
Bootstrapping Hierarchical Autoregressive Formal
Reasoner with Chain-of-Proxy-Autoformalization

Qi Liu, Xinhao Zheng, Renqiu Xia, Qinxiang Cao, Junchi Yan∗

School of Computer Science & School of Artificial Intelligence, Shanghai Jiao Tong University
Shanghai Innovation Institute

{purewhite,void_zxh,xiarenqiu,caoqinxiang,yanjunchi}@sjtu.edu.cn
https://github.com/Purewhite2019/har_copa_main

Abstract

Deductive formal problem-solving (D-FPS) enables process-verified, human-
aligned problem-solving by implementing deductive solving processes within
formal theorem proving (FTP) environments. However, current methods fail to
address the misalignment between informal and formal reasoning granularity and
suffer from inefficiency due to backtracking and error propagation. Moreover, the
extreme scarcity of formal problem-solution pairs further hinders progress. For
the first gap, we propose HAR (Hierarchical Autoregressive Formal Reasoner), a
novel reasoning pipeline. HAR decouples informal-aligned drafting and detailed
proving, and formulates solution construction as autoregressive generation with
per-step feedback. Second, we propose CoPA (Chain-of-Proxy-Autoformalization),
a data generation pipeline that cascades statement autoformalization, proof draft-
ing, and proof search as a proxy autoformalization path. Experiments demonstrate
significant improvements: trained on data bootstrapped by CoPA, HAR achieves su-
perior performance on FormalMath500 (15.50% 7→44.09%) and MiniF2F-Solving
(21.87% 7→56.58%) with lower computational budget. Explorations reveal promis-
ing directions in formal solution pruning and informal dataset denoising.

1 Introduction

Contemporary large reasoning models (LRMs) demonstrate superhuman performance in mathematical
reasoning [1–3]. However, the lack of zero-false-positive process-level supervision limits their
inference scalability [4] and training effectiveness [5, 6]. Deductive formal problem-solving (D-
FPS) [7] addresses this by implementing problem-solving processes within formal theorem proving
(FTP) environments, decoupling solving and verification, and enforcing deductive reasoning.

The transition from FTP to D-FPS introduces two core challenges. 1) absence of an efficient and
effective reasoning method; 2) extreme scarcity of formal problem-solution data.

For the reasoning pipeline, we systematically analyze the design choices of existing FTP methods
and identify two key gaps. First, the granularity between informal and formal reasoning is misaligned.
For instance, while substituting

√
4 with 2 is trivial in informal reasoning, it requires a three-line

formal proof. Conversely, computing the 100th Fibonacci number modulo 4 is easy in formal systems.
Second, existing FTP paradigms are inefficient for deductive reasoning. Search-based approaches
allocate enormous resources to backtracking. An agent can abandon the current path and return to a
previous node to avoid dead ends. However, this is less essential for D-FPS. Whole-proof generation
suffers from error propagation, where initial mistakes lead to cascading failures.

∗Corresponding author. This work was in part supported by NSFC (92370201).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Purewhite2019/har_copa_main

Therefore, we propose HAR (Hierarchical Autoregressive Formal Reasoner) for effective and
efficient reasoning. HAR autoregressively generates solution steps to derive the answer without
backtracking. Each reasoning step is decoupled into a high-level drafting step, which is aligned
with informal reasoning, and a series of low-level proof searches to fill specific gaps. This approach
combines the robustness for stepwise failure from search-based methods and the depth-priority from
whole-generation methods. HAR shows significantly superior performance to existing methods,
solving 44.09% of FormalMath500 [8, 7] and 56.58% of MiniF2F-Solving [9, 7] with the lowest
budget. HAR even outperforms methods given ground-truth informal solutions.

For data bootstrapping, existing models lack task-specific knowledge and training. However, relevant
FTP tasks such as statement autoformalization are well-explored. We propose CoPA (Chain-of-Proxy-
Autoformalization), cascading statement autoformalization, proof drafting, and proof search as a proxy
path to formalize problems and solutions. For quality filtering, we propose an explosion and vacuous
check for problems, and a deductive check for solutions. Along with expert iteration, experiments
demonstrate clear and consistent improvement in problem and solution autoformalization.

Formal problem and solution data produced by CoPA are process-level verified, which opens up
interesting possibilities, e.g., solution pruning and informal dataset denoising. We design proto-
types and conduct exploratory experiments to inspire future work. Solution pruning removes at most
23.41% of tokens in formal solutions. Models trained on these data show on-par (and even superior)
performance and shorter reasoning lengths during evaluation. Models fine-tuned on denoised informal
data demonstrate clear improvement over those fine-tuned on the original data (52.52% 7→ 59.19%).

2 Related Works
Formal Reasoning. Closely related works include those in formal theorem proving (FTP) and
formal problem-solving (FPS). FTP methods aim to construct machine-verifiable proofs for formal
mathematical statements. Roughly two main paradigms exist: proof search methods view the
construction of a proof as a tree search process on potential proof paths [10]. Best-first search
with value function as cumulated log-probability [11–17] or critic model [18, 19], and MCTS-based
search [13] are used. Specifically, POETRY [15] proposes recursive best-first search for finer-grained
search. Lean-STaR [16] proposes to augment formal step generation by informal thoughts and directly
sample paths. Whole-proof generation methods [20–28] samples proofs conditioned on formal
statements in one pass. DeepSeekProver-V1.5 [25] pioneers incorporating a truncate-and-resume
mechanism to combine search and whole-generation. For D-FPS, prompt-based whole-solution
generation [7] resembles whole-proof generation. The proposed HAR differs from existing methods
by 1) splitting the generation of formal solutions into many smaller rejective sampling steps to avoid
error propagation; 2) decoupling one formal step into an informal-aligned drafting and finer-grained
gap filling; 3) removing backtracking to improve efficiency.

Autoformalization. Statement autoformalization aims at translating informal statements into formal
ones while preserving semantics. Existing methods prompt general LLMs [29–31, 26], train autofor-
malizers with back-translation [32–34], and train with filtered autoformalization results [35, 26, 36].
Proof autoformalization [22, 37–40] focuses on generating formal proofs from informal ones using
methods similar to statement autoformalization. However, they usually focus on proof correctness
rather than semantic consistency. CoPA differs by 1) formalizing problems, answers, and solutions
with carefully designed quality filtering; 2) cascading existing statement autoformalization, proof
drafting, and proof search methods as a proxy path.

Formal Data Generation. Existing methods usually focus on FTP and can be roughly divided into
three categories. Statement autoformalization [24, 35] enlarges the formal corpus by translating
informal statements into formal ones and searching for their proofs. Expert iteration [12, 24]
alternatively trains provers using cumulated proofs and uses trained models to generate more proofs.
Statement synthesis [41, 42, 28] generates new statements by symbolic mutation [41] , forward
reasoning [42], and conjecturer LLMs [28]. CoPA differs by 1) generating informal-formal aligned
problems and solutions; 2) splitting solution drafting and proof gap filling.

3 Background
Beyond verifying theorem proofs, Lean 4 [43] can be used to provide process-level supervision in
problem-solving processes under the framework of Formal Problem-Solving (FPS) and Deductive

2

DPS (D-FPS) [7]. Based on FPS, D-FPS decouples deducing the answer and validating its soundness
into forward-solving and backward-proving processes, and enforces deductive reasoning in forward-
solving. These modifications enhance the alignment between D-FPS solutions and informal solutions.

D-FPS define problems as predicates P (Â) := (∀(v:T)∈V (v : T), ∀(h:ϕ)∈Φ(h : ϕ), (ψ ↔ A))[A 7→
Â], and answers as propositions Â : Prop, where V,A,Φ, ψ are the set of independent variables,
the queriable, the set of hypotheses, and the conclusion, respectively. For example, a problem “If
mn = 4 and m + n = 5, what is |m − n|?” with ground-truth “3”, the above components can be
V = {(a : R)(m : R)(n : R)},Φ = {(h0 : mn = 4)(h1 : m + n = 5)}, ψ = (|m − n| = a).
Therefore, it can be formalized into a predicate P (Â) := ∀(a : R)(m : R)(n : R)(h0 : mn = 4)(h1 :

m+ n = 5), (|m− n| = a) ↔ Â with ground-truth answer Ā : a = 3.

The process of problem-solving, i.e., deducing an answer Â and proving P (Â), is formulated as
a Markov Decision Process (MDP). Informally, a solution state maintains variables, hypotheses,
deduced facts, and unproven goals, and a solution step (action) manipulates the state while preserving
logical coherence. In parallel with formal theorem proving (FTP), solution states in D-FPS are
concretized as proof states, and solution steps are tactic applications. For example, the forward state 0 (
Fig. 1 top) contains variables (a : R), (m : R), (n : R) and hypotheses (h0 : mn = 4), (h1 : m+n =
5), (hanswer : |m−n| = a). A solution step can deduce a new fact hsquare : (m−n)2 = (m+n)2−4mn
based on the context and transit to the forward state 1 (Fig. 1 bottom right).

The forward state 0 is initialized from the problem. The agent iteratively executes solution steps
st to transform forward states until reaching a terminal state where an answer Â and a proof that
V,Φ, ψ can deduce Â are submitted simultaneously (Fig. 1 left). Then, a backward-proving process
is conducted to show V,Φ, Â can deduce ψ. The backward-proving part is a vanilla FTP task, and
once the forward part finishes, the correctness can be checked by comparing the submission Â with
the ground-truth Ā. Therefore, this paper focuses on the forward-solving part, i.e., deducing the final
answer step-by-step.

Informal Problem
If mn=4 and m+n=5, what

is |m-n|?

Informal Problem
If mn=4 and m+n=5, what

is |m-n|? answer m n : ℝ
h₀ : m * n = 4
h₁ : m + n = 5
h_answer : |m - n| = answer
⊢ ?w

Forward State 0

/--
 Step 1. Recall the relationship between the sum and
 product of two numbers.
 For any two numbers m and n, the following identity
 holds:

(m−n)2

 = m2-2mn+n2

 = (m2+2mn+n2)-4mn
 = (m+n)2−4mn

--/
have h_square := by calc
 (m - n) ^2 = m^2 - 2 * m * n + n^2 :=
 by sorry –- Proof Gap <1>
 _ = (m^2 + 2 * m * n + n^2) - 4 * (m * n) :=
 by sorry –- Proof Gap <2>
 _= (m + n)^2 - 4 * (m * n) :=
 by sorry –- Proof Gap <3>

 <1>: ring –- Proof <1>

 <2>: ring –- Proof <2>

 <3>: ring –- Proof <3>
Formal-
specific
Proving

Proof Gap
Filling

Proof Gap
Filling

Hierarchical Reasoning

Informal-
aligned
Drafting

Informal-
aligned
Drafting

Forward State 0

Lean
Execution

Lean
ExecutionStep 1

...

Forward State 1

answer = 3

Forward State n

×
 Lean Execution

Informal
Step

Formal Gap
Proofs

Formal Step
Draft

 Proof Gap Filling

Forward State n-1

Step n ×
 Lean Execution

 Proof Gap Filling
...
h_square : (m - n) ^ 2 = (m
+ n) ^ 2 - 4 * (m * n)
⊢ ?w

Forward State 1

...
h_square : (m - n) ^ 2 = (m
+ n) ^ 2 - 4 * (m * n)
⊢ ?w

Forward State 1

...
h_square : (m - n) ^ 2 = (m
+ n) ^ 2 - 4 * (m * n)
⊢ ?w

Forward State 1*

...
⊢ (m - n) ^ 2 = m ^ 2 - 2 *
m * n + n ^ 2

...
⊢ (m - n) ^ 2 = m ^ 2 - 2 *
m * n + n ^ 2

...
⊢ m ^ 2 + 2 * m * n + n ^ 2
- 4 * (m * n) = (m + n) ^ 2
- 4 * (m * n)

...
h_square : (m - n) ^ 2 = (m
+ n) ^ 2 - 4 * (m * n)
⊢ ?w

Forward State 1*

...
⊢ (m - n) ^ 2 = m ^ 2 - 2 *
m * n + n ^ 2

...
⊢ (m - n) ^ 2 = m ^ 2 - 2 *
m * n + n ^ 2

...
⊢ m ^ 2 + 2 * m * n + n ^ 2
- 4 * (m * n) = (m + n) ^ 2
- 4 * (m * n)

(1)

(2)

Figure 1: Pipeline of Hierarchical Autoregressive Formal Reasoner (HAR). HAR autoregressively
transforms forward states without backtracking. Given a forward state, (1) HAR generates an informal
step and a formal step draft. Lean 4 executes the draft, resulting in an intermediate state with unsolved
goals. (2) HAR conducts proof searches to prove each goal, resulting in a new forward state. If the
execution or proving fails, HAR retries until the step is successful or the step limit is exceeded.

3

4 Method

This section introduces the Hierarchical Autoregressive Formal Reasoner (HAR) for forward-solving
in deductive formal problem-solving (D-FPS). Then, Chain-of-Proxy-Autoformalization (CoPA) is
introduced for data generation. Finally, we present some intriguing explorations based on CoPA.

4.1 Hierarchical Autoregressive Formal Reasoner

4.1.1 Motivation

Misaligned Granularity. One significant discrepancy between informal and formal reasoning is
their granularity. Some seemingly easy steps are nontrivial for formal reasoning, e.g., substituting√
4 with 2, because real numbers are defined as equivalence classes of Cauchy sequences in formal

mathematics. Conversely, computing the 100th Fibonacci number modulo 4 is easy. Therefore,
directly generating formal steps from informal thoughts implicitly requires complex reasoning.

Wasted Steps. Proof search methods rely on tree search, where frequent backtracking causes a waste
of reasoning steps. However, backtracking is necessary in FTP because it facilitates recovering from
unprovable goals. These goals stem from unsafe tactics [44], e.g., aggressive application of apply,
exfalso, and excessive clear. In D-FPS, many frequently used unsafe tactics are unavailable
(discussed in Appendix A). Therefore, backtracking is not necessary. Whole-proof search methods
suffer from error propagation. It generates all subsequent steps in one pass. Thus, the first erroneous
step causes cascading failures of the whole proof, wasting all subsequent steps.

4.1.2 Design

The overall pipeline of the proposed Hierarchical Autoregressive Formal Reasoner (HAR) is in Fig. 1.
The core idea is to treat the construction of a formal solution as a backtracking-free autoregressive
search process. Each formal step is decomposed into an informal thought, a formal draft, and several
fine-grained formal proofs.

Hierarchical Reasoning. To align the granularity between informal and formal reasoning, we split
one formal step into a drafting step and several proof searches. The drafting step consists of an
informal reasoning step and a formal step draft, which is generated following the informal step and
may contain logical gaps. Then, proof searches fill the underlying gaps. Concretely, given an informal
problem Pi and the current forward state S(t), the next solution step is generated as follows.

• High-level Drafting. Sample an informal step s(t)i from an LLM parameterized by θ, i.e., s(t)i ∼
pθ(·|Pi, S

(t)). Then, sample a formal step draft s(t)f ∼ pθ(·|Pi, S
(t), s

(t)
i). The draft is executed by

Lean, resulting in the next state S(t+1), and unsolved goals [Ŝ(t+1)
j]mj=n (corresponding to sorry

placeholders in s(t)f), i.e., (S(t+1), [Ŝ
(t+1)
j]nj=1) = Lean(S(t)|s(t)f),

• Low-level Proving. For each unsolved goal Ŝ(t+1)
j , proof search is conducted to search for its

proof ŝf,j . If all gaps are proven, the solution step (s
(t)
i , s

(t)
f , [ŝf,j]

m
j=1) is returned and the current

state is updated to S(t+1).

Autoregressive Search. The construction of the formal solution is formulated as an autoregressive
search without backtracking. Concretely, an agent starts with some budget (max number of expansion
attempts)NS and the initial forward state S0. At state S(t), an expansion attempt includes generateing
an informal solution step s(t)i , a formal step draft s(t)f , and the corresponding gap proofs [ŝf,j]mj=1. If
the formal step draft is successfully executed by Lean and all proof searches succeed, the expansion
succeeds and updates the solution state to S(t+1). Otherwise, the expansion fails. The agent will
repeatedly retry until the budget is exhausted.

The agent submits answers by exact (implicitly submitting an answer proposition and its proof
simultaneously) and terminates. If the submission is correct, the search succeeds; otherwise, the
search restarts from S0 with the remaining budget. If the budget is exhausted, the search fails.

4

Informal Problem
If mn=4 and m+n=5, what

is |m-n|?

Informal Problem
If mn=4 and m+n=5, what

is |m-n|?

