inspired ansatz
exhibits some advantages in certain aspects |Wecker et al.|(2015); /O’Malley et al.| (2016), they also
face serious challenges in terms of computational resources. On the other hand, hardware-efficient
ansatz [Kandala et al.| (2017) caters to the limitations of NISQ devices, striking a balance between
achievability and performance|Zhang et al.|(2024). At the same time, in this structure, deeper layers
exhibit stronger expressibilityRagone et al. (2024); [Fontana et al.| (2024), and as a result, the BP
emerges regardless of the form of the measurement operator or the initial state. The quest for an
effective solution to mitigate BP and enhance the versatility of addressing linear combinations in the
context of a hardware-efficient ansatz continues to be a forefront challenge in the training of VQAs.

The Gaussian Mixture Model (GMM) Reynolds| (2015) is a probability distribution model com-
posed of multiple Gaussian distributions. Each Gaussian distribution, referred to as a component,
contributes to the overall mixture distribution. Every component is characterized by its own mean,
variance, and weight. This versatile model finds widespread applications in statistics and machine
learning [Rasmussen| (1999); Xuan et al.| (2001)); Zong et al.| (2018), particularly in tasks such as
clustering | Yang et al.| (2012)); Manduchi et al.| (2021), density estimation |Glodek et al.| (2013)), and
generative modeling|(GM et al.[(2020). GMM excels at fitting complex data distributions and, owing
to its flexibility and expressive power, is frequently employed for modeling diverse categories of
data.

In the training of VQAs, the parameter update expression for the cost function f(6) based on
gradient optimization methods is f(Or11) = f(0r) — a||Vef(01)||3 + o(a), where 0511 =
Or — aVef(0y), a is the learning rate. Therefore, typically ||V f(6)]|3 is used to determine
whether the cost function f(0) = Tr[OV (8)p;,V (8)] can be updated. Here, O is an observable,
V() is a parameterized quantum circuit, and p;,, is the input quantum state. In this paper, we em-
ploy GMM for parameter initialization in VQAS to address the barren plateau problem. Considering
arbitrary observables O which can be a single term or a linear combination of terms, by designing
specific GMM initialization methods based on O, we rigorously prove the following conclusions:
(1) When the observable O consists of a single term, the lower bound of ||V f(8)|3 is independent
of the number of quantum bits NV and increases with the circuit length; (2) When O is a linear com-
bination of many terms, the lower bound of ||V f(8)||3 increases compared to the single-term case
and not decrease; (3) When O consists of non-negative terms, by adjusting GMM, we may achieve a
larger lower bound. Therefore, the barren plateau problem does not occur in these scenario, and the
model can undergo effective training. This is significant for reducing the cost and saving quantum
resources during model training. Additionally, numerical experiments show excellent performance
for both local and global cost functions using our method.

2 NOTATIONS AND FRAMEWORK

The probability density function of the GMM can be expressed as a weighted sum of individual com-
ponents. Assuming there are K components, for a given one-dimensional variable z, the GMM’s
probability density function can be represented as:
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K
p(z) =Y i N(|wi,of) Q)
=1

where K is the number of Gaussian components, 7; is the weight of the ith component, satisfying
Zfil 7; = 1, N'(z|u;, 0?) is the probability density function of the ith Gaussian component, with
mean y; and variance 2. Here are a few rules. Let Gy be an arbitrary distribution, and if the random
variable 6 follows any distribution, it can be expressed as § ~ Gy. Furthermore, Ql(az) denotes
the Gaussian distribution NV'(0, 02). Ga(0?) denotes the first GMM we used, where it’s probability
density function is p(z) = AN (2| — %, 02) + 1N (2| %, 0?). Similarly, G3(o?) is the second GMM,

where it’s probability density function is p(z) = *N (z| — 7, 02) + TN (2|7, 0?) + 3N ([0, 02).
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Figure 1: The fundamental framework of the variational quantum circuit, comprising L blocks. Each
block begins with the introduction of entanglement through C'Z; gates, followed by the application
of R, and R, gates on each qubit. Where C'Z; represents any number of CZ gates acting on any
two qubits.

In this paper, we employ the ansatz illustrated in Fig[T[ which is a typical hardware-efficient
ansatz. It involves IN qubits and L blocks. Its objective is to minimize the cost function
f(8) = Tr[OV(0)p;,,V'(8)] by optimizing the parameters 6 within the circuit. In this paper,
we assume that p;,, is a pure state. In most cases, pi, = |0)(0| and |0) = |0)®". For an arbitrary
observable O = 01 ®02®...Qon, where o; € {I,X,Y, Z}. We define I's := {n|o,, # I,n € [N]},
representing the set of qubits where the observable acts nontrivially, and there are S elements in this

set[Wang et al.| (2023)); [Zhang et al| (2022a)).

For the sake of convenience, let’s introduce some notations that will be used in the following the-
orem. When there are two observables O; = 0} @ 0} @ ... ® oy and O; = 0] ® 0} ® ... @ ok,
for all m € [N], the Pauli matrices at the m-th position are denoted by o, and o/, . We provide the
following definitions:

Si = [{mloh, = of, = Zom [N} (2)
§iy i= |{mloh, = o}, # I,m € [N} ©
Sits = |{mloj, = 1.0}, = Zllo}, = Z.0}, = I.m € [N]}|. @

We will now delve into the relationship between observables and inactive parameters. Let’s assume
the observable O is a global observable, i.e., O = 01 ® 02 ®...®on, where Vk € {1,2,.... N}, o €
{X,Y,Z}. Let the density matrix of the final quantum state be pay,, and the quantum state just
before the final R, rotation gate in the last block be por_q1. We find that f(8) = Tr[Opqer] =
Tr[O(Ry(021,1) © Ry(021,2) ® ... @ Ry (021 n)) par—1 (R} (02,1) @ R (021 2) © ... @ R} (021, 3))])-
Then, when o;, = Y, we notice that Y0y, 1, Ry(egL’k)YRL(HQL’k) =Y. Obviously, in this case,
021, 1 is independent of the cost function f (@), making it an "inactive parameter.” When the observ-
able O =Y ®Y ® ... ® Y, as shown in Fig. |Z|, all parameters in the last layer of 12, gates are
inactive parameters.
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Figure 2: When a term in the observable is Y, the parameters in the last block’s R, (6) in the
ansatz do not contribute to the training. Moreover, when the entire observable consists of Y, the ¢
parameters in the IR, gates of the last block have no impact on the cost function.

Table 1: On the i-th qubit, the parameters in R,,(¢) and R (#) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable. When o; corresponds to Z, there are
two possible choices for the parameters in R, and R,,.

The Pauli matrix of o; | Init method of R, (6) Init method of R, (6)
X Ga(0?) Gi(0?)
Y Yo Go(0)
Z G1(0?)/G3(0?) G1(0?)/G3(0?)
I Yo 9o

3 MAIN RESULTS

We begin by considering the case where the observable consists of only one term, which can be
either global or local. Previous research has indicated that avoiding the barren plateau problem for
global observables is challenging [Sharma et al.| (2022); Liu et al.| (2022); (Cerezo et al.| (2021Db).
Nevertheless, regardless of the specifics, we will rigorously prove that it does not encounter the
barren plateau problem when we adopt the GMM as the parameter initialization strategy. The ansatz
that we consider is shown in Fig. [T} Here, parameters in different blocks will be initialized using
distinct methods, and the initialization approach is determined based on the observable O. For
convenience, as illustrated in Table m we adopt a tabular format to describe the distribution of the
parameter 0 in the final block. Now, let’s formulate our first theorem.

Theorem 1 Consider a VQAs problem defined above, assuming that the parameters 0 in the last
block defined in Table and the parameters 0 of the remaining blocks obey the distribution Gy (0?),
where 0> = 71=. ThenVq € {1,..2L},n € {1,...N}, we have

]gaoq,nf(e) =0 5
E|Vef@)3 >+ - L ©)
0 0 2=4 8L

where Vg f(0) denotes the gradient of function f(0) about 6.

