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Abstract001

Conversational Recommender Systems (CRS)002
leverage interactive dialogues to deliver person-003
alized recommendations, with large language004
models (LLMs) enhancing their natural lan-005
guage understanding and response generation.006
However, LLMs struggle to utilize non-verbal007
user-item interactions from user behavior, as008
they primarily process textual information and009
lack explicit mechanisms to interpret these in-010
teractions. This gap is critical since such be-011
havioral data is essential for accurate recom-012
mendations. To bridge this gap, we propose a013
Latent Intent-enhanced Conversational Recom-014
mendation System with Large Language Mod-015
els (LATENTCRS) that integrates LLMs with016
recommendation models through latent user017
intents. Specifically, LATENTCRS employs018
a variational expectation-maximization frame-019
work: a recommendation model infers the in-020
tent distribution from collaborative data, which021
then guides the refinement of behavioral and022
textual information to generate recommenda-023
tions. Crucially, our approach avoids costly024
LLM fine-tuning, ensuring computational effi-025
ciency. Extensive experiments demonstrate that026
LATENTCRS consistently outperforms state-027
of-the-art baselines in both single-turn and028
multi-turn recommendation scenarios.029

1 Introduction030

Conversational recommender systems (CRS) en-031

gage users in dynamic, interactive dialogues to032

provide personalized recommendations (Sun and033

Zhang, 2018; Zhang et al., 2018), which enable034

users to actively express their interests through nat-035

ural language. Large language models (LLMs)036

have highlighted their remarkable capabilities in037

dialogue (Kojima et al., 2022; Team et al., 2024),038

presenting new opportunities for capturing users’039

evolving interests through conversation. By en-040

abling human-like interactions and improving nat-041

ural language understanding, LLMs significantly042

User Behavior Sequence

I would like to purchase 
some laptop accessories. 

Target Item

Natural Language Description

User Intent: shopping a laptop bag.

Figure 1: The User Intent from Behavior Sequence and
Natural Language Descriptions.

enhance the dialogue quality and contextual aware- 043

ness (Yang and Chen, 2024; Gao et al., 2023). 044

Unlike standard dialogue tasks, which depend 045

on natural language processing ability, CRS also 046

demand strong recommendation capabilities. How- 047

ever, LLMs have yet to reach comparable per- 048

formance with dedicated recommendation mod- 049

els (Liu et al., 2023; Zhang et al., 2024b; Kim 050

et al., 2024). A fundamental limitation is that accu- 051

rate recommendations depend significantly on col- 052

laborative information, namely the latent patterns 053

mined from interactions between users and items. 054

These patterns reveal behavioral correlations ex- 055

tending beyond purely semantic relationships. Due 056

to the inherent mismatch between natural language 057

modeling and user behavior modeling, LLMs strug- 058

gle to detect such collaborative information. For in- 059

stance, consumers who purchase diapers on Friday 060

often also buy beer (Padmanabhan and Tuzhilin, 061

1999). This behavior is effectively captured by 062

recommendation models but may confuse LLMs, 063

as these items lack semantic similarity. Given the 064

complementary strengths of LLMs and recommen- 065

dation models, this raises the question: How can 066

we effectively integrate LLMs with recommendation 067

models to leverage their respective advantages? 068

Existing approaches for integrating LLMs with 069

recommendation models often oversimplify user in- 070
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teractions, limiting their effectiveness. Prior work071

either reduces user dialogue to binary feedback sig-072

nals (likes/dislikes) to align the two models (Chris-073

takopoulou et al., 2016, 2018; Hu et al., 2022) or074

employs LLMs as agents that mechanically trigger075

recommendation tools through binary decisions076

(Gao et al., 2023; Huang et al., 2023). While these077

methods bridge the gap between modalities, they078

discard rich contextual information from dialogues079

and weaken user engagement. More recent work080

projects collaborative signals into the LLM’s em-081

bedding space and fine-tunes fine-tuning LLMs on082

behavioral data (Yang et al., 2024; Yang and Chen,083

2024). While this narrows the gap, the fine-tuning084

stage is computationally expensive because of the085

large parameter count of LLMs.086

To overcome these limitations, we propose a087

new paradigm that unifies user behavior and natu-088

ral language through their shared latent intent. As089

shown in Figure 1, a user’s intent (needing a laptop090

bag) may manifest semantically ("I need laptop ac-091

cessories") and behaviorally (purchasing a laptop092

and accessories but no bag). This dual manifes-093

tation enables our model to capture complemen-094

tary signals from both natural language and user095

behavior. Crucially, because this intent space oper-096

ates independently of LLM, our approach achieves097

effective integration without costly LLM tuning,098

significantly reducing computational overhead.099

Specifically, we propose the Latent Intent-100

enhanced Conversational Recommendation Sys-101

tem with Large Language Models (LATENTCRS).102

Since user intent is inherently latent and unob-103

servable, we represent it as a learnable mixture104

of behavioral anchors derived from clustering user105

embeddings generated by a pretrained recommen-106

dation model. To connect the recommendation107

model with the LLM via this intent representation,108

we adopt a variational expectation–maximization109

framework composed of two modules: an inference110

module (IM) and a generative module (GM). The111

IM uses the pretrained recommendation model to112

infer a distribution over the intent space from user113

behavior data, capturing collaborative signals. The114

GM then merges this inferred distribution with the115

user behavior encodings by the recommendation116

model and the dialogue context encoding by the117

LLM to generate recommendations that combine118

both collaborative and conversational information.119

Experiments on single-turn and multi-turn scenar-120

ios show that LATENTCRS outperforms state-of-121

the-art baselines. Ablation studies verify the impor-122

tance of modeling user intent. And efficiency anal- 123

yses reveal LATENTCRS’s substantially reduced 124

computational overhead, which is a crucial advan- 125

tage for practical deployment. 126

2 Related Works 127

Conversational recommender systems (CRS) have 128

evolved from pipeline architectures that treat dia- 129

logue management and recommendation as sepa- 130

rate tasks to multi-turn settings using reinforcement 131

learning (Sun and Zhang, 2018; Bi et al., 2019; 132

Zhang et al., 2020; Lei et al., 2020; Li et al., 2018). 133

These early methods limited user feedback to sim- 134

ple signals, such as like or dislike, which reduced 135

the richness of the collected preferences. With the 136

rise of large language models (LLMs), new designs 137

have emerged. Some treat an LLM as an agent 138

and the recommendation engine as an external tool 139

(Gao et al., 2023; Huang et al., 2023), while others 140

use the ReAct framework to combine planning and 141

action within a single LLM-driven pipeline (Yao 142

et al., 2023; He et al., 2024). Although these inte- 143

grated approaches allow more flexible interaction, 144

they still ignore collaborative information from rec- 145

ommender systems. We address these limitations 146

by introducing a lightweight method that uses la- 147

tent user intent as a bridge between collaborative 148

signals and natural language. Another set of re- 149

lated works are intent modeling for recommenda- 150

tion. These methods usually extract latent interests 151

from user behavior (Li et al., 2019, 2021; Chen 152

et al., 2022; Sun et al., 2024). These approaches 153

excel at deriving intent from interaction data, but 154

they do not link user behavior with language ex- 155

pressions in conversation. In contrast, our work 156

uses user intent not only to summarize past actions 157

but also to guide natural language prompts, uni- 158

fying behavior-driven and language-driven signals 159

within a single framework. More details about the 160

related works are shown in Appendix A. 161

3 Problem Definition and Preliminaries 162

3.1 Task Formulation 163

A conversational recommender system (CRS) com- 164

prises two main components, user behavior mod- 165

eling and interactive conversation. The behavior 166

modeling component defines a set of users U and 167

items V , together with historical interaction data 168

D. To capture temporal changes in user intent, 169

we group D by user in chronological order. Each 170

user u ∈ U is associated with an interaction se- 171
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User Behavior Sequences