Informal Answer

|m-n|=3

Informal Answer

|m-n|=3

Informal Statement

If mn=4 and m+n=5, show
that |m-n|=3

Informal Statement

If mn=4 and m+n=5, show
that |m-n|=3+

Formal Statement
example (answer m n : ℝ)
(h₀ : m*n = 4) (h₁ : m+n =
5) (h_answer : abs (m-n) =
answer) : answer = 3

Formal Statement
example (answer m n : ℝ)
(h₀ : m*n = 4) (h₁ : m+n =
5) (h_answer : abs (m-n) =
answer) : answer = 3

Formal Problem
(answer m n : ℝ) (h₀ : m*n =
4) (h₁ : m+n = 5) (h_answer :
abs (m-n) = answer)

Formal Answer
answer = 3

Formal Answer
answer = 3×

×

Syntax Check

Explosion Check

Vacuous Check

Deductive check

Type check

 <1>: ring -- Proof <1>

Gap Proofs

<1>: (m - n) ^2 = m^2 - 2 * m * n + n^2 :=
by sorry -- Proof Gap <1>

Logical Gaps

Informal Solution

Step 1: Recall the relationship
between the sum and
 product of two numbers.
Step ...: ...
Step n: In conclusion, the final
answers are {...}

Informal Solution

Step 1: Recall the relationship
between the sum and
 product of two numbers.
Step ...: ...
Step n: In conclusion, the final
answers are {...}

Proof Draft

have h_square := by calc
 (m - n) ^2 = m^2 - 2 * m * n + n^2 := by sorry
 _ = (m^2 + 2*m*n + n^2) - 4 * (m * n) := by sorry
 _= (m + n)^2 - 4 * (m * n) := by sorry
rw [h₀, h₁] at h_square
...
exact h_submission

Proof Draft

have h_square := by calc
 (m - n) ^2 = m^2 - 2 * m * n + n^2 := by sorry
 _ = (m^2 + 2*m*n + n^2) - 4 * (m * n) := by sorry
 _= (m + n)^2 - 4 * (m * n) := by sorry
rw [h₀, h₁] at h_square
...
exact h_submission

Statement
Autoformalizer

Proof
Drafter

Solution Draft

have h_square := by calc
 (m - n)^2 = m^2 - 2 * m * n + n^2 := by sorry
 _ = (m^2 + 2*m*n + n^2) - 4 * (m * n) := by sorry
 _= (m + n)^2 - 4 * (m * n) := by sorry
rw [h₀, h₁] at h_square
...

exact h_submission

Solution Draft

have h_square := by calc
 (m - n)^2 = m^2 - 2 * m * n + n^2 := by sorry
 _ = (m^2 + 2*m*n + n^2) - 4 * (m * n) := by sorry
 _= (m + n)^2 - 4 * (m * n) := by sorry
rw [h₀, h₁] at h_square
...

exact h_submission

ExtractExtract

Formal Solution

have h_square := by calc
 (m - n) ^2 = m^2 - 2 * m * n + n^2 := by ring
 _ = (m^2 + 2 * m * n + n^2) - 4 * (m * n) := by ring
 _= (m + n)^2 - 4 * (m * n) := by ring
rw [h₀, h₁] at h_square
...

exact h_submission

Formal Solution

have h_square := by calc
 (m - n) ^2 = m^2 - 2 * m * n + n^2 := by ring
 _ = (m^2 + 2 * m * n + n^2) - 4 * (m * n) := by ring
 _= (m + n)^2 - 4 * (m * n) := by ring
rw [h₀, h₁] at h_square
...

exact h_submission

<2>: m^2 - 2 * m * n + n^2 = (m^2 + 2*m*n + n^2)
- 4 * (m * n) := by sorry -- Proof Gap <2>

<3>: (m^2 + 2 * m * n + n^2) - 4 * (m * n) = (m +
n)^2 - 4 * (m * n) := by sorry -- Proof Gap <3>

...

 <2>: ring -- Proof <2>

 <3>: ring -- Proof <3>

...

Proof
Searcher

/

(a)

(b)

(c)

Figure 2: Demonstration of Chain-of-Proxy-Autoformalization (CoPA). (a) Given an informal
problem and its informal answer, CoPA employs statement autoformalization as a proxy to formalize
both the problem and its corresponding answer. Syntax check, explosion check, and vacuous check
filter out low-quality formalizations; (b) Given an informal problem, its answer, solution, and formal
statement, CoPA utilizes proof drafting as a proxy to draft a formal solution. Typecheck and deductive
check filter out low-quality formalizations; (c) Given a solution draft, CoPA utilizes proof search to
fill logical gaps, resulting in a completed formal solution.

4.2 Chain-of-Proxy-Autoformalization

The overall pipeline of Chain-of-Proxy-Autoformalization (CoPA) is in Fig. 2. The problem, answer,
and solution autoformalization are reformulated as a chain of statement autoformalization, proof
drafting [38], and proof search. Explosion, vacuous, and deductive checks are designed to improve
data quality and ensure compatibility with D-FPS. To mine data towards the last nugget of gold, we
design expert iterations specifically targeted at problem-solving. We also provide insights on potential
explorations, including stepwise-verified solution pruning and informal solution denoising.

4.2.1 Problem Autoformalization

Task Formulation. Problem autoformalization is to translate an informal find-all problem Pi and
its ground-truth answer Āi into a formal problem Pf with ground-truth answer Āf . The translation
should pass the syntax check and maintain semantics with (Pi, Ai).

Problem+Answer=Statement. Statement autoformalization is used as a proxy for problem and
answer autoformalization. Given an informal problem Pi with answer proposition Āi, concatenating
Pi and Āi can construct a statement that “if the conditions and conclusions are satisfied, then the
ground-truth answer holds”. Therefore, we use statement autoformalizers to get a formal statement
∀mj=1(χj : Tj), Ā, where Tj can live in the Type and Prop universe. Based on the dependency of
Ā, we split out variables that A depends on into a telescope V = [vj : Tj]

n
j=1, hypotheses that A

depends into a telescope Φ = [hj : ϕj]
p
j=1, and compose the remaining to ψ. Hence, we get a formal

problem Pf (Â) = (∀nj=1(vj : Tj), ∀
p
j=1(hj : ϕj), (ψ ↔ A))[A 7→ Â] with ground-truth Ā.

Quality Filtering. We filter out problems that fail in Lean syntax check, contain contradictory condi-
tions, or are overly simple. Concretely, explosion check attempts to prove ∀nj=1(vj : Tj), ∀

p
j=1(hj :

ϕj), ψ → False and discard those proven. Relevant automation is detailed in Appendix E. If the
proposition holds, the Modus Tollens rule concludes that there exist contradictions in conditions; thus,

5

arbitrary answer propositions hold by the principle of explosion. Vacuous check rejects ifAf ∈ V ∪Φ
or Af is a clause in ψ because the answer is too easy to derive, leaving the problem vacuous.

4.2.2 Hierarchical Solution Autoformalization
Task Formulation. Solution autoformalization is to translate an informal solution si of problem
Pi, Āi, Pf , Āf into a formal solution sf which passes typecheck and is semantically consistent to si.

Solution Draft ≈ Proof Draft. Solution autoformalization is hierarchically divided into two stages:
solution drafting and gap proving. Solution drafting aligns the granularity between formal and
informal reasoning, and is implemented by the proxy of proof drafting. Forward solutions are a
subset of proofs for ∀nj=1(vj : Tj), ∀

p
j=1(hj : ϕj), ψ → Ā. Therefore, we use a proof drafter to draft

s̊f for the statement. Then, deductive check filters out drafts if they contain tactics that change the
target of proof goals, or do not simultaneously submit an answer and its proof with a direct exact.

Solution Draft+Gap Proofs=Solution. Given a solution draft s̊f , the proof goals suppressed by
sorry are extracted and a proof searcher constructs their proofs. If any proof search fails, the draft
s̊f is rejected. Otherwise, the draft and the gap proofs are composed as the final formal solution sf .

4.2.3 Expert Iteration

To unlock the full potential of existing data, we design an expert iteration pipeline that iteratively
trains task-specific models and generates more data.

Cold Start@Cycle 0. Cold start is based on an augmentation1 of MetaMathQA [45] and Numina-
CoT [46]. We only use data from Numina-CoT and carefully filter out unsuitable problems, such as
proving problems, synthetic ones, and those with corrupted answers or solutions. For finer-grained
processing, we fine-tuned a Multilingual-E5-small [47] on the MATH [48] train set to label the
subject and difficulty for each datapoint. We manually annotate formal statements and proof drafts
for 100 demonstrations sampled from the MATH train set, then use DeepSeek-V3-12-26 [49] with
subject-wise and level-wise 4-shot in-context learning to autoformalize statements and proof drafts. A
proof searcher is trained with state-tactic pairs from Mathlib 4 [50] extracted by Pantograph [51] and
the Lean-Workbook [35] dataset. The proof searcher is used to fill proof gaps. Resulting datapoints
are categorized into 1) fails at statement autoformalization; 2) fails at proof drafting; 3) fails at proof
gap filling; and 4) succeeds in all stages. Models are trained under the “next-stage” strategy: the
statement autoformalizer is trained on datapoints from the third and fourth categories, the proof
drafter is trained on only fourth-category data, and the proof searcher is trained on all succeeded
gap proofs. Sophisticated methods are tested for filtering statement autoformalization data, but all
perform worse than simple next-stage filtering, as detailed in Appendix D.

Iteration@Cycle n. In subsequent cycles, we use the Numina-1.5 [46] dataset and also filter out all
proving problems, multiple-choice problems, and problems with corrupted answers. Model training
follows the next-stage strategy on cumulated data from Cycle 0 to Cycle n− 1. At the end of each
cycle, the datapoints of the fourth category are frozen and do not participate in the data generation of
future cycles.

4.2.4 Explorations

Data produced by CoPA enables some intriguing explorations. Here we give a glimpse, and hopefully
they can inspire readers of relevant directions.

Solution Pruning. Accompanied by inference-time scaling of large reasoning models (LRM),
efficient reasoning [52–56] is drawing more attention. We demonstrate the feasibility of performing
formally verified stepwise pruning on reasoning trajectories.

A formal solution sf = [sf,j]
m
j=1 may contain redundant steps, i.e., steps whose proposed hypotheses

are not used in subsequent reasoning. We use Lean 4 Linter [43] to detect and remove redundant
steps. Notably, this operation can be iteratively applied because there may be interdependencies
among redundancies, where removing one subset may alter others.

Dataset Denoising. One of the most significant advantages of formal over informal reasoning
is the process-verifiability, which can generate high-quality training data [57]. Here, we explore

1https://huggingface.co/datasets/yingyingzhang/metamath-qwen2-math

6

the possibility of repairing flaws in informal reasoning. Given an informal dataset of problems,
answers, and solutions Di = {(P (j)

i , Ā
(j)
i), s

(j)
i }mj=1, we run CoPA formalize them and get Df =

{(P (j)
f , Ā

(j)
f), s

(j)
f }mj=1. Then we translate formal solutions back, resulting in a denoised informal

dataset D̄i = {(P (j)
i , Ā

(j)
i), s̄

(j)
i }mj=1 with more trustworthy and consistent solutions.

5 Experiment

In this section, we answer the following research questions through comprehensive experiments.

• Scalability of CoPA. How scalable is CoPA with expert iteration on the datasets?
• Effectiveness of HAR. How effective is HAR over baselines and ablations?
• Convergence of Best-first Search. Will best-first search converge to whole-generation and

autoregression as the expansion width approaches 1?
• Solution Pruning. Can solution pruning make training and inference more efficient?
• Dataset Denoising. Can formal-denoised data yields better fine-tuned models?

In each cycle of CoPA, 100 formalized statements are sampled and manually evaluated. HAR and
its baselines are evaluated on FormalMath500 [7] and MiniF2F-Solving [7]. FormalMath500 is a
formalized subset of MATH500 [48], consisting of 387 formal problems. MiniF2F-Solving is a
refactored subset of MiniF2F [9], consisting of 375 formal problems2. See Appendix E, F,G,L, I for
environment settings, training recipes, evaluation hyperparameters, prompt templates, and details
about dataset denoising, respectively.

5.1 Baselines Methods

The following baselines for HAR are evaluated. All methods are fine-tuned from Qwen2.5-Math-
7B [58] on data produced by CoPA.

ICL and Hybrid CoT are baselines for D-FPS introduced in [7]. ICL refers to in-context learning
DeepSeek-V3 [49] with 10-shot demonstrations of informal problems, initial forward states, and
ground-truth forward solutions. Hybrid CoT refers to additionally augmenting the forward solutions
with aligned informal reasoning steps.

Best-first Search (BFS) resembles proof search in formal theorem proving (FTP), including
a broad spectrum of works [59, 14, 18]. Given an informal problem Pi, a solution state St,
it samples solution steps st ∼ pθ(·|Pi, St) and conducts best-first search with value function
vt =

∑
t′≤t

log pθ(st′ | Pt′ ,St′)
|st′ |

, i.e., the sum of normalized log-likelihoods of steps leading to St.

Whole-Solution Generation (WG) resembles whole-proof generation in FTP, including DeepSeek-
Prover-V1 [24], DeepSeek-Prover-V1.5 [25], Goedel Prover [26]. Given an informal problem Pi, the
initial solution state S0, it samples the whole solution in one shot s ∼ pθ(·|Pi, S0).

Autoregressive Reasoning (AR) is an ablation of the proposed HAR. Given an informal problem Pi,
a solution state St, it iteratively samples solution steps st ∼ pθ(·|Pi, St) until the step is correctly
executed in Lean or the budget is exhausted. The solution construction is modeled as an autoregressive
generation with per-step rejective sampling.

Hierarchical Best-first Search (H-BFS) and Hierarchical Whole-Generation (H-WG) are hier-
archical variants of BFS [15] and WG. Instead of directly generating a complete step/solution, the
model generates a step/solution draft (possibly with sorry placeholders), then conducts proof search
to fill them.

Hierarchical Solution Autoformalization (H-SA) is introduced in Sec. 4.2.2. Given a formal
statement (composed of the formal problem and its ground-truth answer) and a ground-truth informal
solution, a proof drafter first translates the informal solution into a formal draft, and a proof searcher
fills proof gaps. H-SA sets a strong baseline because it can be viewed as an augmented H-WG with
ground-truth formal answers and informal solutions.

2We have conducted explosion check and vacuous check on these benchmarks. 9 of FormalMath500 and 5 of
MiniF2F-Solving are filtered out in the following evaluation.

7

Table 1: Results of CoPA with expert iteration from Cycle 0 to Cycle 2. Total refers to the total
number of datapoints to run CoPA; Stages represents the three stages of CoPA, where Problem, Draft,
and Gap denote the success rate of problem autoformalization, solution drafting, and proof gap filling,
respectively; Problem Autoformalization refers to the portion of autoformalized problems that are
semantically correct from the human perspective; FormalMath500 and MiniF2F-Solving denote the
solving rate of applying proof drafting and proof gap filling on FormalMath500 and MiniF2F-Solving,
respectively. Success rates and problem autoformalization accuracies are not directly comparable
across cycles due to changes of data distribution. Bold highlights the best values.

Cycle Total Stages Problem
Autoformalization

Formal-
Math500

MiniF2F-
SolvingProblem Draft Gap

0 401,499 62.89% 21.53% 7.18% 47% 35.98% 45.14%
1 550,428 78.26% 67.11% 20.42% 62% 37.83% 48.11%
2 437,652 85.33% 76.96% 11.87% 53% 40.21% 50.27%

Table 2: Evaluation results of HAR against baselines and ablations. Solved represents the solving
rates; Budget represents the total number of solution steps generated in one experiment; Bold
highlights the best values among all experiments; Underlined values emphasize the best values in
each ablative or comparative group. HAR demonstrates significant and consistent advantages in both
solving rates and budgets, even compared with H-SA, which is enhanced with informal ground-truths.

Data Method FormalMath500 MiniF2F-Solving
Solved↑ Budget↓ Solved↑ Budget↓

None ICL 13.70% 68382 21.87% 65148
Hybrid CoT 15.50% 79153 21.60% 81214

Cycle 1

BFS 9.52% ± 0.57% 28139 ± 104 9.64% ± 1.66% 27712 ± 339
WG 18.78% ± 0.22% 18456 ± 92 24.95% ± 1.09% 18853 ± 454

WG (KW = 16) 21.78% ± 0.12% 35391 ± 153 28.83% ± 0.77% 35895 ± 487
AR 34.39% ± 0.78% 20860 ± 233 44.41% ± 0.34% 17814 ± 140

H-BFS 13.32% ± 1.47% 27777 ± 360 12.25% ± 1.47% 27479 ± 203
H-WG 36.77% ± 0.86% 17039 ± 461 47.30% ± 1.01% 16303 ± 388

H-WG (KW = 16) 40.04% ± 0.50% 32134 ± 226 51.08% ± 0.44% 30357 ± 212
H-SA 37.83% ∼ 48.11% ∼
HAR 43.65% ± 1.35% 18432 ± 344 55.50% ± 0.46% 15069 ± 143

Cycle 2 H-SA 40.21% ∼ 50.27% ∼
HAR 44.09% ± 0.54% 18273 ± 116 56.58% ± 0.92% 14754 ± 269

5.2 Results and Discussions

Scalability of CoPA. Results of expert iteration and evaluation are summarized in Table 1. We
run expert iteration for three cycles. Cycle 0 is a cold start, while Cycle 1 and Cycle 2 are normal
expert iterations. Expert iteration shows significant improvement in problem autoformalization.
From Cycle 0 to Cycle 1, the accuracy of problem autoformalization improves from 47% to 62%.
Notably, for Cycle 2, CoPA excludes successfully gap-filled data in Cycle 1 (Gap), which makes
a direct comparison between Cycle 1 and Cycle 2 unfair. The portion of semantically correct
problem autoformalizations on Cycle 1 results excluding Gap data is 49.30%. Therefore, the actual
improvement from Cycle 1 to Cycle 2 is 49.30% 7→ 53%, which is also significant. Proof drafting
and proof gap filling are evaluated on FormalMath500 and MiniF2F-Solving, where improvements
are also significant. Due to the limited computation budget, we cannot afford to continue expert
iteration and leave further scaling up as future work.