The main idea is outlined here, with the detailed proof provided in Appendix [A2]. First, for dif-
ferent type of parameter distribution, by the relationship among observable, rotation matrix, and CZ
operation, we introduce some technical results in Appendix[A.I] Then We expand the quantum state
pout by the PQCs layer by layer. From the last block, we can prove Eq. (3) based on the lemma
in the Appendix Furthermore, it is easy to see that IE |[Vof(0)||5 determines the update of



Under review as a conference paper at ICLR 2025

the cost function f(8) = Tr[OV (0)p;,V1(0)]. And E||Vef(0)|]3 can be expanded into a sum of
0

terms composed of Tr? [O;po], with coefficients determined by the powers of o = E cos?d
0~G1(0?)
and 3= E sin®6. Among these terms, we find that the observable O; composing with only
0~G1(02)

I or Z that has the largest coefficient. In this case Tr? [Oipo] = 1, the lower bound of the gradient
norm is then determined by the lower bound of these coefficients, which results in the derivation of
Eq. (6) and completes the proof.

The above theorem indicates that, employing our initialization method, the issue of barren plateaus
can be consistently avoided, regardless of whether the cost function is global or local. From Eq. (6),
itis evident that our norm has a constant lower bound of ¢ L. This is in stark contrast to the exponential
lower bound O ( I~ ) found in previous works for global cost functions |Zhang et al.| (2022a)); Wang
et al.| (2023)). The utilization of GMM significantly improves this lower bound. Additionally, we
observe that for certain specific observables, not all parameters @ in the circuit impact the final value
of the cost function f(0). We refer to those @ parameters that do not affect the cost function as
“inactive parameters”, while the others are named”active parameters”.

We will now delve into the relationship between observables and inactive parameters. Let’s assume
the observable O is a global observable, i.e., O = 01 ® 02 ®...Q oy, where Vk € {1,2,..., N}, 0 €
{X,Y,Z}. Let the density matrix of the final quantum state be poy, and the quantum state just
before the final R,, rotation gate in the last block be por_q1. We find that f(0) = Tr[Opqer] =
Tir[O(Ry (021,1) @ Ry (021,2) © ... @ Ry (B21, N)) p2r.—1 (R} (021,1) @ R (621, 2) @ ... @ R (621, v))])-
Then, when o;, = Y, we notice that Y0y, 1, Ry(Qgka)YRL (02r.x) = Y. Obviously, in this case,
021, 1 is independent of the cost function f (@), making it an "inactive parameter.” When the observ-

able O =Y ®Y ® ... ®Y, as shown in Fig. [2] all parameters in the last layer of R, gates are
inactive parameters.

Using a similar approach, we can also demonstrate that when the cost function is global, for all
active parameters 0, ,,, Vardy, , f(0) > 57 L - This provides an additional perspective on how our
method enables escape from the barren plateau.

In Ref. [Zhang et al.| (20224)), it considered that the observable O contains only a single term. In
Ref. [Wang et al.| (2023), the observable O is extended to a sum of multiple terms, with the cross
terms in the gradient norm calculation being non-negative. However, if the coefficients of the terms
composing O are negative, these cross terms can become non-positive, complicating the escape from
barren plateaus. For example, when O = 01 + O, Vq e{1,2,. 2L},n € {1,2,..., N}, we have

0£(0) 0f1(8) , 0f2(8) 0£1(8) 9f2(0) 0£1(8) 0£2(6)
(32" = 312+ 2] = g4 + g 0]+ 25 (502559 e

f1(8) = Tr(O1V (0)pin VT (0 )) and fo(0) = Tr(O2V (6 )pmVT(G)). Ref. [Wang et al.| (2023) proves
2
that £ {8“9)} +E {8]02(9)} >0(#), E {%];1(9) %%(9)} > 0. However, when O = O —Os,
n Og,n o an 00g.n
the coefﬁment 1n front of the cross term is negative. Therefore, in this case, it cannot be guaranteed

that | (af (9)) > O (4s). But in Theorem [2| we demonstrate that even when O is a linear
comblnatlon of arbitrary terms, the model remains trainable.

Now let’s assume O = 3, 0; — >, Oj;, where O; and O; can be either global or local. Also,
V0;,0;,0; # O;. This is the most general form of an observable. Here we randomly select one
term from the observable to construct the initialization method. The construction of the last block is
detailed in Table[2] Suppose there are S nontrivial Pauli matrices in the selected Oy. Additionally,
there are M terms that differ from Oy, only by replacing Pauli Z with the identity matrix [ or vice
versa among O; and Oj; at corresponding positions (including the original Oy, itself). This setup
is because learning a generic Pauli string is challenging, while learning certain subclasses of these
strings is easier|[Nietner| (2023)). So, if O consists of a single term, then M/ = 1. When O is composed
of multiple terms, for example, O = 01+ 02—03 = XQY RZRI+YRY RZR/[-XRQRY QIR Z,
if we choose the first term o7 for initializing € according to Table|l| considering that the third term
o3 differs from the first term oy only in the third and fourth Pauli matrices, changing Z to [ or I
to Z, then we have M = 2. However, if we choose the second term o0 to initialize 6 according to
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Table[I] since the first Pauli matrix of 01 and o3 is X while the first Pauli matrix of o is Y, neither
01 nor o3 satisfies the condition. Thus M = 1 at this time.

As before, the PQC is illustrated in Fig. [I] Now we present our Theorem 2]

Table 2: On the i-th qubit, the parameters in R,, () and R (9) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of o; | Init method of R, (6) Init method of R, (6)
X G (02) g1 (02)
Y Gi(0?) Ga(0)
z Gi(0?) G1(0?)
I Gi(co?) Gi(c?)

Theorem 2 Considering the loss function f(0) = Tr KZZ 0; -3, Oj) U(G)pOU(B)T}, where

O; and Oj are arbitrary tensor product forms of Pauli matrices. The parameters in the first L — 1

blocks all follow a Gaussian distribution 91(02), where 0% = ﬁ Then we randomly select one
Oy, from either O; or Oj. The parameters in the last block are initialized according to the Pauli
matrices in Oy, as shown in Table |2| With these considerations, we obtain a lower bound on its

squared norm of the gradient:

) 11
AOIESICES ™

The full proof are in Appendix Since the parameter distributions for Z and I are the same
here, for Oy, itself or by just changing Z to I or I to Z in Oy, it can undergo a similar proof using
Theorem |1} As for other quadratic terms, they are evidently greater than or equal to 0. For any
cross terms, when expanded into a series of summations, it becomes apparent that each term is 0.
Therefore, all cross terms are equal to 0. Thus, we obtain Eq. (7)) and complete the proof.

From Theorem [2} it can be observed that as the number of terms increases, even if there are some
terms with negative coefficients, the lower bound on its norm might become larger. This enables
us to update the parameters more effectively. However, when we face a situation where the co-
efficients in its loss are all non-negative, we propose a new initialization method that can pro-
vide a larger lower bound in certain specific cases. Assuming our cost function at this stage is
f(8) =Tr [, O;U(8)pinU(6)]. Once again, we randomly select a term Oy, and following the
previous notation, let S denote the number of non-identity matrices in Oy/. We determine the distri-
bution of # in the final layer based on the Pauli matrices in Oy, as shown in Table|3| As before, we
assume that among the remaining terms, there are M terms that differ from Oy only by replacing
Pauli Z with the identity matrix [ or vice versa at corresponding positions(including the original
Oy itself). We denote the set of indices satisfying these conditions, along with £/, as . Next, we
present our Theorem 3]

Theorem 3 In accordance with the aforementioned definition of the cost function, the parameters of
the L-th block in the ansatz are defined as presented in Table[3| The parameters in the preceding L —
1 blocks all adhere to a Gaussian distribution Gy (o), where o = ﬁ With these considerations,

we derive a lower bound on its norm:

11
0)|3>M(-——
E[Vef(O)llz = M(3 — g7)+
2L —1)SY 1 i _Soa
2 : 2LS) S ) e = ®
1,jERX
i

The proof of this theorem is similar to that of Theorem [2] but there will be differences in the cross
terms. The details can be found in Appendix Theorem [3| informs us that when the objective
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Table 3: On the i-th qubit, the parameters in R, () and R (#) are intricately designed, dynamically
adjusted based on the distinct Pauli matrices of the observable.