       Traditional Recommender Systems

K-means

…
Intent Vectors

User Behavior Sequences

       Traditional Recommender Systems

Intent Vectors

…

Inference Model

User Behavior Embedding Su

Estimated Intent Distribution 

Generative Model

Natural Language Description

      Large Language Model

Text Embedding xu

Predicted Intent Distribution
q(m ⋅ −u) p(m ⋅ −u, xu)

M

Predicted Item-Intent Probability

p(v ⋅ m, −u, xu)

Item Embedding
v

(a) (b)

Figure 2: Overall Structure of LATENTCRS: (a) Representation of Intent in Latent Space; (b) Structure of the
Inference and Generative Models.

quence Su = [su1 , s
u
2 , . . . , s

u
|Su|], where sut denotes172

the item interacted with at time step t, and |Su| is173

the length of this sequence. The interactive conver-174

sation component models the dialogue between the175

CRS and the user. For a user u, the conversation is176

denoted Cu = {(xuj , ruj )}Nj=1, where xuj is the user177

input at turn j expressing intent in natural language,178

and ruj is the system response. We define the ag-179

gregated intent descriptor xu by concatenating all180

user inputs xuj across the turns.181

CRS use both the interaction history and the con-182

versational context to refine item recommendations.183

We formulate this as a maximum likelihood estima-184

tion problem, which aim to learn model parameters185

θ that maximize the probability of observed inter-186

actions. Formally, it is represented as follows:187

max
θ

;
∏

(u,v)∈D

p
(
v | Su, xu; θ

)
(1)188

Here, θ denotes the parameters of the conversa-189

tional recommendation model. For simplicity, we190

omit θ in the subsequent formulas.191

3.2 Latent Intent Modeling in CRS192

As discussed in Section 1, we utilize user intent193

as a bridge to incorporate recommendation models194

with LLMs. We assume that the distribution of195

latent intent can be represented as the distribution196

on archor vector M = {mi}Ki=1, where K repre-197

sents the total number of anchor intent vector and198

mi represents the ith anchor intent. And the user199

intents are represented by both the natural language200

descriptions from the conversation and the collabo-201

rative information derived from the user behavior202

patterns. Incorporating the latent intent represen- 203

tation, the probability objectives of CRS can be 204

rewritten as follows: 205

p(v | Su, xu) =

E(M)

(
p(v | M,Su, xu)p(M | Su, xu)

) (2) 206

Here, Su denotes the sequence of items interacted 207

with by user u, while xu represents the natural 208

language description of the user’s intent. v refers 209

to an item from the set of all items V . 210

4 Method 211

The overall architecture of LATENTCRS is illus- 212

trated in Figure 2. We begin by introducing the 213

method for representing latent intent space by con- 214

structing anchor vectors. Next, we describe the 215

variational Expectation-Maximization (EM) frame- 216

work, including its components and interactively 217

training strategy. Finally, we introduce three vari- 218

ants of our framework to demonstrate its adaptabil- 219

ity under different LLM usage strategies. 220

4.1 Intent Representation 221

The foundation of LATENTCRS lies in effectively 222

representing user intent. Directly optimizing the 223

probability in Equation (2) is impractical because 224

user intent is unobserved, creating a circular depen- 225

dency: the model cannot be optimized without the 226

intent distribution M , while accurate estimation of 227

M itself depends on having a well-trained model. 228

To break this circular dependency, we adopt a two- 229

stage approach, as shown in Figure 2(a). First, 230

we leverage a pre-trained recommendation model 231
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and utilize its user embedding as the user behavior232

sequence embeddings Su, which encode both col-233

laborative filtering signals and historical interaction234

patterns. These embeddings serve as observable235

proxies for the underlying user intents. We de-236

note the embedding of variable x in bold as X and237

we adopt this type of notation throughout the fol-238

lowing sections. To transform these continuous239

embeddings into a discrete and processable intent240

space, we apply K-Means clustering:241

M = K-Means
(
{Su}u∈U

)
(3)242

The resulting cluster centroids M = {mi}Ki=1,243

where each vector mi ∈ Rdu serve as anchor vec-244

tors that define our latent intent space. The cluster245

centroids capture meaningful patterns and provide246

a computationally efficient discrete approximation247

of the continuous intent space. By establishing this248

anchor-based representation, we create a founda-249

tion for subsequent model optimization.250

4.2 Recommendation with Intent251

Based on the intent representation above, we op-252

timize the CRS objective in Equation (1) within a253

variational EM framework. Direct maximization254

of the log-likelihood requires summing over all255

latent intents, which is unavailable as there is no256

available data in the latent intents space. The EM257

algorithm addresses this by breaking the problem258

into two tractable steps. In the intent reference step259

(E-step), we get the input from a pre-trained recom-260

mendation model to estimate the posterior of each261

intent anchor. In the recommendation learning step262

(M-step), we get information from both the recom-263

mendation model and the LLM to maximize the264

expected log-likelihood under the estimated pos-265

terior. Here, we maximize the Evidence Lower266

Bound (ELBO) rather than the true log-likelihood.267

Formally, we define the ELBO as:268

ELBOuv =

K∑
j=1

q
(
mj | Su

)
(
log p

(
v | mj ,Su, xu

)
+ log p

(
mj | Su, xu

)
− log q

(
mj | Su

))
(4)269

Here, K is the number of intents. The ELBO270

is equal to the original log-likelihood log p
(
v |271

Su, xu
)

only when q(mj | Su) = p
(
mj |272

v,Su, xu
)
. Maximizing this bound yields stable273

parameter updates and preserves the convergence274

guarantees of the EM algorithm. The following 275

sections describe in detail the intent inference step, 276

the recommendation learning step, and our overall 277

optimization procedure. 278

4.2.1 Recommendation Learning Step 279

In the recommendation learning step (M-Step), we 280

optimize the ELBO with the estimated intent dis- 281

tribution from the intent learning step. From Equa- 282

tion (4), the recommendation learning step should 283

predict p(mj | Su, xu) and p(v | mj ,Su, xu)). 284

We first introduce how to get the collaborative in- 285

formation Su from recommendation models and 286

dialogue context information xu from LLM, then 287

we introduce how to predict p(mj | Su, xu) and 288

p(v | mj ,Su, xu)). Finally, we introduce the ac- 289

tual optimization function. 290

For Su, we utilize the user representation embed- 291

ding from the same recommendation model in Sec- 292

tion 4.1. For xu, we follow recent studies that ob- 293

tain embeddings from LLMs (Jiang et al., 2024), us- 294

ing a simple prompt “This sentence: ‘*sentence*’ 295

means in one word:” to extract a semantic embed- 296

ding xu. We then estimate p(mj | Su, xu) with a 297

neural network f(mj ,S
u,xu): 298

p(mj | Su, xu) = f(mj ,S
u,xu)

= softmax
(
FFN([Su;xu])(Wmmj)