Effectiveness of HAR. Results are summarized in Table 2. Means and standard deviations of three
runs are reported for ablations. We also evaluate WG and H-WG with max generation attempts
KW = 16 for a more intuitive comparison. Ablative improvements of hierarchical decoupling (from
BFS, WG, and AR to their hierarchical variants H-BFS, H-WG, and HAR) are huge, especially
the doubled solving rates between WG and H-WG (18.78% 7→ 36.77%, 24.95% 7→ 47.30%). As
categorized in [7], one main error type of such whole-generation methods is logically flawed solution
steps. Hierarchical decoupling makes per-step reasoning more reliable.

8

Table 3: Results on H-BFS on different expansion sizes B ∈ {1, 2, 4, 8, 16}. Solved represents the
solving rates; Avg. Len. denotes the average lengths of correct solutions; Budget denotes the number
of all generated steps; Bold highlights the best values. As B lowers, H-BFS approaches HAR by
increasing solving rates and solution lengths. On B = 1, H-BFS outperforms H-WG while still
underperforming HAR.

Method B
FormalMath500 MiniF2F-Solving

H-BFS

Solved↑ Avg. Len.↓ Budget↓ Solved↑ Avg. Len.↓ Budget↓
16 7.67% 4.28 28824 6.76% 4.40 28570
8 15.34% 4.76 27278 13.78% 4.94 27227
4 29.89% 5.62 24588 31.35% 5.82 24251
2 39.68% 6.71 21274 49.19% 6.77 19197
1 38.89% 7.24 20197 50.00% 8.08 17053

H-WG 1 36.77% 7.10 16474 45.95% 7.33 15760

HAR 1 41.80% 7.77 18902 54.86% 9.03 15271

Table 4: Experiment results of solution pruning. Recursion represents the number of pruning runs;
Train Size denotes the number of tokens in the training set; Solved represents the solving rates; Avg.
Len. denotes the average lengths of correct solutions; Bold highlights the best values.

Recursion Train Size↓ FormalMath500 MiniF2F-Solving
Solved↑ Avg. Len.↓ Solved↑ Avg. Len.↓

0 5.85× 107 34.39% ± 0.78% 7.66 ± 0.18 44.41% ± 0.34% 8.12 ± 0.33
1 4.92× 107 34.30% ± 0.54% 7.00 ± 0.01 44.59% ± 0.66% 7.34 ± 0.22
2 4.64× 107 34.57% ± 0.87% 7.07 ± 0.21 44.50% ± 0.13% 7.19 ± 0.05
3 4.54× 107 34.83% ± 0.33% 6.88 ± 0.30 45.50% ± 1.04% 7.63 ± 0.11
∞ 4.48 × 107 34.48% ± 0.76% 6.68 ± 0.16 45.32% ± 0.13% 7.49 ± 0.20

Comparisons among BFS, WG and AR demonstrate AR’s superiority in both solving rates and budget
consumption. AR requires on-par budget of WG (21K vs. 18K, 18K vs. 19K), while reaching nearly
double its solving rates (18.78% 7→ 34.39%, 24.95% 7→ 44.41%). Compared with WG (KW = 16),
AR also has nearly half the budget and 1.5× solving rates. Similar conclusions can be derived by
comparing H-BFS, H-WG and HAR. One major improvement of AR (HAR) over WG (H-WG) is
that it splits the autoregressive generation of the formal solution into many smaller rejective sampling
steps: autoregressively sample the next solution step, reject if the Lean 4 typecheck (or the gap proof
search) fails, until a logically correct step is generated. This finer-grained rejective sampling avoids a
huge waste in WG: if one intermediate step fails, all following steps are wasted.

HAR also shows consistent improvement over expert iteration: between Cycle 1 and Cycle 2, the
solving rates improve, and the budget lowers. Notably, in all the cycles, HAR even clearly outperforms
H-SA, which incorporates ground-truth informal solutions.

More results and analysis are in Appendix B. Solving rates across different budgets validates HAR’s
Pareto-optimality over all baselines. Scaling experiments HAR and H-BFS to step limit KS = 320
demonstrate HAR’s stronger scaling capabilities, but HAR is limited by the LLM’s context length.
Extended evaluations on PutnamBench-Solving [7, 60] and MathOdessy [61] and experiments on
Phi-4-mini-instruct [62] support the generalizability of HAR. Case studies can be found in Appendix J.

Convergence of BFS. We evaluate H-BFS with expansion widths B ∈ {1, 2, 4, 8, 16}. Results
are shown in Table 3. Under a fixed budget, as B decreases, the correct solutions become longer,
the performance of H-BFS approaches and finally surpasses that of H-WG. This result aligns with
the intuition that higher B leads to breadth-first search and lower B leads to depth-first search.
H-BFS with B = 1 resembles H-WG and HAR. Its advantages over H-WG are 1) H-BFS explicitly
receives the current solution state as input, while H-WG has to implicitly model solution states
during generation; 2) Upon generating an incorrect step, H-BFS immediately exhausts the expansion
width B = 1 and starts a new search, while H-WG wastes budget in generating the following steps.
The disadvantage of H-BFS over HAR is also the early stop behavior. H-BFS’s immediate restart
on expansion failure prevents it from constructing longer solutions, thus underperforming on more
complex problems. This hypothesis is supported by results that the average solution lengths of H-BFS
with B = 1 are significantly lower than those of HAR (7.24, 8.08 vs. 7.77, 9.03).

Solution Pruning. Evaluation results of AR trained on Cycle 1 data recursively pruned for R ∈
{0, 1, 2, 3,∞} times are in Table 4. R = 0 denotes no pruning. R = ∞ indicates iterative pruning

9

Table 5: Experiment results of dataset denoising. English Open, English MC, Chinese Gaokao,
Chinese Other, and English Competition, Overall represent the average accuracy on English open
datasets, English multiple-choice datasets, Chinese gaokao collections, Chinese other datasets,
English competition datasets, and all datasets, respectively; Original, Direct SFT, Denoised SFT
represents the original model, the model fine-tuned using the original informal solution, and the
model fine-tuned using the denoised informal solution, respectively; Bold highlights best values;
Cyan and Purple indicate increases and decreases over the original model.

Model English Open English MC Chinese Gaokao Chinese Other English Competition Overall
Original 52.56% 76.63% 29.04% 54.05% 25.40% 48.36%

Direct SFT 60.13%(+7.57%) 77.27%(+0.64%) 27.90%(-1.14%) 61.35%(+7.30%) 26.25%(+0.85%) 52.52%(+4.16%)

Denoised SFT 64.70%(+12.14%) 76.60%(-0.03%) 45.54%(+16.5%) 70.20%(+16.15%) 25.85%(+0.45%) 59.19%(+10.83%)

until no redundant steps can be removed. We report the means and standard deviations of three runs.
Although pruned 23.42% of solution tokens (between R = 0 and R = ∞), the solving rates do not
show a significant difference (34.39%, 44.41% vs. 34.48%, 45.32%), and the average solution length
is greatly lowered (7.66 7→ 6.68, 8.12 7→ 7.49). See Appendix H for more results and analysis.

Dataset Denoising. Results are in Table 5, where benchmarks are categorized according to Qwen2.5-
Math [58]. More details and discussions are in Appendix I. Denoised SFT model shows significantly
superior performance on most datasets with relative improvements between ∼ 4% to ∼ 18%.
However, it falls short on English multiple-choice benchmarks (−0.67%) and English competition
benchmarks (−0.40%). This drop is intuitive because CoPA focuses on free-response problems rather
than multiple-choice questions. We leave more fine-grained formulations, such as multiple-choice
and true-false problems, for future work.

6 Conclusion
This paper presents a systematic approach to two core challenges current formal problem-solving
faces: the absence of a systematic study of pipeline design and extreme data scarcity. For the
first, we propose HAR (Hierarchical Autoregressive Formal Reasoner), an informal-aligned, effi-
cient and effective method for D-FPS. HAR decouples high-level reasoning and low-level proofs,
and autoregressively constructs solutions. For the second, we propose CoPA (Chain-of-Proxy-
Autoformalization), a scalable data generation pipeline for D-FPS. CoPA bypasses existing models’
lack of D-FPS priors by chaining well-explored FTP tasks, statement autoformalization, proof draft-
ing, and proof search as a proxy path. Based on data from CoPA, we explore the possibility of
Solution Pruning and Dataset Denoising. Comprehensive experiments validate the effectiveness of
the proposed methods.

10

References

[1] OpenAI, :, A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar,
A. Madry, A. Beutel, A. Carney, A. Iftimie, A. Karpenko, A. T. Passos, A. Neitz, A. Prokofiev,
A. Wei, A. Tam, A. Bennett, A. Kumar, A. Saraiva, A. Vallone, A. Duberstein, A. Kondrich,
A. Mishchenko, A. Applebaum, A. Jiang, A. Nair, B. Zoph, B. Ghorbani, B. Rossen,
B. Sokolowsky, B. Barak, B. McGrew, B. Minaiev, B. Hao, B. Baker, B. Houghton,
B. McKinzie, B. Eastman, C. Lugaresi, C. Bassin, C. Hudson, C. M. Li, C. de Bourcy,
C. Voss, C. Shen, C. Zhang, C. Koch, C. Orsinger, C. Hesse, C. Fischer, C. Chan, D. Roberts,
D. Kappler, D. Levy, D. Selsam, D. Dohan, D. Farhi, D. Mely, D. Robinson, D. Tsipras,
D. Li, D. Oprica, E. Freeman, E. Zhang, E. Wong, E. Proehl, E. Cheung, E. Mitchell,
E. Wallace, E. Ritter, E. Mays, F. Wang, F. P. Such, F. Raso, F. Leoni, F. Tsimpourlas, F. Song,
F. von Lohmann, F. Sulit, G. Salmon, G. Parascandolo, G. Chabot, G. Zhao, G. Brockman,
G. Leclerc, H. Salman, H. Bao, H. Sheng, H. Andrin, H. Bagherinezhad, H. Ren, H. Lightman,
H. W. Chung, I. Kivlichan, I. O’Connell, I. Osband, I. C. Gilaberte, I. Akkaya, I. Kostrikov,
I. Sutskever, I. Kofman, J. Pachocki, J. Lennon, J. Wei, J. Harb, J. Twore, J. Feng, J. Yu,
J. Weng, J. Tang, J. Yu, J. Q. Candela, J. Palermo, J. Parish, J. Heidecke, J. Hallman, J. Rizzo,
J. Gordon, J. Uesato, J. Ward, J. Huizinga, J. Wang, K. Chen, K. Xiao, K. Singhal, K. Nguyen,
K. Cobbe, K. Shi, K. Wood, K. Rimbach, K. Gu-Lemberg, K. Liu, K. Lu, K. Stone, K. Yu,
L. Ahmad, L. Yang, L. Liu, L. Maksin, L. Ho, L. Fedus, L. Weng, L. Li, L. McCallum, L. Held,
L. Kuhn, L. Kondraciuk, L. Kaiser, L. Metz, M. Boyd, M. Trebacz, M. Joglekar, M. Chen,
M. Tintor, M. Meyer, M. Jones, M. Kaufer, M. Schwarzer, M. Shah, M. Yatbaz, M. Y. Guan,
M. Xu, M. Yan, M. Glaese, M. Chen, M. Lampe, M. Malek, M. Wang, M. Fradin, M. McClay,
M. Pavlov, M. Wang, M. Wang, M. Murati, M. Bavarian, M. Rohaninejad, N. McAleese,
N. Chowdhury, N. Chowdhury, N. Ryder, N. Tezak, N. Brown, O. Nachum, O. Boiko, O. Murk,
O. Watkins, P. Chao, P. Ashbourne, P. Izmailov, P. Zhokhov, R. Dias, R. Arora, R. Lin, R. G.
Lopes, R. Gaon, R. Miyara, R. Leike, R. Hwang, R. Garg, R. Brown, R. James, R. Shu,
R. Cheu, R. Greene, S. Jain, S. Altman, S. Toizer, S. Toyer, S. Miserendino, S. Agarwal,
S. Hernandez, S. Baker, S. McKinney, S. Yan, S. Zhao, S. Hu, S. Santurkar, S. R. Chaudhuri,
S. Zhang, S. Fu, S. Papay, S. Lin, S. Balaji, S. Sanjeev, S. Sidor, T. Broda, A. Clark, T. Wang,
T. Gordon, T. Sanders, T. Patwardhan, T. Sottiaux, T. Degry, T. Dimson, T. Zheng, T. Garipov,
T. Stasi, T. Bansal, T. Creech, T. Peterson, T. Eloundou, V. Qi, V. Kosaraju, V. Monaco, V. Pong,
V. Fomenko, W. Zheng, W. Zhou, W. McCabe, W. Zaremba, Y. Dubois, Y. Lu, Y. Chen, Y. Cha,
Y. Bai, Y. He, Y. Zhang, Y. Wang, Z. Shao, and Z. Li, “Openai o1 system card,” 2024. [Online].
Available: https://arxiv.org/abs/2412.16720

[2] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang,
X. Bi, X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue,
B. Wang, B. Wu, B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen,
D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu,
H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan,
J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang,
K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang,
M. Tang, M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du,
R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou, S. Chen,
S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun,
T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, W. L. Xiao, W. An,
X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li, X. Su,
X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun, X. Wang, X. Song, X. Zhou, X. Wang,
X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun, Y. Wang,
Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo,
Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X.
Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren,
Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu,
Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang,
“Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.12948

[3] Q. Team, “Qwq-32b: Embracing the power of reinforcement learning,” March 2025. [Online].
Available: https://qwenlm.github.io/blog/qwq-32b/

11

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2501.12948
https://qwenlm.github.io/blog/qwq-32b/

[4] B. Stroebl, S. Kapoor, and A. Narayanan, “Inference scaling flaws: The limits of llm resampling
with imperfect verifiers,” arXiv preprint arXiv:2411.17501, 2024.

[5] T. Ye, Z. Xu, Y. Li, and Z. Allen-Zhu, “Physics of language models: Part 2.2,
how to learn from mistakes on grade-school math problems,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.16293

[6] Z. Allen-Zhu and Y. Li, “Physics of language models: Part 3.3, knowledge capacity scaling
laws,” 2024. [Online]. Available: https://arxiv.org/abs/2404.05405

[7] Q. Liu, X. Zheng, R. Xia, X. Qi, Q. Cao, and J. Yan, “Beyond theorem proving:
Formulation, framework and benchmark for formal problem-solving,” 2025. [Online]. Available:
https://arxiv.org/abs/2505.04528

[8] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt, “Measuring mathematical problem solving with the math dataset,” arXiv preprint
arXiv:2103.03874, 2021.

