Bootstrapping Hierarchical Autoregressive Formal Reasoner with Chain-of-Proxy-Autoformalization

Qi Liu, Xinhao Zheng, Renqiu Xia, Qinxiang Cao, Junchi Yan*

School of Computer Science & School of Artificial Intelligence, Shanghai Jiao Tong University Shanghai Innovation Institute

> {purewhite,void_zxh,xiarenqiu,caoqinxiang,yanjunchi}@sjtu.edu.cn https://github.com/Purewhite2019/har_copa_main

Abstract

Deductive formal problem-solving (D-FPS) enables process-verified, humanaligned problem-solving by implementing deductive solving processes within formal theorem proving (FTP) environments. However, current methods fail to address the misalignment between informal and formal reasoning granularity and suffer from inefficiency due to backtracking and error propagation. Moreover, the extreme scarcity of formal problem-solution pairs further hinders progress. For the first gap, we propose **HAR** (*Hierarchical Autoregressive Formal Reasoner*), a novel reasoning pipeline. HAR decouples informal-aligned drafting and detailed proving, and formulates solution construction as autoregressive generation with per-step feedback. Second, we propose CoPA (Chain-of-Proxy-Autoformalization), a data generation pipeline that cascades statement autoformalization, proof drafting, and proof search as a proxy autoformalization path. Experiments demonstrate significant improvements: trained on data bootstrapped by CoPA, HAR achieves superior performance on FormalMath500 ($15.50\% \mapsto 44.09\%$) and MiniF2F-Solving $(21.87\% \mapsto 56.58\%)$ with lower computational budget. Explorations reveal promising directions in formal solution pruning and informal dataset denoising.

1 Introduction

Contemporary large reasoning models (LRMs) demonstrate superhuman performance in mathematical reasoning [1–3]. However, the lack of zero-false-positive process-level supervision limits their inference scalability [4] and training effectiveness [5, 6]. Deductive formal problem-solving (D-FPS) [7] addresses this by implementing problem-solving processes within formal theorem proving (FTP) environments, decoupling solving and verification, and enforcing deductive reasoning.

The transition from FTP to D-FPS introduces two core challenges. 1) **absence of an efficient and effective reasoning method**; 2) **extreme scarcity of formal problem-solution data**.

For the reasoning pipeline, we systematically analyze the design choices of existing FTP methods and identify two key gaps. First, the granularity between informal and formal reasoning is misaligned. For instance, while substituting $\sqrt{4}$ with 2 is trivial in informal reasoning, it requires a three-line formal proof. Conversely, computing the 100th Fibonacci number modulo 4 is easy in formal systems. Second, existing FTP paradigms are inefficient for deductive reasoning. Search-based approaches allocate enormous resources to backtracking. An agent can abandon the current path and return to a previous node to avoid dead ends. However, this is less essential for D-FPS. Whole-proof generation suffers from error propagation, where initial mistakes lead to cascading failures.

^{*}Corresponding author. This work was in part supported by NSFC (92370201).

Therefore, we propose **HAR** (*Hierarchical Autoregressive Formal Reasoner*) for effective and efficient reasoning. HAR autoregressively generates solution steps to derive the answer without backtracking. Each reasoning step is decoupled into a high-level drafting step, which is aligned with informal reasoning, and a series of low-level proof searches to fill specific gaps. This approach combines the robustness for stepwise failure from search-based methods and the depth-priority from whole-generation methods. HAR shows significantly superior performance to existing methods, solving 44.09% of FormalMath500 [8, 7] and 56.58% of MiniF2F-Solving [9, 7] with the lowest budget. HAR even outperforms methods given ground-truth informal solutions.

For data bootstrapping, existing models lack task-specific knowledge and training. However, relevant FTP tasks such as statement autoformalization are well-explored. We propose **CoPA** (*Chain-of-Proxy-Autoformalization*), cascading statement autoformalization, proof drafting, and proof search as a proxy path to formalize problems and solutions. For quality filtering, we propose an explosion and vacuous check for problems, and a deductive check for solutions. Along with expert iteration, experiments demonstrate clear and consistent improvement in problem and solution autoformalization.

Formal problem and solution data produced by CoPA are process-level verified, which opens up interesting possibilities, e.g., **solution pruning** and **informal dataset denoising**. We design prototypes and conduct exploratory experiments to inspire future work. Solution pruning removes at most 23.41% of tokens in formal solutions. Models trained on these data show on-par (and even superior) performance and shorter reasoning lengths during evaluation. Models fine-tuned on denoised informal data demonstrate clear improvement over those fine-tuned on the original data ($52.52\% \mapsto 59.19\%$).

2 Related Works

Formal Reasoning. Closely related works include those in formal theorem proving (FTP) and formal problem-solving (FPS). FTP methods aim to construct machine-verifiable proofs for formal mathematical statements. Roughly two main paradigms exist: *proof search* methods view the construction of a proof as a tree search process on potential proof paths [10]. Best-first search with value function as cumulated log-probability [11–17] or critic model [18, 19], and MCTS-based search [13] are used. Specifically, POETRY [15] proposes recursive best-first search for finer-grained search. Lean-STaR [16] proposes to augment formal step generation by informal thoughts and directly sample paths. *Whole-proof generation* methods [20–28] samples proofs conditioned on formal statements in one pass. DeepSeekProver-V1.5 [25] pioneers incorporating a truncate-and-resume mechanism to combine search and whole-generation. For D-FPS, prompt-based whole-solution generation [7] resembles whole-proof generation. The proposed HAR differs from existing methods by 1) splitting the generation of formal solutions into many smaller rejective sampling steps to avoid error propagation; 2) decoupling one formal step into an informal-aligned drafting and finer-grained gap filling; 3) removing backtracking to improve efficiency.

Autoformalization. Statement autoformalization aims at translating informal statements into formal ones while preserving semantics. Existing methods prompt general LLMs [29–31, 26], train autoformalizers with back-translation [32–34], and train with filtered autoformalization results [35, 26, 36]. Proof autoformalization [22, 37–40] focuses on generating formal proofs from informal ones using methods similar to statement autoformalization. However, they usually focus on proof correctness rather than semantic consistency. CoPA differs by 1) formalizing problems, answers, and solutions with carefully designed quality filtering; 2) cascading existing statement autoformalization, proof drafting, and proof search methods as a proxy path.

Formal Data Generation. Existing methods usually focus on FTP and can be roughly divided into three categories. Statement autoformalization [24, 35] enlarges the formal corpus by translating informal statements into formal ones and searching for their proofs. Expert iteration [12, 24] alternatively trains provers using cumulated proofs and uses trained models to generate more proofs. Statement synthesis [41, 42, 28] generates new statements by symbolic mutation [41], forward reasoning [42], and conjecturer LLMs [28]. CoPA differs by 1) generating informal-formal aligned problems and solutions; 2) splitting solution drafting and proof gap filling.

3 Background

Beyond verifying theorem proofs, Lean 4 [43] can be used to provide process-level supervision in problem-solving processes under the framework of Formal Problem-Solving (FPS) and Deductive

DPS (D-FPS) [7]. Based on FPS, D-FPS decouples deducing the answer and validating its soundness into forward-solving and backward-proving processes, and enforces deductive reasoning in forward-solving. These modifications enhance the alignment between D-FPS solutions and informal solutions.

D-FPS define *problems* as predicates $P(\hat{A}) := (\forall_{(v:T) \in V}(v:T), \forall_{(h:\phi) \in \Phi}(h:\phi), (\psi \leftrightarrow A))[A \mapsto \hat{A}]$, and *answers* as propositions \hat{A} : Prop, where V, A, Φ, ψ are the set of independent variables, the queriable, the set of hypotheses, and the conclusion, respectively. For example, a problem "If mn = 4 and m+n = 5, what is |m-n|?" with ground-truth "3", the above components can be $V = \{(a:\mathbb{R})(m:\mathbb{R})(n:\mathbb{R})\}, \Phi = \{(h_0:mn=4)(h_1:m+n=5)\}, \psi = (|m-n|=a).$ Therefore, it can be formalized into a predicate $P(\hat{A}) := \forall (a:\mathbb{R})(m:\mathbb{R})(n:\mathbb{R})(h_0:mn=4)(h_1:m+n=5), (|m-n|=a) \leftrightarrow \hat{A}$ with ground-truth answer $\bar{A}:a=3$.

The process of problem-solving, i.e., deducing an answer \hat{A} and proving $P(\hat{A})$, is formulated as a Markov Decision Process (MDP). Informally, a solution state maintains variables, hypotheses, deduced facts, and unproven goals, and a solution step (action) manipulates the state while preserving logical coherence. In parallel with formal theorem proving (FTP), solution states in D-FPS are concretized as proof states, and solution steps are tactic applications. For example, the forward state 0 (Fig. 1 top) contains variables $(a:\mathbb{R}), (m:\mathbb{R}), (n:\mathbb{R})$ and hypotheses $(h_0:mn=4), (h_1:m+n=5), (h_{answer}:|m-n|=a)$. A solution step can deduce a new fact $h_{square}:(m-n)^2=(m+n)^2-4mn$ based on the context and transit to the forward state 1 (Fig. 1 bottom right).

The forward state 0 is initialized from the problem. The agent iteratively executes solution steps s_t to transform forward states until reaching a terminal state where an answer \hat{A} and a proof that V, Φ, ψ can deduce \hat{A} are submitted simultaneously (Fig. 1 left). Then, a backward-proving process is conducted to show V, Φ, \hat{A} can deduce ψ . The backward-proving part is a vanilla FTP task, and once the forward part finishes, the correctness can be checked by comparing the submission \hat{A} with the ground-truth \hat{A} . Therefore, this paper focuses on the forward-solving part, i.e., deducing the final answer step-by-step.

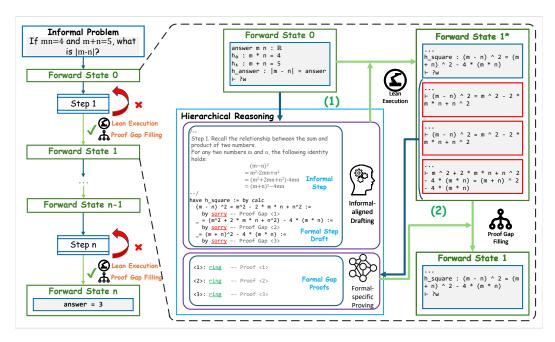


Figure 1: Pipeline of Hierarchical Autoregressive Formal Reasoner (HAR). HAR autoregressively transforms forward states without backtracking. Given a forward state, (1) HAR generates an informal step and a formal step draft. Lean 4 executes the draft, resulting in an intermediate state with unsolved goals. (2) HAR conducts proof searches to prove each goal, resulting in a new forward state. If the execution or proving fails, HAR retries until the step is successful or the step limit is exceeded.

4 Method

This section introduces the Hierarchical Autoregressive Formal Reasoner (HAR) for forward-solving in deductive formal problem-solving (D-FPS). Then, Chain-of-Proxy-Autoformalization (CoPA) is introduced for data generation. Finally, we present some intriguing explorations based on CoPA.

4.1 Hierarchical Autoregressive Formal Reasoner

4.1.1 Motivation

Misaligned Granularity. One significant discrepancy between informal and formal reasoning is their granularity. Some seemingly easy steps are nontrivial for formal reasoning, e.g., substituting $\sqrt{4}$ with 2, because real numbers are defined as equivalence classes of Cauchy sequences in formal mathematics. Conversely, computing the 100th Fibonacci number modulo 4 is easy. Therefore, directly generating formal steps from informal thoughts implicitly requires complex reasoning.

Wasted Steps. Proof search methods rely on tree search, where frequent backtracking causes a waste of reasoning steps. However, backtracking is necessary in FTP because it facilitates recovering from unprovable goals. These goals stem from unsafe tactics [44], e.g., aggressive application of apply, exfalso, and excessive clear. In D-FPS, many frequently used unsafe tactics are unavailable (discussed in Appendix A). Therefore, backtracking is not necessary. Whole-proof search methods suffer from error propagation. It generates all subsequent steps in one pass. Thus, the first erroneous step causes cascading failures of the whole proof, wasting all subsequent steps.

4.1.2 Design

The overall pipeline of the proposed Hierarchical Autoregressive Formal Reasoner (HAR) is in Fig. 1. The core idea is to treat the construction of a formal solution as a backtracking-free autoregressive search process. Each formal step is decomposed into an informal thought, a formal draft, and several fine-grained formal proofs.

Hierarchical Reasoning. To align the granularity between informal and formal reasoning, we split one formal step into a drafting step and several proof searches. The drafting step consists of an informal reasoning step and a formal step draft, which is generated following the informal step and may contain logical gaps. Then, proof searches fill the underlying gaps. Concretely, given an informal problem P_i and the current forward state $S^{(t)}$, the next solution step is generated as follows.

- **High-level Drafting.** Sample an informal step $s_i^{(t)}$ from an LLM parameterized by θ , i.e., $s_i^{(t)} \sim p_{\theta}(\cdot|P_i,S^{(t)})$. Then, sample a formal step draft $s_f^{(t)} \sim p_{\theta}(\cdot|P_i,S^{(t)},s_i^{(t)})$. The draft is executed by Lean, resulting in the next state $S^{(t+1)}$, and unsolved goals $[\hat{S}_j^{(t+1)}]_{j=n}^m$ (corresponding to sorry placeholders in $s_f^{(t)}$), i.e., $(S^{(t+1)},[\hat{S}_j^{(t+1)}]_{j=1}^n) = \operatorname{Lean}(S^{(t)}|s_f^{(t)})$,
- Low-level Proving. For each unsolved goal $\hat{S}_j^{(t+1)}$, proof search is conducted to search for its proof $\hat{s}_{f,j}$. If all gaps are proven, the solution step $(s_i^{(t)},s_f^{(t)},[\hat{s}_{f,j}]_{j=1}^m)$ is returned and the current state is updated to $S^{(t+1)}$.

Autoregressive Search. The construction of the formal solution is formulated as an autoregressive search without backtracking. Concretely, an agent starts with some budget (max number of expansion attempts) N_S and the initial forward state S_0 . At state $S^{(t)}$, an expansion attempt includes generateing an informal solution step $s_i^{(t)}$, a formal step draft $s_f^{(t)}$, and the corresponding gap proofs $[\hat{s}_{f,j}]_{j=1}^m$. If the formal step draft is successfully executed by Lean and all proof searches succeed, the expansion succeeds and updates the solution state to $S^{(t+1)}$. Otherwise, the expansion fails. The agent will repeatedly retry until the budget is exhausted.

The agent submits answers by exact (implicitly submitting an answer proposition and its proof simultaneously) and terminates. If the submission is correct, the search succeeds; otherwise, the search restarts from S_0 with the remaining budget. If the budget is exhausted, the search fails.

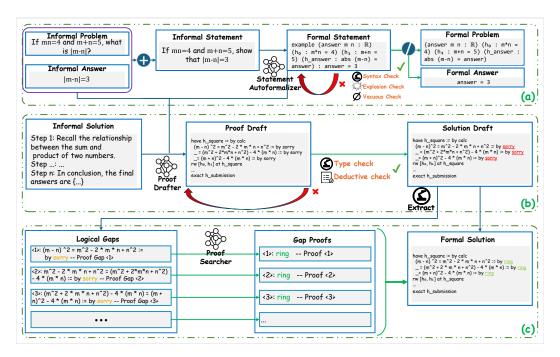


Figure 2: Demonstration of Chain-of-Proxy-Autoformalization (CoPA). (a) Given an informal problem and its informal answer, CoPA employs statement autoformalization as a proxy to formalize both the problem and its corresponding answer. Syntax check, explosion check, and vacuous check filter out low-quality formalizations; (b) Given an informal problem, its answer, solution, and formal statement, CoPA utilizes proof drafting as a proxy to draft a formal solution. Typecheck and deductive check filter out low-quality formalizations; (c) Given a solution draft, CoPA utilizes proof search to fill logical gaps, resulting in a completed formal solution.

4.2 Chain-of-Proxy-Autoformalization

The overall pipeline of Chain-of-Proxy-Autoformalization (CoPA) is in Fig. 2. The problem, answer, and solution autoformalization are reformulated as a chain of statement autoformalization, proof drafting [38], and proof search. Explosion, vacuous, and deductive checks are designed to improve data quality and ensure compatibility with D-FPS. To mine data towards the last nugget of gold, we design expert iterations specifically targeted at problem-solving. We also provide insights on potential explorations, including stepwise-verified solution pruning and informal solution denoising.