T
) (5) 299

where FFN(·) is a feed-forward network, [ ; ] de- 300

notes concatenation, and Wm is a learnable parame- 301

ter matrix. We also include a linear projection layer 302

to align the dimensionality of Su and xu, though 303

this layer is omitted in the equation for brevity. 304

Intuitively, p(v | mj ,Su, xu) needs to be calcu- 305

lated by softmax, but it becomes computationally 306

expensive when the number of items is large. Thus, 307

instead of directly modeling p(v | mj ,Su, xu), 308

we use Information Noise Contrastive Estimation 309

(infoNCE) (van den Oord et al., 2018) to esti- 310

mate p(v|mj ,Su,xu)
p(v) . We use a neural network 311

g(v,mj ,S
u,xu) to estimate it 312

g(v,mj ,S
u,xu) =

(Wjmj)
(
Wvv

)T · FFN([Su;xu])(Wmmj)
T

(6) 313

Here, v,mj ,S
u,x represent the embeddings of 314

v,mj ,Su, xu, respectively, and Wj ,Wv,Wm are 315

model parameters. For efficient training, we share 316

Wm with f(mj ,S
u,xu) in Equation (5). As n 317

increases, the infoNCE loss converge to the same 318

solution as the maximum likelihood estimation (Ma 319
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and Collins, 2018). Moreover, as the ultimate goal320

of the recommendation learning step is to make321

accurate recommendations, we add a recommenda-322

tion auxiliary objective which optimizes the maxi-323

mization of the likelihood of p(v | Su, xu).324

For each real data point (u, v), we randomly325

sample n elements from p(v) to form a negative set326

Vuv
neg. The training loss is the combination of ELBO327

and recommendation auxiliary loss. To display328

more clearly, we define the following:329

Z(v,mj , s
u, xu) = exp(g(v,mj ,S

u,xu))

+
∑

vneg∈Vuv
neg

exp
(
g(vneg,mj ,S

u,xu)
)

330

331

LinfoNCE = −
∑

(u,v)∈D

K∑
j=1

(
q(mj | Su)

log
(exp(g(v,mj ,S

u,xu)
)

Z(v,mj , su, xu)

) (7)332

333

LM
rec =

∑
u∈U

(
log h(v,Su,xu)

− log
(
h(v,Su,xu) +

∑
v−∈Vneg

h(v−,Su,xu)
))
(8)334

Here, h(v,Su,xu) =
∑k

j=1

(
f(mj ,S

u,xu)g(v,335

mj ,S
u, xu)

)
. f(mj ,S

u,xu) are defined in Equa-336

tion (5) and g(v,mj ,S
u, xu) in Equation (6). Con-337

sequently, the training loss is:338

LM = LinfoNCE

+ λKL
(
q̂(m | Su) ∥ p(mj | Su, xu)

)
+ αMLM

rec

(9)339

Here, q̂(m | Su) is the intent distribution estimated340

by the model trained in intent inference step, and341

p(mj | Su, xu) is given by Equation (5). αM and342

λ are weight hyperparameters. Unlike the standard343

evidence lower bound (ELBO), we introduce λ to344

better regulate the training process.345

4.2.2 Intent Inference Step346

The goal of the intent inference step (E Step) is347

to estimate the intent distribution based on a rec-348

ommendation model. The core in this step is to349

calculate the probability q(m | Su). Similar to the350

recommendation learning step, we first obtain the351

representation embedding Su from a recommenda-352

tion model, then apply a neural network l(m, su)353

to generate the estimates. Formally,354

l(m, su) =softmax
(WqS

u
(
Wkmj

)T
√
dm

)
(10)355

where Wq and Wk are learnable parameters, dm 356

is the dimension of the intent embedding. The in- 357

tent inference step aims to maximize the Evidence 358

Lower Bound (ELBO). This is equivalent to mini- 359

mizing the following loss function: 360

LE
ELBO =

∑
(u,v)∈D

KL
(
q(m | Su)

∥∥
p(mj | Su, xu)p(v | mj ,Su, xu)

) (11) 361

where KL(·) is the KL divergence, q(m | Su), 362

p(mj | Su, xu) and p(v | mj ,Su, xu) come from 363

Equations (10) (5) and (6), respectively. 364

Moreover, we also utilize an auxiliary recom- 365

mendation objective, under the assumption that 366

more accurate intent distributions yield better rec- 367

ommendation performance. Formally, we represent 368

the recommendation score under certain intent dis- 369

tribution and the training objective as: 370

ru =

K∑
j=1

q(mj | Su)mj (12) 371

372

LE
rec =

∑
u∈U

(
log exp(ruWe v)

− log
(
exp(ruWe v) +

∑
v−∈Vneg

exp(ruWe v
−)

))
(13) 373

Here, mj denoting the embedding of anchor intent 374

mj , v is the embedding of an item v, and Vneg is 375

a set of negative items sampled according to the 376

procedure from Section 4.2.1. The training loss is: 377

LE = LE
ELBO + αE LE

rec (14) 378

where αE is a hyperparameter that balances the 379

ELBO term and the recommendation performance 380

term. Since the intent distribution estimates are 381

unreliable at the start of training, we only use LE
rec 382

to train until performance stabilizes. 383

4.2.3 Overall Optimization 384

As shown in Algorithm 1, we first train l(m, su) 385

in Equation (10) only with LE
rec. Next, we train 386

f(mj ,S
u,xu) and g(v,mj ,S

u,xu) in Equation 387

(5) and (6) using the intent distribution estimated 388

by l(m, su). This two-step initialization makes 389

sure both modules yield stable outputs. Finally, we 390

alternate between the Intent Inference Step (E-Step) 391

and the Recommendation Learning Step (M-Step) 392

until the model converges. 393
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Algorithm 1: Optimization Steps
Input: A user set U , an item set V , a sequence of

items Su for each user u, and a natural
language description of each user’s interests
xu.

Output: p(v | Su, xu) for each v ∈ V
while not converged do

Train the inference model q using LE
rec in

Equation (13).
while not converged do

Estimate q̂(m | Su) with the inference model;
Fix the inference model and update the prior

model using LM in Equation (9).
while not converged do

⊙ Intent Inference Step (E Step);
Estimate p̂(mj | Su, xu) and
p̂(v | mj ,Su, xu)) with the prior model;

Fix the generative model and update the
inference model using LE in Equation (14);

⊙ Recommendation Learning Step (M Step);
Estimate q̂(m | Su) using the inference model;
Fix the inference model and update the

generative model using LM in Equation (9).
Predict p(v | Su, xu) with the generative model by

Equation (2).

4.3 Multi-Turn Conversation and Variants394

In this section, we describe how to apply the trained395

model in a multi-turn interaction setting. We in-396

troduce three variants based on different strate-397

gies for leveraging the large language model: Ba-398

sic usage (LATENTCRSB), Filtering by user con-399

straints (LATENTCRSF ), and Re-ranking recom-400

mendations (LATENTCRSV ). For LATENTCRSB ,401

the LLM conducts the dialogue but does not par-402

ticipate in any post-processing of the recommen-403

dation outputs. For LATENTCRSF , the LLM ex-404

tracts strict requirements mentioned by the user405

such as a minimum storage capacity for a smart-406

phone. And we filter the candidate recommenda-407

tions to ensure they all satisfy these requirements.408

For LATENTCRSV , the LLM re-orders the initial409

set of recommendations, allowing it to resolve in-410

tents that the user expresses in a vague.411

5 Experimental Setups412

5.1 Evaluation Settings413

Collecting actual user responses from real-world414

users is prohibitively expensive. Following prior415

work, we instead adopt a user simulation strat-416

egy that leverages LLMs to emulate user behavior417

(Zhang et al., 2024a; Yoon et al., 2024). Specif-418

ically, we provide Gemini-1.5-pro (Team et al.,419

2024) with role-playing prompts to generate re-420

alistic user interactions. The details are shown in421

Table 1: Dataset Information.