[9] K. Zheng, J. M. Han, and S. Polu, “Minif2f: a cross-system benchmark for formal
olympiad-level mathematics,” 2022. [Online]. Available: https://arxiv.org/abs/2109.00110

[10] Z. Li, J. Sun, L. Murphy, Q. Su, Z. Li, X. Zhang, K. Yang, and X. Si, “A survey on deep
learning for theorem proving,” 2024. [Online]. Available: https://arxiv.org/abs/2404.09939

[11] S. Polu and I. Sutskever, “Generative language modeling for automated theorem proving,” 2020.
[Online]. Available: https://arxiv.org/abs/2009.03393

[12] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever, “Formal mathematics
statement curriculum learning,” 2022. [Online]. Available: https://arxiv.org/abs/2202.01344

[13] G. Lample, M.-A. Lachaux, T. Lavril, X. Martinet, A. Hayat, G. Ebner, A. Rodriguez, and
T. Lacroix, “Hypertree proof search for neural theorem proving,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.11491

[14] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger, and
A. Anandkumar, “Leandojo: Theorem proving with retrieval-augmented language models,”
2023. [Online]. Available: https://arxiv.org/abs/2306.15626

[15] H. Wang, H. Xin, Z. Liu, W. Li, Y. Huang, J. Lu, Z. Yang, J. Tang, J. Yin, Z. Li, and X. Liang,
“Proving theorems recursively,” 2024. [Online]. Available: https://arxiv.org/abs/2405.14414

[16] H. Lin, Z. Sun, S. Welleck, and Y. Yang, “Lean-star: Learning to interleave thinking and
proving,” 2025. [Online]. Available: https://arxiv.org/abs/2407.10040

[17] R. Xin, C. Xi, J. Yang, F. Chen, H. Wu, X. Xiao, Y. Sun, S. Zheng, and K. Shen, “Bfs-prover:
Scalable best-first tree search for llm-based automatic theorem proving,” 2025. [Online].
Available: https://arxiv.org/abs/2502.03438

[18] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen, “Internlm2.5-stepprover:
Advancing automated theorem proving via expert iteration on large-scale lean problems,” 2024.
[Online]. Available: https://arxiv.org/abs/2410.15700

[19] Y. Li, D. Du, L. Song, C. Li, W. Wang, T. Yang, and H. Mi, “Hunyuanprover: A scalable data
synthesis framework and guided tree search for automated theorem proving,” 2025. [Online].
Available: https://arxiv.org/abs/2412.20735

[20] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof generation and repair with
large language models,” 2023. [Online]. Available: https://arxiv.org/abs/2303.04910

[21] A. Q. Jiang, S. Welleck, J. P. Zhou, W. Li, J. Liu, M. Jamnik, T. Lacroix, Y. Wu, and G. Lample,
“Draft, sketch, and prove: Guiding formal theorem provers with informal proofs,” 2023.
[Online]. Available: https://arxiv.org/abs/2210.12283

[22] X. Zhao, W. Li, and L. Kong, “Decomposing the enigma: Subgoal-based demonstration learning
for formal theorem proving,” 2023. [Online]. Available: https://arxiv.org/abs/2305.16366

[23] H. Wang, H. Xin, C. Zheng, L. Li, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi, E. Xie, J. Yin,
Z. Li, H. Liao, and X. Liang, “Lego-prover: Neural theorem proving with growing libraries,”
2023. [Online]. Available: https://arxiv.org/abs/2310.00656

[24] H. Xin, D. Guo, Z. Shao, Z. Ren, Q. Zhu, B. Liu, C. Ruan, W. Li, and X. Liang,
“Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data,”
2024. [Online]. Available: https://arxiv.org/abs/2405.14333

12

https://arxiv.org/abs/2408.16293
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2505.04528
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2404.09939
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2405.14414
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2412.20735
https://arxiv.org/abs/2303.04910
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2305.16366
https://arxiv.org/abs/2310.00656
https://arxiv.org/abs/2405.14333

[25] H. Xin, Z. Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang, X. Lu, Q. Du,
W. Gao, Q. Zhu, D. Yang, Z. Gou, Z. F. Wu, F. Luo, and C. Ruan, “Deepseek-prover-v1.5:
Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search,”
2024. [Online]. Available: https://arxiv.org/abs/2408.08152

[26] Y. Lin, S. Tang, B. Lyu, J. Wu, H. Lin, K. Yang, J. Li, M. Xia, D. Chen, S. Arora, and C. Jin,
“Goedel-prover: A frontier model for open-source automated theorem proving,” 2025. [Online].
Available: https://arxiv.org/abs/2502.07640

[27] J. Zhang, Q. Wang, X. Ji, Y. Liu, Y. Yue, F. Zhang, D. Zhang, G. Zhou, and K. Gai,
“Leanabell-prover: Posttraining scaling in formal reasoning,” 2025. [Online]. Available:
https://arxiv.org/abs/2504.06122

[28] K. Dong and T. Ma, “Stp: Self-play llm theorem provers with iterative conjecturing and
proving,” 2025. [Online]. Available: https://arxiv.org/abs/2502.00212

[29] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and C. Szegedy, “Autoformalization
with large language models,” 2022. [Online]. Available: https://arxiv.org/abs/2205.12615

[30] Z. Azerbayev, B. Piotrowski, H. Schoelkopf, E. W. Ayers, D. Radev, and J. Avigad, “Proofnet:
Autoformalizing and formally proving undergraduate-level mathematics,” 2023. [Online].
Available: https://arxiv.org/abs/2302.12433

[31] A. Gulati, D. Ladsaria, S. Mishra, J. Sidhu, and B. Miranda, “An evaluation benchmark for
autoformalization in lean4,” 2024. [Online]. Available: https://arxiv.org/abs/2406.06555

[32] Q. Wang, C. Brown, C. Kaliszyk, and J. Urban, “Exploration of neural machine translation
in autoformalization of mathematics in mizar,” in Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, ser. POPL ’20, vol. 5. ACM, Jan.
2020, p. 85–98. [Online]. Available: http://dx.doi.org/10.1145/3372885.3373827

[33] A. Q. Jiang, W. Li, and M. Jamnik, “Multilingual mathematical autoformalization,” 2023.
[Online]. Available: https://arxiv.org/abs/2311.03755

[34] Q. Liu, X. Zheng, X. Lu, Q. Cao, and J. Yan, “Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach,”
in The Thirteenth International Conference on Learning Representations, 2025. [Online].
Available: https://openreview.net/forum?id=hUb2At2DsQ

[35] H. Ying, Z. Wu, Y. Geng, J. Wang, D. Lin, and K. Chen, “Lean workbook: A large-scale
lean problem set formalized from natural language math problems,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.03847

[36] J. Lu, Y. Wan, Y. Huang, J. Xiong, Z. Liu, and Z. Guo, “Formalalign: Automated alignment
evaluation for autoformalization,” 2024. [Online]. Available: https://arxiv.org/abs/2410.10135

[37] G. Cunningham, R. C. Bunescu, and D. Juedes, “Towards autoformalization of mathematics
and code correctness: Experiments with elementary proofs,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.02195

[38] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample, and
Y. Wu, “Draft, sketch, and prove: Guiding formal theorem provers with informal proofs,” in
The Eleventh International Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=SMa9EAovKMC

[39] L. Murphy, K. Yang, J. Sun, Z. Li, A. Anandkumar, and X. Si, “Autoformalizing euclidean
geometry,” 2024. [Online]. Available: https://arxiv.org/abs/2405.17216

[40] J. Lu, Z. Liu, Y. Wan, Y. Huang, H. Wang, Z. Yang, J. Tang, and Z. Guo, “Process-driven
autoformalization in lean 4,” 2024. [Online]. Available: https://arxiv.org/abs/2406.01940

[41] S. Wu, S. Lu, Y. Gong, N. Duan, and P. Wei, “Alchemy: Amplifying theorem-proving capability
through symbolic mutation,” 2025. [Online]. Available: https://arxiv.org/abs/2410.15748

[42] J. Rotella, Z. Qin, A. Z. Yang, B. Miranda, M. E. A. Seddik, J. Zuo, H. Hacid, L. de Moura,
S. Kong, and S. Hu, “Synthetic theorem generation in lean,” 2025. [Online]. Available:
https://openreview.net/forum?id=EeDSMy5Ruj

[43] L. d. Moura and S. Ullrich, “The lean 4 theorem prover and programming language,” in
Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28. Springer, 2021, pp. 625–635.

13

https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2504.06122
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2406.06555
http://dx.doi.org/10.1145/3372885.3373827
https://arxiv.org/abs/2311.03755
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2410.10135
https://arxiv.org/abs/2301.02195
https://openreview.net/forum?id=SMa9EAovKMC
https://arxiv.org/abs/2405.17216
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2410.15748
https://openreview.net/forum?id=EeDSMy5Ruj

[44] J. Limperg and A. H. From, “Aesop: White-box best-first proof search for lean,” in Proceedings
of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, ser.
CPP 2023. New York, NY, USA: Association for Computing Machinery, 2023, p. 253–266.
[Online]. Available: https://doi.org/10.1145/3573105.3575671

[45] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu,
“Metamath: Bootstrap your own mathematical questions for large language models,” arXiv
preprint arXiv:2309.12284, 2023.

[46] J. LI, E. Beeching, L. Tunstall, B. Lipkin, R. Soletskyi, S. C. Huang, K. Rasul, L. Yu,
A. Jiang, Z. Shen, Z. Qin, B. Dong, L. Zhou, Y. Fleureau, G. Lample, and S. Polu, “Numina-
math,” [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

[47] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and F. Wei, “Multilingual e5 text
embeddings: A technical report,” arXiv preprint arXiv:2402.05672, 2024.

[48] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt,
“Measuring mathematical problem solving with the math dataset,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.03874

[49] DeepSeek-AI, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang,
C. Ruan, D. Dai, D. Guo, D. Yang, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao,
G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li,
H. Qu, J. L. Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Wang, J. Chen, J. Chen, J. Yuan, J. Qiu, J. Li,
J. Song, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Xu, L. Xia,
L. Zhao, L. Wang, L. Zhang, M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang, M. Li, N. Tian,
P. Huang, P. Wang, P. Zhang, Q. Wang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L. Jin, R. Ge,
R. Zhang, R. Pan, R. Wang, R. Xu, R. Zhang, R. Chen, S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu,
S. Ye, S. Ye, S. Ma, S. Wang, S. Zhou, S. Yu, S. Zhou, S. Pan, T. Wang, T. Yun, T. Pei, T. Sun,
W. L. Xiao, W. Zeng, W. Zhao, W. An, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, X. Q. Li,
X. Jin, X. Wang, X. Bi, X. Liu, X. Wang, X. Shen, X. Chen, X. Zhang, X. Chen, X. Nie, X. Sun,
X. Wang, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yu, X. Song, X. Shan, X. Zhou, X. Yang, X. Li,
X. Su, X. Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Y. Zhang, Y. Xu, Y. Xu, Y. Huang,
Y. Li, Y. Zhao, Y. Sun, Y. Li, Y. Wang, Y. Yu, Y. Zheng, Y. Zhang, Y. Shi, Y. Xiong, Y. He,
Y. Tang, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo, Y. Wu, Y. Ou, Y. Zhu, Y. Wang,
Y. Gong, Y. Zou, Y. He, Y. Zha, Y. Xiong, Y. Ma, Y. Yan, Y. Luo, Y. You, Y. Liu, Y. Zhou, Z. F.
Wu, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Huang, Z. Zhang, Z. Xie, Z. Zhang, Z. Hao,
Z. Gou, Z. Ma, Z. Yan, Z. Shao, Z. Xu, Z. Wu, Z. Zhang, Z. Li, Z. Gu, Z. Zhu, Z. Liu, Z. Li,
Z. Xie, Z. Song, Z. Gao, and Z. Pan, “Deepseek-v3 technical report,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.19437

[50] T. mathlib Community, “The lean mathematical library,” in Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, ser. CPP 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p. 367–381. [Online]. Available:
https://doi.org/10.1145/3372885.3373824

[51] L. Aniva, C. Sun, B. Miranda, C. Barrett, and S. Koyejo, “Pantograph: A machine-to-machine
interaction interface for advanced theorem proving, high level reasoning, and data extraction in
lean 4,” arXiv preprint arXiv:2410.16429, 2024.

[52] Y. Kang, X. Sun, L. Chen, and W. Zou, “C3ot: Generating shorter chain-of-thought without
compromising effectiveness,” 2024. [Online]. Available: https://arxiv.org/abs/2412.11664

[53] H. Luo, L. Shen, H. He, Y. Wang, S. Liu, W. Li, N. Tan, X. Cao, and D. Tao, “O1-pruner:
Length-harmonizing fine-tuning for o1-like reasoning pruning,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.12570

[54] R. Jie, X. Meng, L. Shang, X. Jiang, and Q. Liu, “Prompt-based length controlled generation
with reinforcement learning,” 2023. [Online]. Available: https://arxiv.org/abs/2308.12030

[55] P. Singhal, T. Goyal, J. Xu, and G. Durrett, “A long way to go: Investigating length correlations
in rlhf,” 2024. [Online]. Available: https://arxiv.org/abs/2310.03716

[56] W. Yuan, I. Kulikov, P. Yu, K. Cho, S. Sukhbaatar, J. Weston, and J. Xu, “Following length
constraints in instructions,” 2024. [Online]. Available: https://arxiv.org/abs/2406.17744

14

https://doi.org/10.1145/3573105.3575671
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2412.19437
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2308.12030
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2406.17744

[57] Z. Li, Z. Zhou, Y. Yao, Y.-F. Li, C. Cao, F. Yang, X. Zhang, and X. Ma, “Neuro-symbolic data
generation for math reasoning,” 2024. [Online]. Available: https://arxiv.org/abs/2412.04857

[58] A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou, J. Lin,
K. Lu, M. Xue, R. Lin, T. Liu, X. Ren, and Z. Zhang, “Qwen2.5-math technical
report: Toward mathematical expert model via self-improvement,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.12122

[59] J. M. Han, J. Rute, Y. Wu, E. Ayers, and S. Polu, “Proof artifact co-training for theorem
proving with language models,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=rpxJc9j04U

[60] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings, A. Thakur, and S. Chaudhuri,
“Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition,”
2024. [Online]. Available: https://arxiv.org/abs/2407.11214

[61] M. Fang, X. Wan, F. Lu, F. Xing, and K. Zou, “Mathodyssey: Benchmarking mathematical
problem-solving skills in large language models using odyssey math data,” 2024. [Online].
Available: https://arxiv.org/abs/2406.18321

[62] M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J.
Hewett, M. Javaheripi, P. Kauffmann, J. R. Lee, Y. T. Lee, Y. Li, W. Liu, C. C. T. Mendes,
A. Nguyen, E. Price, G. de Rosa, O. Saarikivi, A. Salim, S. Shah, X. Wang, R. Ward,
Y. Wu, D. Yu, C. Zhang, and Y. Zhang, “Phi-4 technical report,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.08905

[63] J. Avigad, L. de Moura, S. Kong, and S. Ullrich, “Theorem proving in lean 4,” https://github.
com/leanprover/theorem_proving_in_lean4, 2024.

[64] R. Shao, S. S. Li, R. Xin, S. Geng, Y. Wang, S. Oh, S. S. Du, N. Lambert, S. Min, R. Krishna,
Y. Tsvetkov, H. Hajishirzi, P. W. Koh, and L. Zettlemoyer, “Spurious rewards: Rethinking
training signals in rlvr,” 2025. [Online]. Available: https://arxiv.org/abs/2506.10947

[65] Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang,
H. Wei, H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu,
K. Bao, K. Yang, L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang,
T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu,
“Qwen2.5 technical report,” 2025. [Online]. Available: https://arxiv.org/abs/2412.15115

[66] HEPLean, “Physlean: A project to digitalise results from physics into lean.” 2025. [Online].
Available: https://github.com/HEPLean/PhysLean

[67] J. Liu, X. Lin, J. Bayer, Y. Dillies, W. Jiang, X. Liang, R. Soletskyi, H. Wang, Y. Xie, B. Xiong,
Z. Yang, J. Zhang, L. Zhi, J. Li, and Z. Liu, “Combibench: Benchmarking llm capability for
combinatorial mathematics,” 2025. [Online]. Available: https://arxiv.org/abs/2505.03171

[68] D. Philosophical Society of Washington (Washington, P. S. of Washington., and S. Institution,
Bulletin of the Philosophical Society of Washington. Washington, D.C, Published by
the co-operation of the Smithsonian Institution, [1874-, 1887, vol. v.10 (1887); Index
v.1-10, p. 83, https://www.biodiversitylibrary.org/bibliography/46528. [Online]. Available:
https://www.biodiversitylibrary.org/page/55377146

[69] X. Contributors, “Xtuner: A toolkit for efficiently fine-tuning llm,” https://github.com/InternLM/
xtuner, 2023.

[70] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and
I. Stoica, “Efficient memory management for large language model serving with pagedattention,”
in Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023.