4.2.1 Problem Autoformalization

Task Formulation. Problem autoformalization is to translate an informal find-all problem P_i and its ground-truth answer \bar{A}_i into a formal problem P_f with ground-truth answer \bar{A}_f . The translation should pass the syntax check and maintain semantics with (P_i, A_i) .

Problem+Answer=Statement. Statement autoformalization is used as a proxy for problem and answer autoformalization. Given an informal problem P_i with answer proposition \bar{A}_i , concatenating P_i and \bar{A}_i can construct a statement that "if the conditions and conclusions are satisfied, then the ground-truth answer holds". Therefore, we use statement autoformalizers to get a formal statement $\forall_{j=1}^m(\chi_j:T_j),\bar{A}$, where T_j can live in the Type and Prop universe. Based on the dependency of \bar{A} , we split out variables that A depends on into a telescope $V=[v_j:T_j]_{j=1}^n$, hypotheses that A depends into a telescope $\Phi=[h_j:\phi_j]_{j=1}^p$, and compose the remaining to ψ . Hence, we get a formal problem $P_f(\hat{A})=(\forall_{j=1}^n(v_j:T_j),\forall_{j=1}^p(h_j:\phi_j),(\psi\leftrightarrow A))[A\mapsto \hat{A}]$ with ground-truth \bar{A} .

Quality Filtering. We filter out problems that fail in Lean syntax check, contain contradictory conditions, or are overly simple. Concretely, *explosion check* attempts to prove $\forall_{j=1}^n(v_j:T_j), \forall_{j=1}^p(h_j:\phi_j), \psi \to \text{False}$ and discard those proven. Relevant automation is detailed in Appendix E. If the proposition holds, the Modus Tollens rule concludes that there exist contradictions in conditions; thus,

arbitrary answer propositions hold by the principle of explosion. *Vacuous check* rejects if $A_f \in V \cup \Phi$ or A_f is a clause in ψ because the answer is too easy to derive, leaving the problem vacuous.

4.2.2 Hierarchical Solution Autoformalization

Task Formulation. Solution autoformalization is to translate an informal solution s_i of problem P_i , \bar{A}_i , P_f , \bar{A}_f into a formal solution s_f which passes typecheck and is semantically consistent to s_i .

Solution Draft \approx **Proof Draft**. Solution autoformalization is hierarchically divided into two stages: solution drafting and gap proving. Solution drafting aligns the granularity between formal and informal reasoning, and is implemented by the proxy of proof drafting. Forward solutions are a subset of proofs for $\forall_{j=1}^n(v_j:T_j), \forall_{j=1}^p(h_j:\phi_j), \psi \to \bar{A}$. Therefore, we use a proof drafter to draft \mathring{s}_f for the statement. Then, *deductive check* filters out drafts if they contain tactics that change the target of proof goals, or do not simultaneously submit an answer and its proof with a direct exact.

Solution Draft+Gap Proofs=Solution. Given a solution draft \mathring{s}_f , the proof goals suppressed by sorry are extracted and a proof searcher constructs their proofs. If any proof search fails, the draft \mathring{s}_f is rejected. Otherwise, the draft and the gap proofs are composed as the final formal solution s_f .

4.2.3 Expert Iteration

To unlock the full potential of existing data, we design an expert iteration pipeline that iteratively trains task-specific models and generates more data.

Cold Start@Cycle 0. Cold start is based on an augmentation of MetaMathQA [45] and Numina-CoT [46]. We only use data from Numina-CoT and carefully filter out unsuitable problems, such as proving problems, synthetic ones, and those with corrupted answers or solutions. For finer-grained processing, we fine-tuned a Multilingual-E5-small [47] on the MATH [48] train set to label the subject and difficulty for each datapoint. We manually annotate formal statements and proof drafts for 100 demonstrations sampled from the MATH train set, then use DeepSeek-V3-12-26 [49] with subject-wise and level-wise 4-shot in-context learning to autoformalize statements and proof drafts. A proof searcher is trained with state-tactic pairs from Mathlib 4 [50] extracted by Pantograph [51] and the Lean-Workbook [35] dataset. The proof searcher is used to fill proof gaps. Resulting datapoints are categorized into 1) fails at statement autoformalization; 2) fails at proof drafting; 3) fails at proof gap filling; and 4) succeeds in all stages. Models are trained under the "next-stage" strategy: the statement autoformalizer is trained on datapoints from the third and fourth categories, the proof drafter is trained on only fourth-category data, and the proof searcher is trained on all succeeded gap proofs. Sophisticated methods are tested for filtering statement autoformalization data, but all perform worse than simple next-stage filtering, as detailed in Appendix D.

Iteration@Cycle n. In subsequent cycles, we use the Numina-1.5 [46] dataset and also filter out all proving problems, multiple-choice problems, and problems with corrupted answers. Model training follows the next-stage strategy on cumulated data from Cycle 0 to Cycle n-1. At the end of each cycle, the datapoints of the fourth category are frozen and do not participate in the data generation of future cycles.

4.2.4 Explorations

Data produced by CoPA enables some intriguing explorations. Here we give a glimpse, and hopefully they can inspire readers of relevant directions.

Solution Pruning. Accompanied by inference-time scaling of large reasoning models (LRM), efficient reasoning [52–56] is drawing more attention. We demonstrate the feasibility of performing formally verified stepwise pruning on reasoning trajectories.

A formal solution $s_f = [s_{f,j}]_{j=1}^m$ may contain *redundant steps*, i.e., steps whose proposed hypotheses are not used in subsequent reasoning. We use Lean 4 Linter [43] to detect and remove redundant steps. Notably, this operation can be iteratively applied because there may be interdependencies among redundancies, where removing one subset may alter others.

Dataset Denoising. One of the most significant advantages of formal over informal reasoning is the process-verifiability, which can generate high-quality training data [57]. Here, we explore

¹https://huggingface.co/datasets/yingyingzhang/metamath-qwen2-math

the possibility of repairing flaws in informal reasoning. Given an informal dataset of problems, answers, and solutions $\mathcal{D}_i = \{(P_i^{(j)}, \bar{A}_i^{(j)}), s_i^{(j)}\}_{j=1}^m$, we run CoPA formalize them and get $\mathcal{D}_f = \{(P_f^{(j)}, \bar{A}_f^{(j)}), s_f^{(j)}\}_{j=1}^m$. Then we translate formal solutions back, resulting in a denoised informal dataset $\bar{\mathcal{D}}_i = \{(P_i^{(j)}, \bar{A}_i^{(j)}), \bar{s}_i^{(j)}\}_{j=1}^m$ with more trustworthy and consistent solutions.

5 Experiment

In this section, we answer the following research questions through comprehensive experiments.

- Scalability of CoPA. How scalable is CoPA with expert iteration on the datasets?
- Effectiveness of HAR. How effective is HAR over baselines and ablations?
- Convergence of Best-first Search. Will best-first search converge to whole-generation and autoregression as the expansion width approaches 1?
- Solution Pruning. Can solution pruning make training and inference more efficient?
- Dataset Denoising. Can formal-denoised data yields better fine-tuned models?

In each cycle of CoPA, 100 formalized statements are sampled and manually evaluated. HAR and its baselines are evaluated on FormalMath500 [7] and MiniF2F-Solving [7]. FormalMath500 is a formalized subset of MATH500 [48], consisting of 387 formal problems. MiniF2F-Solving is a refactored subset of MiniF2F [9], consisting of 375 formal problems². See Appendix E, F,G,L, I for environment settings, training recipes, evaluation hyperparameters, prompt templates, and details about dataset denoising, respectively.

5.1 Baselines Methods

The following baselines for HAR are evaluated. All methods are fine-tuned from Qwen2.5-Math-7B [58] on data produced by CoPA.

ICL and **Hybrid CoT** are baselines for D-FPS introduced in [7]. ICL refers to in-context learning DeepSeek-V3 [49] with 10-shot demonstrations of informal problems, initial forward states, and ground-truth forward solutions. Hybrid CoT refers to additionally augmenting the forward solutions with aligned informal reasoning steps.

Best-first Search (BFS) resembles proof search in formal theorem proving (FTP), including a broad spectrum of works [59, 14, 18]. Given an informal problem P_i , a solution state S_t , it samples solution steps $s_t \sim p_\theta(\cdot|P_i,S_t)$ and conducts best-first search with value function $v_t = \sum_{t' \leq t} \frac{\log p_\theta(s_{t'} \mid P_{t'}, S_{t'})}{|s_{t'}|}$, i.e., the sum of normalized log-likelihoods of steps leading to S_t .

Whole-Solution Generation (WG) resembles whole-proof generation in FTP, including DeepSeek-Prover-V1 [24], DeepSeek-Prover-V1.5 [25], Goedel Prover [26]. Given an informal problem P_i , the initial solution state S_0 , it samples the whole solution in one shot $s \sim p_{\theta}(\cdot|P_i, S_0)$.

Autoregressive Reasoning (AR) is an ablation of the proposed HAR. Given an informal problem P_i , a solution state S_t , it iteratively samples solution steps $s_t \sim p_\theta(\cdot|P_i,S_t)$ until the step is correctly executed in Lean or the budget is exhausted. The solution construction is modeled as an autoregressive generation with per-step rejective sampling.

Hierarchical Best-first Search (H-BFS) and **Hierarchical Whole-Generation (H-WG)** are hierarchical variants of BFS [15] and WG. Instead of directly generating a complete step/solution, the model generates a step/solution draft (possibly with sorry placeholders), then conducts proof search to fill them.

Hierarchical Solution Autoformalization (H-SA) is introduced in Sec. 4.2.2. Given a formal statement (composed of the formal problem and its ground-truth answer) and a ground-truth informal solution, a proof drafter first translates the informal solution into a formal draft, and a proof searcher fills proof gaps. H-SA sets a strong baseline because it can be viewed as an augmented H-WG with ground-truth formal answers and informal solutions.

²We have conducted explosion check and vacuous check on these benchmarks. 9 of FormalMath500 and 5 of MiniF2F-Solving are filtered out in the following evaluation.

Table 1: Results of CoPA with expert iteration from Cycle 0 to Cycle 2. *Total* refers to the total number of datapoints to run CoPA; *Stages* represents the three stages of CoPA, where *Problem, Draft*, and *Gap* denote the success rate of problem autoformalization, solution drafting, and proof gap filling, respectively; *Problem Autoformalization* refers to the portion of autoformalized problems that are semantically correct from the human perspective; *FormalMath500* and *MiniF2F-Solving* denote the solving rate of applying proof drafting and proof gap filling on FormalMath500 and MiniF2F-Solving, respectively. Success rates and problem autoformalization accuracies are not directly comparable across cycles due to changes of data distribution. **Bold** highlights the best values.

Cvcle	Total	Stages			Problem	Formal-	MiniF2F-	
-,		Problem	Draft	Gap	Autoformalization	Math500	Solving	
0	401,499	62.89%	21.53%	7.18%	47%	35.98%	45.14%	
1	550,428	78.26%	67.11%	20.42%	62%	37.83%	48.11%	
2	437,652	85.33%	76.96%	11.87%	53%	40.21%	50.27%	

Table 2: Evaluation results of HAR against baselines and ablations. *Solved* represents the solving rates; *Budget* represents the total number of solution steps generated in one experiment; **Bold** highlights the best values among all experiments; <u>Underlined</u> values emphasize the best values in each ablative or comparative group. HAR demonstrates significant and consistent advantages in both solving rates and budgets, even compared with H-SA, which is enhanced with informal ground-truths.

Data	Method	FormalM	ath500	MiniF2F-S	Solving
Data	Method	Solved ↑	$\mathbf{Budget}{\downarrow}$	Solved ↑	$\mathbf{Budget} \!\!\downarrow$
None	ICL Hybrid CoT	13.70% 15.50%	68382 79153	21.87% 21.60%	65148 81214
	пуши сот	13.30%	79133	21.00%	01214
	BFS	$9.52\% \pm 0.57\%$	28139 ± 104	$9.64\% \pm 1.66\%$	27712 ± 339
	WG	$18.78\% \pm 0.22\%$	18456 ± 92	$24.95\% \pm 1.09\%$	18853 ± 454
	$WG (K_W = 16)$	$21.78\% \pm 0.12\%$	35391 ± 153	$28.83\% \pm 0.77\%$	35895 ± 487
~	AR	$34.39\% \pm 0.78\%$	20860 ± 233	$44.41\% \pm 0.34\%$	17814 ± 140
Cycle 1	H-BFS	$13.32\% \pm 1.47\%$	27777 ± 360	$12.25\% \pm 1.47\%$	27479 ± 203
	H-WG	$36.77\% \pm 0.86\%$	17039 ± 461	$47.30\% \pm 1.01\%$	16303 ± 388
	H-WG ($K_W = 16$)	$40.04\% \pm 0.50\%$	32134 ± 226	$51.08\% \pm 0.44\%$	30357 ± 212
	H-SA	37.83%	\sim	48.11%	\sim
	HAR	$43.65\% \pm 1.35\%$	18432 ± 344	$55.50\% \pm 0.46\%$	15069 ± 143
Cycle 2	H-SA	40.21%	~	50.27%	~
Cycle 2	HAR	$44.09\% \pm 0.54\%$	18273 ± 116	$\underline{56.58\%} \pm 0.92\%$	14754 ± 269

5.2 Results and Discussions

Scalability of CoPA. Results of expert iteration and evaluation are summarized in Table 1. We run expert iteration for three cycles. Cycle 0 is a cold start, while Cycle 1 and Cycle 2 are normal expert iterations. Expert iteration shows significant improvement in problem autoformalization. From Cycle 0 to Cycle 1, the accuracy of problem autoformalization improves from 47% to 62%. Notably, for Cycle 2, CoPA excludes successfully gap-filled data in Cycle 1 (Gap), which makes a direct comparison between Cycle 1 and Cycle 2 unfair. The portion of semantically correct problem autoformalizations on Cycle 1 results excluding Gap data is 49.30%. Therefore, the actual improvement from Cycle 1 to Cycle 2 is $49.30\% \mapsto 53\%$, which is also significant. Proof drafting and proof gap filling are evaluated on FormalMath500 and MiniF2F-Solving, where improvements are also significant. Due to the limited computation budget, we cannot afford to continue expert iteration and leave further scaling up as future work.

Effectiveness of HAR. Results are summarized in Table 2. Means and standard deviations of three runs are reported for ablations. We also evaluate WG and H-WG with max generation attempts $K_W = 16$ for a more intuitive comparison. Ablative improvements of hierarchical decoupling (from BFS, WG, and AR to their hierarchical variants H-BFS, H-WG, and HAR) are huge, especially the doubled solving rates between WG and H-WG (18.78% \mapsto 36.77%, 24.95% \mapsto 47.30%). As categorized in [7], one main error type of such whole-generation methods is logically flawed solution steps. Hierarchical decoupling makes per-step reasoning more reliable.

Table 3: Results on H-BFS on different expansion sizes $B \in \{1, 2, 4, 8, 16\}$. Solved represents the solving rates; Avg. Len. denotes the average lengths of correct solutions; Budget denotes the number of all generated steps; **Bold** highlights the best values. As B lowers, H-BFS approaches HAR by increasing solving rates and solution lengths. On B = 1, H-BFS outperforms H-WG while still underperforming HAR.

Method	В	F	FormalMath50	00	N	MiniF2F-Solving			
Method	D	Solved \uparrow	Avg. Len.↓	Budget \downarrow	Solved \uparrow	Avg. Len.↓	Budget↓		
	16	7.67%	4.28	28824	6.76%	4.40	28570		
H-BFS	8	15.34%	4.76	27278	13.78%	4.94	27227		
	4	29.89%	5.62	24588	31.35%	5.82	24251		
	2	39.68%	6.71	21274	49.19%	6.77	19197		
	1	38.89%	7.24	20197	50.00%	8.08	17053		
H-WG	1	36.77%	7.10	16474	45.95%	7.33	15760		
HAR	1	41.80%	7.77	18902	54.86%	9.03	15271		

Table 4: Experiment results of solution pruning. *Recursion* represents the number of pruning runs; *Train Size* denotes the number of tokens in the training set; *Solved* represents the solving rates; *Avg. Len.* denotes the average lengths of correct solutions; **Bold** highlights the best values.