Movielens-1M Video Games CDs and Vinyl

Number of users 6034 15582 104544
Number of items 3522 7233 76616
Actions 575272 122179 1259069
Avg. behavior length 95.34 7.84 12.04
Sparsity 97.30% 99.89% 99.98%

Appendix D. We evaluate our system under two 422

settings: One-Turn Recommendation and Multi- 423

Turn Recommendation (Jin et al., 2023; Huang 424

et al., 2023). In the One-Turn setting, users ex- 425

press their preferences in a single natural language 426

query, and the Conversational Recommender Sys- 427

tem (CRS) must generate recommendations based 428

solely on this input. In contrast, the Multi-Turn set- 429

ting allows for iterative dialogue, where users refine 430

their preferences through successive interactions 431

until they receive satisfactory recommendations. 432

5.2 Datasets 433

We conduct experiments on three distinct datasets 434

(Hou et al., 2024): Movielens-1M (movielens)1, 435

Amazon VideoGames (VideoGames), and Amazon 436

CDs (CDs) (Hou et al., 2024). Each dataset con- 437

tains user-item interaction history and item meta- 438

data, and we adhere to their respective licenses 439

and privacy policies. The key statistics are sum- 440

marized in Table 1. Due to budget constraints, we 441

also follow previous works by sampling 500 in- 442

stances from the test set for evaluation the LLM 443

based methods and the multi-turn setting, which are 444

represented as Dataset Namesample. More details 445

are shown in Appendix B. 446

5.3 Baselines 447

To evaluate the effectiveness of LATENTCRS, we 448

compare it with two categories of methods: tra- 449

ditional conversational recommendation models, 450

and LLM-based conversational methods. We re- 451

strict our comparison to models that do not require 452

modifications to the parameters of the LLMs. For 453

recommendation methods, we compare CRM (Sun 454

and Zhang, 2018), UNICORN (Deng et al., 2021), 455

and CRIF (Hu et al., 2022). For LLM-based meth- 456

ods, we compare with Llama 3.1-8B (Dubey et al., 457

2024), Gemini 1.5 pro (Team et al., 2024), GPT-4 458

(Achiam et al., 2023), Chat-Rec (Gao et al., 2023), 459

and InteRecAgent (Huang et al., 2023). More de- 460

tails about these baselines are shown in Appendix 461

C. 462

1https://grouplens.org/datasets/movielens/1m/
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Table 2: Performance comparison on full datasets under one turn settings.

Movielens-1M VideoGames CDs
Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20

CRM 0.1165 0.0690 0.3273 0.1279 0.0024 0.0014 0.0090 0.0032 0.0089 0.0055 0.0297 0.0111
UNICORN 0.1215 0.0734 0.3086 0.1274 0.1138 0.0753 0.2317 0.1099 0.0839 0.0518 0.1911 0.0833
CRIF 0.0784 0.0489 0.2363 0.0926 0.0427 0.0267 0.1058 0.0443 0.0157 0.0100 0.0442 0.0180

LATENTCRSB 0.1437 0.0921 0.3305 0.1449 0.1378 0.0964 0.2598 0.1310 0.0485 0.0326 0.1083 0.0494

Table 3: Performance comparison on sampled datasets under one turn settings.

Movielenssample VideoGamessample CDssample

Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20

Llama 3.1-8B 0.054 0.0396 0.092 0.0507 0.020 0.0143 0.034 0.0182 0.012 0.0074 0.016 0.0085
Gemini 1.5 pro 0.068 0.0414 0.096 0.0604 0.034 0.0216 0.062 0.0409 0.018 0.0136 0.088 0.0433
GPT4 0.064 0.0421 0.102 0.0622 0.032 0.0204 0.058 0.0400 0.028 0.0204 0.104 0.0476
Chat-Rec 0.086 0.0546 0.150 0.0950 0.038 0.0268 0.080 0.0630 0.016 0.0111 0.108 0.0787
InteRecAgent 0.006 0.0043 0.022 0.0087 0.014 0.0086 0.024 0.0118 0.018 0.0129 0.030 0.0163

LATENTCRSB 0.142 0.0879 0.340 0.1426 0.140 0.1008 0.250 0.1326 0.040 0.0270 0.106 0.0454
LATENTCRSF 0.180 0.1209 0.318 0.1604 0.146 0.1072 0.230 0.1347 0.058 0.0375 0.126 0.0573
LATENTCRSV 0.160 0.1139 0.320 0.1582 0.180 0.1386 0.246 0.1592 0.048 0.0302 0.108 0.0489

Table 4: Performance comparison on sampled datasets
under multi turn settings.

Movielenssample VideoGamessample CDssample

S@3 S@5 AT S@3 S@5 AT S@3 S@5 AT

CRM 0.413 - - 0.013 - - 0.042 - -
UNICORN 0.248 0.378 4.174 0.184 0.260 4.362 0.174 0.232 4.406
CRIF 0.266 0.448 4.064 0.126 0.216 4.578 0.130 0.208 4.610

Llama 3.1-8B 0.188 0.540 3.624 0.208 0.276 4.668 0.00 0.258 4.832
Gemini 1.5 pro 0.224 0.580 3.484 0.248 0.384 4.108 0.170 0.498 4.412
GPT4 0.246 0.602 3.472 0.236 0.398 4.246 0.184 0.548 4.254
Chat-Rec 0.212 0.686 3.618 0.224 0.724 3.760 0.146 0.558 4.202
InteRecAgent 0.070 0.230 4.754 0.156 0.292 4.492 0.102 0.230 4.754

LATENTCRSB 0.388 0.482 3.760 0.264 0.336 4.078 0.100 0.142 4.642
LATENTCRSF 0.472 0.562 3.424 0.286 0.356 4.042 0.190 0.258 4.236
LATENTCRSV 0.532 0.650 3.298 0.378 0.426 3.706 0.182 0.220 4.422

5.4 Metrics463

As the experiments are divided into one-turn con-464

versational recommendation and multi-turn con-465

versational recommendation, we utilize different466

metrics for different settings. For one-turn con-467

versational recommendation, we utilize the widely468

used Recall and Normalized Discounted Cumu-469

lative Gain (NDCG) metrics. In the multi-turn470

conversational recommendation setting, following471

(Gao et al., 2023; Huang et al., 2023), we use the472

Average Success Rate (S) and Average Turns (AT).473

S@K represents the success rate of recommend-474

ing the target item within K turns, while AT@K475

indicates the average number of turns required to476

achieve a successful recommendation.477

5.5 Implementation Details478

As shown in the methods, LATENTCRS utilize479

a recommendation model and LLM. we utilize480

Llama-3.1-8B-Instruct (Dubey et al., 2024) as our481

backbone LLM, and ICLRec (Chen et al., 2022)482

as recommendation model. Moreover, we utilize483

Gemini-1.5-pro for the user simulator to validate484

the results. We report the mean results of 3 runs 485

with different random seed. All code is available 486

on Anonymous GitHub2. And more details about 487

the implementation are shown in Appendix E. 488

6 Experimental Results 489

6.1 One-Turn Recommendation 490

We only evaluate them on sampled datasets due 491

to the high computational costs of LATENTCRSF 492

and LATENTCRSV . The results are presented in 493

Table 2 and Table 3. Our findings include: (1) LA- 494

TENTCRS consistently achieves superior perfor- 495

mance across most scenarios, demonstrating the ef- 496

fectiveness of combining collaborative information 497

with dialogue context. LATENTCRS consistently 498

outperforms other baselines in most scenarios, un- 499

derscoring the effectiveness of integrating collabo- 500

rative information with natural language user inter- 501

ests. Furthermore, leveraging LLMs to either an- 502

alyze user responses (LATENTCRSF ) or validate 503

and rerank recommendations (LATENTCRSV ) en- 504

hances personalization and yields additional per- 505

formance gains. (2) Current LLM-based CRS ap- 506

proaches underperform traditional methods in one- 507

turn recommendation settings. Even when em- 508

ploying state-of-the-art models (GPT-4, Gemini 509

1.5 Pro) and incorporating historical interactions 510

as prompts, these methods fail to achieve compet- 511

itive results. This performance gap underscores 512

the disconnect between LLMs’ knowledge and the 513

collaborative signals derived from user behavior, a 514

critical challenge our work addresses through user 515

intent modeling and integration. 516

2https://anonymous.4open.science/r/
LatentCRS-FF05
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Table 5: Ablation Study.