[71] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou,
“Chain-of-thought prompting elicits reasoning in large language models,” 2023. [Online].
Available: https://arxiv.org/abs/2201.11903

15

https://arxiv.org/abs/2412.04857
https://arxiv.org/abs/2409.12122
https://openreview.net/forum?id=rpxJc9j04U
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2412.08905
https://github.com/leanprover/theorem_proving_in_lean4
https://github.com/leanprover/theorem_proving_in_lean4
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2412.15115
https://github.com/HEPLean/PhysLean
https://arxiv.org/abs/2505.03171
https://www.biodiversitylibrary.org/page/55377146
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner
https://arxiv.org/abs/2201.11903

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions are emphasized with bolded words / sentences; The scope of
the paper is in the second paragraph in Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16

Justification: This paper focuses on designing reasoning and data generation pipelines,
which does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reasoning architecture is detailed in Sec. 4.1. The data generation pipeline
is detailed in Sec. 4.2. The environment settings are detailed in Appendix E. The training
recipes are detailed in Appendix F. The inference details are in Appendix G. The prompt
templates are in Appendix L. The evaluation results are provided in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code, data, and model are open-sourced in https://github.com/
Purewhite2019/har_copa_main.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The environment settings are detailed in Appendix E. The training recipes are
detailed in Appendix F. The inference details are in Appendix G. The prompt templates are
in Appendix L. The evaluation results are provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2 and Table 4 reports means and standard deviations of three runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://github.com/Purewhite2019/har_copa_main
https://github.com/Purewhite2019/har_copa_main
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform the NeurIPS Code of Ethics throughout the project.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix M.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

19

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe this project poses no such risks, as it focuses on formal mathematics.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Also discussed in Appendix M
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The reasoning architecture is detailed in Sec. 4.1. The data generation pipeline
is detailed in Sec. 4.2. The environment settings are detailed in Appendix E. The training
recipes are detailed in Appendix F. The inference details are in Appendix G. The prompt
templates are in Appendix L. The evaluation results are provided in the supplementary
materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper only uses LLMs for grammar check and English polishing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A More Discussions on D-FPS

Tactic-style theorem proving [63] in Lean 4 [43] can be viewed as a Markov Decision Process (MDP).
A proof state {Γi ⊢ Ui} is maintained by the Lean 4 environment, where Γi ⊢ Ui are proof goals,
Γi is a local context consisting of a telescope of declarations, and U is a target type. Actions in
this MDP are tactics, which transform a proof state by substituting a proof goal with a finite set
of new goals (the set can be empty). For example, the following is a proof state with a single goal
Γ0 ⊢ U0. The local context consists of declaration of variables (answer m n : R) and hypotheses
(h0 : m ∗ n = 4), (h1 : m+ n = 5), (hanswer : |m− n| = answer). The target type is a proposition
answer = 3.

answer m n : R
h0 : m * n = 4
h1 : m + n = 5
h_answer : |m - n| = answer
⊢ answer = 3

Let’s apply the following have tactic.

have h_square := by calc
(m - n) ^2 = m^2 - 2 * m * n + n^2 := by

ring
_ = (m^2 + 2 * m * n + n^2) - 4 * (m * n) := by

ring
_= (m + n)^2 - 4 * (m * n) := by

ring

A new hypothesis hsquare : (m− n)2 = (m+ n)2 − 4 ∗ (m ∗ n) is introduced into the local context.

answer m n : R
h0 : m * n = 4
h1 : m + n = 5
h_answer : |m - n| = answer
h_square : (m - n) ^ 2 = (m + n) ^ 2 - 4 * (m * n)
⊢ answer = 3

The proof state is initialized with a formal statement and iteratively transformed by tactics. The
formal statement corresponding to Γ0 ⊢ U0 is

example
(answer m n : R)
(h0 : m * n = 4)
(h1 : m + n = 5)
(h_answer : abs (m - n) = answer)

: answer = 3
:= by

sorry

The formal statement is proven once transformed into an empty proof state {}.

Tactics should be provability-reflecting [44]: proving all generated new goals implies proving the
original proof goal, i.e., the following sequent holds.

Γ′
1 ⊢ U ′

1
Γ′
2 ⊢ U ′

2
.

Γ′
n ⊢ U ′

n
PR

Γ ⊢ C

Conversely, however, not all tactics are safe [44] or provability-preserving: proving the original goal
implies proving generated sub-goals, i.e., the following sequent holds.

23

Γ ⊢ C
PP

Γ′
1 ⊢ U ′

1
Γ′
2 ⊢ U ′

2
.

Γ′
n ⊢ U ′

n

For example, tactic have introduces and proves a new hypothesis using existing hypotheses. It is
naturally provability-preserving, because the only difference between the original goal and the one
sub-goal generated by have is the newly introduced hypothesis, which can be proven using existing
hypotheses.

However, tactic exfalso changes the target to False. It is not provability-preserving (or unsafe [44])
because it destroys provability for goals whose hypotheses do not contradict.

The ground-truth Ā : Prop satisfies
∀nj=1(vj : Tj), ∀

p
j=1(hj : ϕj), (ψ ↔ Ā)

i.e., the following goal is provable
{[(vj : Tj)]nj=1 :: [(hj : ϕj)]

p
j=1 ⊢ ψ ↔ Ā} (1)

And the forward-solving state of D-FPS is initialized as

{[(vj : Tj)]nj=1 :: [(hj : ϕj)]
p
j=1 :: [(h′ : ψ)] ⊢?A, [(vj : Tj)]nj=1 :: [(hj : ϕj)]

p
j=1 ⊢ Prop} (2)

Therefore, by rewriting ψ into Ā, we obtain
{[(vj : Tj)]nj=1 :: [(hj : Ā)]

p
j=1 :: [(h′ : ψ)] ⊢?A, [(vj : Tj)]nj=1 :: [(hj : ϕj)]

p
j=1 ⊢ Prop} (3)

Any unsafe tactic application that breaks provability will lead to the final answer Â to be logically
inequivalent with the ground-truth Ā. Therefore, a primary type of unsafe tactic applications, which
modifies the targets of proof goals, is prohibited in D-FPS. Subsequently, the necessity of backtracking
in D-FPS is weaker.

B More Experiment Results

B.1 Computational Efficiency

We further analyze the computational efficiency of HAR, baselines, and ablations. We evaluate WG
and H-WG with maximal generation attempts KW = 16 and collect the solving rates and budgets for
KW = 1, 2, . . . , 16. For BFS, AR, H-BFS, HAR, we set the step limit to KS = 80 and collect the
solving rates and budgets for KS = 1, 2, . . . , 80. The solving rate - budget curves are visualized in
Fig. 3. For a detailed comparison, the interpolated data is summarized in Table 6. HAR demonstrates
Pareto-optimality over all scenarios.

B.2 Test-time Scaling

We set the max step limit KS = 320 to evaluate the test-time scalability of Cycle 2 H-BFS and HAR
on the FormalMath500 benchmark. The interpolated solving rates are in Table 7. HAR solves 47.88%
of problems with 64727 search steps, while H-BFS solves 32.54% with 90533 steps.

H-BFS shows consistent scalability and plateaus after ∼ 70000 steps. The solving rate of HAR
rapidly increases and is saturated after 20000 steps. The saturated solving rate of HAR (47.88%) is
significantly higher than that of H-BFS (32.54%).

We find that HAR plateaus due to a limited context length. All models are SFTed from Qwen2.5-
Math-7B, which has a maximum context length of 4096 tokens. Complicated problems require
longer CoTs, which necessitate a larger context length for the model to cover the solution state
(encompassing more conclusions along the reasoning) and the next-step draft.

HAR experiment encounters 953 times of context length exceeding (experiment restarts upon an ex-
ception occurring), while H-BFS encounters 413 times. This corresponds to the previous observation
that BFS with accumulated log-prob as value function tends to collapse to breadth-first search.

24

0 5000 10000 15000 20000 25000 30000 35000
Budget

0.0%

10.0%

20.0%

30.0%

40.0%

So
lv

ed

FormalMath500

0 5000 10000 15000 20000 25000 30000 35000
Budget

0%

10%

20%

30%

40%

50%

So
lv

ed

MiniF2F-Solving Cycle 1 / H-AR
Cycle 1 / H-BFS
Cycle 1 / H-WG
Cycle 1 / AR
Cycle 1 / BFS
Cycle 1 / WG
Cycle 2 / H-AR

Figure 3: Solving rate - budget curves for HAR (Cycle 1, Cycle 2) and ablations.

Table 6: Solving rates of HAR over baselines and ablations across multiple budget settings. Bold
highlights best values among all experiments; Underlined values emphasize the best values in
each ablative or comparative group; “∼” represents the corresponding budget setting is beyond the
observation range.

Benchmark Cycle Method 1000 3000 5000 10000 15000 20000 30000

Formal-
Math500

1

BFS 0.17% 0.52% 1.93% 8.20% 9.79% 9.79% ∼
WG ∼ 6.06% 10.32% 13.96% 16.72% 17.79% 20.13%
AR 0.34% 22.86% 33.50% 34.13% 34.13% 34.13% ∼

H-BFS 0.00% 0.78% 3.44% 8.20% 12.46% 14.29% ∼
H-WG ∼ 23.71% 27.81% 34.05% 37.81% 39.50% 41.27%
HAR 0.34% 30.12% 40.20% 41.80% 41.80% ∼ ∼

2 HAR 0.85% 32.33% 42.06% 43.39% 43.39% ∼ ∼

MiniF2F-
Solving

1

BFS 0.00% 0.54% 1.23% 5.80% 10.00% 10.81% ∼
WG ∼ 13.08% 16.77% 20.17% 22.92% 25.22% 28.50%
AR 0.00% 35.29% 43.51% 44.86% 44.86% ∼ ∼

H-BFS 0.00% 0.60% 2.21% 6.40% 9.01% 12.70% ∼
H-WG ∼ ∼ 35.30% 42.71% 46.18% 48.97% 50.49%
HAR 0.00% 35.67% 51.76% 54.86% 54.86% ∼ ∼

2 HAR 0.19% 38.81% 54.07% 55.68% ∼ ∼ ∼

Table 7: Solving rates of Cycle 2 HAR and H-BFS across multiple budgets (total number of solution
steps generated in one experiment) settings. Bold highlights the best values among all experiments.

Budget FormalMath500
2500 5000 10000 20000 40000 80000 90533

H-BFS 0.43% 2.81% 9.10% 16.32% 27.25% 32.54% 32.54%
HAR 24.10% 44.39% 47.35% 47.88% 47.88% ∼ ∼

B.3 More Benchmarks

For a more comprehensive comparison, we evaluate HAR, baselines, and ablations on the
PutnamBench-Solving [7, 60], which consists of 324 problems from undergraduate-level com-
petitions. Moreover, we provide a pilot study on chaining the autoformalizer and problem-solver. We
use the CoPA Autoformalizer to formalize 288 problems with non-empty labels in MathOdessy [61],
resulting in 269 successful formalizations. HAR, baselines, and ablations are evaluated on this
benchmark. Notably, in addition to settings in Appendix G, we also evaluate AR & HAR with step
limit KS = 40 and WG & H-WG with maximal generation attempts KW = 16.

25

Table 8: Evaluation results of HAR, baselines, and ablations on PutnamBench-Solving and Math-
Odessy. For PutnamBench-Solving, the numbers of solved problems are reported. Underlined values
emphasizes the best values in each ablative or comparative group.

Cycle Experiment PutnamBench-Solving MathOdessy
Solved↑ Budget↓ Solved%↑ Budget↓

1

BFS 1 25845 11.90% 19490
WG 0 13891 15.61% 12773

WG (KW = 16) 0 27626 18.22% 24865
AR (KS = 40) 2 12903 24.16% 8613

AR 2 25783 24.16% 16773

H-BFS 1 25842 15.24% 19233
H-WG 2 15909 26.39% 12672

H-WG (KW = 16) 2 30981 28.62% 24074
HAR (KS = 40) 2 12892 27.14% 8417

HAR 2 25772 28.25% 16156

2 HAR (KS = 40) 2 12893 27.88% 8377
HAR 2 25773 29.00% 16038

Experiment results are shown in Table 8. Comparisons between AR & HAR (KS = 40) and baselines
validate AR&HAR’s superiority over BFS & H-BFS and WG & H-WG across benchmarks. The only
exception is observed on MathOdessy, where Cycle 1 H-WG (KW = 16) slightly outperforms Cycle
1 HAR (28.62% vs. 28.25%) at the cost of 1.5× budget.

However, it is worth noting that all methods almost fail on PutnamBench-Solving. We hypothesize
that this is due to its out-of-distribution (OOD) nature. As stated in Appendix C, CoPA formalizes
Numina-CoT and Numina-1.5 [46], which focuses on “Chinese high school math exercises to US
and international mathematics olympiad competition problems”. PutnamBench-Solving, on the other
hand, focuses on undergrad-level competitions and is OOD with respect to the training set. The OOD
curse in formal reasoning is more challenging since each formal step must be both semantically and
syntactically correct. LLM usually fails to call functions or apply theorems without prior knowledge.
We acknowledge that the current data domain is not broad enough and encourage future work to
explore applying CoPA to formalize a wider range of datasets.

B.4 Sensitivity to Base Models

To validate whether the impressive effectiveness is a flash in the pan on Qwen series models [64], we
supervised fine-tune (SFT) HAR, baselines, and ablations based on Phi-4-mini-instruct [62] using
Cycle 1 data, identical recipe and templates in Appendix F & L. The evaluation settings follow
Appendix G. We also evaluate AR & HAR with step limit KS = 40 and WG & H-WG with maximal
generation attempts KW = 16.

The results are in Table 9, which demonstrate similar patterns to results on Qwen2.5-Math-7B [65]
and align well with our main claims. HAR consistently demonstrates Pareto-optimality across all
baselines and ablations over all benchmarks.

C Limitations and Future Works

Extension to Theorem Proving. The proposed HAR model and CoPA data generator focus on the
novel task of deriving answers for problems under the D-FPS framework. However, theorem proving
and problem-solving are closely correlated. Moreover, given that HAR significantly outperforms
strong ablative baselines in problem-solving tasks, its performance in theorem proving tasks is
promising. Therefore, future work can extend HAR and CoPA to theorem proving data.

More Expert Iteration. Due to the limited computation resources, we only conduct CoPA expert
iteration for three cycles (Cycle 0, 1, 2). Given that statement autoformalization, solution drafting,
proof gaps filling, and HAR all show increasing trends in Cycle 2, future work may continue cycling
and seek the upper limit of expert iteration.

26

Table 9: Evaluation results of HAR, baselines, and ablations supervised fine-tuned (SFT) from
Phi-4-mini-instruct [62] using Cycle 1 data. Bold highlights best values among all experiments;
Underlined values emphasizes the best values in each ablative or comparative group.

Experiment FormalMath500 MiniF2F-Solving PutnamBench-Solving MathOdessy
Solved%↑ Budget↓ Solved%↑ Budget↓ Solved↑ Budget↓ Solved%↑ Budget↓

BFS 7.41% 28665 6.76% 28230 1 25857 12.64% 19408
WG 14.02% 20295 21.08% 20768 0 13987 13.38% 14026
WG (KW = 16) 15.61% 40153 25.41% 39366 0 27973 15.24% 27356
AR (KS = 40) 25.66% 12198 31.35% 11560 2 12893 24.54% 8688
AR 26.72% 23338 33.24% 21464 2 25773 24.54% 16808

H-BFS 11.90% 27992 11.35% 27591 1 25844 11.90% 19679
H-WG 33.07% 17457 41.35% 17306 0 14306 25.28% 12911
H-WG (KW = 16) 38.10% 33693 47.03% 33742 1 30658 25.65% 23894
HAR (KS = 40) 41.80% 10196 49.19% 9247 3 12885 27.88% 8328
HAR 42.06% 18956 49.73% 16687 3 25725 27.88% 16088

Table 10: Evaluation results of filtering methods. Bold highlights the best values among all experi-
ments.

Model Method Precision↑ Recall↑ Accuracy↑ Kappa↑

Qwen2.5-Math-7B-Instruct

Prompt1+Filter1 48.98% 97.96% 49.00% 0.00
Prompt2+Filter1 52.17% 97.96% 55.00% 0.11
Prompt1+Filter2 52.86% 75.51% 55.00% 0.11
Prompt2+Filter2 51.06% 97.96% 53.00% 0.08

Qwen2.5-Math-72B-Instruct Prompt2+Filter1 49.47% 95.92% 50.00% 0.02
Prompt2+Filter2 49.47% 95.92% 50.00% 0.02

Rule-based
Problem Typechecked 47.00% 100.00% 47.00% 0

Draft Typechecked 70.59% 51.06% 67.00% 0.33
Proof Gap Filled 72.73% 17.02% 58.00% 0.12

Table 11: Total variation distance (TVD) from the original dataset by filtering criteria.

Method TVD↓
Difficulty Subject

Problem Typechecked 0.04 0.06
Draft Typechecked 0.12 0.12
Proof Gap Filled 0.31 0.16

Data Domain. CoPA expert iteration is conducted on the Numina-CoT [46] and Numina-1.5 [46]
datasets, whose domain covers up to high-school competition-level mathematics. However, the
expressiveness of Lean 4 covers mathematical research frontiers. Future work can explore data gener-
ation pipelines and reasoning methods that are more suitable for undergraduate-level, graduate-level,
and even research-level mathematics and other subjects, along with recent progress in formaliza-
tions [66, 67].

D Filtering Problem Autoformalization

To filter out semantically inconsistent problems, we have designed and evaluated many model-based
and rule-based methods.

Methods. For model-based filtering, we have evaluated two styles of prompts (Prompt{1,2}) and
two types of filtering metric (Filter{1,2}) on Qwen2.5-Math-7B-Instruct [58] and Qwen2.5-Math-
72B-Instruct [58]. For rule-based filtering, we have evaluated three types of filtering criteria: keep
all successfully typechecked problems (Problem Typechecked), keep all problems whose solution
drafts pass typecheck (Draft Typechecked), and only keep the problems whose proof gaps are all
successfully filled (Proof Gap Filled).

27

Accuracy. We uniformly sample 100 datapoints from Cycle 0 data whose problems pass the Lean 4
typecheck and are manually labeled for semantic consistency. Evaluation results of the above filtering
methods are shown in Table 10, where model-based methods all show extremely low accuracy
(≤ 55%) and Cohen’s Kappa [68] (≤ 0.11). However, rule-based filtering shows significantly
superior performance. Draft Typechecked reaches 67.00% accuracy and 0.33 Kappa, Proof Gap
Filled’s precision is 72.73%.

Distribution Shift. We further compute the total variance distance (TVD) between distributions
before and after filtering the Cycle 0 data, as shown in Table 11. From Problem Typechecked, Draft
Typechecked to Proof Gap Filled, as the filtering becomes more strict, the distribution shift becomes
more significant, especially regarding the difficulty.