Recursion	Train Size↓	FormalMa	nth500	MiniF2F-Solving		
Recuision	II alli Size↓	Solved ↑	Avg. Len.↓	Solved ↑	Avg. Len.↓	
0	5.85×10^{7}	34.39% ± 0.78%	7.66 ± 0.18	44.41% ± 0.34%	8.12 ± 0.33	
1	4.92×10^{7}	$34.30\% \pm 0.54\%$	7.00 ± 0.01	$44.59\% \pm 0.66\%$	7.34 ± 0.22	
2	4.64×10^{7}	$34.57\% \pm 0.87\%$	7.07 ± 0.21	$44.50\% \pm 0.13\%$	7.19 ± 0.05	
3	4.54×10^{7}	34.83% ± 0.33%	6.88 ± 0.30	45.50% ± 1.04%	7.63 ± 0.11	
∞	$4.48 imes 10^7$	$34.48\% \pm 0.76\%$	6.68 ± 0.16	$45.32\% \pm 0.13\%$	7.49 ± 0.20	

Comparisons among BFS, WG and AR demonstrate AR's superiority in both solving rates and budget consumption. AR requires on-par budget of WG (21K vs. 18K, 18K vs. 19K), while reaching nearly double its solving rates (18.78% \mapsto 34.39%, 24.95% \mapsto 44.41%). Compared with WG ($K_W=16$), AR also has nearly half the budget and $1.5\times$ solving rates. Similar conclusions can be derived by comparing H-BFS, H-WG and HAR. One major improvement of AR (HAR) over WG (H-WG) is that it splits the autoregressive generation of the formal solution into many smaller rejective sampling steps: autoregressively sample the next solution step, reject if the Lean 4 typecheck (or the gap proof search) fails, until a logically correct step is generated. This finer-grained rejective sampling avoids a huge waste in WG: if one intermediate step fails, all following steps are wasted.

HAR also shows consistent improvement over expert iteration: between Cycle 1 and Cycle 2, the solving rates improve, and the budget lowers. Notably, in all the cycles, HAR even clearly outperforms H-SA, which incorporates ground-truth informal solutions.

More results and analysis are in Appendix B. Solving rates across different budgets validates HAR's Pareto-optimality over all baselines. Scaling experiments HAR and H-BFS to step limit $K_S=320$ demonstrate HAR's stronger scaling capabilities, but HAR is limited by the LLM's context length. Extended evaluations on PutnamBench-Solving [7, 60] and MathOdessy [61] and experiments on Phi-4-mini-instruct [62] support the generalizability of HAR. Case studies can be found in Appendix J.

Convergence of BFS. We evaluate H-BFS with expansion widths $B \in \{1, 2, 4, 8, 16\}$. Results are shown in Table 3. Under a fixed budget, as B decreases, the correct solutions become longer, the performance of H-BFS approaches and finally surpasses that of H-WG. This result aligns with the intuition that higher B leads to breadth-first search and lower B leads to depth-first search. H-BFS with B=1 resembles H-WG and HAR. Its advantages over H-WG are 1) H-BFS explicitly receives the current solution state as input, while H-WG has to implicitly model solution states during generation; 2) Upon generating an incorrect step, H-BFS immediately exhausts the expansion width B=1 and starts a new search, while H-WG wastes budget in generating the following steps. The disadvantage of H-BFS over HAR is also the early stop behavior. H-BFS's immediate restart on expansion failure prevents it from constructing longer solutions, thus underperforming on more complex problems. This hypothesis is supported by results that the average solution lengths of H-BFS with B=1 are significantly lower than those of HAR (7.24, 8.08 vs. 7.77, 9.03).

Solution Pruning. Evaluation results of AR trained on Cycle 1 data recursively pruned for $R \in \{0, 1, 2, 3, \infty\}$ times are in Table 4. R = 0 denotes no pruning. $R = \infty$ indicates iterative pruning

Table 5: Experiment results of dataset denoising. *English Open, English MC, Chinese Gaokao, Chinese Other*, and *English Competition, Overall* represent the average accuracy on English open datasets, English multiple-choice datasets, Chinese gaokao collections, Chinese other datasets, English competition datasets, and all datasets, respectively; *Original, Direct SFT, Denoised SFT* represents the original model, the model fine-tuned using the original informal solution, and the model fine-tuned using the denoised informal solution, respectively; **Bold** highlights best values; Cyan and Purple indicate increases and decreases over the original model.

Model	English Open	English MC	Chinese Gaokao	Chinese Other	English Competition	Overall
Original	52.56%	76.63%	29.04%	54.05%	25.40%	48.36%
Direct SFT Denoised SFT	60.13%(+7.57%) 64.70% (+12.14%)	77.27% (+0.64%) 76.60%(-0.03%)	27.90%(-1.14%) 45.54%(+16.5%)	61.35%(+7.30%) 70.20 %(+16.15%)	26.25 % (+0.85%) 25.85%(+0.45%)	52.52%(+4.16%) 59.19% (+10.83%)

until no redundant steps can be removed. We report the means and standard deviations of three runs. Although pruned 23.42% of solution tokens (between R=0 and $R=\infty$), the solving rates do not show a significant difference (34.39%, 44.41% vs. 34.48%, 45.32%), and the average solution length is greatly lowered ($7.66 \mapsto 6.68$, $8.12 \mapsto 7.49$). See Appendix H for more results and analysis.

Dataset Denoising. Results are in Table 5, where benchmarks are categorized according to Qwen2.5-Math [58]. More details and discussions are in Appendix I. Denoised SFT model shows significantly superior performance on most datasets with relative improvements between $\sim 4\%$ to $\sim 18\%$. However, it falls short on English multiple-choice benchmarks (-0.67%) and English competition benchmarks (-0.40%). This drop is intuitive because CoPA focuses on free-response problems rather than multiple-choice questions. We leave more fine-grained formulations, such as multiple-choice and true-false problems, for future work.

6 Conclusion

This paper presents a systematic approach to two core challenges current formal problem-solving faces: the absence of a systematic study of pipeline design and extreme data scarcity. For the first, we propose HAR (*Hierarchical Autoregressive Formal Reasoner*), an informal-aligned, efficient and effective method for D-FPS. HAR decouples high-level reasoning and low-level proofs, and autoregressively constructs solutions. For the second, we propose CoPA (*Chain-of-Proxy-Autoformalization*), a scalable data generation pipeline for D-FPS. CoPA bypasses existing models' lack of D-FPS priors by chaining well-explored FTP tasks, statement autoformalization, proof drafting, and proof search as a proxy path. Based on data from CoPA, we explore the possibility of Solution Pruning and Dataset Denoising. Comprehensive experiments validate the effectiveness of the proposed methods.

References

- [1] OpenAI, :, A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry, A. Beutel, A. Carney, A. Iftimie, A. Karpenko, A. T. Passos, A. Neitz, A. Prokofiev, A. Wei, A. Tam, A. Bennett, A. Kumar, A. Saraiva, A. Vallone, A. Duberstein, A. Kondrich, A. Mishchenko, A. Applebaum, A. Jiang, A. Nair, B. Zoph, B. Ghorbani, B. Rossen, B. Sokolowsky, B. Barak, B. McGrew, B. Minaiev, B. Hao, B. Baker, B. Houghton, B. McKinzie, B. Eastman, C. Lugaresi, C. Bassin, C. Hudson, C. M. Li, C. de Bourcy, C. Voss, C. Shen, C. Zhang, C. Koch, C. Orsinger, C. Hesse, C. Fischer, C. Chan, D. Roberts, D. Kappler, D. Levy, D. Selsam, D. Dohan, D. Farhi, D. Mely, D. Robinson, D. Tsipras, D. Li, D. Oprica, E. Freeman, E. Zhang, E. Wong, E. Proehl, E. Cheung, E. Mitchell, E. Wallace, E. Ritter, E. Mays, F. Wang, F. P. Such, F. Raso, F. Leoni, F. Tsimpourlas, F. Song, F. von Lohmann, F. Sulit, G. Salmon, G. Parascandolo, G. Chabot, G. Zhao, G. Brockman, G. Leclerc, H. Salman, H. Bao, H. Sheng, H. Andrin, H. Bagherinezhad, H. Ren, H. Lightman, H. W. Chung, I. Kivlichan, I. O'Connell, I. Osband, I. C. Gilaberte, I. Akkaya, I. Kostrikov, I. Sutskever, I. Kofman, J. Pachocki, J. Lennon, J. Wei, J. Harb, J. Twore, J. Feng, J. Yu, J. Weng, J. Tang, J. Yu, J. Q. Candela, J. Palermo, J. Parish, J. Heidecke, J. Hallman, J. Rizzo, J. Gordon, J. Uesato, J. Ward, J. Huizinga, J. Wang, K. Chen, K. Xiao, K. Singhal, K. Nguyen, K. Cobbe, K. Shi, K. Wood, K. Rimbach, K. Gu-Lemberg, K. Liu, K. Lu, K. Stone, K. Yu, L. Ahmad, L. Yang, L. Liu, L. Maksin, L. Ho, L. Fedus, L. Weng, L. Li, L. McCallum, L. Held, L. Kuhn, L. Kondraciuk, L. Kaiser, L. Metz, M. Boyd, M. Trebacz, M. Joglekar, M. Chen, M. Tintor, M. Meyer, M. Jones, M. Kaufer, M. Schwarzer, M. Shah, M. Yatbaz, M. Y. Guan, M. Xu, M. Yan, M. Glaese, M. Chen, M. Lampe, M. Malek, M. Wang, M. Fradin, M. McClay, M. Pavlov, M. Wang, M. Wang, M. Murati, M. Bavarian, M. Rohaninejad, N. McAleese, N. Chowdhury, N. Chowdhury, N. Ryder, N. Tezak, N. Brown, O. Nachum, O. Boiko, O. Murk, O. Watkins, P. Chao, P. Ashbourne, P. Izmailov, P. Zhokhov, R. Dias, R. Arora, R. Lin, R. G. Lopes, R. Gaon, R. Miyara, R. Leike, R. Hwang, R. Garg, R. Brown, R. James, R. Shu, R. Cheu, R. Greene, S. Jain, S. Altman, S. Toizer, S. Toyer, S. Miserendino, S. Agarwal, S. Hernandez, S. Baker, S. McKinney, S. Yan, S. Zhao, S. Hu, S. Santurkar, S. R. Chaudhuri, S. Zhang, S. Fu, S. Papay, S. Lin, S. Balaji, S. Sanjeev, S. Sidor, T. Broda, A. Clark, T. Wang, T. Gordon, T. Sanders, T. Patwardhan, T. Sottiaux, T. Degry, T. Dimson, T. Zheng, T. Garipov, T. Stasi, T. Bansal, T. Creech, T. Peterson, T. Eloundou, V. Qi, V. Kosaraju, V. Monaco, V. Pong, V. Fomenko, W. Zheng, W. Zhou, W. McCabe, W. Zaremba, Y. Dubois, Y. Lu, Y. Chen, Y. Cha, Y. Bai, Y. He, Y. Zhang, Y. Wang, Z. Shao, and Z. Li, "Openai of system card," 2024. [Online]. Available: https://arxiv.org/abs/2412.16720
- [2] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun, X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo, Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang, "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning," 2025. [Online]. Available: https://arxiv.org/abs/2501.12948
- [3] Q. Team, "Qwq-32b: Embracing the power of reinforcement learning," March 2025. [Online]. Available: https://qwenlm.github.io/blog/qwq-32b/

- [4] B. Stroebl, S. Kapoor, and A. Narayanan, "Inference scaling flaws: The limits of llm resampling with imperfect verifiers," *arXiv preprint arXiv:2411.17501*, 2024.
- [5] T. Ye, Z. Xu, Y. Li, and Z. Allen-Zhu, "Physics of language models: Part 2.2, how to learn from mistakes on grade-school math problems," 2024. [Online]. Available: https://arxiv.org/abs/2408.16293
- [6] Z. Allen-Zhu and Y. Li, "Physics of language models: Part 3.3, knowledge capacity scaling laws," 2024. [Online]. Available: https://arxiv.org/abs/2404.05405
- [7] Q. Liu, X. Zheng, R. Xia, X. Qi, Q. Cao, and J. Yan, "Beyond theorem proving: Formulation, framework and benchmark for formal problem-solving," 2025. [Online]. Available: https://arxiv.org/abs/2505.04528
- [8] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt, "Measuring mathematical problem solving with the math dataset," *arXiv* preprint *arXiv*:2103.03874, 2021.
- [9] K. Zheng, J. M. Han, and S. Polu, "Minif2f: a cross-system benchmark for formal olympiad-level mathematics," 2022. [Online]. Available: https://arxiv.org/abs/2109.00110
- [10] Z. Li, J. Sun, L. Murphy, Q. Su, Z. Li, X. Zhang, K. Yang, and X. Si, "A survey on deep learning for theorem proving," 2024. [Online]. Available: https://arxiv.org/abs/2404.09939
- [11] S. Polu and I. Sutskever, "Generative language modeling for automated theorem proving," 2020. [Online]. Available: https://arxiv.org/abs/2009.03393
- [12] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever, "Formal mathematics statement curriculum learning," 2022. [Online]. Available: https://arxiv.org/abs/2202.01344
- [13] G. Lample, M.-A. Lachaux, T. Lavril, X. Martinet, A. Hayat, G. Ebner, A. Rodriguez, and T. Lacroix, "Hypertree proof search for neural theorem proving," 2022. [Online]. Available: https://arxiv.org/abs/2205.11491
- [14] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger, and A. Anandkumar, "Leandojo: Theorem proving with retrieval-augmented language models," 2023. [Online]. Available: https://arxiv.org/abs/2306.15626
- [15] H. Wang, H. Xin, Z. Liu, W. Li, Y. Huang, J. Lu, Z. Yang, J. Tang, J. Yin, Z. Li, and X. Liang, "Proving theorems recursively," 2024. [Online]. Available: https://arxiv.org/abs/2405.14414
- [16] H. Lin, Z. Sun, S. Welleck, and Y. Yang, "Lean-star: Learning to interleave thinking and proving," 2025. [Online]. Available: https://arxiv.org/abs/2407.10040
- [17] R. Xin, C. Xi, J. Yang, F. Chen, H. Wu, X. Xiao, Y. Sun, S. Zheng, and K. Shen, "Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving," 2025. [Online]. Available: https://arxiv.org/abs/2502.03438
- [18] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen, "Internlm2.5-stepprover: Advancing automated theorem proving via expert iteration on large-scale lean problems," 2024. [Online]. Available: https://arxiv.org/abs/2410.15700
- [19] Y. Li, D. Du, L. Song, C. Li, W. Wang, T. Yang, and H. Mi, "Hunyuanprover: A scalable data synthesis framework and guided tree search for automated theorem proving," 2025. [Online]. Available: https://arxiv.org/abs/2412.20735
- [20] E. First, M. N. Rabe, T. Ringer, and Y. Brun, "Baldur: Whole-proof generation and repair with large language models," 2023. [Online]. Available: https://arxiv.org/abs/2303.04910
- [21] A. Q. Jiang, S. Welleck, J. P. Zhou, W. Li, J. Liu, M. Jamnik, T. Lacroix, Y. Wu, and G. Lample, "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs," 2023. [Online]. Available: https://arxiv.org/abs/2210.12283
- [22] X. Zhao, W. Li, and L. Kong, "Decomposing the enigma: Subgoal-based demonstration learning for formal theorem proving," 2023. [Online]. Available: https://arxiv.org/abs/2305.16366
- [23] H. Wang, H. Xin, C. Zheng, L. Li, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi, E. Xie, J. Yin, Z. Li, H. Liao, and X. Liang, "Lego-prover: Neural theorem proving with growing libraries," 2023. [Online]. Available: https://arxiv.org/abs/2310.00656
- [24] H. Xin, D. Guo, Z. Shao, Z. Ren, Q. Zhu, B. Liu, C. Ruan, W. Li, and X. Liang, "Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data," 2024. [Online]. Available: https://arxiv.org/abs/2405.14333