Movielens-1M VideoGames CDs
Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20 Recall@5 NDCG@5 Recall@20 NDCG@20

LATENTCRSB 0.1468 0.0918 0.3333 0.1446 0.1378 0.0964 0.2598 0.1310 0.0485 0.0326 0.1083 0.0494

w/o Inference Model 0.0232 0.0147 0.0678 0.0271 0.0309 0.0204 0.0595 0.0283 0.0240 0.0150 0.0667 0.0269
direct KL Align 0.0847 0.0518 0.2256 0.0911 0.0728 0.0472 0.1740 0.0756 0.0258 0.0165 0.0689 0.0285
w/o Recloss 0.0698 0.0755 0.2073 0.0805 0.1006 0.0700 0.2092 0.1098 0.0241 0.0132 0.0650 0.0264

Table 6: Token usage of LLM across different methods.

Movielens Games CDs
Input Output Input Output Input Output

Llama 3.1-8B 119.51 148.20 127.20 199.83 124.26 211.57
Gemini 1.5 pro 120.49 140.56 112.43 188.75 126.89 223.91
GPT4 118.95 152.81 106.85 181.36 129.88 235.46

LATENTCRSB 85.50 1.00 75.44 1.00 91.90 1.00
LATENTCRSF 317.50 35.59 781.44 50.76 2086.89 70.70
LATENTCRSV 810.26 98.63 2117.60 96.72 2178.55 111.98

6.2 Multi-Turn Recommendation517

We further evaluate LATENTCRS in multi-turn518

conversational settings, with results presented519

in Table 4. Since the CRM method (Sun and520

Zhang, 2018) queries item features category and521

the datasets have a limited number of categories,522

the maximum number of dialogue turns in CRM523

is inherently constrained. From the data, we ob-524

serve: (1) LATENTCRS consistently outperforms525

other baselines in most scenarios, particularly in526

achieving higher success rates within three interac-527

tion turns. This capability allows LATENTCRS to528

accurately infer user intent within a limited num-529

ber of interactions and improve the user experi-530

ence. (2) Response analysis (LATENTCRSF ) out-531

performs the base generative model, and rerank-532

ing (LATENTCRSV ) yields further improvement.533

This indicates that deeper integration of LLMs en-534

hances performance under LATENTCRS. However,535

increased LLM utilization also leads to higher costs.536

More details are shown in Section 6.3.537

6.3 Efficiency Analysis538

Due to the high operational costs of LLMs, effi-539

ciency is a critical concern for LLM-based CRS.540

Given that LLM costs dominate other system com-541

ponents, we approximate total expenses by ana-542

lyzing input and output token counts (see Table543

6). Key findings include: (1) All the variants544

of LATENTCRS utilize significantly fewer tokens545

compared to existing LLM-based CRS models.546

LATENTCRSB only needs to generate 1 new to-547

ken, reducing computational load by hundreds of548

operations due to autoregressive decoding. This549

dramatic cost reduction makes it particularly suit-550

able for large-scale deployment. (2) We observe 551

a trade-off between cost and performance in LA- 552

TENTCRS. While expanded LLM utilization im- 553

proves accuracy, but also increases cost. The three 554

variants of LATENTCRS offer flexible choices to 555

balance these priorities based on application needs. 556

6.4 Ablation Study 557

To evaluate the contribution of each component in 558

LATENTCRS, we conduct an ablation study un- 559

der a one-turn recommendation setting. The re- 560

sults are presented in Table 5. We examine four 561

ablated variants: (1) w/o Inference Model: The 562

generative model is trained using only the auxiliary 563

recommendation loss, without incorporating user 564

intent. (2) Direct KL Alignment: The inference 565

and generative models are jointly trained with a KL 566

divergence constraint on the intent distribution. (3) 567

w/o Recloss: The auxiliary recommendation loss is 568

removed. The performance degradation observed 569

in all ablated variants demonstrates the importance 570

of each component. The significant performance 571

drop without the inference model highlights the 572

crucial role of our intent inference mechanism, as 573

directly combining recommendation models with 574

LLMs fails without proper user intent modeling. 575

More analyses are in Appendix G. 576

7 Conclusion 577

In this paper, we investigate the collaboration be- 578

tween recommendation models and large language 579

models (LLMs). We identify user intent as a key 580

bridge to effectively close the gap between these 581

systems. Since user intent is inherently unobserv- 582

able, we propose LATENTCRS, a novel approach 583

that addresses this challenge by representing user 584

intent through anchor vectors and optimizing CRS 585

tasks with user intent using an EM framework. A 586

notable advantage of LATENTCRS is its high effi- 587

ciency, as it eliminates the need to integrate LLMs 588

into the training process. In future work, we plan 589

to explore additional real-world scenarios and fur- 590

ther examine the impact of different user dialogue 591

styles on recommendation performance. 592
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8 Limitations593

While LATENTCRS demonstrates significant im-594

provements over existing methods and provide an595

efficient way for LLM-based CRS, it also exhibits596

limitations in cold-start Scenarios. For new users597

with limited interaction history, inferring accurate598

intent distributions becomes challenging, poten-599

tially degrading recommendation quality until suffi-600

cient behavioral data is accumulated. Moreover, in-601

tent inference relies heavily on a pretrained recom-602

mendation model to extract user behavior patterns.603

Any errors or biases in this model may propagate to604

the intent distribution estimation, affecting recom-605

mendation accuracy. Recognizing these limitations,606

future work could explore combining latent intents607

with content-based or demographic features to mit-608

igate cold-start issues and developing uncertainty-609

aware models or adaptive clustering techniques to610

improve the robustness of intent inference.611

9 Ethical Considerations612

Our research utilizes three publicly available613

datasets, MovieLens-1M, Amazon VideoGames,614

and Amazon CDs, all of which have been rig-615

orously anonymized by their original providers616

through irreversible hashing of user identifiers. We617

strictly comply with each dataset’s license. Our618

study neither infers nor utilizes any personally iden-619

tifiable information. For LLM integration, we em-620

ploy LLama 3.1 and Gemini 1.5, both allow aca-621

demic usage under their policies.622

While our framework represents an advancement623

in conversational recommendation systems (CRS),624

we acknowledge several potential risks that warrant625

consideration: (1) The pretrained recommendation626

model may inadvertently propagate historical bi-627

ases present in the training data; and (2) Although628

designed specifically for CRS applications, the sys-629

tem remains potentially vulnerable to adversarial630

prompts that could compromise security or gener-631

ate misleading outputs. To mitigate these risks, we632

recommend implementing additional safeguards,633

including bias auditing protocols and robust input634

validation mechanisms.635

References636

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama637
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,638
Diogo Almeida, Janko Altenschmidt, Sam Altman,639
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-640
cal report. arXiv preprint arXiv:2303.08774.641

Keqin Bao, Jizhi Zhang, Xinyu Lin, Yang Zhang, Wen- 642
jie Wang, and Fuli Feng. 2024. Large language mod- 643
els for recommendation: Past, present, and future. 644
In Proceedings of the 47th International ACM SI- 645
GIR Conference on Research and Development in 646
Information Retrieval, pages 2993–2996. 647

Keping Bi, Qingyao Ai, Yongfeng Zhang, and W Bruce 648
Croft. 2019. Conversational product search based 649
on negative feedback. In Proceedings of the 28th 650
acm international conference on information and 651
knowledge management, pages 359–368. 652

Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, 653
Hongxia Yang, and Jie Tang. 2020. Controllable 654
multi-interest framework for recommendation. In 655
Proceedings of the 26th ACM SIGKDD International 656
Conference on Knowledge Discovery & Data Mining, 657
pages 2942–2951. 658

Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley, and 659
Caiming Xiong. 2022. Intent contrastive learning for 660
sequential recommendation. In Proceedings of the 661
ACM Web Conference 2022, pages 2172–2182. 662