Therefore, we adopt a filter to solve problems by the success of solution drafting (Draft Typechecked)
as a trade-off between precision and distribution shift.

E Experiment Environment Details

In this project, the Lean 4 environment relies on the following open-source projects

• Lean 4 [43] v4.15.0
• Mathlib 4 [50] v4.15.0
• Aesop [44] v4.15.0
• Pantograph [51] v0.2.25
• Formal Problem-Solving [7] 39489d1f0c32b521845429e1cb26c48639d8f823.

with the following options

• Lean 4 maxHeartbeats: 0
• Lean 4 maxRecDepth: 100000
• Lean 4 tactic.hygienic: false
• Lean 4 pp.fullNames: true
• Lean 4 pp.funBinderTypes: true
• Lean 4 pp.piBinderTypes: true
• Pantograph timeout: 300
• Pantograph imports: Mathlib, Aesop

For LLM fine-tuning, we use xTuner [69] 081c8ca874bdbf7a7f8cd0a9e4cba503eaaa7bba with
recipes detailed in Appendix F. For inference, we use vLLM [70] 0.6.0 with bfloat16 type and
prefix caching enabled. All experiments are conducted using a random seed 42. For explosion check,
we try each of aesop, simp_all, abel, noncomm_ring, ring, module, nlinarith!.

We sincerely appreciate the contributors of these awesome projects!

F Training Details

F.1 Dataset Recipe

Given a dataset Dn produced by CoPA expert iteration at Cycle n, we construct training data for the
following tasks:

• Statement Autoformalization. Datapoints whose formal solution drafts pass Lean 4
typecheck are used. Given an informal problem and its informal ground-truth answer, the
model outputs a corresponding formal statement.

• Solution Drafting. Datapoints with successfully filled logical gaps are used. Input an
informal problem, its informal ground-truth answer, its informal ground-truth solution, and
a corresponding formal statement, and the model outputs a formal proof.

28

• Next-Proof-Step Prediction. Datapoints that have at least one logical gap filled are used.
Moreover, proof state-tactic pairs from Mathlib 4 [50] extracted by Pantograph [51] and the
Lean-Workbook [35] dataset are used. Input the current proof state; the model outputs the
next proof step.

• Next-Solution-Step Prediction. Datapoints with successfully filled logical gaps are used.
Input an informal problem and a current solution state; the model outputs the next solution
step.

• Next-Solution-Step Drafting. Datapoints with successfully filled logical gaps are used.
Given an informal problem and a current solution state, the model outputs the next formal
solution step draft.

• Whole-Solution Generation. Datapoints with successfully filled logical gaps are used.
Given an informal problem and its initial solution state, the model outputs a whole formal
solution.

• Whole-Solution Drafting. Datapoints with successfully filled logical gaps are used. Input
an informal problem and its initial solution state; the model outputs a formal solution draft.

Training data recipes of all methods are as follows:

• CoPA, H-SA: Statement Autoformalization, Solution Drafting, Next-Proof-Step Prediction;

• BFS, AR: Next-Solution-Step Prediction;

• WG: Whole-Solution Generation;

• H-BFS, HAR: Next-Proof-Step Prediction, Next-Solution-Step Drafting;

• H-WG: Next-Proof-Step Prediction, Whole-Solution Drafting.

F.2 Training Hyperparameters

We use XTuner [69] for supervised fine-tuning (SFT) Qwen2.5-Math-7B [58] using the dataset
recipes above (all tasks are uniformly mixed for training) and the following hyperparameters:

• Max Sequence Length: 8192

• Variable-length Attention: True

• Pack to Maximal Length: True

• Sequence Parallel Size: 1

• Batch size: 1

• Gradient Accumulation: 64

• Training Devices: 8

• Train Epochs: 3

• Optimizer: AdamW with learning rate 2×10−5, β = (0.9, 0.999), weight decay 0, maximal
gradient norm 1, warpup ratio 0.03 and float16 mixed precision training.

• Learning Rate Scheduler: Warmup using LinearLR with start factor 10−5, then train using
CosineAnnealingLR with ηmin = 0.0.

G Evaluation Details

G.1 CoPA and HAR

Proof Gap Filling uses best-first proof search with a maximum number of step generation attempts
NK = 16, expansion width B = 4, temperature T = 0.7, and maximal sequence length G = 256
across experiments.

CoPA Expert Iteration. For each datapoint, statement autoformalization and solution drafting are
tried at most 2 times until passing Lean 4 typecheck, each set temperature T = 0.7 and maximal
sequence length G = 4096.

29

ICL and Hybrid CoT are not re-evaluated in this project. We utilize the evaluation results from [7]
and further analyze their budget consumption.

BFS and H-BFS uses maximum number of step generation attempts KS = 80, expansion width
B = 8, temperature T = 0.7, and maximal sequence length G = 2048 by default. We also
experiment with different expansion widths in Sec. 5.

WG and H-WG uses maximum number of whole-solution generation attempts KW = 8, temperature
T = 0.7, and maximal sequence length G = 2048.

AR and HAR uses maximum number of step generation attempts KS = 80, temperature T = 0.7,
and maximal sequence length G = 2048.

Discussion. We try our best to ensure fair comparisons. In the dataset constructed by CoPA, each
formal solution contains 9.7 steps on average. Therefore, for search and autoregression methods, the
maximum number of step generation attempts is set to 80; for whole-generation methods, the number
of generation attempts is set to 8. Finer-grained stepwise budget consumption is presented in tables
(Budget).

G.2 Dataset Denoising

In the experiments of dataset denoising, all models are evaluated using the scripts
of Qwen2.5-Math [58] in https://github.com/QwenLM/Qwen2.5-Math of commit
a45202bd16f1ec06f433442dc1152d0074773465. We use the default evaluation script,
where the random seed is set to 0, the temperature is set to T = 0, and the Top P is set to 1. The only
difference is that we changed the system prompt to “You are a Lean 4 expert.” when evaluating the
SFT models to be consistent with the training process.

H More Results and Discussions on Solution Pruning

The effectiveness of solution pruning in Table 4 is mixed. For FormalMath500, there is no sig-
nificant change in solving rates across pruning recursions, and average solution lengths decrease
monotonically.

However, for MiniF2F-Solving, when R = 0, 1, 2, solving rates remain relatively stable and average
solution lengths decrease monotonically; when R = 3,∞, solving rates improve and the average
solution lengths fluctuate. We hypothesize that this is because complex problems require longer
chain-of-thoughts, which are limited by the Qwen2.5-Math-7B’s context length (4096 tokens).
Deeper pruning avoids redundant deductions that overflow the context length, thus facilitating deeper
reasoning. Let S0, S∞ denote problems solved in R = 0,∞ experiments, respectively. The average
solution length of S0\S∞ is 9.82, while that of S∞\S0 is 11.85. The longest solution in S0\S∞ has
17 steps, while S∞\S0 contains three solutions longer than 17 steps (19, 24, 29). This observation
further supports improvements in both training and reasoning efficiency.

The distributions of solution lengths in training data are visualized in Fig. 4, where a clear distribution
shift can be observed. Starting from an unimodal distribution (Recursion 0), the distribution of
solution lengths gradually becomes bimodal, where double-step solutions become a new mode. We
manually investigated the double-step solutions and found that they are almost all simple arithmetic
problems and grade-school math. Lean has powerful tactics for these problems, such as norm_num
and linarith. Solution of these easy problems collapses to the “guess-and-verify” pattern, i.e.,
directly guess an answer and verify it using automated tactics such as linarith. As visualized in
Fig. 5 and manually checked by us, the collapsed problems are mainly grade school math (GSM)
algebra problems.

These overly pruned solutions lack chain-of-thought reasoning, which may degrade reasoning capa-
bilities [71]. However, in the main experiment, the model’s performance does not show a statistically
significant drop (and even improves), and the reasoning becomes much more efficient, reducing
the number of reasoning steps by 1

8 . We hypothesize that this “free” efficiency improvement stems
from the antagonism between removing CoT in GSM (which may reduce performance) and efficient
reasoning for more difficult problems. We recommend that researchers apply solution pruning
only to complex problems to avoid degrading CoT for simple ones. More detailed discussions and

30

https://github.com/QwenLM/Qwen2.5-Math

0 5 10 15 20 25 30
Solution Length

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

No
rm

al
iz

ed
 D

en
si

ty

Distributions of Solution Length
Recursion 0
Recursion 1
Recursion 2
Recursion 3
Recursion 4
Recursion 5
Recursion 6
Recursion 7
Recursion 8
Recursion 9
Recursion 10
Recursion 11
Recursion 12
Recursion 13
Recursion 14

Figure 4: Distributions of solution lengths in training data.

2 4 6 8 10 12 14
Recursion

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Av
er

ag
e

So
lu

ti
on

 L
en

gt
h

Distributions of Average Solution Lengths in Training Data

Algebra
Logic and Puzzles
Number Theory
Combinatorics
Geometry
Other
Calculus
Inequalities

Figure 5: Distributions of average solution lengths by subject.

explorations are out of scope. We leave them for future work, and hope the above points inspire
readers.

I Details and Discussions about Dataset Denoising

We randomly sample 8K datapoints from the Cycle 1 data. We then prompt DeepSeek-V3 to translate
the solution drafts into informal solutions, given the informal problems, informal answers, and formal
statements, with an explicit requirement to ensure semantic equivalence and no specific filtering for

31

Table 12: Detailed experiment results of dataset denoising. Original, Direct SFT, Denoised SFT
represent the original model, the model fine-tuned using the original informal solution, and the model
fine-tuned using the denoised informal solution, respectively; Accuracies are reported as a percentage;
Bold highlights the best values among all experiments.

Model English Open Datasets
GSM8K MATH SVAMP ASDIV MAWPS CARP(EN) TabMWP

Qwen2.5-7B 66.9 62.6 70.7 74.1 69.2 50.3 57.8
Direct SFT 79.2 63.6 88.2 85.6 91.2 57.9 53.2
Denoised SFT 86.2 64.9 87.5 92 96.6 57.9 71.6

Model English Open Datasets English Multiple-Choice Datasets
Minerva-MATH Gaokao2023(EN) OlympiadBench CollegeMath AQUA SAT-Math MMLU-STEM

Qwen2.5-7B 16.5 46 32.7 31.4 67.7 90.6 71.6
Direct SFT 18.4 55.3 35.3 33.5 70.1 90.6 71.1
Denoised SFT 25 56.1 30.2 43.7 70.9 87.5 71.4

Model Chinese Gaokao Collections Chinese Other Datasets
Gaokao2024(I) Gaokao2024(II) Gaokao2024(Mix) Gaokao-Math-Cloze Gaokao-Math-QA CMath CN-MiddleSchool

Qwen2.5-7B 14.3 35.7 25.3 22 47.9 65.5 42.6
Direct SFT 14.3 28.6 26.4 16.9 53.3 70.2 52.5
Denoised SFT 35.7 50 38.5 50.8 52.7 77 63.4

Model English Competition Datasets
AIME24 AMC23

Qwen2.5-7B 13.3 37.5
Direct SFT 10 42.5
Denoised SFT 6.7 45

fairness. See Appendix L.9 for the prompt template. Then, we fine-tune Qwen2.5-Math-7B [58]
with the identical setting in Appendix F on the original informal solution and the denoised informal
solution, respectively. The full evaluation results are in Table 12.

Although denoised SFT yields significant overall improvement, it falls behind on SVAMP, Olympiad-
Bench, SAT-Math, MMLU-STEM, Gaokao-Math-QA, and AIME24. The causes might be:

• Multiple-choice Questions (MCQs) and True-false Problems (TFPs). CoPA focuses on
free-response problems (FRP), and therefore rewrites TFPs/MCQs into FRPs in Numina-
CoT, Cycle 0, and filters out MCQs in Numina-1.5, Cycle n. This distribution shift might
leave these problems out-of-distribution, thus negatively impacting the SFTed models’
performance on benchmarks of MCQs, including SAT-Math, MMLU-STEM, and Gaokao-
Math-QA.

• Simple math word problems (SMWPs). SVAMP focuses on SMWPs about simple
arithmetic taught in grades four and lower. Highly automated tactics like norm_num and
linarith can directly solve them, thus their formalization might collapse to the “guess-and-
verify” pattern, or even only a simple norm_num. Then, the informalization might contain a
less detailed CoT compared to the original solution.

• Out-of-distribution (OOD). STEM problems, such as physics, biology, and astronomy,
are hard to formalize and OOD to Numina-1.5. For problems in geometry, probability,
and combinatorics, the main difficulty lies in understanding the abstract mathematical
concepts and finding the expressions. Once formalized, most of them may collapse to simple
arithmetic. This work focuses on problem-solving; therefore, theorem-proving ones are
filtered out. Since MMLU-STEM consists of MCQs of STEM, OlympiadBench contains
25%+ physics problems and 21% about theorem-proving, which are relatively OOD to the
SFT dataset and suffer from unstable performance.

• Benchmark Size. AIME24 only contains 30 problems, and the evaluation pipeline
(Qwen2.5-Math’s official repo) uses greedy decoding with temperature T = 0, sample
number n = 1. This setting is prone to randomness in small benchmarks like AIME24; one
sample can result in 3.3% performance variation.

J Case Studies

J.1 Success Cases

Informal Problem

32

The graph of f(x) = 2x
x2−5x−14 has vertical asymptotes x = a and x = b, and horizontal asymptote

y = c. Find a+ b+ c.

Answer: 5

Initial Forward State

answer a b c : R
h0 : ∀ (x : R), x ̸= a → x ̸= b → x ^ 2 - 5 * x - 14 ̸= 0
h1 : a ̸= b
h2 : a ^ 2 - 5 * a - 14 = 0
h3 : b ^ 2 - 5 * b - 14 = 0
h4 : c = 0
h_answer : a + b + c = answer
⊢ ?w

Submitted Answer

answer = 5

Formal Solution

-- To find the vertical asymptotes of the function \(f(x) = \frac{2x}{x^2 - 5x -
14} \), we need to determine where the denominator is equal to zero, as the
function is undefined at these points.

have h_denominator_roots : a^2 - 5 * a - 14 = 0 ∧ b^2 - 5 * b - 14 = 0 := by --
The roots of the denominator are \(a \) and \(b \)

exact ⟨h2, h3⟩

-- 2. **Horizontal Asymptote:**
-- The horizontal asymptote of $f(x)=\frac{2x}{x^2-5x-14}$ is determined by the

degrees of the polynomial in the numerator and denominator. Since the degree
of the denominator is higher than the numerator, the horizontal asymptote is $
y = 0$.

have h_horizontal_asymptote : c = 0 := by -- Horizontal asymptote is $y = 0$
exact h4

-- To find $a + b + c$, we need to find the sum of the roots a and b of the
quadratic equation $x^2 - 5x - 14 = 0$.

-- According to Vieta’s formulas, the sum of the roots of a quadratic equation $
ax^2 + bx + c = 0$ is given by $-\frac{b}{a}$.