The Pauli matrix of o; | Init method of R, (6) Init method of R, (0)
X Ga(0?) G1(0?)
Y G1(0?) Ga(0?)
z Gi(o?) G1(0?)
1 Gi (02) G1 (‘72)

function does not contain negative terms, compared to Theorem 2] we can achieve initialization for
all parameters using only the distributions G; (c2) and G»(c?), no need for G3(o?). Moreover, in
specific cases, the lower bound on its norm is large or equal to the bound proposed in Theorem [2]

4 EXPERIMENTS

VQAs play a crucial role in various domains, including the modeling of quantum spins [Bharti &
Haug|(2021), quantum machine learning Romero et al.|(2017); Biamonte et al.|(2017)); Maria Schuld;
& Petruccione| (2015), and quantum chemistry |Arute et al.| (2020); [Levine et al.| (2009); |Cao et al.
(2019). In this section, we embark on a comprehensive exploration of our proposed method, draw-
ing comparisons with existing approaches across the spectrum of local and global cost functions.
This comparative analysis aims to illuminate the efficacy and adaptability of our strategy in diverse

scenarios, shedding light on its potential to enhance quantum computational tasks in both theoretical
modeling and practical applications.
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Figure 3: In the training process of the 1D Transverse Field Ising Model, the cost function and

gradient norm undergo transformations. Since it is a local cost function, the majority of initialization
methods converge to its minimum value.

First, we initially focus on a local observable in the 1D transverse field Ising model (TFIM) [Stinch-
combel(1973); Heyl et al.|(2013)), described by the Hamiltonian Hrgpy = Ei,iﬂ ZiZig1— >, Xi.
Setting the initial state p;, = |0)(0|, with N = 15, and L = 15, we aim to compute the ground
state of the system. We choose the observable X; ® Is ® ... ® Iy to initialize the circuit parame-
ters. In addition, we compare our proposed method with existing initialization strategies, such as the
uniform distribution & [—, 7], Gaussian distribution N (0, m), and the reduced-domain dis-

tribution U [—a, ar], where a is set to 0.07. The experimental results are illustrated in Fig. [3| where
(a) depicts the variation of the cost function during the training process, and (b) shows the {5 norm
of corresponding gradients throughout the optimization. Considering that choosing the observable
Z1®Z2®...Q Iy for initialization could also involve initializing all parameters with a Gaussian dis-
tribution, our proposed method offers a broader range of distribution choices. The reduced-domain
distribution, similar to the Gaussian distribution, concentrates data around zero. Consequently, our
method, along with Gaussian distribution and reduced-domain distribution, proves effective in find-
ing the ground state, significantly outperforming the uniform distribution A [—, 7].
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Figure 4: In the training process, when the observable is entirely composed of X, the cost function
and gradient norm undergo transformations. The gradients for Gaussian, uniform, and reduced-
domain distributions remain near zero, resulting in almost non-decreasing cost functions for these
distributions. In contrast, our method maintains relatively large gradients throughout the training
process and is able to descend to the final results.

Table 4: Comparison of initial gradients norm E || Vg f(6)||3 for different methods at various num-
0

bers of qubits.

Number of qubits N | GMM Gaussian Uniform Reduced-domain
5 1.26 0.99 2.02 1.21
10 0.75  2.86x 1072 0.41 6.22 x 102
15 0.73 1.92x 1077  6.65 x 1072 8.56 x 10~
20 0.74 3.47x107% 878 x 1073 4.61 x 106
25 074 255 x1072% 1.37x1073 6.87 x 1078

However, Gaussian and reduced-domain distributions do not always perform well. For instance,
on global cost functions, they can only provide exponential lower bounds, which can not avoid the
barren plateau problem in general. Now, we consider the cost function f(8) = Tr[OU (0)p;,, UT(8)],
where O = X1 ® Xo ® ... ® X, pin = |0)(0]. We set N = 20 and L = 8, the results are depicted
in Fig. @] Clearly, in this scenario, neither the Gaussian distribution nor the uniform distribution
can induce parameter updates, as their gradient norms tend towards zero. In contrast, our method’s
gradient norm starts with an initial value greater than i — i ~ 0.23, significantly surpassing
others. Moreover, the gradient norm remains within a relatively large range throughout the entire
training process. This enables our approach to escape what is commonly referred to as the vanishing
gradient problem on plateaus. These observations are entirely consistent with the conclusions drawn

in Theorem 11

Finally, we randomly generate some global observables to calculate their initial gradients. In this
case, the cost function is given by f(6) = Tr[(zggl O, — 2;0:1 0,)U(0)p;nUT(0)], where the
Pauli matrices in O; and O, are randomly selected from {X,Y, Z}. We set L to be 2 and computed
Ig [|[Vof(0)]]3 for different numbers of qubits V. The results are presented in Table 4 Given that

each term is global and excludes Pauli I, in this case, M = 1. Consequently, according to Theorem
our lower bound on E ||V f(8)]|3 is 0.25. From the results, it is evident that with an increase in
7

the number of qubits, the ||V f(0)||3 for Gaussian, uniform, and reduced-domain distributions
]
undergoes a sharp reduction. While our method also exhibits a decreasing trend in E ||V f(6)][3, it
6

aligns closely with the outcome predicted by Theorem [2] and significantly surpasses other methods
by several orders of magnitude.

Additionally, we conducted simulation experiments in quantum chemistry to validate the effective-
ness of this initialization method. We compared the changes in the loss function as the number of
layers L increased, both under noisy and noise-free conditions, as well as the impact of different
variances o2 in the GMM on the results. Specific details can be found in the Appendix
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Table 5: For the R, — R, gate structure, we initialize the parameters 6 in both R, (¢) and R, (6)
gates using a Gaussian distribution G; (02).

The Pauli matrix of o; | Init method of R, (#) Init method of R, (6)
X Ga(0?) Gi(o?)
Y Gi1(0?) Ga(0?)
z Gs(0?) G3(0?)
I Gs(a?) Gs(c?)

Table 6: For the R, — R, gate structure, we initialize the parameters 6 in both R, (¢) and R, (6)
gates using a Gaussian distribution G; (02).

The Pauli matrix of o; | Init method of R, (#) Init method of R, (6)
X Ga (02) g1 (‘72)
Y G1(0?) Ga(0?)
z Gs(0?) Gs(0?)
I Gs(0?) Gs(0?)

5 DISCUSSION

We observe that when Pauli matrices are limited to I and Z, the CZ gate does not alter their forms.
In other words, CZT(0; ® 0;)CZ = 0; ® o; for all 0;,0; € {I,Z}. Therefore, CZ, can be any
combination of CZ gates, and it only changes the conditions for "flip,” which does not affect our
results. Also, although our method is specifically effective for the R, — R, gate structure, it can be
readily extended to other combinations of rotation gates. For instance, as shown in Theorem 2] if we
interchange the positions of I, and R, in the arrangement of rotation gates, i.e., the arrangement is
R,—R,, then we initialize the parameters of the last block according to Table[6] and the initialization
of parameters in other layers follows the distribution G; (02). Alternatively, when the rotation gates
consist of three R, — R, — R, gates, under the same conditions as in Theorem we initialize the
parameters of the last block as shown in Table[/] and the initialization of parameters in other layers
follows the distribution Ql(oz). In both cases, the results are consistent with those of Theorem
Certainly, our analysis method remains applicable when using CNOT to provide entanglement.

6 CONCLUSION

In this paper, we introduce GMM into the parameter initialization of PQCs to circumvent the notori-
ous barren plateau problem. Results indicate the universality of our approach, as it applies to various
cost functions, and we rigorously prove that its gradient norms is no less than %. We validate our
algorithm for diverse problems, which is crucial for VQAs as it enables the training of larger and
deeper quantum circuits, unlocking the potential of quantum computation.

While the theorems presented in our paper are tailored to the ansatz in Fig. [I] the applicability of
our theorems and proof techniques can extend to other ansatz structures. Furthermore, considering
the analogous BP issues in tensor network simulations [Liu et al.| (2022); (Garcia et al.| (2023), we
anticipate incorporating our method into the initialization of tensor networks in the future. However,
due to the sharp- P completeness of classical simulations in tensor networks, even without facing BP,
computing their derivatives remains challenging for large-scale problems. In contrast, VQAs can
efficiently obtain expected values through quantum devices, making them implementable. Certainly,
for effective training of VQAS, overcoming the barren plateau is just one step, as they still face
challenges such as local minima [Bittel & Kliesch| (2021); |Anschuetz & Kiani| (2022) that need to
consider.

