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Abstract

In clinical practice, one often needs to identify whether a patient is at high risk
of adverse outcomes after some key medical event; e.g., the short-term risk of
death after an admission for heart failure. This task, however, remains challenging
due to the complexity, variability, and heterogeneity of longitudinal medical data,
especially for individuals suffering from chronic diseases like heart failure. In
this paper, we introduce Event-Based Contrastive Learning (EBCL) - a method
for learning embeddings of heterogeneous patient data that preserves temporal
information before and after key index events. We demonstrate that EBCL produces
models that yield better fine-tuning performance on critical downstream tasks
including 30-day readmission, 1-year mortality, and 1-week length of stay relative
to other representation learning methods that do not exploit temporal information
surrounding key medical events.

1 Introduction

Outcomes for patients with heart failure are highly variable, making accurate predictions challenging
[1, 2]. Nevertheless, reliable outcome prediction is important for the development of effective
treatment strategies [3] and for ensuring that healthcare resources are allocated appropriately, thereby
ensuring that the most resources are made available to the sickest patients [4]. Prior work has
leveraged data within the Electronic Health Record (EHR) for this task. Indeed, a variety of learning
algorithms, including directly supervised [5, 6, 7], self-supervised [8, 9], weakly-supervised [10],
generative pretraining [11, 12, 13, 14], and contrastive learning algorithms [7, 15, 16] have all been
used to identify patients at the highest risk of adverse outcomes. A central feature of many predictive
tasks in medicine is that one aspires to identify a patient’s risk after some index event. Case in point,
the ability to identify patients at high risk of death after a myocardial infarction (heart attack) forms
an important part of the evaluation and care of patients with coronary artery disease. Although a
number of methods use elements of the electronic record for this task, they typically do not strive to
encode the temporal information surrounding the event of interest [15, 8, 9]. For example, how do
patient features change pre- and post-index event? As such data often include information about the
patient’s response to therapy, we postulated that predictive performance could be improved, relative
to existing methods, when such temporal information is explicitly modeled around the index event.

We therefore introduce a novel approach using temporal contrastive learning to emphasize the
consistency of medical trajectory representations around key medical events. Our approach diverges
from existing work [7, 15, 17] by imposing our specialized pre-training contrastive loss solely on
data around critical events, where the most prognostic information regarding disease progression and
prognosis is likely to be found. In particular, our contrastive system is trained to differentiate positive
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Figure 1: Event-based contrastive learning (EBCL) We sample a batch DB = {(αi
n, β

i
n) : i, n ∈

B} of pairs of pre-event and post-event time series sequences for pretraining, where i and n index
the patient and the event respectively. We choose the event of interest to be an inpatient admission.
Pre-event data, αi

n, and post-event data, βi
n, are passed separately into the transformer encoder fθ

to get ᾱi
n = fθ(α

i
n) and β̄i

n = fθ(β
i
n) which is pretrained with CLIP contrastive loss. The positive

pairs are pre and post-event data of the same event, (ᾱi
n, β̄

i
n). The negative pairs are mismatched

pre-event and post-event trajectories, such as (ᾱi
n, β̄

j
m) where i ̸= j or n ̸= m.

pairs - patient data before and after an event - from negative pairs - data from separate events (these
separate events can be for either different patients or the same patient). This framework aids the
model in learning consistent representations of patient history across these key events. We postulate
that these learned representations can enhance our ability to capture long-term longitudinal trends in
patient states and improve outcome predictions in patients with chronic diseases such as heart failure.
We apply the method across several fine-tuning tasks, including 30-day readmission [18, 19, 20, 21],
1-year mortality [22, 23, 24, 25], and 1-week length of stay (LOS) prediction over a multi-center
cohort of patients with heart failure. Consistently, our temporally aware contrastively pretrained
model outperforms existing representation learning methods across these tasks.