-- In our case, $a = 1$, $b = -5$, and $c = -14$. Therefore, the sum of the roots
is:

-- \[a + b = -\frac{-5}{1} = 5. \]
have h_sum_roots : a + b = 5 := by

have h5 : a ̸= b := h1
have h6 : a ̸= b := h5
apply (mul_right_inj’ (sub_ne_zero.2 h5)).1
nlinarith

-- 4. **Find the sum \(a + b + c\):**
-- - We have determined \(a + b = 5\) and \(c = 0\). Therefore, \(a + b + c = 5 +

0 = 5\).
have h_sum : a + b + c = 5 := by

linarith

have h_answer : answer = 5 := by
linarith

exact h_answer -- submit

example
(answer : N)
(h_answer : answer = Σ x ∈ (Σ n ∈ Nat.divisors 500, n).primeFactors, x)
: answer = 25 := by

33

-- First, we find the prime factorization of 500:
-- $$500 = 2^2 \cdot 5^3$$
have h_prime_factorization : 500 = 2^2 * 5^3 := by

norm_num [Nat.divisors]

-- The sum of the divisors of 500 is given by the formula:
-- \[A = (1 + 2 + 2^2)(1 + 5 + 5^2 + 5^3) \]
have h_sum_of_divisors : Σ n in Nat.divisors 500, n = (1 + 2 + 4) * (1 + 5 + 25 +

125) := by
norm_cast at h_answer h_prime_factorization ⊢

have h_sum_calculation : (1 + 2 + 4) * (1 + 5 + 25 + 125) = 7 * 156 := by
norm_num [h_answer, h_prime_factorization, h_sum_of_divisors]

-- $A = 1092$
have h_A : Σ n in Nat.divisors 500, n = 1092 := by

norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation]

-- Now, factorize A:
-- \[1092 = 2^2 \cdot 3 \cdot 7 \cdot 13\]
have h_factorization : 1092 = 2^2 * 3 * 7 * 13 := by

norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation,
h_A]

-- The distinct prime factors of 1092 are 2, 3, 7, and 13.
have h_prime_factors : Nat.primeFactors 1092 = {2, 3, 7, 13} := by

simp only [Nat.primeFactors, h_factorization, h_answer, h_sum_of_divisors,
h_sum_calculation, h_A]

norm_cast at h_factorization ⊢
norm_cast at h_factorization ⊢
norm_cast at h_factorization ⊢
norm_num [Nat.primeFactorsList]

-- The sum of the distinct prime divisors is:
-- $$2 + 3 + 7 + 13 = 25$$
have h_sum_prime_factors : Σ x in Nat.primeFactors 1092, x = 2 + 3 + 7 + 13 := by

simp [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation, h_A,
h_factorization, h_prime_factors]

-- Thus, the sum of the distinct prime divisors of A is $\boxed{25}$.
have h_answer : answer = 25 := by

norm_num [h_answer, h_prime_factorization, h_sum_of_divisors, h_sum_calculation,
h_A, h_factorization, h_prime_factors, h_sum_prime_factors]

exact h_answer -- submit

Informal Problem

Find the positive solution to 1
x2−10x−29 + 1

x2−10x−45 − 2
x2−10x−69 = 0

Answer: 13

Initial Forward State

answer x : R
h0 : 0 < x
h1 : x ^ 2 - 10 * x - 29 ̸= 0
h2 : x ^ 2 - 10 * x - 45 ̸= 0
h3 : x ^ 2 - 10 * x - 69 ̸= 0
h4 : 1 / (x ^ 2 - 10 * x - 29) + 1 / (x ^ 2 - 10 * x - 45) - 2 / (x ^ 2 - 10 * x -

69) = 0
h_answer : answer = x
⊢ ?w

Submitted Answer

34

answer = 13

Formal Solution

-- First, introduce a substitution to simplify the equation. Let:
-- \[
-- y = x^2 - 10x
-- \]
-- Then the given equation becomes:
-- \[
-- \frac{1}{y - 29} + \frac{1}{y - 45} - \frac{2}{y - 69} = 0
-- \]
have h_substitution : 1 / (x^2 - 10 * x - 29) + 1 / (x^2 - 10 * x - 45) - 2 / (x^2

- 10 * x - 69) = 0 := h4

-- Now, let’s find a common denominator for the fractions on the left-hand side.
The common denominator is \((a-29)(a-45)(a-69)\). Rewrite each fraction with
this common denominator:

-- \[
-- \frac{(a-45)(a-69) + (a-29)(a-69) - 2(a-29)(a-45)}{(a-29)(a-45)(a-69)} = 0
-- \]
have h_common_denominator : (1 / (x^2 - 10 * x - 29)) + (1 / (x^2 - 10 * x - 45)) -

(2 / (x^2 - 10 * x - 69)) = 0 := h_substitution

-- Since the denominators are not zero, we can combine the fractions:
have h_combined_fractions : (x^2 - 10*x - 45) * (x^2 - 10*x - 69) + (x^2 - 10*x -

29) * (x^2 - 10*x - 69) - 2 * (x^2 - 10*x - 29) * (x^2 - 10*x - 45) = 0 := by
field_simp [h0, h1, h2, h3, h4] at h_common_denominator ⊢
linarith

-- Now, simplify the numerator:
-- \[
-- (x^2 - 10x - 45)(x^2 - 10x - 69) + (x^2 - 10x - 29)(x^2 - 10x - 69) - 2(x^2 -

10x - 29)(x^2 - 10x - 45)
-- \]
have h_numerator_expansion : (x^2 - 10*x - 45) * (x^2 - 10*x - 69) + (x^2 - 10*x -

29) * (x^2 - 10*x - 69) - 2 * (x^2 - 10*x - 29) * (x^2 - 10*x - 45) = 0 := by
linarith

-- Notice that each term in the numerator is a quadratic expression in the form of
\((y-a)(y-b) \). We can expand each term:

-- \[
-- (y-45)(y-69) = y^2 - 114y + 3015
-- \]
-- \[
-- (y-29)(y-69) = y^2 - 98y + 2001
-- \]
-- \[
-- 2(y-29)(y-45) = 2(y^2 - 74y + 1305) = 2y^2 - 148y + 2610
-- \]
have h_expanded_numerator : (x^2 - 10*x - 45)*(x^2 - 10*x - 69) + (x^2 - 10*x -

29)*(x^2 - 10*x - 69) - 2*(x^2 - 10*x - 29)*(x^2 - 10*x - 45) =
0 := by

linarith

-- Expand each term in the numerator
have h_expanded_numerator_terms : (x^2 - 10 * x - 45) * (x^2 - 10 * x - 69) + (x^2

- 10 * x - 29) * (x^2 - 10 * x - 69) - 2 * (x^2 - 10 * x - 29) * (x^2 - 10 * x
- 45) = 0 := by

linarith

-- Therefore, the equation simplifies to:
-- \[
-- \frac{0}{(y+29)(y+45)(y+69)} = 0

35

-- \]
have h_simplified_equation : (0) / ((x^2 - 10 * x - 29) * (x^2 - 10 * x - 45) *

(x^2 - 10 * x - 69)) = 0 := by
field_simp [h0, h1, h2, h3, h4, h_answer, h_substitution, h_common_denominator,

h_combined_fractions, h_numerator_expansion, h_expanded_numerator,
h_expanded_numerator_terms]

-- Since the numerator is zero, the equation holds true for any y that does not
make the denominators zero.

have h_numerator_zero : 0 = 0 := by
linarith

-- This confirms that the numerator is indeed zero, and the equation holds.
have h_denominator_nonzero : (x^2 - 10 * x - 29) * (x^2 - 10 * x - 45) * (x^2 - 10 *

x - 69) ̸= 0 := by
simp [h0, h1, h2, h3]

-- Conclusion: The equation is satisfied for all \(x \) such that the denominators
are not zero.

-- Given that \(x \) must be positive, we need to check the values of \(x \) that
make the denominators zero and exclude them.

have h_denominator_roots : ∀ x : R, x^2 - 10*x - 29 = 0 ∨ x^2 - 10*x - 45 = 0 ∨
x^2 - 10*x - 69 = 0 → x ̸= answer := by

intro x h5 h6
have h7 : x ^ 2 - 10 * x - 29 = 0 ∨ x ^ 2 - 10 * x - 45 = 0 ∨ x ^ 2 - 10 * x -

69 = 0 := h5
simp_all [h0, h1, h2, h3, h4, h_answer, h_substitution, h_common_denominator,

h_combined_fractions,
h_numerator_expansion, h_expanded_numerator, h_expanded_numerator_terms,
h_simplified_equation,
h_numerator_zero, h_denominator_nonzero]

-- Since the numerator is zero and the denominator is non-zero, the equation is
satisfied for all \(x\) except where the denominator is zero.

have h_solution : 0 = 0 := by
linarith

-- Therefore, the positive solution to the original equation is:
-- \[
-- \boxed{13}
-- \]

have h_answer : answer = 13 := by -- The positive solution is 13
nlinarith [h0, h1, h2, h3, h4, h_answer, h_substitution, h_common_denominator,

h_combined_fractions,
h_numerator_expansion, h_expanded_numerator, h_expanded_numerator_terms,
h_simplified_equation,
h_numerator_zero, h_denominator_nonzero, h_denominator_roots, h_solution]

exact h_answer -- submit

Informal Problem

Assume that x1, x2, . . . , x7 are real numbers such that

x1 + 4x2 + 9x3 + 16x4 + 25x5 + 36x6 + 49x7 = 1,

4x1 + 9x2 + 16x3 + 25x4 + 36x5 + 49x6 + 64x7 = 12,

9x1 + 16x2 + 25x3 + 36x4 + 49x5 + 64x6 + 81x7 = 123.

Find the value of 16x1 + 25x2 + 36x3 + 49x4 + 64x5 + 81x6 + 100x7.

Answer: 334

Initial Forward State

36

answer a b c d e f g : R
h0 : a + 4 * b + 9 * c + 16 * d + 25 * e + 36 * f + 49 * g = 1
h1 : 4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g = 12
h2 : 9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g = 123
h_answer : answer = 16 * a + 25 * b + 36 * c + 49 * d + 64 * e + 81 * f + 100 * g
⊢ ?w

Submitted Answer

answer = 334

Formal Solution

-- Define the equations
have h0 : a + 4 * b + 9 * c + 16 * d + 25 * e + 36 * f + 49 * g = 1 := by -- $x_1 +

4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 = 1$
linarith [h0, h1, h2, h_answer]

have h1 : 4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g = 12 := by --
Second equation

linarith

have h2 : 9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g = 123 := by
linarith

-- We subtract equation (1) from equation (2) and equation (2) from equation (3) to
eliminate x_1 from the differences.

have h3 : (4 * a + 9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g) - (a + 4 * b
+ 9 * c + 16 * d + 25 * e + 36 * f + 49 * g) = 12 - 1 := by -- Subtract
equation (1) from equation (2)

linarith

-- Simplify to get $3x_1 + 5x_2 + 7x_3 + 9x_4 + 11x_5 + 13x_6 + 15x_7 = 11$
have h4 : 3 * a + 5 * b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g = 11 := by

linarith

-- Next, subtract the second equation from the third
have h5 : (9 * a + 16 * b + 25 * c + 36 * d + 49 * e + 64 * f + 81 * g) - (4 * a +

9 * b + 16 * c + 25 * d + 36 * e + 49 * f + 64 * g) = 123 - 12 := by
linarith

have h6 : 5 * a + 7 * b + 9 * c + 11 * d + 13 * e + 15 * f + 17 * g = 111 := by
linarith

-- Calculate the next difference: $(5a + 7b + 9c + 11d + 13e + 15f + 17g) - (3a +
5b + 7c + 9d + 11e + 13f + 15g) = 111 - 11$.

have h7 : (5 * a + 7 * b + 9 * c + 11 * d + 13 * e + 15 * f + 17 * g) - (3 * a + 5 *
b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g) = 111 - 11 := by

linarith

have h8 : 2 * a + 2 * b + 2 * c + 2 * d + 2 * e + 2 * f + 2 * g = 100 := by
linarith

have h9 : a + b + c + d + e + f + g = 50 := by
linarith

-- Now, we find y_4 by adding this equation to $3y_2$:
have h10 : 3 * a + 5 * b + 7 * c + 9 * d + 11 * e + 13 * f + 15 * g + (a + b + c +

d + e + f + g) = 11 + 50 := by
linarith

have h11 : 4 * a + 6 * b + 8 * c + 10 * d + 12 * e + 14 * f + 16 * g = 61 := by
linarith

37

-- Now, multiply equation (4) by 4 and subtract it from equation (5) to eliminate $
a, b, c, d, e, f$:

have h12 : (4 * a + 6 * b + 8 * c + 10 * d + 12 * e + 14 * f + 16 * g) - 4 * (a + b
+ c + d + e + f + g) = 61 - 4 * 50 := by

linarith

have h13 : 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g = 61 - 200 := by
linarith

have h14 : 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g = -139 := by
linarith

have h15 : b + 2 * c + 3 * d + 4 * e + 5 * f + 6 * g = -69.5 := by
linarith

have h16 : 2 * b + 4 * c + 6 * d + 8 * e + 10 * f + 12 * g + (b + 2 * c + 3 * d + 4
* e + 5 * f + 6 * g) =

-139 + (-69.5) := by
linarith

have h17 : 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g = -208.5 := by --
Simplifying: $3b + 6c + 9d + 12e + 15f + 18g = -208.5$

linarith

-- Divide by 3 to simplify:
have h18 : b + 2 * c + 3 * d + 4 * e + 5 * f + 6 * g = -69.5 := by

linarith

have h19 : 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g = -208.5 := by
linarith

have h20 : (3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g) - 3 * (b + 2 * c + 3 *
d + 4 * e + 5 * f + 6 * g) = -208.5 - 3 * (-69.5) := by

linarith

have h21 : 3 * b + 6 * c + 9 * d + 12 * e + 15 * f + 18 * g - 3 * b - 6 * c - 9 * d
- 12 * e - 15 * f - 18 * g = -208.5 + 208.5 := by

linarith

have h22 : 0 = 0 := by -- $0 = 0$
linarith

-- Thus, the value of $16x_1 + 25x_2 + 36x_3 + 49x_4 + 64x_5 + 81x_6 + 100x_7$ is:
-- \[
-- \boxed{334}
-- \]
have h_answer : answer = 334 := by

linarith

exact h_answer -- submit

J.2 Failure Cases

There are two types of failures: The agent fails to submit an answer, or it submits an incorrect answer.
Here we demonstrate three typical incorrect submissions: extraneous answer, unsimplified answer,
and irrelevant answer.

J.2.1 Extraneous Answer

In the following example, the agent submits additional answers 3, 9 that do not satisfy the original
problem predicate. In all training data, only 0.65% have multiple valid answers, and only 0.09%
have more than two. The cause of this failure mode may be attributed to the construction of training
data. In CoPA, formal solutions are autoformalized from informal solutions, which are merely

38

solutions without original thinking process. As Gauss said, “no self-respecting architect leaves the
scaffolding in place after completing the building”, merely SFT on such data might be insufficient
for the model to learn to filter out extraneous answers. After bootstrapping data with CoPA, future
works with reinforcement learning can help mitigate this issue. Moreover, this project focuses on the
forward-reasoning stage and omit the backward-proving stage. Real applications can avoid this error
by integrating a backward-proving stage.

Informal Problem

Let N be the units digit of the number 21420N . Which nonzero value of N makes this number
divisible by 6?

Answer: 6

Initial Forward State

answer N : N
h_N : N ̸= 0 ∧ N ≥ 0 ∧ N ≤ 9
h_divisible_by_2 : 21420 * 10 + N ≡ 0 [MOD 2]
h_divisible_by_3 : 21420 * 10 + N ≡ 0 [MOD 3]
h_answer : N = answer
⊢ ?w

Submitted Answer

answer = 3 ∨ answer = 6 ∨ answer = 9

This submission is wrong because it contains Formal Solution

-- To find the units digit N that makes $21420N$ divisible by 6:
-- 1. **Divisibility by 2**: N must be even. Possible values are $2, 4, 6, 8$.
have h_divisible_by_2 : 21420 * 10 + N ≡ 0 [MOD 2] := by -- The number is

divisible by 2 if N is even
exact h_divisible_by_2

-- 2. **Divisibility by 3**: For a number to be divisible by 3, the sum of its
digits must be divisible by 3. The sum of the digits of $21420N$ is $2 + 1 + 4 +
2 + 0 + N = 9 + N$. For $9 + N$ to be divisible by 3, N must be such that $

9 + N \equiv 0 \pmod{3}$.
have h_divisible_by_3 : (21420 * 10 + N) % 3 = 0 := by -- The number is divisible

by 3
exact h_divisible_by_3

-- Sum of the digits of $21420N$:
-- $$2 + 1 + 4 + 2 + 0 + N = 9 + N.$$
have h_sum_of_digits : (21420 * 10 + N) % 10 = N := by

simp [h_answer, Nat.ModEq, Nat.mod_eq_of_lt] at h_divisible_by_2 h_divisible_by_3
⊢

simp [Nat.add_mod, Nat.mod_mod, Nat.mod_mod] at h_divisible_by_2 h_divisible_by_3
⊢

all_goals
omega

-- $$ 2 + 1 + 4 + 2 + 0 + N = 9 + N $$
have h_sum : 2 + 1 + 4 + 2 + 0 + N = 9 + N := by -- Simplify the sum of digits

omega

-- Therefore, $9 + N$ must be divisible by 3.
have h_divisible_by_3_condition : (9 + N) % 3 = 0 := by -- $9 + N$ must be

divisible by 3
omega

-- Since 9 is already divisible by 3, N must also be divisible by 3 for the
sum to remain divisible by 3.

have h_N_divisible_by_3 : N % 3 = 0 := by -- N must be divisible by 3.
omega

39

have h_N_possible_values : N = 3 ∨ N = 6 ∨ N = 9 := by
omega

-- Hence, the possible values of N are $3, 6, 9$. Only 3, 6, and 9 are
nonzero values.

have h_N_nonzero : N ̸= 0 := by
all_goals omega

-- Final Answer
-- Thus, the nonzero values of N that make $21420N$ divisible by 6 are $\boxed{3,

6, 9}$.
have h_answer : answer = 3 ∨ answer = 6 ∨ answer = 9 := by

all_goals aesop

exact h_answer -- submit

J.2.2 Unsimplified Answer

In the following example, the agent submits a highly complex answer − cos 2π
15 cos 4π

15 cos 8π
15 cos π

15 ,
which is not equivalent to the ground-truth 1

16 from human perspective. Therefore, the unsimplified
answer is rejected by the evaluation method. In all training samples, 14% of the problems have
answers longer than 10 characters, 6% of them have answers longer than 20 characters, and the longest
answer contains 385 characters. Many of these long answers are polynomials (e.g. Polynomial.C
1 * Polynomial.Xˆ10 + ...) and complex trigonometric functions (e.g. Real.sqrt ((10 *
Real.cos (Real.pi / 3) ...). Therefore, the model falls short on learning the definition of
“simplified”. Future works may train a preference model based on existing problem-answer pairs to
filter out unsimplified submissions by the reasoning model.