We note that recent articles claim all BP-free ansatzes are classically simulable |Cerezo et al.|(2023)).
As stated in Ref. [Park et al.|(2024)), HEA can be interpreted as a many-body localized (MBL) system
Shtanko et al.|(2023)), and currently, no efficient classical algorithm can simulate MBL systems for
exponentially long times. Additionally, even when using tensor networks to simulate, the barren
plateau problem arises when dealing with global loss functionsLiu et al.[(2022). Although the work



Under review as a conference paper at ICLR 2025

Table 7: For the R, — R, — R, gate structure, we initialize the parameters 6 in both R, () and
R, (0) gates using a Gaussian distribution Gy (02).
o0; Init method of first R, (6) Init method of R, (f) Init method of second R, (6)

X Gs(o?) Gi(0?) Gi(0?)
Y  Gs(o?) Ga(0?) Ga(0?)
Z  Gs(o?) Gs(o?) Gs(a?)
I Gs(o?) Gs(0?) Gs(0?)

in Ref. |Cerezo et al.|(2023) has sparked new thoughts on VQAs, some of its statements require more
detailed proof and analysis in future work.
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A APPENDIX

A.1 TECHNICAL LEMMAS

For convenience, let’s introduce some notation that will be used in the subsequent proof. Consider
a special case where the Pauli matrices O; and O at all corresponding positions are either identical
or involve the Pauli Z and the identity matrix. Specifically, VI € [N], the single observables o and

0{ at their corresponding positions belong to the set { X, X; Y, Y Z, Z;1,Z; Z,I;1,1}. We define:

SY = [{mlo},, = o}, = X, m € [N]}| ©)
Py = {mlol, = I||o}, = I,m € [N]} (10)
Pl = {mlo}, = o}, # I,m € [N]} (1D

(12)

Also, the random variable 6 is distributed according to Gy, G1(02), G2(02), G3(0?), adhering to
the same definitions as presented in the main text. Assuming @ follows the distribution G; (02), we
define «, 3, and ~ as follows:

1 —202
a= E cos?0= ite ™ (13)
9~G1(02) 2
1— —202
B= E sin?0=-—_° (14)
0~G1(02) 2
0,2
y= E cosd=e T (15)
0~g1(02)
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By straightforward application of a Taylor expansion, it is evident that « > 1 — 02 and 8 > 0%(1 —
02). Next, we will now present the lemma.

. . .. . ;0
Lemma 1 Let p be an arbitrary linear operator, G be a Hermitian unitary and V = e~*2¢. Con-
sider an arbitrary Hamiltonian operator O that commutes with G. Moreover, let 8 be a random
variable following an arbitrary distribution, i.e., 0 ~ Gy. Then:

E Tr[OVpVT] = Tr[Op] (16)
0~Go
E Tr*[OVpVT] = Tr?[Op] (17)
0~Go
2Tr[ov Vil=0 (18)
05, 90 pYI=

where Tr*[-] = (Tr[])?

Proof. Consider that V' = e8¢ = I cos (g) —iG'sin (g), for any arbitrary operator O, we obtain:

THOV V] = Tr {O (I cos (§> ~iGsin (Z» g (ICOS (Z) G (Z)ﬂ

1 5 1 —cos il
_ ++059 Tr[Op] + %wTr[OGpG] - % (Tr[i0pG] — Tr[iOGp])  (19)

Given that G is unitary and [O, G] = 0, the above expression simplifies to:

Tr[OV pVT] = Tr[Op] (20)

Hence, Tr[OV pV 1] is independent of 6. Consequently, for any random variable 6, we establish that
, Eg Tr[OV pVT] = Tr[Op), , ]Eg Tr*[OV pVT] = Tr?[Op] and , Eg ZTOVpVi] = 0.
~Y0 ~Yo ~Y0

Lemma 2 Let p be an arbitrary linear operator, and let G be a Hermitian unitary and V = e~ 2 5C,

Consider arbltrary Hamiltonian operator O1, Os, Ol, and 02, where 01, Os anti-commute with G
and Oy, Oy commute with G, implying {O1,G} = 0, {02, G} = 0, [01,G] = 0, and [02, G] =0.
And 0 is a random variable following a Gaussian distribution N'(0,0?), i.e., § ~ G1(0?). Then:

E Tr[OVpVT] = Tr[0:p] @1

9~Ql(02)

d i .

E Tr[O1VpV'] = 4Tr[iGO4 p] (22)

9~G1(02) 00
E  Te[O,VpV [0,V V1] = yTr[O; p] Tr[O4 9] (23)

0~g1(a2)
o ) ) o 0~ T

E  —TOVpVI=Tr[0. VeV = E =Ti[O.VpVi|=Tr[0,VpVi =0 (24)

9~G1 (02) OO 00 9~G1(o2) OO 00
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E  Tr[O1VpVITH[OV pVT] = aTr[01 p]Tr[O2p] + BTL[iGO1 p] TH[iGO2p]  (25)
0~G1(c2)

E %Tr[OleVW%Tr[OQVpVT] = BTr[O1p]Tt[O2p] + aTr[iGO1p| Tr[iGO2p]  (26)
0~91 (0'2)

where 1 is the imaginary unit.

proof. According to Eq. (T9), it can be see that for any operator O, we have

1 + cos 6 1— cosf in 6
TrOV V1] = ﬁﬁ[op] + 20 mGOG +

(Tr[iGOp] — Tr[iOGp])  (27)

Considering the unitary of G and the conditions {O1, G} = 0, as indicated in Eq. , we can
deduce that

Tr[O,V pVT]| = cos OTr[O1 p] + sin Tr[iGO, p) (28)

Based on Eq. (28), we obtain that

0
%Tr[Ol VpVT] = —sin 0Tr[O1 p] + cos OTr[iGO p] (29)
Giventhat [E sinf = E sin26 = 0, and combining it with Eq. , Eq. and Eq.
0~G1(c2) 0~G1(c2)

(29) . Therefore, we can deduce Eq. (Z1)) to Eq. (26).

Lemma 3 Let p, G, V, Oy, Oy, 61 and 62 be defined in the same manner as presented in Lemma
Random variable 0 follows distribution Go(0?). Then

E  Tr[O.VpVi=0 (30)
GNgg (0’2)

o)
E —Tr[O.VpVi=0 31
LT 1[0V V'] (31

E  Tr[OVpViT[OVpVi| =0 (32)
GNQQ(UQ)
E  Tr[OVpVTr[05V pVT] = Tr[O1 p|Tr[O2p)] (33)
0~Ga(0?)
E ﬁTr[é 1% VT]QTr[O vovil= E 2Tr[6 1% VT]QTr[é Vovii=0 (34)
0~Ga(c2) OO LY Tog 2P  9nGa(0?) OO LrPY Tog 2vevil=

Tr[O1V pV T Tr[OoV pV 1] = BTt[01 p] Tr[O2p] + aTt[iGO1 p] Tr[iGO2p]  (35)
0~Ga(0?)

E %Tr[Oﬂ/pVT}%Tr[OQVpVT]zaTr[Olp]Tr[ng]+ BTr[iGO, p|Tr[iGO2p]  (36)
0~Ga(0?)
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proof. Since 0 ~ Ga(c?), we have

o=l [T L S e+ [ L S smar 1)
E cost) = — e 202 cos(x)dxr + = —Fe 202 cos(x)ax
0~Ga(0?) 2 J_oo V270 2 J_w V270
1 [t 1 22 1 [t 1 o2
= —— ———e 2.2 sin(x)dx + = e 202 sin(x)dx 38
2 J_o V270 (z) 2 J_o V270 (z) (38)
=0 (39
By following the similar calculations, we obtain ~E sin(20) = 0, E cos’() =
0~Qz(a2) 9’\/92(0'2)

B, E sin?(§) = a. Combining them with Eq. ll and Eq. 1i it is straightforward to
9Ng2(0'2)

have Eq. (30) to Eq. (36).