- [25] H. Xin, Z. Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang, X. Lu, Q. Du, W. Gao, Q. Zhu, D. Yang, Z. Gou, Z. F. Wu, F. Luo, and C. Ruan, "Deepseek-prover-v1.5: Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search," 2024. [Online]. Available: https://arxiv.org/abs/2408.08152
- [26] Y. Lin, S. Tang, B. Lyu, J. Wu, H. Lin, K. Yang, J. Li, M. Xia, D. Chen, S. Arora, and C. Jin, "Goedel-prover: A frontier model for open-source automated theorem proving," 2025. [Online]. Available: https://arxiv.org/abs/2502.07640
- [27] J. Zhang, Q. Wang, X. Ji, Y. Liu, Y. Yue, F. Zhang, D. Zhang, G. Zhou, and K. Gai, "Leanabell-prover: Posttraining scaling in formal reasoning," 2025. [Online]. Available: https://arxiv.org/abs/2504.06122
- [28] K. Dong and T. Ma, "Stp: Self-play Ilm theorem provers with iterative conjecturing and proving," 2025. [Online]. Available: https://arxiv.org/abs/2502.00212
- [29] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and C. Szegedy, "Autoformalization with large language models," 2022. [Online]. Available: https://arxiv.org/abs/2205.12615
- [30] Z. Azerbayev, B. Piotrowski, H. Schoelkopf, E. W. Ayers, D. Radev, and J. Avigad, "Proofnet: Autoformalizing and formally proving undergraduate-level mathematics," 2023. [Online]. Available: https://arxiv.org/abs/2302.12433
- [31] A. Gulati, D. Ladsaria, S. Mishra, J. Sidhu, and B. Miranda, "An evaluation benchmark for autoformalization in lean4," 2024. [Online]. Available: https://arxiv.org/abs/2406.06555
- [32] Q. Wang, C. Brown, C. Kaliszyk, and J. Urban, "Exploration of neural machine translation in autoformalization of mathematics in mizar," in *Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs*, ser. POPL '20, vol. 5. ACM, Jan. 2020, p. 85–98. [Online]. Available: http://dx.doi.org/10.1145/3372885.3373827
- [33] A. Q. Jiang, W. Li, and M. Jamnik, "Multilingual mathematical autoformalization," 2023. [Online]. Available: https://arxiv.org/abs/2311.03755
- [34] Q. Liu, X. Zheng, X. Lu, Q. Cao, and J. Yan, "Rethinking and improving autoformalization: Towards a faithful metric and a dependency retrieval-based approach," in *The Thirteenth International Conference on Learning Representations*, 2025. [Online]. Available: https://openreview.net/forum?id=hUb2At2DsQ
- [35] H. Ying, Z. Wu, Y. Geng, J. Wang, D. Lin, and K. Chen, "Lean workbook: A large-scale lean problem set formalized from natural language math problems," 2024. [Online]. Available: https://arxiv.org/abs/2406.03847
- [36] J. Lu, Y. Wan, Y. Huang, J. Xiong, Z. Liu, and Z. Guo, "Formalalign: Automated alignment evaluation for autoformalization," 2024. [Online]. Available: https://arxiv.org/abs/2410.10135
- [37] G. Cunningham, R. C. Bunescu, and D. Juedes, "Towards autoformalization of mathematics and code correctness: Experiments with elementary proofs," 2023. [Online]. Available: https://arxiv.org/abs/2301.02195
- [38] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample, and Y. Wu, "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs," in *The Eleventh International Conference on Learning Representations*, 2023. [Online]. Available: https://openreview.net/forum?id=SMa9EAovKMC
- [39] L. Murphy, K. Yang, J. Sun, Z. Li, A. Anandkumar, and X. Si, "Autoformalizing euclidean geometry," 2024. [Online]. Available: https://arxiv.org/abs/2405.17216
- [40] J. Lu, Z. Liu, Y. Wan, Y. Huang, H. Wang, Z. Yang, J. Tang, and Z. Guo, "Process-driven autoformalization in lean 4," 2024. [Online]. Available: https://arxiv.org/abs/2406.01940
- [41] S. Wu, S. Lu, Y. Gong, N. Duan, and P. Wei, "Alchemy: Amplifying theorem-proving capability through symbolic mutation," 2025. [Online]. Available: https://arxiv.org/abs/2410.15748
- [42] J. Rotella, Z. Qin, A. Z. Yang, B. Miranda, M. E. A. Seddik, J. Zuo, H. Hacid, L. de Moura, S. Kong, and S. Hu, "Synthetic theorem generation in lean," 2025. [Online]. Available: https://openreview.net/forum?id=EeDSMy5Ruj
- [43] L. d. Moura and S. Ullrich, "The lean 4 theorem prover and programming language," in *Automated Deduction–CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28.* Springer, 2021, pp. 625–635.

- [44] J. Limperg and A. H. From, "Aesop: White-box best-first proof search for lean," in *Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs*, ser. CPP 2023. New York, NY, USA: Association for Computing Machinery, 2023, p. 253–266. [Online]. Available: https://doi.org/10.1145/3573105.3575671
- [45] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu, "Metamath: Bootstrap your own mathematical questions for large language models," *arXiv* preprint arXiv:2309.12284, 2023.
- [46] J. LI, E. Beeching, L. Tunstall, B. Lipkin, R. Soletskyi, S. C. Huang, K. Rasul, L. Yu, A. Jiang, Z. Shen, Z. Qin, B. Dong, L. Zhou, Y. Fleureau, G. Lample, and S. Polu, "Numinamath," [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.
- [47] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and F. Wei, "Multilingual e5 text embeddings: A technical report," *arXiv preprint arXiv:2402.05672*, 2024.
- [48] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt, "Measuring mathematical problem solving with the math dataset," 2021. [Online]. Available: https://arxiv.org/abs/2103.03874
- [49] DeepSeek-AI, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Guo, D. Yang, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li, H. Qu, J. L. Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Wang, J. Chen, J. Chen, J. Yuan, J. Qiu, J. Li, J. Song, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Xu, L. Xia, L. Zhao, L. Wang, L. Zhang, M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang, M. Li, N. Tian, P. Huang, P. Wang, P. Zhang, Q. Wang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L. Jin, R. Ge, R. Zhang, R. Pan, R. Wang, R. Xu, R. Zhang, R. Chen, S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu, S. Ye, S. Ye, S. Ma, S. Wang, S. Zhou, S. Yu, S. Zhou, S. Pan, T. Wang, T. Yun, T. Pei, T. Sun, W. L. Xiao, W. Zeng, W. Zhao, W. An, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, X. Q. Li, X. Jin, X. Wang, X. Bi, X. Liu, X. Wang, X. Shen, X. Chen, X. Zhang, X. Chen, X. Nie, X. Sun, X. Wang, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yu, X. Song, X. Shan, X. Zhou, X. Yang, X. Li, X. Su, X. Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Y. Zhang, Y. Xu, Y. Xu, Y. Huang, Y. Li, Y. Zhao, Y. Sun, Y. Li, Y. Wang, Y. Yu, Y. Zheng, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Tang, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo, Y. Wu, Y. Ou, Y. Zhu, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Zha, Y. Xiong, Y. Ma, Y. Yan, Y. Luo, Y. You, Y. Liu, Y. Zhou, Z. F. Wu, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Huang, Z. Zhang, Z. Xie, Z. Zhang, Z. Hao, Z. Gou, Z. Ma, Z. Yan, Z. Shao, Z. Xu, Z. Wu, Z. Zhang, Z. Li, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Gao, and Z. Pan, "Deepseek-v3 technical report," 2025. [Online]. Available: https://arxiv.org/abs/2412.19437
- [50] T. mathlib Community, "The lean mathematical library," in *Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs*, ser. CPP 2020. New York, NY, USA: Association for Computing Machinery, 2020, p. 367–381. [Online]. Available: https://doi.org/10.1145/3372885.3373824
- [51] L. Aniva, C. Sun, B. Miranda, C. Barrett, and S. Koyejo, "Pantograph: A machine-to-machine interaction interface for advanced theorem proving, high level reasoning, and data extraction in lean 4," *arXiv preprint arXiv:2410.16429*, 2024.
- [52] Y. Kang, X. Sun, L. Chen, and W. Zou, "C3ot: Generating shorter chain-of-thought without compromising effectiveness," 2024. [Online]. Available: https://arxiv.org/abs/2412.11664
- [53] H. Luo, L. Shen, H. He, Y. Wang, S. Liu, W. Li, N. Tan, X. Cao, and D. Tao, "O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning," 2025. [Online]. Available: https://arxiv.org/abs/2501.12570
- [54] R. Jie, X. Meng, L. Shang, X. Jiang, and Q. Liu, "Prompt-based length controlled generation with reinforcement learning," 2023. [Online]. Available: https://arxiv.org/abs/2308.12030
- [55] P. Singhal, T. Goyal, J. Xu, and G. Durrett, "A long way to go: Investigating length correlations in rlhf," 2024. [Online]. Available: https://arxiv.org/abs/2310.03716
- [56] W. Yuan, I. Kulikov, P. Yu, K. Cho, S. Sukhbaatar, J. Weston, and J. Xu, "Following length constraints in instructions," 2024. [Online]. Available: https://arxiv.org/abs/2406.17744

- [57] Z. Li, Z. Zhou, Y. Yao, Y.-F. Li, C. Cao, F. Yang, X. Zhang, and X. Ma, "Neuro-symbolic data generation for math reasoning," 2024. [Online]. Available: https://arxiv.org/abs/2412.04857
- [58] A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou, J. Lin, K. Lu, M. Xue, R. Lin, T. Liu, X. Ren, and Z. Zhang, "Qwen2.5-math technical report: Toward mathematical expert model via self-improvement," 2024. [Online]. Available: https://arxiv.org/abs/2409.12122
- [59] J. M. Han, J. Rute, Y. Wu, E. Ayers, and S. Polu, "Proof artifact co-training for theorem proving with language models," in *International Conference on Learning Representations*, 2022. [Online]. Available: https://openreview.net/forum?id=rpxJc9j04U
- [60] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings, A. Thakur, and S. Chaudhuri, "Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition," 2024. [Online]. Available: https://arxiv.org/abs/2407.11214
- [61] M. Fang, X. Wan, F. Lu, F. Xing, and K. Zou, "Mathodyssey: Benchmarking mathematical problem-solving skills in large language models using odyssey math data," 2024. [Online]. Available: https://arxiv.org/abs/2406.18321
- [62] M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J. Hewett, M. Javaheripi, P. Kauffmann, J. R. Lee, Y. T. Lee, Y. Li, W. Liu, C. C. T. Mendes, A. Nguyen, E. Price, G. de Rosa, O. Saarikivi, A. Salim, S. Shah, X. Wang, R. Ward, Y. Wu, D. Yu, C. Zhang, and Y. Zhang, "Phi-4 technical report," 2024. [Online]. Available: https://arxiv.org/abs/2412.08905
- [63] J. Avigad, L. de Moura, S. Kong, and S. Ullrich, "Theorem proving in lean 4," https://github.com/leanprover/theorem_proving_in_lean4, 2024.
- [64] R. Shao, S. S. Li, R. Xin, S. Geng, Y. Wang, S. Oh, S. S. Du, N. Lambert, S. Min, R. Krishna, Y. Tsvetkov, H. Hajishirzi, P. W. Koh, and L. Zettlemoyer, "Spurious rewards: Rethinking training signals in rlvr," 2025. [Online]. Available: https://arxiv.org/abs/2506.10947
- [65] Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, "Qwen2.5 technical report," 2025. [Online]. Available: https://arxiv.org/abs/2412.15115
- [66] HEPLean, "Physlean: A project to digitalise results from physics into lean." 2025. [Online]. Available: https://github.com/HEPLean/PhysLean
- [67] J. Liu, X. Lin, J. Bayer, Y. Dillies, W. Jiang, X. Liang, R. Soletskyi, H. Wang, Y. Xie, B. Xiong, Z. Yang, J. Zhang, L. Zhi, J. Li, and Z. Liu, "Combibench: Benchmarking llm capability for combinatorial mathematics," 2025. [Online]. Available: https://arxiv.org/abs/2505.03171
- [68] D. Philosophical Society of Washington (Washington, P. S. of Washington., and S. Institution, Bulletin of the Philosophical Society of Washington. Washington, D.C, Published by the co-operation of the Smithsonian Institution, [1874-, 1887, vol. v.10 (1887); Index v.1-10, p. 83, https://www.biodiversitylibrary.org/bibliography/46528. [Online]. Available: https://www.biodiversitylibrary.org/page/55377146
- [69] X. Contributors, "Xtuner: A toolkit for efficiently fine-tuning llm," https://github.com/InternLM/ xtuner, 2023.
- [70] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica, "Efficient memory management for large language model serving with pagedattention," in *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.
- [71] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, "Chain-of-thought prompting elicits reasoning in large language models," 2023. [Online]. Available: https://arxiv.org/abs/2201.11903

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The contributions are emphasized with bolded words / sentences; The scope of the paper is in the second paragraph in Sec. 1.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on designing reasoning and data generation pipelines, which does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The reasoning architecture is detailed in Sec. 4.1. The data generation pipeline is detailed in Sec. 4.2. The environment settings are detailed in Appendix E. The training recipes are detailed in Appendix F. The inference details are in Appendix G. The prompt templates are in Appendix L. The evaluation results are provided in the supplementary materials.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code, data, and model are open-sourced in https://github.com/Purewhite2019/har_copa_main.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The environment settings are detailed in Appendix E. The training recipes are detailed in Appendix F. The inference details are in Appendix G. The prompt templates are in Appendix L. The evaluation results are provided in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2 and Table 4 reports means and standard deviations of three runs.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Appendix K.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform the NeurIPS Code of Ethics throughout the project.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix M.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe this project poses no such risks, as it focuses on formal mathematics. Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Also discussed in Appendix M

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The reasoning architecture is detailed in Sec. 4.1. The data generation pipeline is detailed in Sec. 4.2. The environment settings are detailed in Appendix E. The training recipes are detailed in Appendix F. The inference details are in Appendix G. The prompt templates are in Appendix L. The evaluation results are provided in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper only uses LLMs for grammar check and English polishing.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A More Discussions on D-FPS

Tactic-style theorem proving [63] in Lean 4 [43] can be viewed as a Markov Decision Process (MDP). A proof state $\{\Gamma_i \vdash U_i\}$ is maintained by the Lean 4 environment, where $\Gamma_i \vdash U_i$ are proof goals, Γ_i is a local context consisting of a telescope of declarations, and U is a target type. Actions in this MDP are tactics, which transform a proof state by substituting a proof goal with a finite set of new goals (the set can be empty). For example, the following is a proof state with a single goal $\Gamma_0 \vdash U_0$. The local context consists of declaration of variables (answer $m \ n : \mathbb{R}$) and hypotheses $(h_0 : m * n = 4), (h_1 : m + n = 5), (h_{answer} : |m - n| = answer)$. The target type is a proposition answer m = 3.

```
\begin{array}{l} \text{answer } m \ n \ : \ \mathbb{R} \\ h_0 \ : \ m \ * \ n \ = \ 4 \\ h_1 \ : \ m \ + \ n \ = \ 5 \\ h\_\text{answer} \ : \ |m \ - \ n| \ = \ \text{answer} \\ \vdash \ \text{answer} \ = \ 3 \end{array}
```

Let's apply the following have tactic.

```
have h_square := by calc
  (m - n) ^2 = m^2 - 2 * m * n + n^2 := by
    ring
  _ = (m^2 + 2 * m * n + n^2) - 4 * (m * n) := by
    ring
  _= (m + n)^2 - 4 * (m * n) := by
    ring
```

A new hypothesis $h_{\text{square}}: (m-n)^2 = (m+n)^2 - 4*(m*n)$ is introduced into the local context.

```
answer m n : \mathbb{R}

h<sub>0</sub> : m * n = 4

h<sub>1</sub> : m + n = 5

h_answer : |m - n| = answer

h_square : (m - n) ^ 2 = (m + n) ^ 2 - 4 * (m * n)

\vdash answer = 3
```

The proof state is initialized with a *formal statement* and iteratively transformed by tactics. The formal statement corresponding to $\Gamma_0 \vdash U_0$ is

```
example
  (answer m n : R)
  (h<sub>0</sub> : m * n = 4)
  (h<sub>1</sub> : m + n = 5)
   (h_answer : abs (m - n) = answer)
  : answer = 3
  := by
  sorry
```

The formal statement is proven once transformed into an empty proof state {}.

Tactics should be *provability-reflecting* [44]: proving all generated new goals implies proving the original proof goal, i.e., the following sequent holds.

$$\begin{array}{c} \Gamma_1' \vdash U_1' \\ \Gamma_2' \vdash U_2' \\ \dots \dots \\ \hline \Gamma_n' \vdash U_n' \\ \hline \hline \Gamma \vdash C \end{array} \mathsf{PR}$$

Conversely, however, not all tactics are *safe* [44] or *provability-preserving*: proving the original goal implies proving generated sub-goals, i.e., the following sequent holds.

$$\begin{array}{c} \Gamma \vdash C \\ \hline \Gamma_1' \vdash U_1' \\ \Gamma_2' \vdash U_2' \\ \hline \dots \\ \Gamma_n' \vdash U_n' \end{array} \mathsf{PP}$$

For example, tactic have introduces and proves a new hypothesis using existing hypotheses. It is naturally provability-preserving, because the only difference between the original goal and the one sub-goal generated by have is the newly introduced hypothesis, which can be proven using existing hypotheses.