Konstantina Christakopoulou, Alex Beutel, Rui Li, 663
Sagar Jain, and Ed H Chi. 2018. Q&r: A two-stage 664
approach toward interactive recommendation. In Pro- 665
ceedings of the 24th ACM SIGKDD international 666
conference on knowledge discovery & data mining, 667
pages 139–148. 668

Konstantina Christakopoulou, Filip Radlinski, and Katja 669
Hofmann. 2016. Towards conversational recom- 670
mender systems. In Proceedings of the 22nd ACM 671
SIGKDD international conference on knowledge dis- 672
covery and data mining, pages 815–824. 673

Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, and Wai 674
Lam. 2021. Unified conversational recommendation 675
policy learning via graph-based reinforcement learn- 676
ing. In Proceedings of the 44th International ACM 677
SIGIR Conference on Research and Development in 678
Information Retrieval, pages 1431–1441. 679

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 680
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 681
Akhil Mathur, Alan Schelten, Amy Yang, Angela 682
Fan, and 1 others. 2024. The llama 3 herd of models. 683
arXiv preprint arXiv:2407.21783. 684

Siamak Farshidi, Kiyan Rezaee, Sara Mazaheri, 685
Amir Hossein Rahimi, Ali Dadashzadeh, Morteza 686
Ziabakhsh, Sadegh Eskandari, and Slinger Jansen. 687
2024. Understanding user intent modeling for con- 688
versational recommender systems: a systematic lit- 689
erature review. User Modeling and User-Adapted 690
Interaction, pages 1–64. 691

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, 692
Haofen Wang, and Jiawei Zhang. 2023. Chat- 693
rec: Towards interactive and explainable llms- 694
augmented recommender system. arXiv preprint 695
arXiv:2303.14524. 696

9



Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck,697
Dawen Liang, Yesu Feng, Bodhisattwa Prasad Ma-698
jumder, Nathan Kallus, and Julian McAuley. 2023.699
Large language models as zero-shot conversational700
recommenders. In Proceedings of the 32nd ACM701
international conference on information and knowl-702
edge management, pages 720–730.703

Zhankui He, Zhouhang Xie, Harald Steck, Dawen704
Liang, Rahul Jha, Nathan Kallus, and Julian705
McAuley. 2024. Reindex-then-adapt: Improving706
large language models for conversational recommen-707
dation. arXiv preprint arXiv:2405.12119.708

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi709
Chen, and Julian McAuley. 2024. Bridging language710
and items for retrieval and recommendation. arXiv711
preprint arXiv:2403.03952.712

Chenhao Hu, Shuhua Huang, Yansen Zhang, and Yubao713
Liu. 2022. Learning to infer user implicit preference714
in conversational recommendation. In Proceedings715
of the 45th International ACM SIGIR conference on716
research and development in information retrieval,717
pages 256–266.718

Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu719
Lian, and Xing Xie. 2023. Recommender ai agent:720
Integrating large language models for interactive rec-721
ommendations. arXiv preprint arXiv:2308.16505.722

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing723
Wang, and Fuzhen Zhuang. 2024. Scaling sentence724
embeddings with large language models. In Find-725
ings of the Association for Computational Linguis-726
tics: EMNLP 2024.727

Jiarui Jin, Xianyu Chen, Fanghua Ye, Mengyue Yang,728
Yue Feng, Weinan Zhang, Yong Yu, and Jun Wang.729
2023. Lending interaction wings to recommender730
systems with conversational agents. Advances in731
Neural Information Processing Systems, 36:27951–732
27979.733

Wang-Cheng Kang and Julian McAuley. 2018. Self-734
attentive sequential recommendation. In 2018 IEEE735
international conference on data mining (ICDM),736
pages 197–206. IEEE.737

Sara Kemper, Justin Cui, Kai Dicarlantonio, Kathy Lin,738
Danjie Tang, Anton Korikov, and Scott Sanner. 2024.739
Retrieval-augmented conversational recommendation740
with prompt-based semi-structured natural language741
state tracking. In Proceedings of the 47th Inter-742
national ACM SIGIR Conference on Research and743
Development in Information Retrieval, pages 2786–744
2790.745

Sein Kim, Hongseok Kang, Seungyoon Choi,746
Donghyun Kim, Minchul Yang, and Chanyoung Park.747
2024. Large language models meet collaborative fil-748
tering: An efficient all-round llm-based recommender749
system. In Proceedings of the 30th ACM SIGKDD750
Conference on Knowledge Discovery and Data Min-751
ing, pages 1395–1406.752

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 753
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 754
guage models are zero-shot reasoners. Advances in 755
neural information processing systems, 35:22199– 756
22213. 757

Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun 758
Wu, Richang Hong, Min-Yen Kan, and Tat-Seng 759
Chua. 2020. Estimation-action-reflection: Towards 760
deep interaction between conversational and recom- 761
mender systems. In Proceedings of the 13th Interna- 762
tional Conference on Web Search and Data Mining, 763
page 304–312, New York, NY, USA. Association for 764
Computing Machinery. 765

Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan 766
Zhao, Pipei Huang, Guoliang Kang, Qiwei Chen, Wei 767
Li, and Dik Lun Lee. 2019. Multi-interest network 768
with dynamic routing for recommendation at tmall. 769
In Proceedings of the 28th ACM international con- 770
ference on information and knowledge management, 771
pages 2615–2623. 772

Haoyang Li, Xin Wang, Ziwei Zhang, Jianxin Ma, Peng 773
Cui, and Wenwu Zhu. 2021. Intention-aware sequen- 774
tial recommendation with structured intent transition. 775
IEEE Transactions on Knowledge and Data Engi- 776
neering, 34(11):5403–5414. 777

Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, 778
Vincent Michalski, Laurent Charlin, and Chris Pal. 779
2018. Towards deep conversational recommenda- 780
tions. Advances in neural information processing 781
systems, 31. 782

Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang 783
Zhou, and Yan Zhang. 2023. Is chatgpt a good rec- 784
ommender? a preliminary study. arXiv preprint 785
arXiv:2304.10149. 786

Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen Guo, Kan- 787
nan Achan, and S Yu Philip. 2020. Basket recom- 788
mendation with multi-intent translation graph neural 789
network. In 2020 IEEE International Conference on 790
Big Data (Big Data), pages 728–737. IEEE. 791

Zhuang Ma and Michael Collins. 2018. Noise con- 792
trastive estimation and negative sampling for condi- 793
tional models: Consistency and statistical efficiency. 794
In Proceedings of the 2018 Conference on Empiri- 795
cal Methods in Natural Language Processing, pages 796
3698–3707. 797

Balaji Padmanabhan and Alexander Tuzhilin. 1999. 798
Unexpectedness as a measure of interestingness in 799
knowledge discovery. Decision Support Systems, 800
27(3):303–318. 801

Zhiqiang Pan, Fei Cai, Yanxiang Ling, and Maarten 802
de Rijke. 2020. An intent-guided collaborative ma- 803
chine for session-based recommendation. In Pro- 804
ceedings of the 43rd international ACM SIGIR con- 805
ference on research and development in information 806
retrieval, pages 1833–1836. 807

10



Mathieu Ravaut, Hao Zhang, Lu Xu, Aixin Sun, and808
Yong Liu. 2024. Parameter-efficient conversational809
recommender system as a language processing task.810
In Proceedings of the 18th Conference of the Euro-811
pean Chapter of the Association for Computational812
Linguistics (Volume 1: Long Papers), pages 152–165.813

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,814
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-815
quential recommendation with bidirectional encoder816
representations from transformer. In Proceedings of817
the 28th ACM international conference on informa-818
tion and knowledge management, pages 1441–1450.819