Lemma 4 The definitions of p, G, V, O1, Oa, 61 and 52 align with those outlined in Lemma
Random variable 0 follows distribution G3(02). Then

E TiO;VpVi]=0 (40)
0~Gs(0?)
9 T

E  2T(ovpevt =0 41)

6~Gs(o2) 0
E  Te[O,VpV T [OV VT =0 (42)

0~g3(02)

E  Tt[O:VpViTt[0:VpV1] = Tr[O1 p| Te[O2p) 43)

0~g3 (0'2)

o~ B o .~ o .~
i 19 emd i ) —
o g OOV o0V pVT] = B o0V V| o THOV VT =0 44)

E  Tr[O1VpVITt[OV pVT] = aTr[O1 p|Tr[O2p] + BTr[iGO1p|Te[iGO2p]  (45)
0~Q3(J2)

E %Tr[OleVW%Tr[OQVpVT] = BTr[O1p]Tt[O2p] + aTr[iGO1p| Tr[iGO2p]  (46)
0~93 (0'2)

proof. Since 0 ~ G3(c?), we have

1t 1 (@tm)? 1 [t 1 (=m)?
E cosh = e cos(x)dx + - e~ 202 cos(z)dx
0~Gs(0?) 4 J_ V27m0 4 ) 2no
1 [t 1 22
+ 3 5 e 202 cos(x)dx 47)
oo o
1 [t~ 1 22 1+t~ 1 22
=-1 5 e 202 cos(x)dx — 1 5 e 202 cos(x)dx
—00 e —00 xes
1 [t 1 22
+5 > e 202 cos(x)dx (48)
oo o
=0 (49)
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By following the similar calculations, we obtain IeEsz'n(%) =0, IeEcos?(G) = a, Igjsin2(6) = B.
Again using Eq. and Eq. (28), it is straightforward to have Eq. to Eq. (46).

When O; = O, and 61 = 52, we can derive the following corollary:

Corollary: Let p be an arbitrary linear operator, and let G be a Hermitian unitary and V = e=i5C,
Consider arbitrary quantum observables O, where O anti-commute with G.

If random variable 0 follows distribution 6 ~ Gy (o) or 0 ~ G3(a?) . Then

ETr?[OV pVT] = aTr?[0p] + BTr2[iGOp], (50)
0

2
%Q%nwvmﬂ>/ﬂFWM+aH%G@ﬁ (51)

If random variable 0 follows a Gaussian mixture model § ~ Go(a?). Then

Ie[ETr2 [OVpVT] = BTr?[Op] + aTr?[iGOp], (52)

2
%Q%npvmﬂ>:mﬂﬁwﬂ+ﬁﬂ%0@¢ (53)

For clarity, we employ graphical representations to illustrate the evolution of Pauli matrices. Con-
sider Eq. @3):

E  Tr[O\VpVITr[O,V pVT] = aTr[O1p|Tr[O2p] + BTr[iGO1 p|Te[iGO2p]  (54)
9~(j3 (0'2)

Suppose O = X,0, = Z,G = Y. Then, iGO; = Z and iGO, = —X. Therefore,
]E( . Te[ XV pVITe[ZV pVT| = aTr[X p|Tr[Zp] — BTr[Zp|Tr[X p]. The original operators Oy

9~Q5 g

and O are now split into two terms, X, Z and Z, X, with coefficients o and — /3 respectively. The

corresponding graphical representation, as depicted in Fig. [3] illustrates the evolution of Pauli matri-

ces after applying the gates, with arrows indicating the resulting Pauli matrices and lines representing

their parameters.

The following lemma pertains to the transformations of 2-qubit Pauli tensor products after the ap-
plication of a controlled-Z gate.

Lemma 5 Let CZ represent a controlled-Z gate, and 0; ® o; denote a 2-qubit Pauli tensor product,
where o; and o; are Pauli matrices. When oy ® oj: is equivalent to CZT(OZ' ® oj)CZ, we denote

this transformation as o; ® 0; — 0y ® oj. To encapsulate all specific transformations succinctly,
we present the following summary:

Xl XRZX0X oYY, XY & - YoX,YeloYeZ
YOZoYRLZIOI o ZLZoX sIoX,Z0Y o IeY,

720220210l I IeZ o107
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X, Z
X, Z

AN

Z, X

Figure 5: In the scenario where the density matrix p remains invariant, the Pauli matrix X Z under-
goes a transformation resulting in two components. One component corresponds to a.X Z, while the
other corresponds to —3Z X.

A.2 PROOF OF THEOREMI[I]

Here, we consider an observable with only one term, i.e. O = 01 ® 02 ® ... ® oy, Where 0; €
{I,X,Y, Z}. For subsequent calculations, we establish the following notations. We define Os.i1
to mean replacing all the Pauli matrices of X in O with Z, and Og.; means replacing all Pauli

matrices of X and Y in O with Z. The parameterized quantum circuit U(6) comprising L blocks
can be represented as

U(0) =Ur(62r,021,—1)Ur—1(020—2,021—3)...U1(02,61) (55)

For each block U(0;), where [ € {0, 1,...,2L}, it can be represented as

Ui(021,021-1) = Roi(021) Roy—1(021-1)CZ; (56)
where
R21(04) = e_igzé’1 Y e_i922l'2 Y. ® 6_10212“ Y (57)
_i92171,1 X _i92171,2X _7;92l71,NX
Roj—1(021-1) =€ ®e 2 ..®e 2 ) (58)

CZ; denotes that the circuit induces entanglement through the inclusion of multiple C'Z gates in the
[-th block.

Next, we consider the intermediate state. For any k& € {0,1,...,2L}, assuming that the quantum
state obtained after passing through the k-th block is py, we define

Rk(gk)pk_1Rk(0k)T for k =20 < 2L
Pr = { (59

R (04)CZ kg1 pr1 OZL iy Ri(0r)" fork =20+ 1<2L -1
2

Additionally, we define I := {m|o,, # I, m € [N]} to denote the set of qubits whose observables
act nontrivially. Next, we proceed to prove the content of Theorem [T}

From Theorem 1} we know that when there exists i € {1,2, ..., N} such that o; = I/Z, the param-
eters in the last block’s R,,(0) and R, () gates can follow either the G; (02) or G3(0?) distribution.
For simplicity, we assume the parameters follow the distribution G;(c?), the other case can be
proven similarly.
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We first consider the case where there is a Pauli matrix X or Y in O, i.e., there exists j such that
0; = X/Y. Then, the parameters 6 in the last block follow the distributions Gy (2) or Ga(0?).
According to Eq. and Eq. |i it is evident that for all ¢ and n, E 9y, ,, f(0) = 0.

o O0a.n

Furthermore, when all the Pauli matrices in O are either I or Z, we proceed as follows. Assume
04.n is in the last block, i.e., ¢ = 2L — 1 or ¢ = 2L. If the n-th Pauli matrix of O is o,, = I, then
according to Eq. l) and Eq. 1) it is easy to see that E 0y, f(0) =0.

When o,, = Z, using Eq. (21) and Eq. (22), the Pauli matrix inevitably transforms into X or Y.
Combining this with Eq. -| and Lemmal3] in the final Tr[O’p], the Pauli matrix at the n-th position
of O’ must be X or Y. Furthermore, due to (01X10) = 1|X|1> (01Y']0) = (1]Y|1) = 0, we have
Igaeq,nf(e) =0.

When g € {1, ...,2L — 2}, we have:

B0, f(6) = E . | 00, T{Opuy] o
=75 (EE-..BE 9, Tr[Op2r—1] D
— 253 EJE - E s, Tr[CZTOClezL 2] (62)
1 2L —2
=y E.. E 0Op,,Tt[Opar_s] ©3)
01 021 2
’Y(QL 1S g ]Eag . Tr[Opq] (64

6, 6,

According to Eq. (I6) and ZI), we can infer that when n € I, the expectation of 6,, yields -y, and
when n ¢ I, the expectatlon of 6,, results in a constant 1. Thus, we obtain Eq. . Sumlarly, we
can derive Eq. (62). Eq. (63) is derived from Lemma|[5] By repeating this process, we arrive at Eq.

We are currently directing our attention to the subscript n. If n ¢ Ig, then, based on Eq. (18), we
can obtain,

E..E 89q_nTr[Opq] =0 (65)
6, 6, U
which means
gE IE agqnf( ) =0. (66)
1

When n € Ig, according to Eq. (22)), we have

E... gﬂ agq,nTI'[Ong_g] = ’yS3 E.. E agquI'[O/pQL_Q] 67)

01 q 01 q—1

Among these, O’ entails transforming the Pauli Z matrix at the nth position of the Hamiltonian
O into Y or —X. Subsequently, Eq. (I6) and Eq. (ZI) elucidate that applying an expectation to
01,02, ..., 0,4 does not alter the form of the observable but merely augments certain coefficients from
the previous state. Additionally, considering that the observable at this juncture comprises only Y or
—X at the nth position, with the remaining positions being Z or I, Lemma[5]implies that we have

I .QIE o, Tr[Opar—2] = ¥°Tr[O" po] (68)
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Here, c is a constant greater than or equal to L and less than or equal to 2L. Considering that the
observable O involves the Pauli operators X or Y at position n, and (0|X|0) = 0, (0]Y'|0) = 0,
we obtain

E.. E (99qmyTr[Op2L_2] =0 (69)
61 O2r

Thus far, we have successfully demonstrated that its expectation is equal to 0. Thus we complete the
proof of Eq. (§).