However, tactic exfalso changes the target to False. It is not provability-preserving (or *unsafe* [44]) because it destroys provability for goals whose hypotheses do not contradict.

The ground-truth \bar{A} : Prop satisfies

$$\forall_{j=1}^{n}(v_j:T_j), \forall_{j=1}^{p}(h_j:\phi_j), (\psi \leftrightarrow \bar{A})$$

i.e., the following goal is provable

$$\{[(v_j:T_j)]_{j=1}^n :: [(h_j:\phi_j)]_{j=1}^p \vdash \psi \leftrightarrow \bar{A}\}$$
 (1)

And the forward-solving state of D-FPS is initialized as

$$\{[(v_j:T_j)]_{j=1}^n::[(h_j:\phi_j)]_{j=1}^p::[(h':\psi)]\vdash?A,[(v_j:T_j)]_{j=1}^n::[(h_j:\phi_j)]_{j=1}^p\vdash \texttt{Prop}\} \quad \ (2)$$

Therefore, by rewriting ψ into \bar{A} , we obtain

$$\{[(v_j:T_j)]_{j=1}^n::[(h_j:\bar{A})]_{j=1}^p::[(h':\psi)]\vdash?A,[(v_j:T_j)]_{j=1}^n::[(h_j:\phi_j)]_{j=1}^p\vdash\operatorname{Prop}\} \tag{3}$$

Any unsafe tactic application that breaks provability will lead to the final answer \hat{A} to be logically inequivalent with the ground-truth \bar{A} . Therefore, a primary type of unsafe tactic applications, which modifies the targets of proof goals, is prohibited in D-FPS. Subsequently, the necessity of backtracking in D-FPS is weaker.

B More Experiment Results

B.1 Computational Efficiency

We further analyze the computational efficiency of HAR, baselines, and ablations. We evaluate WG and H-WG with maximal generation attempts $K_W=16$ and collect the solving rates and budgets for $K_W=1,2,\ldots,16$. For BFS, AR, H-BFS, HAR, we set the step limit to $K_S=80$ and collect the solving rates and budgets for $K_S=1,2,\ldots,80$. The solving rate - budget curves are visualized in Fig. 3. For a detailed comparison, the interpolated data is summarized in Table 6. HAR demonstrates Pareto-optimality over all scenarios.

B.2 Test-time Scaling

We set the max step limit $K_S=320$ to evaluate the test-time scalability of Cycle 2 H-BFS and HAR on the FormalMath500 benchmark. The interpolated solving rates are in Table 7. HAR solves 47.88% of problems with 64727 search steps, while H-BFS solves 32.54% with 90533 steps.

H-BFS shows consistent scalability and plateaus after ~ 70000 steps. The solving rate of HAR rapidly increases and is saturated after 20000 steps. The saturated solving rate of HAR (47.88%) is significantly higher than that of H-BFS (32.54%).

We find that HAR plateaus due to a limited context length. All models are SFTed from Qwen2.5-Math-7B, which has a maximum context length of 4096 tokens. Complicated problems require longer CoTs, which necessitate a larger context length for the model to cover the solution state (encompassing more conclusions along the reasoning) and the next-step draft.

HAR experiment encounters 953 times of context length exceeding (experiment restarts upon an exception occurring), while H-BFS encounters 413 times. This corresponds to the previous observation that BFS with accumulated log-prob as value function tends to collapse to breadth-first search.

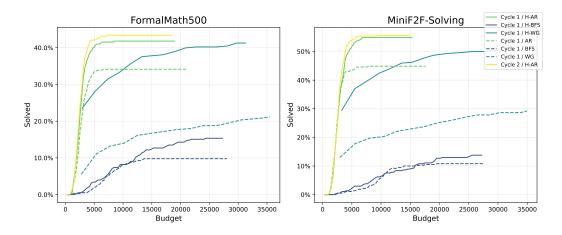


Figure 3: Solving rate - budget curves for HAR (Cycle 1, Cycle 2) and ablations.

Table 6: Solving rates of HAR over baselines and ablations across multiple budget settings. **Bold** highlights best values among all experiments; <u>Underlined</u> values emphasize the best values in each ablative or comparative group; "~" represents the corresponding budget setting is beyond the observation range.

Benchmark	Cycle	Method	1000	3000	5000	10000	15000	20000	30000
Formal-	1	BFS WG AR	0.17% ~ 0.34%	0.52% 6.06% 22.86%	1.93% 10.32% 33.50%	8.20% 13.96% 34.13%	9.79% 16.72% 34.13%	9.79% 17.79% 34.13%	~ 20.13% ~
Math500	1	H-BFS H-WG HAR	0.00% ~ 0.34%	0.78% 23.71% 30.12%	3.44% 27.81% 40.20%	8.20% 34.05% 41.80%	12.46% 37.81% 41.80%	14.29% 39.50% ~	~ 41.27% ~
	2	HAR	0.85%	32.33%	42.06%	43.39%	43.39%	~	~
MiniF2F-	1	BFS WG AR	0.00% ~ 0.00%	0.54% 13.08% 35.29%	1.23% 16.77% 43.51%	5.80% 20.17% 44.86%	10.00% 22.92% 44.86%	10.81% 25.22% ~	~ 28.50% ~
Solving	1	H-BFS H-WG HAR	0.00% ~ 0.00%	0.60% ~ 35.67%	2.21% 35.30% 51.76%	6.40% 42.71% 54.86%	9.01% 46.18% 54.86%	12.70% 48.97% ~	~ 50.49% ~
	2	HAR	0.19%	38.81%	54.07%	55.68%	~	~	\sim

Table 7: Solving rates of Cycle 2 HAR and H-BFS across multiple budgets (total number of solution steps generated in one experiment) settings. **Bold** highlights the best values among all experiments.

Budget		FormalMath500								
	2500	5000	10000	20000	40000	80000	90533			
H-BFS HAR	0.43% 24.10%	2.81% 44.39%	9.10% 47.35%	16.32% 47.88 %	27.25% 47.88 %	32.54%	32.54%			
HAK	24.10%	44.39%	47.35%	47.88%	47.88%	\sim	\sim			

B.3 More Benchmarks

For a more comprehensive comparison, we evaluate HAR, baselines, and ablations on the PutnamBench-Solving [7, 60], which consists of 324 problems from undergraduate-level competitions. Moreover, we provide a pilot study on chaining the autoformalizer and problem-solver. We use the CoPA Autoformalizer to formalize 288 problems with non-empty labels in MathOdessy [61], resulting in 269 successful formalizations. HAR, baselines, and ablations are evaluated on this benchmark. Notably, in addition to settings in Appendix G, we also evaluate AR & HAR with step limit $K_S=40$ and WG & H-WG with maximal generation attempts $K_W=16$.

Table 8: Evaluation results of HAR, baselines, and ablations on PutnamBench-Solving and Math-Odessy. For PutnamBench-Solving, the numbers of solved problems are reported. <u>Underlined</u> values emphasizes the best values in each ablative or comparative group.

Cycle	Experiment	PutnamBe Solved^	ench-Solving Budget↓	MathO Solved %↑	dessy Budget↓
		Solveu	Duugei↓	Solved 70	Duuget↓
	BFS	1	25845	11.90%	19490
	WG	0	13891	15.61%	12773
	$WG (K_W = 16)$	0	27626	18.22%	24865
	AR $(K_S = 40)$	2	12903	24.16%	8613
1	AR	$\overline{2}$	25783	24.16%	16773
-	H-BFS	1	25842	15.24%	19233
	H-WG	2	15909	26.39%	12672
	H-WG ($K_W = 16$)	2	30981	28.62%	24074
	HAR ($K_S = 40$)	2	12892	$\overline{27.14\%}$	8417
	HAR	$\overline{2}$	25772	28.25%	16156
2	$HAR (K_S = 40)$	2	12893	27.88%	8377
	HAR	2	25773	29.00%	16038

Experiment results are shown in Table 8. Comparisons between AR & HAR ($K_S=40$) and baselines validate AR&HAR's superiority over BFS & H-BFS and WG & H-WG across benchmarks. The only exception is observed on MathOdessy, where Cycle 1 H-WG ($K_W=16$) slightly outperforms Cycle 1 HAR (28.62% vs. 28.25%) at the cost of $1.5\times$ budget.

However, it is worth noting that all methods almost fail on PutnamBench-Solving. We hypothesize that this is due to its out-of-distribution (OOD) nature. As stated in Appendix C, CoPA formalizes Numina-CoT and Numina-1.5 [46], which focuses on "Chinese high school math exercises to US and international mathematics olympiad competition problems". PutnamBench-Solving, on the other hand, focuses on undergrad-level competitions and is OOD with respect to the training set. The OOD curse in formal reasoning is more challenging since each formal step must be both semantically and syntactically correct. LLM usually fails to call functions or apply theorems without prior knowledge. We acknowledge that the current data domain is not broad enough and encourage future work to explore applying CoPA to formalize a wider range of datasets.

B.4 Sensitivity to Base Models

To validate whether the impressive effectiveness is a flash in the pan on Qwen series models [64], we supervised fine-tune (SFT) HAR, baselines, and ablations based on Phi-4-mini-instruct [62] using Cycle 1 data, identical recipe and templates in Appendix F & L. The evaluation settings follow Appendix G. We also evaluate AR & HAR with step limit $K_S=40$ and WG & H-WG with maximal generation attempts $K_W=16$.

The results are in Table 9, which demonstrate similar patterns to results on Qwen2.5-Math-7B [65] and align well with our main claims. HAR consistently demonstrates Pareto-optimality across all baselines and ablations over all benchmarks.

C Limitations and Future Works

Extension to Theorem Proving. The proposed HAR model and CoPA data generator focus on the novel task of deriving answers for problems under the D-FPS framework. However, theorem proving and problem-solving are closely correlated. Moreover, given that HAR significantly outperforms strong ablative baselines in problem-solving tasks, its performance in theorem proving tasks is promising. Therefore, future work can extend HAR and CoPA to theorem proving data.

More Expert Iteration. Due to the limited computation resources, we only conduct CoPA expert iteration for three cycles (Cycle 0,1,2). Given that statement autoformalization, solution drafting, proof gaps filling, and HAR all show increasing trends in Cycle 2, future work may continue cycling and seek the upper limit of expert iteration.

Table 9: Evaluation results of HAR, baselines, and ablations supervised fine-tuned (SFT) from Phi-4-mini-instruct [62] using Cycle 1 data. **Bold** highlights best values among all experiments; Underlined values emphasizes the best values in each ablative or comparative group.

Experiment	FormalM	lath500	MiniF2F	Solving	PutnamBe	ench-Solving	MathO	dessy
Experiment	Solved %↑	Budget↓	Solved%↑	Budget↓	Solved ↑	Budget↓	Solved%↑	Budget↓
BFS	7.41%	28665	6.76%	28230	1	25857	12.64%	19408
WG	14.02%	20295	21.08%	20768	0	13987	13.38%	14026
$WG (K_W = 16)$	15.61%	40153	25.41%	39366	0	27973	15.24%	27356
$AR (K_S = 40)$	25.66%	12198	31.35%	11560	2	12893	24.54%	8688
AR	26.72%	23338	33.24%	21464	$\overline{2}$	25773	24.54%	16808
H-BFS	11.90%	27992	11.35%	27591	1	25844	11.90%	19679
H-WG	33.07%	17457	41.35%	17306	0	14306	25.28%	12911
H-WG ($K_W = 16$)	38.10%	33693	47.03%	33742	1	30658	25.65%	23894
$HAR(K_S = 40)$	41.80%	10196	49.19%	9247	3	12885	27.88%	8328
HAR	42.06%	18956	49.73%	16687	<u>3</u>	25725	27.88%	16088

Table 10: Evaluation results of filtering methods. **Bold** highlights the best values among all experiments.

Model	Method	Precision [↑]	Recall↑	Accuracy [↑]	Kappa↑
	Prompt ₁ +Filter ₁	48.98%	97.96%	49.00%	0.00
O 5 Math 7D Instruct	Prompt ₂ +Filter ₁	52.17%	97.96%	55.00%	0.11
Qwen2.5-Math-7B-Instruct	Prompt ₁ +Filter ₂	52.86%	75.51%	55.00%	0.11
	Prompt ₂ +Filter ₂	51.06%	97.96%	53.00%	0.08
Owen 2 5 Math 72D Instruct	Prompt ₂ +Filter ₁	49.47%	95.92%	50.00%	0.02
Qwen2.5-Math-72B-Instruct	Prompt ₂ +Filter ₂	49.47%	95.92%	50.00%	0.02
	Problem Typechecked	47.00%	100.00%	47.00%	0
Rule-based	Draft Typechecked	70.59%	51.06%	67.00%	0.33
	Proof Gap Filled	72.73%	17.02%	58.00%	0.12

Table 11: Total variation distance (TVD) from the original dataset by filtering criteria.

Method	TVD↓			
Method	Difficulty	Subject		
Problem Typechecked	0.04	0.06		
Draft Typechecked	0.12	0.12		
Proof Gap Filled	0.31	0.16		

Data Domain. CoPA expert iteration is conducted on the Numina-CoT [46] and Numina-1.5 [46] datasets, whose domain covers up to high-school competition-level mathematics. However, the expressiveness of Lean 4 covers mathematical research frontiers. Future work can explore data generation pipelines and reasoning methods that are more suitable for undergraduate-level, graduate-level, and even research-level mathematics and other subjects, along with recent progress in formalizations [66, 67].

D Filtering Problem Autoformalization

To filter out semantically inconsistent problems, we have designed and evaluated many model-based and rule-based methods.

Methods. For model-based filtering, we have evaluated two styles of prompts $(Prompt_{\{1,2\}})$ and two types of filtering metric $(Filter_{\{1,2\}})$ on Qwen2.5-Math-7B-Instruct [58] and Qwen2.5-Math-72B-Instruct [58]. For rule-based filtering, we have evaluated three types of filtering criteria: keep all successfully typechecked problems $(Problem\ Typechecked)$, keep all problems whose solution drafts pass typecheck $(Draft\ Typechecked)$, and only keep the problems whose proof gaps are all successfully filled $(Proof\ Gap\ Filled)$.

Accuracy. We uniformly sample 100 datapoints from Cycle 0 data whose problems pass the Lean 4 typecheck and are manually labeled for semantic consistency. Evaluation results of the above filtering methods are shown in Table 10, where model-based methods all show extremely low accuracy ($\leq 55\%$) and Cohen's Kappa [68] (≤ 0.11). However, rule-based filtering shows significantly superior performance. *Draft Typechecked* reaches 67.00% accuracy and 0.33 Kappa, *Proof Gap Filled*'s precision is 72.73%.

Distribution Shift. We further compute the total variance distance (TVD) between distributions before and after filtering the Cycle 0 data, as shown in Table 11. From *Problem Typechecked*, *Draft Typechecked* to *Proof Gap Filled*, as the filtering becomes more strict, the distribution shift becomes more significant, especially regarding the difficulty.

Therefore, we adopt a filter to solve problems by the success of solution drafting (*Draft Typechecked*) as a trade-off between precision and distribution shift.

E Experiment Environment Details

In this project, the Lean 4 environment relies on the following open-source projects

- Lean 4 [43] v4.15.0
- Mathlib 4 [50] v4.15.0
- Aesop [44] v4.15.0
- Pantograph [51] v0.2.25
- Formal Problem-Solving [7] 39489d1f0c32b521845429e1cb26c48639d8f823.

with the following options

- Lean 4 maxHeartbeats: 0
- Lean 4 maxRecDepth: 100000
- Lean 4 tactic.hygienic: false
- Lean 4 pp.fullNames: true
- Lean 4 pp.funBinderTypes: true
- Lean 4 pp.piBinderTypes: true
- Pantograph timeout: 300
- Pantograph imports: Mathlib, Aesop

For LLM fine-tuning, we use xTuner [69] 081c8ca874bdbf7a7f8cd0a9e4cba503eaaa7bba with recipes detailed in Appendix F. For inference, we use vLLM [70] 0.6.0 with bfloat16 type and prefix caching enabled. All experiments are conducted using a random seed 42. For explosion check, we try each of aesop, simp_all, abel, noncomm_ring, ring, module, nlinarith!.

We sincerely appreciate the contributors of these awesome projects!

F Training Details

F.1 Dataset Recipe

Given a dataset \mathcal{D}_n produced by CoPA expert iteration at Cycle n, we construct training data for the following tasks:

- Statement Autoformalization. Datapoints whose formal solution drafts pass Lean 4
 typecheck are used. Given an informal problem and its informal ground-truth answer, the
 model outputs a corresponding formal statement.
- **Solution Drafting**. Datapoints with successfully filled logical gaps are used. Input an informal problem, its informal ground-truth answer, its informal ground-truth solution, and a corresponding formal statement, and the model outputs a formal proof.