Related Works Contrastive learning is a form of self-supervised learning (SSL). It utilizes automat-
ically co-occurring sources of information (“multi-modal”) [26, 27, 28, 29] or augmented versions
of the same information (“multi-view”) as a supervision signal [30, 31, 32, 33, 16, 27, 34, 35, 36].
Specifically, paired observations, created using multiple data modalities or augmented/mined views
of the same object, are contrasted against negative observation pairs created using multi-source/view
information for different objects through losses such as the InfoNCE [31] or CLIP loss [32].

A recent contrastive learning scheme called Order Contrastive Pretraining (OCP) [15] builds on prior
works such as Permutation-Contrastive Learning (PCL) [7] and takes two consecutive windows of
data in their original temporal sequence to construct positive pairs. Negative pairs correspond to a
sequence where the temporal order of sequences is swapped. Importantly, the sequences chosen to be
swapped are not chosen with respect to any particular event, while our method is event-centric.

2 Methods

2.1 Event-Based Contrastive Learning for Medical Outcome Prediction

We present a novel contrastive pretraining method called Event-Based contrastive learning (EBCL),
which leverages medical time-series data around the time of a critical event.

Problem Formulation Let tin denote the nth clinically significant event (e.g., inpatient admission)
for patient i. We note that a single patient may have more than one clinically significant event.
For example, a patient with heart failure may have several hospital admissions with shortness
of breath, where each admission corresponds to a clinically significant event. Pretraining data
DPT = {(αi

n, β
i
n) : n < Ni & i < P}, where αi

n (pre-event data) corresponds to data before tin
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(index event) βi
n (post-event data) corresponds to data after tin until the end of the event. Ni is the

number of events associated with patient i, and P is the total number of patients in the dataset.

EBCL Pretraining We encode αi
n and βi

n using missingness-aware triplet embedding [8] with
feature, value, and time embeddings. We feed the input triplet embedding into the model, fθ, and get
pre- and post-embeddings fθ(αi

n) and fθ(β
i
n). We then compute the CLIP loss LCLIP [32] on a batch

of these embeddings. Note that (αi
k, β

j
m) is a positive pair if i = j and k = m.

Finetuning We finetune fθ on the tasks defined in Section 2.2 using a dataset of time-series
embedding with matched binary outcome labels: DFT = {(αi

n, β
i
n, y

i
n) : n < Ni & i < P}. We use

negative cross-entropy loss, LCE, and pass our embeddings, fθ(αi
n) and fθ(β

i
n) through a finetuning

architecture depicted in Figure 3a (in appendix) to arrive at a prediction for our label.

2.2 Dataset and Tasks

We have assembled a cohort of 107,268 heart failure patients with 383,254 inpatient admissions,
obtained from the electronic data warehouse of a large hospital network. We preprocess these data
using a preprocessing pipeline inspired by ESGPT [37]. The dataset includes patient trajectories
over a maximum span of 40 years and a maximum number of 3275 features, which includes labs,
diagnoses, procedures, medications, tabular echocardiogram recordings, physical measurements, and
admissions/discharges. See Appendix Table 3 for the pretraining dataset statistics.

We divide the patient trajectories into Pre-Event and Post-Event data, where the Event is an inpatient
admission. We finetune and evaluate on three downstream tasks where the datasets are summarized
in Table 1. Note that for the LOS task, we only use Pre-Admission data as input, as Post-Admission
data would leak the LOS outcome, so DLOS = {(αi

n, y
i
n) : n < Ni & i < P}. We also always

restrict Post-Admission data, βi
n, to the data prior to patient discharge, as this is the information

that will be available at decision time for the mortality and readmission tasks. We partitioned our
compiled dataset into training (80%), validation (10%) and testing (10%) with the split determined
by individual patient instances. Additional dataset information is provided in appendix section A

Table 1: Statistics for finetuning datasets.
Task # Patients # Events # Prevalence