Next, we will establish the lower bound of its gardient norm. That is we prove Eq. (6) in Theorem
[Il Note that

: ()2+ZZ <aeqn>2
£ 550

)2, it follows that

For each term within the first L — 1 blocks of E( gg(a)
6

q,n

afO)\° d ?
s ( 00y > =L\ gg,, TrlOP2] D
9 2
= éEi GIEL <80q7n Tr[ORQL(BQL)pQL1R£L(02L)}> (72)

>t E . R (

61 O2r_1

P 2
0, TT[OS:i;1p2L—1]) (73)

9 2
=5t E . E (aoTr[Oszi;1R2L1(92L1)CZLP2LQCZ£R;L(02L1)>
q,n

61 6O3r_

(74)
9 2
> o518 518 t5 g B ( Tr[ogziCZLP2L—2CZB> (75
61 O21_o 86117"
9 2
— @SS Si1tSs S g (Tr[03:iP2L—2]> 7o
01 92L—2 ae(]ﬂl
P 2
> agl+s3as(2L 1—q) E.. E ( Tl”[Og;ipq]) an
01 89%

In Eq. (73), the formulation arises from the utilization of Eq. (50) when n is in I,, and Eq. (52)
when n is in I,,, contributing a parameter « for each term. Conversely, when 7 is in either I, or
I,,, Eq. is employed without altering the preceding coefficients. Through analogous analysis,
Eq. is derived. Eq. is a consequence of the deductions stemming from Lemma 5. By
iterating through these steps, we arrive at Eq. (77).
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0

E( f(@ )) > S1+Ssa5(2L_1_q)aS_lﬁE... E (TI"[OB:iqul])2 (78)

] aoqn a-t
ZaS1+SjaS(2L 1-q) /S~ 16a5(q Dy2 [O3.:p0] (79)
> 2l5-1g (80)
> (1 - g2)?L5152(1 — 52 (81)
IR P R
o 2LS(1 2LS) .

1

> -
— 8LS o

In Eq. (78), the coefficient 3 is determined by taking the expectation with respect to ¢, ,, based on
Eq. ere, we retain the terms with the coefficient 3 instead of c. The remaining o ~! terms
remain consistent with Eq. (13_01) Eq. follows a process similar to Eq. (77)), obtained by taking
the expectation over the remammg 6. Considering Tr[Os3. ,po} =1,5+5<S anda <1, we
arrive at Eq. . Eq. is derived from a Taylor expansion. Taking into account h(z) = (1— %)x
being monotonically i 1ncreasmg when z > 2, Eq. (83) is thus proven.

Applying the identical methodology for analysis, we can similarly derive the same results for the
Rx rotation layer in the final block. Thus, we can conclude that

of(0
B(Vor(6)]” > (2O
0 — 6 004n
q=1 n€elg
20—
> Z > 75'
q=1 n€lg
1
=(2L—-1) x 8 x SIS
1 1
178 @)

A.3 PROOF OF THEOREM[2]

Before proving Theorem 2} let’s first consider a special case where both O; and O; are global. We
can provide the following lemma:

Lemma 6 Considering a quantum circuit U(0) with N qubits, initialized with py as a pure state,
and employing a hardware-efficient ansatz with L blocks, as depicted in Fig. [I] the cost function
is defined as f(0) = Tr[(3_;, 0; — >2; 0;)U(0)p, U(6)1], where observable O;,0; are global
observables, denoted as 0;,0; € {X, Y, Z}. Randomly choose either O; or Oj and initialize it in
accordance with the procedure outlined in Theorem[2] Consequently, we obtain.'

,_ 1 1
>
EIVas O3> 5~ 51 (85)

proof: Without loss of generality, let us opt to specify O; and initialize the parameters within U (9)
following the methodology expounded in Theorem |l Subsequently, we have
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2 of(6
gIvosor = X (2O (56)
2
016) < 01,(6)
_ZE( 89q . 200, (87)
q,n j
afz _ afz ) 8fj(0) af](e)
< ) 22 = Dby Wy +§]§ 0.,
(88)
afi( )) <5fi1(9) afi2(0)>
= E + E .
LLZM <89qn q,n;yézze DBqn 00q.n
ofi(0 af
2 e )
qv”ﬂv]
a.f] afjl (0) . af]z(e)
+q§ (aeqn> +qﬂ;¢jg]§< 7T ) 39

We expand the function f(8), resulting in Eq. (89). Here, fi(0) = Tr[O;U(0)poU(0)'] and
f;(8) = Tr[O,;U(0)poU(6)']. Moving forward, let’s consider the cross terms. Without loss of
generality, let’s examine each element in the third term. Let’s denote O; = 5172 L = 01,20 @
02420 @ ... ®ON 2L and Oj = 52j,2L = gl,j,2L ® 52’]'72[/ ®...Q0 5N,j,2L- Next, we focus on the
evolution of these Pauli matrices throughout the process, we have:

91,(0) 8f,(6) o 9
= Tr|o; 90
E < 00gn 00gn Ig 90y, 1[0 ,2LP2L]69% (G5 20 p2L] 90)
R Opar— . Opar—1 -4
= B Tel6 20 Rar(8) 2=t B L (0)]T(5) 51 Rar (0) 2= R (6)]
0 004 n 9041,
On
S OP2L -1\ ok Opar—1
=) o Tr[h 92
kzl IBE < [ g; ,2L—1 aeqm ] r[JJ,QL—l 89%71 ] ( )
= T ko Opar—2 + ko Opar—2
= hi, E| Tr[CZ7G 0isr 2CZ——— 50 ITx[CZ Uj,2L-2CZ 20 ]
ko 6 q,mn q,n
93)
&y, Opap—2,. ok,  Opar_2
= hyr T Tr[5:2 94
k./2 k5 IGE < I'[ 0; 2L—2 89q n ] I'[Uj,2L72 89%” ]) ( )
95)
= théLTr[o po]Tr[c 30 po] (96)
Among these, the coefficients hy,, hy,, hiy, - .-, R,y By, take the form +a91 592+93 where
91,92,93 € N. Uf%L,E%L,. ..,afu 1,0i2L, 0 fZOL, _’f%f, . ,5’;?71%_1,6']»7% are all in the form

of Pauli matrix tensor product. Furthermore, since O; and O; are both globally observable opera-
tors, and O; # Oy, there exists k € [N] such that the Pauli matrix on the k-th qubit of oy, ; 21, and
Ok, j2r is one of the cases {X,Y:;Y, X; X, Z;Z, X;Y,Z; Z,Y}. Next, we will prove that for all

these combinations, £ (%’;fi@ %%00)) = (0. Without loss of generality, let’s assume that there exists
o e 00g.n

k such that the k-th position of o, ; o1, is X and the k-th position of 7, ; o1, 18 Z.
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Next, let’s consider the changes in observables. According to Lemmal([T} 2] 3| and [4] after the last
block sk rotatlon gate, regardless of the distribution followed by # in R, (), based on Eq. . Eq.
35) and Eq , the value at position k becomes {X, Z} or {Z, X}, the coefficients for the other
terms are zero. However different distributions will result in varying coefficients in front of { X, Z}
or {Z,X}. {X,Z},{Z, X} remains {X, Z},{Z, X} or 0 after the R, rotation gate, according to
Eq. @3), Eq. (33) and Eq. (3). If it’s non-zero, according to Lemma [5 the C'Z operation can
transform the original X or Y into X or Y, without changing them into Z or /. Similarly, it cannot
transform Z and [ into X or Y. If, after the application of C'Z, the original Pauli matrix undergoes
a change, such as turning X into Y or Z into I, we refer to this process as a “flip.” Clearly, for
any observable C' = ¢; ® ¢2 ® ... ® ¢y, if it aims to achieve a "flip” operation at its k-th position,
it must satisfy the condition that the Pauli matrix at the (k — 1)-th position belongs to X, Y, the
Pauli matrix at the (k + 1)-th position belongs to I, Z, or the Pauli matrix at the (k — 1)-th position
belongs to I, Z, and the Pauli matrix at the (k + 1)-th position belongs to Z, I. Therefore, after the
CZ entanglement gate, its situation becomes one of {X, Z; Z, X;Y, Z; Z,Y; X, I, I, X; Y, I, 1,Y }.
Furthermore, taking partial derivatives with respect to any position 6, ,, only alters the coefficients in
front, and it does not lead to the appearance of the four possible combinations {I,I; Z, Z; 1, Z; Z, I}
for Pauli matrices.