- Next-Proof-Step Prediction. Datapoints that have at least one logical gap filled are used. Moreover, proof state-tactic pairs from Mathlib 4 [50] extracted by Pantograph [51] and the Lean-Workbook [35] dataset are used. Input the current proof state; the model outputs the next proof step.
- Next-Solution-Step Prediction. Datapoints with successfully filled logical gaps are used.
 Input an informal problem and a current solution state; the model outputs the next solution step.
- Next-Solution-Step Drafting. Datapoints with successfully filled logical gaps are used. Given an informal problem and a current solution state, the model outputs the next formal solution step draft.
- Whole-Solution Generation. Datapoints with successfully filled logical gaps are used. Given an informal problem and its initial solution state, the model outputs a whole formal solution.
- Whole-Solution Drafting. Datapoints with successfully filled logical gaps are used. Input
 an informal problem and its initial solution state; the model outputs a formal solution draft.

Training data recipes of all methods are as follows:

- CoPA, H-SA: Statement Autoformalization, Solution Drafting, Next-Proof-Step Prediction;
- BFS, AR: Next-Solution-Step Prediction;
- WG: Whole-Solution Generation;
- H-BFS, HAR: Next-Proof-Step Prediction, Next-Solution-Step Drafting;
- H-WG: Next-Proof-Step Prediction, Whole-Solution Drafting.

F.2 Training Hyperparameters

We use XTuner [69] for supervised fine-tuning (SFT) Qwen2.5-Math-7B [58] using the dataset recipes above (all tasks are uniformly mixed for training) and the following hyperparameters:

• Max Sequence Length: 8192

• Variable-length Attention: True

• Pack to Maximal Length: True

• Sequence Parallel Size: 1

• Batch size: 1

• Gradient Accumulation: 64

• Training Devices: 8

• Train Epochs: 3

- Optimizer: AdamW with learning rate 2×10^{-5} , $\beta = (0.9, 0.999)$, weight decay 0, maximal gradient norm 1, warpup ratio 0.03 and float16 mixed precision training.
- Learning Rate Scheduler: Warmup using LinearLR with start factor 10^{-5} , then train using CosineAnnealingLR with $\eta_{\min}=0.0$.

G Evaluation Details

G.1 CoPA and HAR

Proof Gap Filling uses best-first proof search with a maximum number of step generation attempts $N_K=16$, expansion width B=4, temperature T=0.7, and maximal sequence length G=256 across experiments.

CoPA Expert Iteration. For each datapoint, statement autoformalization and solution drafting are tried at most 2 times until passing Lean 4 typecheck, each set temperature T=0.7 and maximal sequence length G=4096.

ICL and **Hybrid CoT** are not re-evaluated in this project. We utilize the evaluation results from [7] and further analyze their budget consumption.

BFS and **H-BFS** uses maximum number of step generation attempts $K_S = 80$, expansion width B = 8, temperature T = 0.7, and maximal sequence length G = 2048 by default. We also experiment with different expansion widths in Sec. 5.

WG and **H-WG** uses maximum number of whole-solution generation attempts $K_W = 8$, temperature T = 0.7, and maximal sequence length G = 2048.

AR and **HAR** uses maximum number of step generation attempts $K_S = 80$, temperature T = 0.7, and maximal sequence length G = 2048.

Discussion. We try our best to ensure fair comparisons. In the dataset constructed by CoPA, each formal solution contains 9.7 steps on average. Therefore, for search and autoregression methods, the maximum number of step generation attempts is set to 80; for whole-generation methods, the number of generation attempts is set to 8. Finer-grained stepwise budget consumption is presented in tables (*Budget*).

G.2 Dataset Denoising

In the experiments of dataset denoising, all models are evaluated using the scripts of Qwen2.5-Math [58] in https://github.com/QwenLM/Qwen2.5-Math of commit a45202bd16f1ec06f433442dc1152d0074773465. We use the default evaluation script, where the random seed is set to 0, the temperature is set to T=0, and the Top P is set to 1. The only difference is that we changed the system prompt to "You are a Lean 4 expert." when evaluating the SFT models to be consistent with the training process.

H More Results and Discussions on Solution Pruning

The effectiveness of solution pruning in Table 4 is mixed. For FormalMath500, there is no significant change in solving rates across pruning recursions, and average solution lengths decrease monotonically.

However, for MiniF2F-Solving, when R=0,1,2, solving rates remain relatively stable and average solution lengths decrease monotonically; when $R=3,\infty$, solving rates improve and the average solution lengths fluctuate. We hypothesize that this is because complex problems require longer chain-of-thoughts, which are limited by the Qwen2.5-Math-7B's context length (4096 tokens). Deeper pruning avoids redundant deductions that overflow the context length, thus facilitating deeper reasoning. Let S_0, S_∞ denote problems solved in $R=0,\infty$ experiments, respectively. The average solution length of $S_0\backslash S_\infty$ is 9.82, while that of $S_\infty\backslash S_0$ is 11.85. The longest solution in $S_0\backslash S_\infty$ has 17 steps, while $S_\infty\backslash S_0$ contains three solutions longer than 17 steps (19, 24, 29). This observation further supports improvements in both training and reasoning efficiency.

The distributions of solution lengths in training data are visualized in Fig. 4, where a clear distribution shift can be observed. Starting from an unimodal distribution (Recursion 0), the distribution of solution lengths gradually becomes bimodal, where double-step solutions become a new mode. We manually investigated the double-step solutions and found that they are almost all simple arithmetic problems and grade-school math. Lean has powerful tactics for these problems, such as norm_num and linarith. Solution of these easy problems collapses to the "guess-and-verify" pattern, i.e., directly guess an answer and verify it using automated tactics such as linarith. As visualized in Fig. 5 and manually checked by us, the collapsed problems are mainly grade school math (GSM) algebra problems.

These overly pruned solutions lack chain-of-thought reasoning, which may degrade reasoning capabilities [71]. However, in the main experiment, the model's performance does not show a statistically significant drop (and even improves), and the reasoning becomes much more efficient, reducing the number of reasoning steps by $\frac{1}{8}$. We hypothesize that this "free" efficiency improvement stems from the antagonism between removing CoT in GSM (which may reduce performance) and efficient reasoning for more difficult problems. We recommend that researchers apply solution pruning only to complex problems to avoid degrading CoT for simple ones. More detailed discussions and

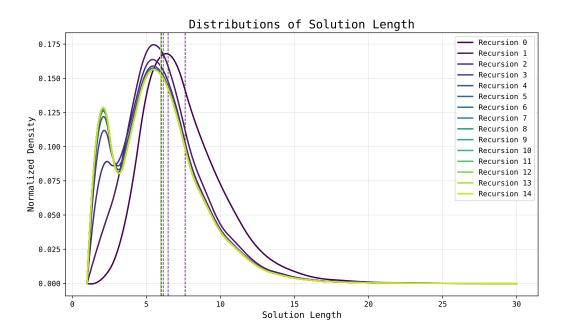


Figure 4: Distributions of solution lengths in training data.

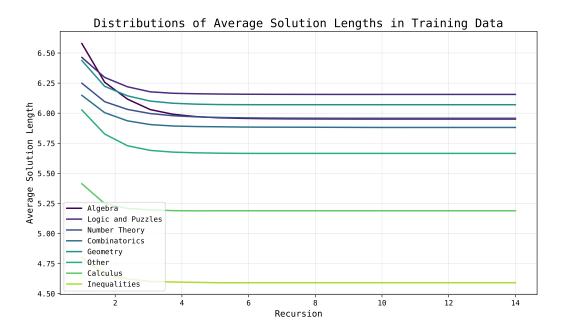


Figure 5: Distributions of average solution lengths by subject.

explorations are out of scope. We leave them for future work, and hope the above points inspire readers.

I Details and Discussions about Dataset Denoising

We randomly sample 8K datapoints from the Cycle 1 data. We then prompt DeepSeek-V3 to translate the solution drafts into informal solutions, given the informal problems, informal answers, and formal statements, with an explicit requirement to ensure semantic equivalence and no specific filtering for

Table 12: Detailed experiment results of dataset denoising. **Original, Direct SFT, Denoised SFT** represent the original model, the model fine-tuned using the original informal solution, and the model fine-tuned using the denoised informal solution, respectively; Accuracies are reported as a percentage; **Bold** highlights the best values among all experiments.

Model	English Open Datasets									
woder	GSM8K	MATH	SVAMP	ASDIV	MAWPS	CARP(EN)	TabMWP			
Qwen2.5-7B	66.9	62.6	70.7	74.1	69.2	50.3	57.8			
Direct SFT	79.2	63.6	88.2	85.6	91.2	57.9	53.2			
Denoised SFT	86.2	64.9	87.5	92	96.6	57.9	71.6			
Model		English (Open Datasets	English M	Iultiple-Choic	e Datasets				
	Minerva-MATH	Gaokao2023(EN)	OlympiadBench	CollegeMath	AQUA	SAT-Math	MMLU-STEM			
Qwen2.5-7B	16.5	46	32.7	31.4	67.7	90.6	71.6			
Direct SFT	18.4	55.3	35.3	33.5	70.1	90.6	71.1			
Denoised SFT	25	56.1	30.2	43.7	70.9	87.5	71.4			
Model		C		Chinese	Other Datasets					
	Gaokao2024(I)	Gaokao2024(II)	Gaokao2024(Mix)	Gaokao-Math-Cloze	Gaokao-Math-QA	CMath	CN-MiddleSchool			
Qwen2.5-7B	14.3	35.7	25.3	22	47.9	65.5	42.6			
Direct SFT	14.3	28.6	26.4	16.9	53.3	70.2	52.5			
Denoised SFT	35.7	50	38.5	50.8	52.7	77	63.4			
Model	English Comp	etition Datasets								
Model	AIME24	AMC23								
Model Qwen2.5-7B										
	AIME24	AMC23								

fairness. See Appendix L.9 for the prompt template. Then, we fine-tune Qwen2.5-Math-7B [58] with the identical setting in Appendix F on the original informal solution and the denoised informal solution, respectively. The full evaluation results are in Table 12.

Although denoised SFT yields significant overall improvement, it falls behind on SVAMP, Olympiad-Bench, SAT-Math, MMLU-STEM, Gaokao-Math-QA, and AIME24. The causes might be:

- Multiple-choice Questions (MCQs) and True-false Problems (TFPs). CoPA focuses on free-response problems (FRP), and therefore rewrites TFPs/MCQs into FRPs in Numina-CoT, Cycle 0, and filters out MCQs in Numina-1.5, Cycle n. This distribution shift might leave these problems out-of-distribution, thus negatively impacting the SFTed models' performance on benchmarks of MCQs, including SAT-Math, MMLU-STEM, and Gaokao-Math-QA.
- Simple math word problems (SMWPs). SVAMP focuses on SMWPs about simple arithmetic taught in grades four and lower. Highly automated tactics like norm_num and linarith can directly solve them, thus their formalization might collapse to the "guess-and-verify" pattern, or even only a simple norm_num. Then, the informalization might contain a less detailed CoT compared to the original solution.
- Out-of-distribution (OOD). STEM problems, such as physics, biology, and astronomy, are hard to formalize and OOD to Numina-1.5. For problems in geometry, probability, and combinatorics, the main difficulty lies in understanding the abstract mathematical concepts and finding the expressions. Once formalized, most of them may collapse to simple arithmetic. This work focuses on problem-solving; therefore, theorem-proving ones are filtered out. Since MMLU-STEM consists of MCQs of STEM, OlympiadBench contains 25%+ physics problems and 21% about theorem-proving, which are relatively OOD to the SFT dataset and suffer from unstable performance.
- Benchmark Size. AIME24 only contains 30 problems, and the evaluation pipeline (Qwen2.5-Math's official repo) uses greedy decoding with temperature T=0, sample number n=1. This setting is prone to randomness in small benchmarks like AIME24; one sample can result in 3.3% performance variation.

J Case Studies

J.1 Success Cases

Informal Problem

The graph of $f(x) = \frac{2x}{x^2 - 5x - 14}$ has vertical asymptotes x = a and x = b, and horizontal asymptote y = c. Find a + b + c.

Answer: 5

Initial Forward State

```
\begin{array}{|c|c|c|c|c|c|}\hline answer & a & b & c & : & \mathbb{R}\\ h_0 & : & \forall & (x & : & \mathbb{R}) \text{, } x \neq a \to x \neq b \to x \text{ $^\circ$ $2 - 5 * x - 14 \neq 0$}\\ h_1 & : & a \neq b\\ h_2 & : & a \text{ $^\circ$ $2 - 5 * a - 14 = 0$}\\ h_3 & : & b \text{ $^\circ$ $2 - 5 * b - 14 = 0$}\\ h_4 & : & c & = 0\\ h_-\text{answer} & : & a + b + c = answer\\ \vdash ? \text{w} \end{array}
```

Submitted Answer

```
answer = 5
```

Formal Solution

```
-- To find the vertical asymptotes of the function (f(x) = \frac{2x}{x^2} - 5x - \frac{3x}{2})
    14} \), we need to determine where the denominator is equal to zero, as the
    function is undefined at these points.
have h_denominator_roots : a^2 - 5 * a - 14 = 0 \land b^2 - 5 * b - 14 = 0 := by --
    The roots of the denominator are \( a \) and \( b \)
  exact \langle h_2, h_3 \rangle
-- 2. **Horizontal Asymptote:**
-- The horizontal asymptote of f(x) = \frac{2x}{x^2-5x-14} is determined by the
    degrees of the polynomial in the numerator and denominator. Since the degree
    of the denominator is higher than the numerator, the horizontal asymptote is $
    y = 0.
have h_horizontal_asymptote : c = 0 := by -- Horizontal asymptote is y = 0
 exact h<sub>4</sub>
-- To find $a + b + c$, we need to find the sum of the roots $a$ and $b$ of the
    quadratic equation $x^2 - 5x - 14 = 0$.
-- According to Vieta's formulas, the sum of the roots of a quadratic equation $
    ax^2 + bx + c = 0$ is given by $-\frac{b}{a}$.
-- In our case, a = 1, b = -5, and c = -14. Therefore, the sum of the roots
    i.s :
-- \setminus [a + b = - \setminus frac\{-5\}\{1\} = 5. \setminus ]
have h_{sum_{roots}} : a + b = 5 := by
 have h_5: a \neq b:= h_1
 have h_6: a \neq b:= h_5
 apply (mul_right_inj' (sub_ne_zero.2 h<sub>5</sub>)).1
 nlinarith
-- 4. **Find the sum (a + b + c):**
     - We have determined (a + b = 5) and (c = 0). Therefore, (a + b + c = 5 + 6)
     0 = 5 \setminus ).
have h_{sum} : a + b + c = 5 := by
    linarith
have h_answer : answer = 5 := by
    linarith
exact h_answer -- submit
example
(answer : \mathbb{N})
(h_answer : answer = \Sigma x \in (\Sigma n \in Nat.divisors 500, n).primeFactors, x)
: answer = 25 := by
```

```
-- First, we find the prime factorization of $500$:
-- $$500 = 2^2 \cdot 5^3$$
have h_prime_factorization : 500 = 2^2 * 5^3 := by
 norm_num [Nat.divisors]
-- The sum of the divisors of $500$ is given by the formula:
-- \setminus [A = (1 + 2 + 2^2)(1 + 5 + 5^2 + 5^3) \setminus ]
have h_sum_of_divisors : \Sigma n in Nat.divisors 500, n = (1 + 2 + 4) * (1 + 5 + 25 +
    125) := by
 norm_cast at h_answer h_prime_factorization \
have h_sum_calculation: (1 + 2 + 4) * (1 + 5 + 25 + 125) = 7 * 156 := by
 norm_num [h_answer, h_prime_factorization, h_sum_of_divisors]
-- \$A = 1092\$
have h_A : \Sigma n in Nat.divisors 500, n = 1092 := by
 norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation]
-- Now, factorize $A$:
-- \[1092 = 2^2 \cdot 3 \cdot 7 \cdot 13\]
have h_factorization : 1092 = 2^2 * 3 * 7 * 13 := by
 norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation,
    h_A]
-- The distinct prime factors of $1092$ are $2$, $3$, $7$, and $13$.
have h_prime_factors : Nat.primeFactors 1092 = {2, 3, 7, 13} := by
 simp only [Nat.primeFactors, h_factorization, h_answer, h_sum_of_divisors,
    h_sum_calculation, h_A]
 norm_cast at h_factorization ⊢
 norm_cast at h_factorization ⊢
 norm_cast at h_factorization ⊢
 norm_num [Nat.primeFactorsList]
-- The sum of the distinct prime divisors is:
-- $$2 + 3 + 7 + 13 = 25$$
have h_sum_prime_factors : \Sigma x in Nat.primeFactors 1092, x = 2 + 3 + 7 + 13 := by
  simp [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation, h_A,
    h_factorization, h_prime_factors]
-- Thus, the sum of the distinct prime divisors of $A$ is $\boxed{25}$.
have h_answer : answer = 25 := by
 norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation,
    h_A, h_factorization, h_prime_factors, h_sum_prime_factors]
exact h_answer -- submit
```