30-Day Readmission 60,287 215,097 17.6%
1-Year Mortality 49,962 183,125 27.7%
1-Week LOS 107,268 383,254 54.1%

2.3 Experiments

Our transformer has two encoder layers, a 512 sequence length for pre- and post-event data, a 2,048-
dimension feed-forward layer between self-attention layers, and 32-dimension token embeddings.
We then perform Fusion Self-Attention [8, 38], by taking an attention-weighted average of the output
embeddings of the transformer to get a single 32-dimension embedding. Finally, we have a linear
projection to a 32-dimension embedding. Sequences are padded to be length 512 and attention over
padded tokens is masked in the transformer and the Fusion Self-Attention layer.

To evaluate our method we perform the following experiments:

• Supervised: This corresponds to standard supervised training without EBCL pretraining.
The model fθ is initialized with random weights and then the model is trained in a supervised
fashion for a specific task. We use the architecture in figure 3a.

• Order Contrastive Pretraining (OCP)[15]: OCP is a self-supervised approach that imple-
ments a pretraining task of discriminating correct and switched sequencing. We pretrain
fθ with the OCP objective where for each patient i, we take a continuous sequence of at
most 512 tokens, split the sequence in half, and randomly swap the first and second halves
(Figure 2). We denote this randomly sampled and swapped sequence as τ i and display this
pretraining architecture in Appendix Figure 3d. Due to slow convergence, we allow up to a
maximum of 600 epochs for pretraining. For fine-tuning, we concatenate or "fuse" αi

n and
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βi
n and pass the concatenated trajectory into the model fθ (Figure 3b). For this experiment,

αi
n and βi

n individually can only have a sequence length of 256 as fθ has a max sequence
length of 512. For more information see Appendix Section A.

• Event-Based Contrastive Learning (EBCL): Our event-centric temporal contrastive pre-
trained model. We show this pretraining architecture in Appendix Figure 3c.

We finetune the pretrained contrastive learning models (OCP, EBCL) with fully connected layers to
predict outcomes. Additionally, to evaluate the utility of the representations learned from pretraining,
we do an additional experiment where we freeze the model weights for fθ learned from pretraining
(EBCL Frozen, OCP Frozen), and train a two-layer MLP on the output of fθ for our finetuning
task. We perform an extensive learning rate and dropout hyperparameter search for pretraining and
finetuning and use a maximum of 100 epochs. We take the epoch with the highest validation set
performance for pretraining and finetuning. We run 3 random seeds for pretraining and finetuning
and report the mean and standard deviation of results across these seeds.

2.4 Results

We summarize the evaluation of models on the finetuning tasks in Table 2. Our proposed method,
EBCL, achieves a significant improvement over the fully supervised baseline and OCP approach.
The OCP method showed worse performance compared to the Supervised model on predicting 1-year
mortality and 1-week LOS. We note that pretraining methods often rely on leveraging a much larger
pretraining dataset than the finetuning dataset to obtain performance improvements, but in our scheme,
the pretraining dataset is similar in size to our downstream tasks, so the drive for the improvement is
mainly coming from solving the contrastive learning task, and not seeing more data.

Table 2: EBCL Pretraining improves results over a supervised baseline and OCP pretraining.
Additionally, the EBCL Frozen model consistently outperforms the OCP Frozen model and even
outperforms the Supervised model for 30-day Readmission prediction.