Yueming Sun and Yi Zhang. 2018. Conversational rec-820
ommender system. In The 41st International ACM821
SIGIR Conference on Research & Development in822
Information Retrieval, SIGIR 2018, Ann Arbor, MI,823
USA, July 08-12, 2018, pages 235–244. ACM.824

Zhu Sun, Hongyang Liu, Xinghua Qu, Kaidong Feng,825
Yan Wang, and Yew Soon Ong. 2024. Large language826
models for intent-driven session recommendations.827
In Proceedings of the 47th International ACM SI-828
GIR Conference on Research and Development in829
Information Retrieval, pages 324–334.830

Md Mehrab Tanjim, Congzhe Su, Ethan Benjamin, Di-831
ane Hu, Liangjie Hong, and Julian McAuley. 2020.832
Attentive sequential models of latent intent for next833
item recommendation. In Proceedings of The Web834
Conference 2020, pages 2528–2534.835

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan836
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,837
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1838
others. 2024. Gemini 1.5: Unlocking multimodal839
understanding across millions of tokens of context.840
arXiv preprint arXiv:2403.05530.841

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.842
Representation learning with contrastive predictive843
coding. CoRR, abs/1807.03748.844

Yunjia Xi, Weiwen Liu, Jianghao Lin, Bo Chen, Ruim-845
ing Tang, Weinan Zhang, and Yong Yu. 2024. Mem-846
ocrs: Memory-enhanced sequential conversational847
recommender systems with large language models.848
In Proceedings of the 33rd ACM International Con-849
ference on Information and Knowledge Management,850
pages 2585–2595.851

Li Yang, Anushya Subbiah, Hardik Patel, Judith Yue Li,852
Yanwei Song, Reza Mirghaderi, and Vikram Aggar-853
wal. 2024. Item-language model for conversational854
recommendation. arXiv preprint arXiv:2406.02844.855

Ting Yang and Li Chen. 2024. Unleashing the retrieval856
potential of large language models in conversational857
recommender systems. In Proceedings of the 18th858
ACM Conference on Recommender Systems, pages859
43–52.860

Jing Yao, Zhicheng Dou, Ruobing Xie, Yanxiong Lu,861
Zhiping Wang, and Ji-Rong Wen. 2021. User: A uni-862
fied information search and recommendation model863

based on integrated behavior sequence. In Proceed- 864
ings of the 30th ACM International Conference on 865
Information & Knowledge Management, pages 2373– 866
2382. 867

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 868
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023. 869
React: Synergizing reasoning and acting in language 870
models. In The Eleventh International Conference 871
on Learning Representations, ICLR 2023, Kigali, 872
Rwanda, May 1-5, 2023. OpenReview.net. 873

Se-eun Yoon, Zhankui He, Jessica Echterhoff, and Ju- 874
lian McAuley. 2024. Evaluating large language mod- 875
els as generative user simulators for conversational 876
recommendation. In Proceedings of the 2024 Con- 877
ference of the North American Chapter of the Asso- 878
ciation for Computational Linguistics: Human Lan- 879
guage Technologies (Volume 1: Long Papers), pages 880
1490–1504. 881

Erhan Zhang, Xingzhu Wang, Peiyuan Gong, Yankai 882
Lin, and Jiaxin Mao. 2024a. Usimagent: Large lan- 883
guage models for simulating search users. In Pro- 884
ceedings of the 47th International ACM SIGIR Con- 885
ference on Research and Development in Information 886
Retrieval, pages 2687–2692. 887

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, 888
Julian McAuley, Wayne Xin Zhao, Leyu Lin, and Ji- 889
Rong Wen. 2024b. Agentcf: Collaborative learning 890
with autonomous language agents for recommender 891
systems. In Proceedings of the ACM on Web Confer- 892
ence 2024, pages 3679–3689. 893

Xiaoying Zhang, Hong Xie, Hang Li, and John CS Lui. 894
2020. Conversational contextual bandit: Algorithm 895
and application. In Proceedings of the web confer- 896
ence 2020, pages 662–672. 897

Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and 898
W Bruce Croft. 2018. Towards conversational search 899
and recommendation: System ask, user respond. In 900
Proceedings of the 27th acm international conference 901
on information and knowledge management, pages 902
177–186. 903

11

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748


A Related Work904

A.1 Conversational Recommender Systems905

Conversational recommender systems (CRS) aim906

to provide accurate recommendations through in-907

teractions with users. Early approaches usually908

treated the recommendation and conversation com-909

ponents as two separate modules (Sun and Zhang,910

2018; Bi et al., 2019; Zhang et al., 2020). Initial911

work focused on how to interact with users by de-912

termining which attributes or items to query and913

by extracting information from user responses for914

more accurate recommendations (Christakopoulou915

et al., 2016, 2018). Subsequent research extended916

these ideas to multi-turn conversational settings,917

often using reinforcement learning methods (Lei918

et al., 2020; Li et al., 2018; Zhang et al., 2018; Hu919

et al., 2022). Although these methods were success-920

ful, they restricted user responses to binary signals921

(like or dislike), which limited the information that922

users could provide. The growing use of LLMs923

has introduced a new paradigm to interact with924

users, which inspired the design of LLM-based925

CRS (Jin et al., 2023; Gao et al., 2023; He et al.,926

2023; Huang et al., 2023; Bao et al., 2024). Some927

methods treat an LLM as an agent and the recom-928

mendation model as a tool (Gao et al., 2023; Huang929

et al., 2023; Kemper et al., 2024). Although this930

approach allows more expressive user responses, it931

still treats conversation and recommendation sep-932

arately and only merges them through a binary933

flag to indicate when a recommendation should be934

made.935

Other methods integrate recommendation and936

conversation in a single framework. Because LLMs937

have strong text processing and reasoning abilities,938

some systems rely solely on LLMs to perform both939

tasks. For instance, certain approaches follow the940

ReAct framework (Yao et al., 2023), where the941

LLM is instructed to plan and reason, carry out942

specific actions, and adjust if mistakes are detected943

(Gao et al., 2023; He et al., 2023, 2024; Xi et al.,944

2024). Further approaches incorporate additional945

training of LLMs using interaction data (Yang et al.,946

2024; Yang and Chen, 2024; Ravaut et al., 2024).947

However, these strategies ignore the collaborative948

knowledge found in recommender systems, and949

they can be expensive due to frequent LLM calls or950

extensive fine-tuning. Moreover, their performance951

can be uncertain because many studies only com-952

pare them with baselines in cold-start situations953

(Jin et al., 2023; Yang and Chen, 2024). In contrast,954

we propose a more efficient approach that uses user 955

intent as a bridge. We incorporate collaborative 956

information from recommendation models while 957

jointly learning representations of natural language 958

and user behavior. 959

A.2 Intent Modeling in Recommendation 960

Recently, many studies have examined user in- 961

tent to improve recommendation accuracy (Cen 962

et al., 2020; Liu et al., 2020; Pan et al., 2020; 963

Tanjim et al., 2020; Yao et al., 2021). Most ap- 964

proaches identify similar user intent. For example, 965

MIND (Li et al., 2019) introduces a multi-interest 966

extractor layer based on a capsule routing mecha- 967

nism to deal with multiple user intents. ISRec (Li 968

et al., 2021) builds an intention graph to uncover 969

each user’s underlying intentions and employs a 970

message-passing mechanism to predict future in- 971

tentions. ICLRec (Chen et al., 2022) leverages 972

an expectation-maximization framework to inte- 973

grate learned intents into sequential recommenda- 974

tion models via contrastive self-supervised learn- 975

ing. Furthermore, PO4ISR (Sun et al., 2024) in- 976

corporates intent modeling with LLMs for session 977

recommendation, allowing these models to discern 978

diverse user intents at a semantic level by iteratively 979

refining and adjusting prompts. However, current 980

intent modeling methods mostly concentrate on dis- 981

covering similar user intents from behavioral data 982

(Farshidi et al., 2024). In contrast, we find that user 983

intent can also act as a link between user behav- 984

ior and interests expressed in natural language for 985

CRS. 986

B Dataset Processing 987

Since not all items in the Amazon Games and Ama- 988

zon CDs datasets have associated metadata, we 989

preprocess the raw data to exclude items lacking 990

metadata. Additionally, we focus on the "5-core" 991

data, where each user and item has at least five in- 992

teractions. This is because cold-start items, which 993

lack sufficient collaborative information, are not 994

the focus of our work. We follow the data split- 995

ting methodology outlined in (Kang and McAuley, 996

2018; Sun et al., 2019; Chen et al., 2022). Specifi- 997

cally, we use the last item in each user’s sequence 998

as the test set, the second-to-last item as the vali- 999

dation set, and all other items as the training set. 1000

Moreover, we employ a widely adopted data aug- 1001

mentation method to generate additional training 1002

samples (Chen et al., 2022). Specifically, we ran- 1003
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domly sample sliding windows from user behavior1004