Informal Problem

Find the positive solution to $\frac{1}{x^2-10x-29} + \frac{1}{x^2-10x-45} - \frac{2}{x^2-10x-69} = 0$

Answer: 13

Initial Forward State

```
answer x : \mathbb{R}

h_0 : 0 < x

h_1 : x \stackrel{?}{\sim} 2 - 10 * x - 29 \neq 0

h_2 : x \stackrel{?}{\sim} 2 - 10 * x - 45 \neq 0

h_3 : x \stackrel{?}{\sim} 2 - 10 * x - 69 \neq 0

h_4 : 1 / (x \stackrel{?}{\sim} 2 - 10 * x - 29) + 1 / (x \stackrel{?}{\sim} 2 - 10 * x - 45) - 2 / (x \stackrel{?}{\sim} 2 - 10 * x - 69) = 0

h_answer : answer = x

\vdash ?w
```

Submitted Answer

Formal Solution

```
-- First, introduce a substitution to simplify the equation. Let:
-- \[
-- y = x^2 - 10x
-- \]
-- Then the given equation becomes:
-- \frac{1}{y} - 29 + \frac{1}{y} - 45 - \frac{2}{y} - 69 = 0
-- \]
have h_substitution : 1 / (x^2 - 10 * x - 29) + 1 / (x^2 - 10 * x - 45) - 2 / (x^2)
    -10 * x - 69) = 0 := h_4
-- Now, let's find a common denominator for the fractions on the left-hand side.
    The common denominator is ((a-29)(a-45)(a-69)). Rewrite each fraction with
    this common denominator:
-- \left\{ frac\{(a-45)(a-69) + (a-29)(a-69) - 2(a-29)(a-45)\} \right\} \{(a-29)(a-45)(a-69)\} = 0
-- \]
have h_common_denominator: (1 / (x^2 - 10 * x - 29)) + (1 / (x^2 - 10 * x - 45))
    (2 / (x^2 - 10 * x - 69)) = 0 := h_substitution
-- Since the denominators are not zero, we can combine the fractions:
have h_combined_fractions : (x^2 - 10*x - 45) * (x^2 - 10*x - 69) + (x^2 - 10*x - 69)
    29) * (x^2 - 10*x - 69) - 2 * (x^2 - 10*x - 29) * (x^2 - 10*x - 45) = 0 := by
  field_simp [h_0, h_1, h_2, h_3, h_4] at h_common_denominator \vdash
 linarith
-- Now, simplify the numerator:
-- (x^2 - 10x - 45)(x^2 - 10x - 69) + <math>(x^2 - 10x - 29)(x^2 - 10x - 69) - 2(x^2 - 10x - 69)
   10x - 29)(x^2 - 10x - 45)
-- \ 7
have h_numerator_expansion : (x^2 - 10*x - 45) * (x^2 - 10*x - 69) + (x^2 - 10*x - 69)
    29) * (x^2 - 10*x - 69) - 2 * (x^2 - 10*x - 29) * (x^2 - 10*x - 45) = 0 := by
 linarith
-- Notice that each term in the numerator is a quadratic expression in the form of
   \( (y-a)(y-b) \). We can expand each term:
-- \[
-- (y-45)(y-69) = y^2 - 114y + 3015
-- \]
-- \[
-- (y-29)(y-69) = y^2 - 98y + 2001
-- \]
-- \[
-2(y-29)(y-45) = 2(y^2 - 74y + 1305) = 2y^2 - 148y + 2610
have h_expanded_numerator : (x^2 - 10*x - 45)*(x^2 - 10*x - 69) + (x^2 - 10*x - 69)
    29)*(x^2 - 10*x - 69) - 2*(x^2 - 10*x - 29)*(x^2 - 10*x - 45) =
    0 := bv
 linarith
-- Expand each term in the numerator
have h_expanded_numerator_terms : (x^2 - 10 * x - 45) * (x^2 - 10 * x - 69) + (x^2 - 10 * x - 69)
    -10 * x - 29) * (x^2 - 10 * x - 69) - 2 * (x^2 - 10 * x - 29) * (x^2 - 10 * x
    -45) = 0 := by
 linarith
-- Therefore, the equation simplifies to:
-- \left( \frac{0}{(y+29)} (y+45) (y+69) \right) = 0
```

```
-- \]
have h_simplified_equation: (0) / ((x^2 - 10 * x - 29) * (x^2 - 10 * x - 45) *
         (x^2 - 10 * x - 69)) = 0 := by
    \label{eq:field_simp} \texttt{[}h_0\texttt{, }h_1\texttt{, }h_2\texttt{, }h_3\texttt{, }h_4\texttt{, }h\_answer\texttt{, }h\_substitution\texttt{, }h\_common\_denominator\texttt{,}
        h_combined_fractions, h_numerator_expansion, h_expanded_numerator,
        h_expanded_numerator_terms]
-- Since the numerator is zero, the equation holds true for any $y$ that does not
        make the denominators zero.
have h_numerator_zero : 0 = 0 := by
   linarith
  -- This confirms that the numerator is indeed zero, and the equation holds.
have h_denominator_nonzero : (x^2 - 10 * x - 29) * (x^2 - 10 * x - 45) * (x^2 - 10 * x - 45)
          x - 69) \neq 0 := by
    simp [h_0, h_1, h_2, h_3]
-- Conclusion: The equation is satisfied for all \setminus ( x \setminus) such that the denominators
         are not zero.
-- Given that \setminus (x \setminus) must be positive, we need to check the values of \setminus (x \setminus) that
        make the denominators zero and exclude them.
have h_denominator_roots : \forall x : \mathbb{R}, x^2 - 10*x - 29 = 0 \vee x^2 - 10*x - 45 = 0 \vee
        x^2 - 10*x - 69 = 0 \rightarrow x \neq answer := by
    intro x h<sub>5</sub> h<sub>6</sub>
    have h_7: x ^2 - 10 * x - 29 = 0 \lor x ^2 - 10 * x - 45 = 0 \lor x ^2 - 10 * x - 45 = 0 \lor x ^3 - 10 * x - 10 * x
         69 = 0 := h_5
    simp_all [h<sub>0</sub>, h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub>, h<sub>4</sub>, h_answer, h_substitution, h_common_denominator,
        h_combined_fractions,
        h_numerator_expansion, h_expanded_numerator, h_expanded_numerator_terms,
        h_simplified_equation,
        h_numerator_zero, h_denominator_nonzero]
-- Since the numerator is zero and the denominator is non-zero, the equation is
        satisfied for all \setminus (x \setminus) except where the denominator is zero.
have h_{solution} : 0 = 0 := by
   linarith
-- Therefore, the positive solution to the original equation is:
-- \ [
-- \boxed{13}
-- \]
have h_answer : answer = 13 := by -- The positive solution is 13
   nlinarith [h<sub>0</sub>, h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub>, h<sub>4</sub>, h_answer, h_substitution, h_common_denominator,
        h_combined_fractions,
        h_numerator_expansion, h_expanded_numerator, h_expanded_numerator_terms,
         h_simplified_equation,
        h_numerator_zero, h_denominator_nonzero, h_denominator_roots, h_solution]
exact h_answer -- submit
```

Informal Problem

Assume that x_1, x_2, \ldots, x_7 are real numbers such that

$$x_1 + 4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 = 1,$$

$$4x_1 + 9x_2 + 16x_3 + 25x_4 + 36x_5 + 49x_6 + 64x_7 = 12,$$

$$9x_1 + 16x_2 + 25x_3 + 36x_4 + 49x_5 + 64x_6 + 81x_7 = 123.$$

Find the value of $16x_1 + 25x_2 + 36x_3 + 49x_4 + 64x_5 + 81x_6 + 100x_7$.

Answer: 334

Initial Forward State

```
answer a b c d e f g : \mathbb{R}

h<sub>0</sub> : a + 4 * b + 9 * c + 16 * d + 25 * e + 36 * f + 49 * g = 1

h<sub>1</sub> : 4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g = 12

h<sub>2</sub> : 9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g = 123

h_answer : answer = 16 * a + 25 * b + 36 * c + 49 * d + 64 * e + 81 * f + 100 * g

\vdash ?w
```

Submitted Answer

```
answer = 334
```

Formal Solution

```
-- Define the equations
have h_0: a + 4 * b + 9 * c + 16 * d + 25 * e + 36 * f + 49 * g = 1 := by -- x_1 +
    4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 = 1$
 linarith [h<sub>0</sub>, h<sub>1</sub>, h<sub>2</sub>, h_answer]
have h_1: 4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g = 12 := by --
   Second equation
 linarith
have h_2: 9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g = 123 := by
 linarith
-- We subtract equation (1) from equation (2) and equation (2) from equation (3) to
   eliminate x_1 from the differences.
have h_3: (4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g) - <math>(a + 4 * b)
   + 9 * c + 16 * d + 25 * e + 36 * f + 49 * g) = 12 - 1 := by -- Subtract
    equation (1) from equation (2)
 linarith
-- Simplify to get 3x_1 + 5x_2 + 7x_3 + 9x_4 + 11x_5 + 13x_6 + 15x_7 = 11$
have h_4 : 3 * a + 5 * b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g = 11 := by
 linarith
-- Next, subtract the second equation from the third
have h_5: (9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g) - (4 * a +
    9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g) = 123 - 12 := by
have h_6: 5 * a + 7 * b + 9 * c + 11 * d + 13 * e + 15 * f + 17 * g = 111 := by
 linarith
-- Calculate the next difference: $(5a + 7b + 9c + 11d + 13e + 15f + 17q) - (3a +
   5b + 7c + 9d + 11e + 13f + 15g) = 111 - 11$.
have h_7: (5 * a + 7 * b + 9 * c + 11 * d + 13 * e + 15 * f + 17 * g) - <math>(3 * a + 5 * f + 17 * g)
    b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g) = 111 - 11 := by
 linarith
have h_8 : 2 * a + 2 * b + 2 * c + 2 * d + 2 * e + 2 * f + 2 * g = 100 := by
 linarith
have h_9: a + b + c + d + e + f + g = 50 := by
 linarith
-- Now, we find y_4 by adding this equation to 3y_2:
have h_{10}: 3 * a + 5 * b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g + (a + b + c +
    d + e + f + g) = 11 + 50 := by
 linarith
have h_{11}: 4 * a + 6 * b + 8 * c + 10 * d + 12 * e + 14 * f + 16 * g = 61 := by
 linarith
```

```
-- Now, multiply equation (4) by 4 and subtract it from equation (5) to eliminate $
   a, b, c, d, e, f$:
have h_{12}: (4 * a + 6 * b + 8 * c + 10 * d + 12 * e + 14 * f + 16 * g) - 4 * (a + b)
   + c + d + e + f + g) = 61 - 4 * 50 := by
  linarith
have h_{13}: 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g = 61 - 200 := by
  linarith
have h_{14}: 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g = -139 := by
  linarith
have h_{15}: b + 2 * c + 3 * d + 4 * e + 5 * f + 6 * g = -69.5 := by
  linarith
have h_{16}: 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g + (b + 2 * c + 3 * d + 4
   * e + 5 * f + 6 * g) =
              -139 + (-69.5) := by
   linarith
have h_{17}: 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g = -208.5 := by --
    Simplifying: $3b + 6c + 9d + 12e + 15f + 18g = -208.5$
   linarith
-- Divide by 3 to simplify:
have h_{18}: b + 2 * c + 3 * d + 4 * e + 5 * f + 6 * g = -69.5 := by
  linarith
have h_{19}: 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g = -208.5 := by
  linarith
have h_{20}: (3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g) - 3 * <math>(b + 2 * c + 3 * f + 18 * g)
     d + 4 * e + 5 * f + 6 * g) = -208.5 - 3 * (-69.5) := by
   linarith
have h_{21}: 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g - 3 * b - 6 * c - 9 * d
    -12 * e - 15 * f - 18 * g = -208.5 + 208.5 := by
   linarith
have h_{22}: 0 = 0 := by -- $0 = 0$
 linarith
-- Thus, the value of \$16x_1 + 25x_2 + 36x_3 + 49x_4 + 64x_5 + 81x_6 + 100x_7\$ is:
-- \[
-- \boxed{334}
-- \]
have h_answer : answer = 334 := by
 linarith
exact h_answer -- submit
```

J.2 Failure Cases

There are two types of failures: The agent fails to submit an answer, or it submits an incorrect answer. Here we demonstrate three typical incorrect submissions: extraneous answer, unsimplified answer, and irrelevant answer.

J.2.1 Extraneous Answer

In the following example, the agent submits additional answers 3, 9 that do not satisfy the original problem predicate. In all training data, only 0.65% have multiple valid answers, and only 0.09% have more than two. The cause of this failure mode may be attributed to the construction of training data. In CoPA, formal solutions are autoformalized from informal solutions, which are merely

solutions without original thinking process. As Gauss said, "no self-respecting architect leaves the scaffolding in place after completing the building", merely SFT on such data might be insufficient for the model to learn to filter out extraneous answers. After bootstrapping data with CoPA, future works with reinforcement learning can help mitigate this issue. Moreover, this project focuses on the forward-reasoning stage and omit the backward-proving stage. Real applications can avoid this error by integrating a backward-proving stage.

Informal Problem

Let N be the units digit of the number 21420N. Which nonzero value of N makes this number divisible by 6?

Answer: 6

Initial Forward State

```
answer N : N 
h_N : N \neq 0 \wedge N \geq 0 \wedge N \leq 9 
h_divisible_by_2 : 21420 * 10 + N \equiv 0 [MOD 2] 
h_divisible_by_3 : 21420 * 10 + N \equiv 0 [MOD 3] 
h_answer : N = answer 
\vdash ?w
```

Submitted Answer

```
answer = 3 ∨ answer = 6 ∨ answer = 9
```

This submission is wrong because it contains **Formal Solution**

```
-- To find the units digit $N$ that makes $21420N$ divisible by $6$:
-- 1. **Divisibility by 2**: $N$ must be even. Possible values are $2, 4, 6, 8$.
have h_divisible_by_2 : 21420 * 10 + N \equiv 0 [MOD 2] := by -- The number is
    divisible by 2 if $N$ is even
  exact h_divisible_by_2
-- 2. **Divisibility by 3**: For a number to be divisible by 3, the sum of its
    digits must be divisible by 3. The sum of the digits of $21420N$ is $2 + 1 + 4 +
     2 + 0 + N = 9 + N$. For $9 + N$ to be divisible by 3, $N$ must be such that $
    9 + N \setminus equiv 0 \setminus pmod{3}$.
have h_{divisible_by_3}: (21420 * 10 + N) % 3 = 0 := by -- The number is divisible
    by 3
  exact h_divisible_by_3
-- Sum of the digits of $21420N$:
-- $$2 + 1 + 4 + 2 + 0 + N = 9 + N.$$
have h_{sum_of_digits} : (21420 * 10 + N) % 10 = N := by
  simp [h_answer, Nat.ModEq, Nat.mod_eq_of_lt] at h_divisible_by_2 h_divisible_by_3
  simp [Nat.add_mod, Nat.mod_mod, Nat.mod_mod] at h_divisible_by_2 h_divisible_by_3
  all_goals
    omega
-- $$ 2 + 1 + 4 + 2 + 0 + N = 9 + N $$
have h_{sum} : 2 + 1 + 4 + 2 + 0 + N = 9 + N := by -- Simplify the sum of digits
-- Therefore, $9 + N$ must be divisible by 3.
have h_divisible_by_3_condition : (9 + N) \% 3 = 0 := by -- \$9 + N\$ must be
    divisible by 3
-- Since $9$ is already divisible by $3$, $N$ must also be divisible by $3$ for the
   sum to remain divisible by $3$.
have h_N_divisible_by_3 : N % 3 = 0 := by -- $N$ must be divisible by $3$.
 omega
```

J.2.2 Unsimplified Answer

In the following example, the agent submits a highly complex answer $-\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\cos\frac{8\pi}{15}\cos\frac{\pi}{15}$, which is not equivalent to the ground-truth $\frac{1}{16}$ from human perspective. Therefore, the unsimplified answer is rejected by the evaluation method. In all training samples, 14% of the problems have answers longer than 10 characters, 6% of them have answers longer than 20 characters, and the longest answer contains 385 characters. Many of these long answers are polynomials (e.g. Polynomial .C 1 * Polynomial .X^10 + ...) and complex trigonometric functions (e.g. Real.sqrt ((10 * Real.cos (Real.pi / 3) ...)). Therefore, the model falls short on learning the definition of "simplified". Future works may train a preference model based on existing problem-answer pairs to filter out unsimplified submissions by the reasoning model.