Informal Problem

Simplify

cos

(
2π

15

)
cos

(
4π

15

)
cos

(
8π

15

)
cos

(
16π

15

)
.

Answer: 1
16

Initial Forward State

answer : R
h_answer : Real.cos (2 * π / 15) * Real.cos (4 * π / 15) * Real.cos (8 * π / 15) *

Real.cos (16 * π / 15) = answer
⊢ ?w

Submitted Answer

answer = -Real.cos (2 * π / 15) * Real.cos (4 * π / 15) * Real.cos (8 * π / 15) *
Real.cos (π / 15)

Formal Solution

-- We start by simplifying the expression using properties of cosine and
trigonometric identities.

have h_cos_16pi : Real.cos (16 * Real.pi / 15) = Real.cos (Real.pi + Real.pi / 15)
:= by -- \(\cos \left(\frac{16 \pi}{15} \right) = \cos \left(\pi +
\frac{\pi}{15} \right) = -\cos \left(\frac{\pi}{15} \right)\)

ring_nf at h_answer ⊢

have h_cos_16pi_neg : Real.cos (16 * Real.pi / 15) = -Real.cos (Real.pi / 15) := by
simp [h_cos_16pi, Real.cos_add, Real.cos_pi]

-- Now the expression becomes:

40

-- \[\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac{4 \pi}{15} \right) \cos
\left(\frac{8 \pi}{15} \right) \left(-\cos \left(\frac{\pi}{15}
\right)\right).\]

have h_expr : Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos
(8 * Real.pi / 15) * Real.cos (16 * Real.pi / 15) = Real.cos (2 * Real.pi /
15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) * (-Real.cos
(Real.pi / 15)) := by rw [h_cos_16pi_neg]

-- We can use the identity \(\cos x = \cos (2 \pi - x)\) to simplify further.
have h_cos_pi_15 : Real.cos (Real.pi / 15) = Real.cos (2 * Real.pi - Real.pi / 15)

:= by
simp [Real.cos_sub]

have h_cos_pi_15_eq : Real.cos (Real.pi / 15) = Real.cos (29 * Real.pi / 15) := by
calc

Real.cos (π / 15) = Real.cos (2 * π - π / 15) := by rw [h_cos_pi_15]
_ = Real.cos (30 * π / 15 - π / 15) := by ring_nf
_ = Real.cos (29 * π / 15) := by ring_nf

-- Now, we have:
-- \[\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac{4 \pi}{15} \right)

\cos \left(\frac{8 \pi}{15} \right) \cos \left(\frac{16 \pi}{15} \right) =
-\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac{4 \pi}{15} \right)
\cos \left(\frac{8 \pi}{15} \right) \cos \left(\frac{29 \pi}{15} \right). \]

have h_expr_neg : Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) *
Real.cos (8 * Real.pi / 15) * -Real.cos (Real.pi / 15) = -Real.cos (2 *
Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) *
Real.cos (29 * Real.pi / 15) := by

field_simp [h_cos_pi_15_eq]

-- Using the identity $\cos(2\pi - x) = \cos(x)$, we get:
-- \[\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac {4 \pi}{15} \right)

\cos \left(\frac{8 \pi}{15} \right) \cos \left(\frac{29 \pi}{15} \right).\]
have h_cos_29pi : Real.cos (29 * Real.pi / 15) = Real.cos (2 * Real.pi - Real.pi /

15) := by
ring_nf at h_cos_pi_15_eq ⊢

have h_cos_29pi_eq : Real.cos (29 * Real.pi / 15) = Real.cos (Real.pi / 15) := by
simp [h_cos_29pi, Real.cos_sub]

have h_expr_final : -Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15) *
Real.cos (8 * Real.pi / 15) * Real.cos (29 * Real.pi / 15) = -Real.cos (2 *
Real.pi / 15) * Real.cos (4 * Real.pi / 15) * Real.cos (8 * Real.pi / 15) *
Real.cos (Real.pi / 15) := by

rw [h_cos_29pi_eq]

-- The final answer is \(\boxed{-\cos \left(\frac{2 \pi}{15} \right) \cos \left(
\frac{4 \pi}{15} \right) \cos \left(\frac{8 \pi}{15} \right) \cos \left(
\frac{\pi}{15} \right)}\).

have h_answer : answer = -Real.cos (2 * Real.pi / 15) * Real.cos (4 * Real.pi / 15)
* Real.cos (8 * Real.pi / 15) * Real.cos (Real.pi / 15) := by -- The final
answer is \(\boxed{-\cos \left(\frac{2 \pi}{15} \right) \cos \left(\frac{4
\pi}{15} \right) \cos \left(\frac{8 \pi}{15} \right) \cos \left(
\frac{\pi}{15} \right)}\)

linarith [h_answer, h_cos_16pi, h_cos_16pi_neg, h_expr, h_cos_pi_15,
h_cos_pi_15_eq, h_expr_neg, h_cos_29pi, h_cos_29pi_eq, h_expr_final]

exact h_answer -- submit

J.2.3 Irrelevant Answer

In this case, the agent submits a proposition [−2, 7] = {x ∈ R|−2 ≤ x∧x ≤ 7}, which is an obvious
fact and irrelevant to the queriable. Therefore, this irrelevant answer is rejected by the evaluation
method. We have carefully examined the training data and find that no final answer corresponds to

41

this failure mode. Therefore, this failure might be occasional. Future works can also use a preference
model to filter out these irrelevant submissions.

Informal Problem

For what values of x is it true that x2 − 5x− 4 ≤ 10? Express your answer in interval notation.

Answer: x ∈ [−2, 7]

Initial Forward State
answer : R × R
S : Set R
hS : S = {x : R | x ^ 2 - 5 * x - 14 ≤ 0}
h_answer : Set.Icc answer.1 answer.2 = S
⊢ ?w

Submitted Answer
Set.Icc (-2) 7 = {x : R | -2 ≤ x ∧ x ≤ 7}

Formal Solution
-- Start by rewriting the inequality $x^2 - 5x - 4 \le 10$ as $x^2 - 5x - 14 \le 0$.
have h_rewrite : ∀ x : R, x^2 - 5*x - 4 ≤ 10 ↔ x^2 - 5*x - 14 ≤ 0 := by

exact fun x 7→ ⟨fun h 7→ by linarith [h], fun h 7→ by linarith [h]⟩

-- Next, factorize the quadratic expression:
-- \[x^2 - 5x - 14 = (x - 7)(x + 2) \]
have h_factorize : ∀ x : R, x^2 - 5*x - 14 = (x - 7) * (x + 2) := by

exact fun x 7→ by ring

-- The solutions to $(x - 7)(x + 2) = 0$ are $x = 7$ and $x = -2$.
have h_solutions : ∀ x : R, (x - 7) * (x + 2) = 0 ↔ x = 7 ∨ x = -2 := by

intro x
simp [sub_eq_zero, add_eq_zero_iff_eq_neg]

-- To find the intervals where the inequality holds, test a value in each of the
intervals defined by the roots: $(-\infty, -2)$, $(-2, 7)$, and $(7, \infty)$.

have h_test_interval_1 : ∀ x : R, x < -2 → (x - 7) * (x + 2) > 0 := by
rintro x (hx : x < -2)
apply mul_pos_of_neg_of_neg <;> linarith

-- - For $-2 < x < 7$, choose $x = 0$, then $(0 - 7)(0 + 2) = -14$ (negative).
have h_test_interval_2 : ∀ (x : R), -2 < x ∧ x < 7 → (x - 7) * (x + 2) < 0 := by

exact fun x hx => by nlinarith [hx.1, hx.2]

-- For the interval $(7, \infty)$, choose $x = 8$:
-- \[(8-7)(8+2) = (1)(10) = 10 > 0 \]
-- This interval satisfies the inequality.
have h_test_interval_3 : ∀ x : R, x > 7 → (x - 7) * (x + 2) > 0 := by

exact fun x hx => by nlinarith

-- Thus, $x^2 - 5x - 14 \le 0$ when x is in the interval $\boxed{[-2, 7]}$.
have h_solution : ∀ x : R, x^2 - 5*x - 14 ≤ 0 ↔ x ∈ Set.Icc (-2) 7 := by

simp [h_rewrite, h_factorize, h_solutions, h_test_interval_1, h_test_interval_2,
h_test_interval_3]

intro x
exact ⟨fun h 7→ ⟨by nlinarith [h], by nlinarith [h]⟩, fun h 7→ by nlinarith [h.1,

h.2]⟩

-- Therefore, the solution in interval notation is $\boxed{[-2, 7]}$.
have h_answer : Set.Icc (-2) 7 = {x : R | -2 ≤ x ∧ x ≤ 7} := by

rw [Set.Icc]

exact h_answer -- submit

42

K Compute Resources

CoPA Expert Iteration. Cycle 0 data generation requests DeepSeek-V3-1226 [49] for 819,386
times with 2,428,482,030 input tokens and 413,605,284 ouput tokens in total. The experiment costs
two weeks. Cycle 1 data generation requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for
over a month. Cycle 1 data generation requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs
for over a month. Each fine-tuning (problem autoformalizer, solution drafter, and proof searcher)
requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs for about one week.

HAR & Solution Pruning. Each model fine-tuning requires 8 Ascend-910B NPUs and 192 Kunpeng-
920 CPUs for about 2 days. Non-hierarchical experiments (BFS, WG, AR) require 1 Ascend-910B
NPU and 64 Kunpeng-920 CPUs for two days; Hierarchical experiments (H-BFS, H-WG, H-SA,
HAR) require 2 Ascend-910B NPUs and 64 Kunpeng-920 CPUs for three days.

Dataset Denoising. Each fine-tuning requires 8 Ascend-910B NPUs and 192 Kunpeng-920 CPUs
for about one hour. Each evaluation requires 1 Ascend-910B NPU for about 12 hours.

This project took about 6 months overall, consuming about 1.5× compute than the experiments
reported in the paper (for debugging, failed attempts, and preliminary experiments).

L Prompt Templates

L.1 System Prompt

You are a Lean 4 expert.

L.2 Statement Autoformalization

Given a natural language math problem and its answer, please generate a
corresponding Lean 4 formal statement.

Please add comments highlighting the original parts of the natural language math
problem and answer.

Please explicitly use the variable ‘answer‘ to indicate the answer in the formal
statement.

Please maintain the semantic equivalence between natural language math and Lean 4.
Please assume the following header code has already been executed and do not add

any imports or openings.
‘‘‘lean4
import Mathlib
{OPEN_HEADER}
‘‘‘

Problem
"""
{informal_problem}
"""
Answer
"""
the answer is {informal_answer}
"""

L.3 Solution Drafting

Given a natural language math problem, its answer, its solution, and its formal
statement, please generate a corresponding Lean 4 proof sketch and add
comments to highlight the original parts of the natural language math solution.

Please maintain the semantic equivalence between natural language math and Lean 4.
Please only use forward reasoning in the proof, do not use tactics that modify the

final goal.
For new hypotheses, please do not prove them and use ‘sorry‘ to close them.

43

Please assume the following header code has already been executed and do not add
any imports or openings.

‘‘‘lean4
import Mathlib
‘‘‘

Problem
"""
{informal_problem}
"""
Answer
"""
the answer is {informal_answer}
"""
Formal Statement
‘‘‘lean4
{formal_statement}
‘‘‘

L.4 Next-Proof-Step Prediction

Generate a tactic that can transform one step from the current tactic state to the
’no goals’ tactic state.

Current tactic state:
‘‘‘
{goal_str}
‘‘‘

L.5 Next-Solution-Step Prediction

Given a natural language math problem and the current solution state, please
generate the next solution step.

Please use comments to plan and reason in natural language and deductive reasoning
to derive the answer.

Assume ‘Mathlib‘ is imported.
Informal Problem
"""
{informal_problem}
"""
Current Solution State
‘‘‘lean4
{str(solution_goal)}
‘‘‘

L.6 Next-Solution-Step Drafting

Given a natural language math problem and the current solution state, please
generate the next solution step.

Please use comments to plan and reason in natural language and deductive reasoning
to derive the answer.

Assume ‘Mathlib‘ is imported.
Informal Problem
"""
{informal_problem}
"""
Current Solution State
‘‘‘lean4
{str(solution_goal)}
‘‘‘

44

L.7 Whole-Solution Generation

Given a natural language math problem and the initial solution state, please
generate a Lean 4 formal solution.

You can use Lean 4 comments to conduct natural language reasoning.
Please only use forward reasoning; do not use tactics that modify the final goal.
Please assume the following header code has already been executed, and do not add

any imports or openings.
‘‘‘lean4
import Mathlib
‘‘‘

Problem
"""
{informal_problem}
"""

Initial Solution State
‘‘‘
{g_str}
‘‘‘

L.8 Whole-Solution Drafting

Given a natural language math problem and the initial solution state, please
generate a Lean 4 solution sketch.

You can use Lean 4 comments to conduct natural language reasoning.
Please only use forward reasoning; do not use tactics that modify the final goal.
For new hypotheses, please do not prove them and use ‘sorry‘ to close them.
Please assume the following header code has already been executed, and do not add

any imports or openings.
‘‘‘lean4
import Mathlib
‘‘‘

Problem
"""
{informal_problem}
"""

Initial Solution State
‘‘‘
{g_str}
‘‘‘

L.9 Informalization

Given a natural language math problem, its answer, its Lean 4 formal statement, and
a Lean 4 formal proof Based on the formal proof, please generate a natural
language solution while maintaining the semantic equivalence to the formal
proof.

Please reason step by step, and put your final answer within \\boxed{{}}.

Informal Problem
"""
{informal_problem}
"""

Informal Answer
{informal_answer}

Formal Statement

45

‘‘‘lean4
{formal_statement}
‘‘‘

Formal Proof
‘‘‘lean4
{formal_solution_draft}
‘‘‘

Informal Solution
‘‘‘

M Ethics Statement

Our research designs an efficient and effective reasoning model for Deductive Formal Problem-
Solving (D-FPS), implements a data generation pipeline, and explores the possibilities enabled by
process-level verified data. This project focuses on formal mathematics. It has many positive impacts,
including contributions to high-quality mathematics education materials, trustworthy reasoning
models, and democratization of reasoning data.

However, over-reliance on formal verification and automated reasoning may lead to negative societal
impacts. The “verified” refers to “theoretically verified”. However, the implementation of formal
verifiers themselves is the Achilles’ heel. Current expert systems are fragile to misimplementation;
e.g., AlphaGeometry contains incorrect rules, and code contributions to Mathlib are not allowed
to use native_decide due to its trust in the Lean compiler. Therefore, merely depending on
automated reasoning is not sufficient. Future works may mitigate this by cross-checking the same
reasoning process with two independent proof assistants (e.g., Lean and Coq). Moreover, heavy
use of automated reasoners offloads users’ cognition. Formal proofs & solutions are not easy to
understand. If they accept results without understanding the underlying idea, their own intuition
and intelligence may degenerate. Future work on faithful informalization (i.e., translating formal
reasoning results into natural language) can help alleviate this issue.

We acknowledge the importance of ethical and scientific implications, including the responsible use
of LLMs, mitigating biases in model outputs, addressing privacy concerns, and facilitating future
research. We commit to making our code and model transparent and encourage the community to use
our findings responsibly.

Relevant benchmarks (FormalMath500 [7], MiniF2F-Solving [7, 9], and PutnamBench-Solving [7,
60]), data (Numina-CoT [46], Numina-1.5 [46], and Lean-Workbook [46]), and base models
(Qwen2.5-Math-7B [58], Qwen2.5-7B [65]) are released under the Apache 2.0 License. The original
MATH [8] dataset, MathOdessy [61] and Phi-4-mini-instruct [62] are released under the MIT license.
Special thanks to their authors for the invaluable contributions!

46

	Introduction
	Related Works
	Background
	Method
	Hierarchical Autoregressive Formal Reasoner
	Motivation
	Design

	Chain-of-Proxy-Autoformalization
	Problem Autoformalization
	Hierarchical Solution Autoformalization
	Expert Iteration
	Explorations

	Experiment
	Baselines Methods
	Results and Discussions

	Conclusion
	More Discussions on D-FPS
	More Experiment Results
	Computational Efficiency
	Test-time Scaling
	More Benchmarks
	Sensitivity to Base Models

	Limitations and Future Works
	Filtering Problem Autoformalization
	Experiment Environment Details
	Training Details
	Dataset Recipe
	Training Hyperparameters

	Evaluation Details
	CoPA and HAR
	Dataset Denoising

	More Results and Discussions on Solution Pruning
	Details and Discussions about Dataset Denoising
	Case Studies
	Success Cases
	Failure Cases
	Extraneous Answer
	Unsimplified Answer
	Irrelevant Answer

	Compute Resources
	Prompt Templates
	System Prompt
	Statement Autoformalization
	Solution Drafting
	Next-Proof-Step Prediction
	Next-Solution-Step Prediction
	Next-Solution-Step Drafting
	Whole-Solution Generation
	Whole-Solution Drafting
	Informalization

	Ethics Statement