This analysis applies to each block similarly. Consequently, it generates numerous terms,
but in each term, on the k-th qubit, all possible situations that eventually arise are

(X,2:2,X:Y,2;2,Y;: X, I;1,X;Y,I; 1,Y'}. This implies that in /3", "3/, there is at least one
term with X orY. Additionally, since (0]X|0) = (0|Y]0) = (1|X]|1) = (1]Y|1) = 0, it follows
that Tr[&' %Lpo]Tr[*] ZOLpo] = 0. Therefore, we conclude that when o, ; 21, = X and o jor = Z,
Eq. (©6) equals 0.

In an analogous manner, when the initial Pauli matrix 0f the k-th qubit is
{X,YV,Y,X,Y,Z,Z,X;Z, Y}, we can still obtain Tr[ﬂZ %Lpo]Tr[ﬁ]%LpO] = O Only when

the initial state is one of {X,X;Y,Y;Z, Z;Z,I;1,Z;1,1}, Tr[HZ%LpO]Tr[ 30 po] # 0. In

light of the fact that both O; and O are global observables, and O; # Qj, it follows that there
exists at least one position, such that the Pauli matrices at the k-th position of O; and Oj belong
to the set {X,Y;Y, XY, Z;Z, X;Z,Y}. Thus, for global observable operators O; and Oj,

afi(0) 0fi(8)\ _
IGE ( 0q.n aojq," ) = 0.

Following a similar analysis, we obtain | (af” () M) =E (6fj1 ©) 8fj2(0)> = 0. Thus, Eq.
7

0q.n  00g.n 5\ 00,0 00,
(89) can be simplified to:

) afi( 5fj(9)>2
£[[Vof(6)] ;E(aeqn> +(§J%<89q’" (97)
0£1(6)\
2 qi;%( 90, ) ~
11
“ 17 5L .

Thus, we have completed the proof of the lemma.

Next, let’s proceed with the proof of Theorem [2] Without loss of generality, we select O; and
initialize the parameters of the quantum circuit according to it. Next, we will expand f(6) to obtain
its expression:
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B 2f(0)\?
IGEHVOJC(G)F_;IGE(ann) (100)

2
z%( 01,(6) ~01;,(0) | ~071(0) _ %(e)) on

004.n . 004.n — 90gn . 004 n

2

B 0f;,(0) a1}, (0)
= qzn}g J

i1

Wy 4= 0y

i1

af’ (6 ) 9f5,(0) afi,(0) af7,(0)
HZE g 004.n — 0y = Wy
2
9fi,(0) 0f5,(0)
! ;IGE ( 2 aeq’n B J2 89(1’” o
where f,,(0) = TOLU@nUE)], f,0) = THOLUOpUO)], fi0) =

Tr[OQ;U(G)pOU(Q) I, f1,(0) = Tr[O},U(0)poU(6)']. The notations O; and O suggest that,
in comparison to O1, they simply 1nv01ve replacing some Pauli matrices Z with I or vice versa. For
instance, consider X @ Y @ Z® I and X ® Y ® I ® Z. On the other hand, O;’z , O;; represent other
observables.

Following similar analyses from Lemma[6] we determine that the second term in Eq. [I02]is equal
to 0. Now, let’s expand the remaining terms. Therefore:

ofi, (6 af;, (0 af(0 af! (8
BIVos @I =2 g | ( J0) 05O (5 O0) 5 2006,
q,n . q,n . q,m . q,n

i1 J1 2 J2

2
of;, (6) 0f;,(6)
= ;% 904, _; 90y.n (104)

i1

B af. (0)\* af;,(8) 0f,(0)
= ZE( 205 ) p> IE( 90, 00,

e q,n,if #iY
of.,(8) 91}, (6)
22 E( By b0 )
01,0\’ of, () af..(0)
1 1 ' : |
+(1§1 ( DBq.n ) +q,n§éj1'% 00q,n 904, (105)

It is easy to see that all the cross terms in this expression differ in the positions where I and Z
occur. Therefore, there exists a k such that the k-th position in f; (@) and f}, ( ) is either I, Z or
Z, 1. According to Eq. (42) and Eq. (#4), we know that the third term in Eq is equal to 0.
Slmllarly, we can analyze the other cross terms in Eq. (I03) and conclude that they are all equal to
0. Therefore, we have:

01;,(0) ) 01;,(8))
E[[Vef(O)I" = > ]g(aeqn) + > Ig(aeqn) (106)

q,n,%1 ’ q,m,J1
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Given that O], and O, differ only in certain terms that flip I to Z or Z to I, and during the initializa-
tion of quantum circuit parameters, the k-th position in Oy follows G3(o?) if itis I or Z. Therefore,

/ 2
for all 41, qu% (%féz(f)) are all equal. According to Eq. and Eq. (51), and employing a

similar analysis to Theorem|[I] we obtain:

of, (0N 1 1
1 > -
anlg( 04 ) ~4 8L (107)
Thus, we have:
E||Vef(0)|> > M oL (108)
0 =" \17 8L

A.4 PROOF OF THEOREM[3]

Without loss of generality, we select O; and initialize according to O;. Let O = ol ® 03 ®...®@01,.
We expand f () to obtain:

8f(9))2
Vo f(0)|? = 109
EIVo/(O)] (;Ig(aaw (109)
2
ofl(6) a1 (6)
= E L + (110)
;g (ZZ: 004.n - 004.n
2 2
_ a11(6) afie) of ) 01;'(6)
=2k <Z 90, > T2 B e | T 2
q,n [ q,m 1,7 q,n J
(111)
THON ofl(0) 0f,(8) ofi(8) 0f](8)
> 1 . 2 2 2 .
= ,%( 96,. ) F >, B 90, 00,n )" Z]E 00, 90,
q,n,i q,n,i1#i2 q,1,1,7
(112)

where f{(6) = Tr[OjU (0)poU (0)'] and [} (0) = Tr[O;U(0)poU (0)']. O implies that, compared
to O1, they might have operations that flip some I to Z or Z to I, while the rest of the Pauli matrices
are the same. O‘; represents observables that do not satisfy these conditions.

According to a similar analysis as in Lemma [6] we can see that the third term in Eq. is
equal to 0. In the context of the final block, where the positions of I and Z in O; follow Gaussian
distributions A (0, 0?), and considering that O/, compared to O1, only involves flipping Pauli I to
Pauli Z or Pauli Z to Pauli I, we can apply a similar analysis as in Theorem[T] As a result, in the first

L2
term of Eq. lb for each O/, we find that Zq,nlg (%];"7;?) > 1 — gz For the second term in

Eq. (112), when n € P, and ¢ € [2L — 2], note that:
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L (011(0)01.,(0)
o\ 00y, 004,
9 0
- o THO; 113
IGE (aeq n [ 7,1p2L] 89(1 n [ lszL]> ( )
0
=E...E ( Tr[OZ/-lR2L(02L)p2L_1R;L(02L)]Tr[ogzRzL(‘g?L)p?L_lR;L(HQL)])
61 6> \ 00y 99,
(114)
> aSi1i2+S§1i275é};2 . E 0 Tr[O por 1] 0 [O/_ . p2L-1] a1s)
B 0.1 011 89(1 n 3ti1sl agq n 3:ig;1
i1i2 Q119 117.2 8
> aS +5Sg "}/S ) e 0 E (ae Tr[0/3:i1;1R2L_1(02L—1)CZLPQL—QCZ}‘R£L_1(02L_1)]
1 2L—1 q,n