sequences to create new synthetic data. To ensure1005

a fair comparison, all methods including both our1006

proposed approach and the baselines utilize the1007

same augmented training set.1008

C Baselines1009

• Traditional Conversational Recommendation1010

Models: CRM (Sun and Zhang, 2018) feeds the1011

belief tracker results to an FM-based recommen-1012

dation method to integrate the conversational and1013

recommender components. UNICORN (Deng1014

et al., 2021) formulates the conversational rec-1015

ommendation problem as unified policy learning1016

task. CRIF (Hu et al., 2022) utilizes four-phase1017

process consisting of offline representation learn-1018

ing, tracking, decision-making, and inference.1019

• LLM-based Conversational Recommendation1020

Methods: Llama 3.1-8B (Dubey et al., 2024),1021

Gemini 1.5 pro (Team et al., 2024), GPT-41022

(Achiam et al., 2023): They are representative1023

LLMs, including both open-source and closed-1024

source models. Chat-Rec (Gao et al., 2023) con-1025

verts user profiles and historical interactions into1026

prompts to innovatively augment LLMs to build1027

CRS. InteRecAgent (Huang et al., 2023) em-1028

ploys LLMs as the core processing unit and rec-1029

ommender models as tools.1030

D User Simulator1031

The prompt to instruct LLM to play as a user is1032

illustrated as follows:1033

Prompt for Candidate Explanations Gen-
eration:
You are a user chatting with a recommender
for movies recommendation in turn.
Your history is {user_behavior_sequence}.
Your target items: {target_item}.
Here is the information about {tar-
get_item_features}.
You must follow the instructions below dur-
ing chat.
State your intention to guide the recom-
mender towards the target item. If the rec-
ommender recommends {target_item}, you
should accept. If the recommender rec-
ommends other items, you should refuse
them and provide the information about Toy
Story. You should never directly tell the
target item title. If the recommender asks
for your preference, you should provide the
information about {target_item}.
You could provide your history. You should
never directly tell the target item title. Your
output is only allowed to be the words from
the user you act. If you think the conversa-
tion comes to an ending, output a 〈END〉.
You should never directly tell the target item.
Only use the provided information about the
target. Never give many details about the
target items at one time. Less than 3 condi-
tions is better.
Now lets start, you first, act as a user.

1034

E Implementation Details 1035

E.1 Implementation 1036

As previously discussed, we utilize an LLM to act 1037

as a user simulator, specifically employing Gemini- 1038

1.5-pro for this purpose. Within our framework, we 1039

use Llama-3.1-8B-Instruct (Dubey et al., 2024) as 1040

the incorporated LLMs. For the recommendation 1041

component, we implement the ICLRec (Chen et al., 1042

2022) model. All optimization steps are carried out 1043

using PyTorch on 1 x NVIDIA RTX A6000 GPU. 1044

Following (Gao et al., 2023), we limit the maxi- 1045

mum number of interaction turns to 5 and present 1046

at most 5 items in each dialogue turn. In our im- 1047

plementation, we make a conditional independence 1048

assumption, where the variable v is conditionally 1049

independent of the observed data Su, xu given the 1050

latent variable M . This can be formally represented 1051
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Figure 3: Analysis of the influence of hyperparameters.

as:1052

p(v | Su, xu) = E(M) p(v | M)p(M | Su, xu)1053

Moreover, due to the limited amount of train-1054

ing data, we employ a simple data augmentation1055

method by randomly segmenting user behavior1056

sequences to generate new data instances. This1057

approach helps to artificially expand the dataset1058

and improve model generalization by simulating1059

diverse interaction scenarios. Additionally, we em-1060

ploy a caching scheme to enhance training effi-1061

ciency. Specifically, we pre-embed the natural lan-1062

guage descriptions and store them, thereby offload-1063

ing the computationally expensive LLM calcula-1064

tions.1065

E.2 Hyper-Parameters Sensitivity1066

In this section, we present experimental results1067

to examine the sensitivity of LATENTCRS to key1068

hyperparameters. We evaluate the performance dif-1069

ferences with respect to the number of intents K1070

and the weight hyperparameters αM , λ in Equation1071

(9), and αE in Equation (14). The results are illus-1072

trated in Figure 3. Due to space constraints, we1073

only report the results obtained on the Movielens1074

dataset. From the analysis, we observe that the op-1075

timal selection of hyperparameters plays a crucial1076

role in achieving superior performance.1077

F Ai Assistants Usage1078

We employ DeepSeek and ChatGPT solely for1079

grammar correction and language polishing. These1080

tools are not used to generate original content or1081

ideas. All AI-assisted revisions undergo careful re-1082

view to ensure they preserve the intended meaning1083

and maintain the integrity of our original work.1084

G Ablation Study 1085

To evaluate the effectiveness of each component 1086

of LATENTCRS, we conduct an ablation study on 1087

the full version of three datasets under one-turn 1088

recommendation setting, and the results are pre- 1089

sented in Table 5. (1) w/o Inference Model: In 1090

this scenario, we train the generative model solely 1091

using the auxiliary recommendation loss. The sig- 1092

nificant performance gap underscores the difficulty 1093

of training models directly with the latent intent 1094

space. This result also highlights the importance 1095

of incorporating collaborative information from 1096

recommendation models into conversational rec- 1097

ommender systems, which is the core motivation 1098

behind our approach. (2) Direct KL Alignment: 1099

Here, we simultaneously train the inference model 1100

and the generative model, applying an additional 1101

Kullback-Leibler divergence constraint on the in- 1102

tent distribution. The performance decline suggests 1103

that simply aligning the intent distributions does 1104

not lead to the correct distribution, emphasizing 1105

the effectiveness of the EM training framework. 1106

(3) w/o Recloss: In this scenario, we remove the 1107

auxiliary recommendation loss. The degraded per- 1108

formance demonstrates the importance of the rec- 1109

ommendation loss in guiding the alternating EM 1110

training steps. 1111

14


	Introduction
	Related Works
	Problem Definition and Preliminaries
	Task Formulation
	Latent Intent Modeling in CRS

	Method
	Intent Representation
	Recommendation with Intent
	Recommendation Learning Step
	Intent Inference Step
	Overall Optimization

	Multi-Turn Conversation and Variants

	Experimental Setups
	Evaluation Settings
	Datasets
	Baselines
	Metrics
	Implementation Details

	Experimental Results
	One-Turn Recommendation
	Multi-Turn Recommendation
	Efficiency Analysis
	Ablation Study

	Conclusion
	Limitations
	Ethical Considerations
	Related Work
	Conversational Recommender Systems
	Intent Modeling in Recommendation

	Dataset Processing
	Baselines
	User Simulator
	Implementation Details
	Implementation
	Hyper-Parameters Sensitivity

	Ai Assistants Usage
	Ablation Study