Informal Problem

Simplify

$$\cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{8\pi}{15}\right)\cos\left(\frac{16\pi}{15}\right).$$

Answer: $\frac{1}{16}$

Initial Forward State

```
answer : \mathbb{R} h_answer : Real.cos (2 * \pi / 15) * Real.cos (4 * \pi / 15) * Real.cos (8 * \pi / 15) * Real.cos (16 * \pi / 15) = answer \vdash ?w
```

Submitted Answer

```
answer = -Real.cos (2 * \pi / 15) * Real.cos (4 * \pi / 15) * Real.cos (8 * \pi / 15) * Real.cos (\pi / 15)
```

Formal Solution

```
-- We start by simplifying the expression using properties of cosine and trigonometric identities.

have h_cos_16pi : Real.cos (16 * Real.pi / 15) = Real.cos (Real.pi + Real.pi / 15) 
:= by -- \(\cos \left( \frac{16 \pi}{15} \right) = \cos \left( \pi + \frac{15}{15} \right) = \cos \left( \pi + \frac{15}{15} \right) \right) \right) 
ring_nf at h_answer \( -\cos \frac{16 \pi}{15} \right) = -\cos \frac{16 \pi}{15} \right) \right) = -\cos \frac{16 \pi}{15} \right) \right) = -\cos \frac{16 \pi}{15} \right) \right) 
-- Now the expression becomes:
```

```
-- \[\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac{4 \pi}{15} \right) \cos
              \left(\frac{8 \pi^{25}}{15}\right) \left(\frac{15}{15}\right) \left(\frac{15}{15}\right)
              \right)\right).\]
have h_expr : Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos
             (8 * Real.pi / 15) * Real.cos (16 * Real.pi / 15) = Real.cos (2 * Real.pi /
              15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) * (-Real.cos
             (Real.pi / 15)) := by rw [h_cos_16pi_neg]
 -- We can use the identity ((\cos x = (\cos (2 \cdot pi - x))) to simplify further.
have h_cos_pi_15 : Real.cos (Real.pi / 15) = Real.cos (2 * Real.pi - Real.pi / 15)
            := bv
      simp [Real.cos_sub]
have h_cos_pi_15_eq : Real.cos (Real.pi / 15) = Real.cos (29 * Real.pi / 15) := by
           Real.cos (\pi / 15) = Real.cos (2 * \pi - \pi / 15) := by rw [h_cos_pi_15]
            _ = Real.cos (30 * \pi / 15 - \pi / 15) := by ring_nf
            _{-} = Real.cos (29 * \pi / 15) := by ring_nf
 -- Now, we have:
-- \[\cos\\left(\\frac{2}\\pi\}{15}\\right)\\\cos\\\left(\\\frac{4}\\\pi\}{15}\\\right)\]
              \cos\ \left(\frac{8 \pi}{15}\ \right)\ \cos\ \left(\frac{16 \pi}{15}\ \right) =
              -\cos \left( \frac{1}{5} \right) \cos \left( \frac{1}{5
              \cos \left(\frac{8 \pi}{15} \right) \cos \left(\frac{29 \pi}{15} \right). \]
have h_expr_neg : Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) *
            Real.cos (8 * Real.pi / 15) * -Real.cos (Real.pi / 15) = -Real.cos (2 *
             Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) *
             Real.cos (29 * Real.pi / 15) := by
      field_simp [h_cos_pi_15_eq]
 -- Using the identity (2\pi - x) = \cos(x), we get:
-- \[\cos \left(\frac{2 \pi}{15} \right)\cos \left(\frac {4 \pi}{15} \right)
              \cos \left( \frac{15}{15} \right) \cos \left( \frac{29}{15} \right) \right)
have h_cos_29pi : Real.cos (29 * Real.pi / 15) = Real.cos (2 * Real.pi - Real.pi /
             15) := by
      ring_nf at h_cos_pi_15_eq -
have h_cos_29pi_eq : Real.cos (29 * Real.pi / 15) = Real.cos (Real.pi / 15) := by
     simp [h_cos_29pi, Real.cos_sub]
have h_expr_final : -Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) *
            Real.cos (8 * Real.pi / 15) * Real.cos (29 * Real.pi / 15) = -Real.cos (2 *
             Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) *
             Real.cos (Real.pi / 15) := by
     rw [h_cos_29pi_eq]
 -- The final answer is \(\boxed{-\cos \left(\frac{2 \pi}{15}\right)\cos \left(
              \frac{4 \pi}{15} \right) \cos \left( \frac{8 \pi}{15} \right) \cos \left(
              \frac{pi}{15} \frac{15}{right}.
have h_answer : answer = -Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15)
             * Real.cos (8 * Real.pi / 15) * Real.cos (Real.pi / 15) := by -- The final
              answer is \(\begin{tabular}{ll} \begin{tabular}{ll} answer is \(\begin{tabular}{ll} \begin{tabular}{ll} 
              pi{15} right) \cos \left( \frac{8 \pi}{15} \right) \cos \left( \frac{15}{15} \right)
              \frac{\langle pi \rangle \{15\} \langle right \rangle \}}
      linarith [h_answer, h_cos_16pi, h_cos_16pi_neg, h_expr, h_cos_pi_15,
             h_cos_pi_15_eq, h_expr_neg, h_cos_29pi, h_cos_29pi_eq, h_expr_final]
exact h_answer -- submit
```

J.2.3 Irrelevant Answer

In this case, the agent submits a proposition $[-2, 7] = \{x \in \mathbb{R} | -2 \le x \land x \le 7\}$, which is an obvious fact and irrelevant to the queriable. Therefore, this irrelevant answer is rejected by the evaluation method. We have carefully examined the training data and find that no final answer corresponds to

this failure mode. Therefore, this failure might be occasional. Future works can also use a preference model to filter out these irrelevant submissions.

Informal Problem

For what values of x is it true that $x^2 - 5x - 4 \le 10$? Express your answer in interval notation.

Answer: $x \in [-2, 7]$

Initial Forward State

Submitted Answer

```
Set.Icc (-2) 7 = \{x : \mathbb{R} \mid -2 \le x \land x \le 7\}
```

Formal Solution

```
-- Start by rewriting the inequality x^2 - 5x - 4 \le 10 as x^2 - 5x - 14 \le 0.
have h_rewrite : \forall x : \mathbb{R}, x^2 - 5*x - 4 \le 10 \leftrightarrow x^2 - 5*x - 14 \le 0 := by
  exact fun x \mapsto \langle fun \ h \mapsto by \ linarith \ [h], fun \ h \mapsto by \ linarith \ [h] \rangle
-- Next, factorize the quadratic expression:
-- \[ x^2 - 5x - 14 = (x - 7)(x + 2) \]
have h_factorize : \forall x : \mathbb{R}, x^2 - 5*x - 14 = (x - 7) * (x + 2) := by
  exact fun x \mapsto by ring
-- The solutions to \$(x - 7)(x + 2) = 0\$ are \$x = 7\$ and \$x = -2\$.
have h_solutions: \forall x : \mathbb{R}, (x-7) * (x+2) = 0 \leftrightarrow x = 7 \lor x = -2 := by
 simp [sub_eq_zero, add_eq_zero_iff_eq_neg]
-- To find the intervals where the inequality holds, test a value in each of the
    intervals defined by the roots: \{(-\ln fty, -2)\}, \{(-2, 7)\}, and \{(7, \ln fty)\}.
have h_test_interval_1 : \forall x : \mathbb{R}, x < -2 \rightarrow (x - 7) * (x + 2) > 0 := by
 rintro x (hx : x < -2)
  apply mul_pos_of_neg_of_neg <;> linarith
-- - For \$-2 < x < 7\$, choose \$x = 0\$, then \$(0 - 7)(0 + 2) = -14\$ (negative).
have h_test_interval_2 : \forall (x : \mathbb{R}), -2 < x \wedge x < 7 \rightarrow (x - 7) * (x + 2) < 0 := by
  exact fun x hx => by nlinarith [hx.1, hx.2]
-- For the interval \$(7, \inf y)\$, choose \$x = 8\$:
    \[ (8-7)(8+2) = (1)(10) = 10 > 0 \]
      This interval satisfies the inequality.
have h_test_interval_3 : \forall x : \mathbb{R}, x > 7 \rightarrow (x - 7) * (x + 2) > 0 := by
  exact fun x hx => by nlinarith
-- Thus, x^2 - 5x - 14 \le 0 when x is in the interval b = 16 - 2.
have h_solution : \forall x : \mathbb{R}, x^2 - 5*x - 14 \leq 0 \leftrightarrow x \in Set.Icc (-2) 7 := by
  simp [h_rewrite, h_factorize, h_solutions, h_test_interval_1, h_test_interval_2,
    h_test_interval_3]
  intro x
  exact \langle \text{fun } h \mapsto \langle \text{by nlinarith [h]}, \text{ by nlinarith [h]} \rangle, fun h \mapsto \text{by nlinarith [h.1,}
    h.2]
-- Therefore, the solution in interval notation is $\boxed{[-2, 7]}$.
have h_answer : Set.Icc (-2) 7 = \{x : \mathbb{R} \mid -2 \leq x \land x \leq 7\} := by
  rw [Set.Icc]
exact h_answer -- submit
```

K Compute Resources

CoPA Expert Iteration. Cycle 0 data generation requests DeepSeek-V3-1226 [49] for 819,386 times with 2,428,482,030 input tokens and 413,605,284 ouput tokens in total. The experiment costs two weeks. Cycle 1 data generation requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for over a month. Cycle 1 data generation requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for over a month. Each fine-tuning (problem autoformalizer, solution drafter, and proof searcher) requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for about one week.

HAR & Solution Pruning. Each model fine-tuning requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for about 2 days. Non-hierarchical experiments (BFS, WG, AR) require 1 Ascend-910B NPU and 64 Kunpeng-920 CPUs for two days; Hierarchical experiments (H-BFS, H-WG, H-SA, HAR) require 2 Ascend-910B NPUs and 64 Kunpeng-920 CPUs for three days.

Dataset Denoising. Each fine-tuning requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for about one hour. Each evaluation requires 1 Ascend-910B NPU for about 12 hours.

This project took about 6 months overall, consuming about $1.5 \times$ compute than the experiments reported in the paper (for debugging, failed attempts, and preliminary experiments).

L Prompt Templates

L.1 System Prompt

```
You are a Lean 4 expert.
```

L.2 Statement Autoformalization

```
Given a natural language math problem and its answer, please generate a
    corresponding Lean 4 formal statement.
Please add comments highlighting the original parts of the natural language math
    problem and answer.
Please explicitly use the variable 'answer' to indicate the answer in the formal
    statement.
Please maintain the semantic equivalence between natural language math and Lean 4.
Please assume the following header code has already been executed and do not add
    any imports or openings.
""lean4
import Mathlib
{OPEN_HEADER}
# Problem
{informal_problem}
# Answer
the answer is {informal_answer}
```

L.3 Solution Drafting

```
Given a natural language math problem, its answer, its solution, and its formal statement, please generate a corresponding Lean 4 proof sketch and add comments to highlight the original parts of the natural language math solution. Please maintain the semantic equivalence between natural language math and Lean 4. Please only use forward reasoning in the proof, do not use tactics that modify the final goal.

For new hypotheses, please do not prove them and use 'sorry' to close them.
```

```
Please assume the following header code has already been executed and do not add
any imports or openings.

'''lean4
import Mathlib
'''

# Problem
"""
{informal_problem}
"""

# Answer
"""

the answer is {informal_answer}
"""

# Formal Statement
'''lean4
{formal_statement}
''''
```

L.4 Next-Proof-Step Prediction

```
Generate a tactic that can transform one step from the current tactic state to the 'no goals' tactic state.

Current tactic state:

((()

{goal_str}
```

L.5 Next-Solution-Step Prediction

```
Given a natural language math problem and the current solution state, please
    generate the next solution step.
Please use comments to plan and reason in natural language and deductive reasoning
    to derive the answer.
Assume 'Mathlib' is imported.
# Informal Problem
"""
{informal_problem}
"""
# Current Solution State
'''lean4
{str(solution_goal)}
''''
```

L.6 Next-Solution-Step Drafting

```
Given a natural language math problem and the current solution state, please
generate the next solution step.

Please use comments to plan and reason in natural language and deductive reasoning
to derive the answer.

Assume 'Mathlib' is imported.

# Informal Problem
"""

{informal_problem}
"""

# Current Solution State
'''lean4
{str(solution_goal)}
''''
```

L.7 Whole-Solution Generation

```
Given a natural language math problem and the initial solution state, please generate a Lean 4 formal solution.

You can use Lean 4 comments to conduct natural language reasoning.

Please only use forward reasoning; do not use tactics that modify the final goal.

Please assume the following header code has already been executed, and do not add any imports or openings.

'''lean4 import Mathlib

"""

{informal_problem}

"""

# Initial Solution State

'''

{g_str}

''''
```

L.8 Whole-Solution Drafting

```
Given a natural language math problem and the initial solution state, please
generate a Lean 4 solution sketch.

You can use Lean 4 comments to conduct natural language reasoning.

Please only use forward reasoning; do not use tactics that modify the final goal.

For new hypotheses, please do not prove them and use 'sorry' to close them.

Please assume the following header code has already been executed, and do not add any imports or openings.

'''lean4 import Mathlib

'''

# Problem

"""

{informal_problem}

"""

# Initial Solution State

'''

{g_str}

''''
```

L.9 Informalization

```
Given a natural language math problem, its answer, its Lean 4 formal statement, and
    a Lean 4 formal proof Based on the formal proof, please generate a natural
    language solution while maintaining the semantic equivalence to the formal
    proof.

Please reason step by step, and put your final answer within \\boxed{{}}.

# Informal Problem
"""

{informal_problem}
"""

# Informal Answer
{informal_answer}
# Formal Statement
```

```
formal formal_statement}

# Formal Proof
'''lean4
{formal_solution_draft}
'''

# Informal Solution
'''
```

M Ethics Statement

Our research designs an efficient and effective reasoning model for Deductive Formal Problem-Solving (D-FPS), implements a data generation pipeline, and explores the possibilities enabled by process-level verified data. This project focuses on formal mathematics. It has many positive impacts, including contributions to high-quality mathematics education materials, trustworthy reasoning models, and democratization of reasoning data.

However, over-reliance on formal verification and automated reasoning may lead to negative societal impacts. The "verified" refers to "theoretically verified". However, the implementation of formal verifiers themselves is the Achilles' heel. Current expert systems are fragile to misimplementation; e.g., AlphaGeometry contains incorrect rules, and code contributions to Mathlib are not allowed to use native_decide due to its trust in the Lean compiler. Therefore, merely depending on automated reasoning is not sufficient. Future works may mitigate this by cross-checking the same reasoning process with two independent proof assistants (e.g., Lean and Coq). Moreover, heavy use of automated reasoners offloads users' cognition. Formal proofs & solutions are not easy to understand. If they accept results without understanding the underlying idea, their own intuition and intelligence may degenerate. Future work on faithful informalization (i.e., translating formal reasoning results into natural language) can help alleviate this issue.

We acknowledge the importance of ethical and scientific implications, including the responsible use of LLMs, mitigating biases in model outputs, addressing privacy concerns, and facilitating future research. We commit to making our code and model transparent and encourage the community to use our findings responsibly.

Relevant benchmarks (FormalMath500 [7], MiniF2F-Solving [7, 9], and PutnamBench-Solving [7, 60]), data (Numina-CoT [46], Numina-1.5 [46], and Lean-Workbook [46]), and base models (Qwen2.5-Math-7B [58], Qwen2.5-7B [65]) are released under the <u>Apache 2.0 License</u>. The original MATH [8] dataset, MathOdessy [61] and Phi-4-mini-instruct [62] are released under the <u>MIT license</u>. Special thanks to their authors for the invaluable contributions!