0
89TT[O§;¢2;1R2L1(92L1)CZLP2LQCZZR£L1(92L1)]> (116)
q,n
> Si1i2+si112 5«7172 25”!2 0 1 0 ’ +
> 51 7S P S50 gL Tt[0%.;, CZLpar—2C 2} | 5 —Tr(05,,,CZLpar—2CZ)
0, 021, 2 89(1 n 89(1 n
117)
. aSz1L2+Sz1t2 Sil§272s7172 ]E ]E 8 TI'[O p2L 2} 3 [0, ] p2L 2] (118)
6, o 01,2 aaq n dn 80% s -
i1ig i1ig i1ig i1t 0 0
> o512 +S, (2L—q-1)81}% . CL=0)S!s* TrlO . 2 TYO..
=z o « ’7 éEl E ao(bn r[ 3‘11pq] aeq’n r[ S‘ngq}

(119)

Similar to Eq. (TT3) is derived from Eq. (I7), (23), (50) and (52). Similarly, we obtain Eq.
% is snnphﬁed through Lemma 5. Continuing this analysis up to layer ¢, we arrive at

0fi,(0) 0f;,(0)
g 00

5

5 ( )

)
90,

0 /
[Ozlp2L] 80,17 [Oi2 PzL])

(120)

> oSit 2 S a(2L*q71)5{3§27(2L—Q+1)53?§2 aSi};zflﬁ E... E (Tr[O3,;, pg—1]Tr[O5.4, pg—1])
9q_1

(121)
> oS 124852 (2L-1)S)! 272LSO sngr[os ., o] Tr[O... po] (122)
> ast;k;? 1 2L551;25 (123)
> (1 - 0?)2S" 1 LS 2 (1 62) (124)
_ Lot O s (125)
T 2LS 9LS c ’

Eq. li to Eq. 1} follow a similar analysis to Eq. and Eq. . When n € P1”3, a similar

analysis reveals that when ¢ = 2L — 1,

of(0) 5 1 1 opgiie _5os’
(aeqn) Zorsmag) e (126)

and when ¢ = 2L, I[«](%(m)2 > 0. Fig.
6 %%an

in Eq. [T12]for different configurations of Pauli matrices at each position. According to Lemma 5,

and [7| illustrate the evolution of the first cross-terms
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Figure 6: At each position, depending on the different initial Pauli matrices, various terms
are generated. This indicates that when the initial Pauli matrix at any position belongs to
{XX,YY,ZZ,11,1Z, Z1}, it shows the transformation of the Pauli matrix and the correspond-
ing coefficients. When the Pauli matrix undergoes a CZ gate, according to Lemma 5, it may involve
flipping operations. Here, it illustrates the scenario when no flips exist, showcasing the changes in
the Pauli matrix. Here, the dashed line to the left of C'Z}, represents the change in different Pauli
matrices as they pass through the two rotation gates in the L-th block. The transition from C'Zy, to
CZy,—1 indicates the transformation of the Pauli matrices as they pass through the (L — 1)-th block.

C'Z may execute a flip operation. Therefore, we discuss two scenarios: one where no flip occurs,
as shown in Fig. [6l and another where C'Z causes a flip of Pauli matrices, as depicted in Fig
As mentioned earlier, we find that if the k-th Pauli matrix is to undergo a flip operation, we require
the (k-1)-th position to have a Pauli matrix of X or Y, and the (k+1)-th position to have a Pauli
matrix of Z or I, or vice versa. Taking into account that some terms in the evolution of :GOp may
yield coefficients with negative signs, our specific setup ensures that when the coefficient for the
preceding Pauli matrix becomes negative, the succeeding Pauli matrix will also inevitably have a
negative coefficient. Consequently, the final coefficients are positive. When n ¢ P’ ie.,n € Py,

we can easily deduce that E( o (9)) > 0. In conclusion, we can draw the following conclusions:
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Figure 7: As before, it illustrates changes in the Pauli matrix. However, in this case, we assume that
the CZ gate introduces flip operations.

M G ij 1" 2
11 (2L —1)S¥ 1 i Sils af7(6)
2 i1 3 (1 2184, = J
BIVar O > Mg - g+ 3 B o s S 4 3 p (TR0
i#j=1 a,n.j ’
(127)
11 M (2L - 1)S¥ 1 g St
> o — 1:3¢~ 25
= M7 -5 g;l ors (Tapg) e ™ (128)

B SIMULATED EXPERIMENTS IN QUANTUM CHEMISTRY

In the following, we explore the application of our initialization method to compute the ground-state
energy of the LiH molecule, a benchmark in quantum chemistry. Its loss function is global. For an
electronic system with NV electrons distributed over M spin molecular orbitals, the initial state is the
Hartree-Fock (HF) state:
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Figure 8: When L = 10, we examine the variation of the cost function and [ ||V f(6)]||*> under
]

noisy and noise-free conditions, using both uniform distribution (U[—m, 7]) and GMM-initialized
parameters. Where (a) and (b) represent the noise-free scenario, while (c) and (d) represent the case
with noise.
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Figure 9: When L = 20, (a) and (c) depict the loss function under noise-free and noisy conditions,

respectively, with a uniform distribution ([—7, 7]) and GMM-initialized parameters. On the other

hand, (b) and (d) illustrate the changes in E ||V f(6)||> under noise-free and noisy conditions,
0

respectively.

In the LiH molecule, with an electron count of N = 2 and M = 10 free spin orbitals, simu-
lating electronic structure problems on a quantum computer requires establishing a mapping that
transforms fermionic operators of electrons into Pauli operators. Common mappings include the
Jordan-Wigner (JW) transformation, Bravyi-Kitaev (BK) transformation, and Parity transformation.
Here, we adopt the JW mapping to compute its ground-state energy.
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Figure 10: When L = 30, (a) illustrates the variation of the loss under noise-free conditions; (b)
depicts E ||V f(0)||? under noise-free conditions; (c) shows the change in loss under noisy condi-
0

tions; and (d) displays E ||Vg f(6)||? under noisy conditions.
6
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We set the number of layers (L) to 10, 20, and 30, using a gradient descent optimizer with a learning
rate of 0.01. Additionally, we consider the impact of the noise on the barren plateau problem by
introducing a moderate amount of noise during training to simulate real-world quantum computer
operation. We compare the evolution of the cost function and Igj ||[Vof(0)|? during training when

initializing parameters using GMM and uniform distribution U[—, 7r]. The results are shown in
Fig. @ El, andlm In each figure, (a) and (b) represent the condition without noise, while (c) and
(d) represent the noisy condition. From the results, we observe that regardless of the value of L
or the presence of noise, initializing parameters using the GMM method consistently provides a
larger Ig||V9 f(8)|]* at the beginning of training and it consistently stays much higher than the

lower bound we have provided. This value remains relatively high before the convergence of the
cost function, therefore, the GMM initialization ensures a rapid convergence. On the other hand, the
uniform distribution &/[—m, 7] maintains a consistently lower level of gradient norm, resulting in a
significantly slower convergence process.

Next, let’s consider the impact of the parameter o2 in the GMM. In the main text, we set o2 to
be ﬁ We compare the training scenarios with different o2 values under noisy and noise-free

conditions when L = 10, 20, 30. Here, 02 is chosen as 0.1 X 315, 515, and 10 X 57=. The results

are shown in Fig. [T1] [12] and[T3] s

As before, (a) and (b) represent noise-free conditions, while (c) and (d) represent scenarios with
noise. The results in the figures indicate that when 02 = 10 x ﬁ, the convergence of the cost
function is significantly slower. On the other hand, when o2 = 0.1 x ﬁ, although the cost
function converges, its results are often inferior to the original case, especially in the presence of
noise. We believe that as o increases, the peaks of the probability density function in the GMM
become lower, and its distribution becomes closer to the uniform distribution, leading to a smaller
KL divergence between them. Conversely, when o2 decreases, the peaks of the GMM’s probability
density function become higher. Therefore, the data becomes more concentrated around the peaks,
making it less dispersed. This may be the reason why the convergence results are not as good as

1
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Figure 11: In the configuration with L = 10, the impact of different o on training under noisy and
noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and
(d) represent the noisy scenario.
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Figure 12: For a 20-layer configuration, the impact of different o on training under noisy and
noise-free conditions is depicted. Here, (a) and (b) represent the noise-free scenario, while (c) and
(d) represent the noisy situation.
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Figure 13: In the L = 30 configuration, (a) and (b) illustrate the impact of different o2 on training
under noise-free conditions, while (c) and (d) depict the influence of various ¢ under noisy condi-
tions.
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