30-Day Readmission 1-Year Mortality 1-Week LOS

AUC APR AUC APR AUC APR

Supervised 64.3 ± 1.1 89.0 ± 0.5 80.2 ± 0.7 90.7 ± 0.3 86.3 ± 0.6 85.7 ± 0.5

OCP 68.1 ± 0.5 90.6 ± 0.2 78.0 ± 0.7 89.6 ± 0.3 84.1 ± 0.7 83.7 ± 0.6
OCP Frozen 59.1 ± 0.5 86.2 ± 0.4 65.9 ± 0.4 81.9 ± 0.2 59.9 ± 0.1 55.3 ± 0.3

EBCL 70.4 ± 0.1 91.4 ± 0.1 82.3 ± 0.1 91.8 ± 0.0 87.2 ± 0.2 86.9 ± 0.3
EBCL Frozen 68.2 ± 0.3 90.6 ± 0.1 78.4 ± 0.1 90.0 ± 0.1 79.7 ± 0.1 79.2 ± 0.1

Additionally, we examine how freezing the OCP and EBCL pretrained weights affects performance
relative to the supervised baseline. EBCL Frozen significantly outperforms OCP Frozen for all tasks,
providing further evidence that EBCL is a superior pretraining scheme for these downstream tasks.
Furthermore, EBCL Frozen outperforms Supervised for readmission and is comparable for 1-year
mortality, indicating EBCL learns a useful patient representation around clinical events. There is a gap
between the supervised baseline and EBCL for the LOS task, but the LOS task only uses pre-event
data, which suggests that the post-data EBCL embedding may be more useful for downstream tasks
than the pre-data EBCL embedding. Validating this will be a subject of future experiments. Overall
these results indicate that EBCL provides a useful pretraining scheme for our downstream tasks.

3 Conclusion

In this paper, we propose EBCL, a novel pretraining scheme for medical time series data, to learn
temporal representations around clinically significant events. We show that EBCL outperforms
supervised baselines relative to standard supervised training and a related pretraining method, OCP,
which is not based on clinically significant events.

Limitations and Future Works. Given this investigation is at an early stage, we did not conduct an
extensive comparison of contrastive loss schemes for pre-event and post-event data, of different model
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architectures, or of results on different datasets. An important direction for future work is addressing
these limitations and evaluating other transformer pretraining methods. While further experiments
with different model architectures are important, our current results with several pretraining methods
are encouraging.
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A Dataset

In our heart failure cohort, we include patients who have at least one inpatient admission event with
at least 16 data points for both pre-admission and post-admission data. See Table 3 for pretraining
dataset statistics.

Table 3: Statistics for pretraining datasets.
Task # Patients # Events

OCP Pretraining 107,268 ✗
EBCL Pretraining 107,268 383,254

We use the triplet embedding strategy from Tipirneni et al [8] for modeling sequential EHR data, and
this allows flexibility in how dates are encoded. For all non-OCP experiments, specifically the EBCL
and supervised experiments, we encode dates as the relative time from the inpatient admission event.
Since relative dates are used, we normalize the OCP and non-OCP relative dates by dividing by the
standard deviation of all inpatient admission times in the dataset.

Figure 2: Illustration of datetime encoding used for all OCP experiments. We show the date
encoding used for an original sequence and a swapped sequence in a scenario where the input
trajectory has 512 data points.

OCP Data Processing We prepare a continuous trajectory of 512 consecutive data points. This
trajectory might either be maintained in its original order or have its two halves swapped (Figure
2. For the case where we keep the original ordering, the first data point, T1, is set to time 0, with
subsequent data points indicating the time elapsed since T1. Alternatively, if we swap the trajectory,
the first data point of the latter half, T257, becomes time 0. Other data points then denote the
time difference from T257. We further adjust the dates of the initial half by adding the time gap,
TGAP = T512 − T256. This adjustment ensures that the gap between T256 and T257 remains unaltered,
regardless of whether the sequence is swapped or not. This ensures that the time between the first
and second half (time from T256 to T257) can not be leveraged to detect swaps. Moreover, both the
swapped and unaltered sequences ascend from zero, meaning the OCP model can’t solely rely on sign
or monotonicity. Instead, it must be discerned from the data patterns whether a swap has taken place.

B Architectures

Figure 3 summarizes the model architecture used for pre-training and finetuning for EBCL, OCP, and
Fully Supervised Experiments.

C OCP Late Fusion

For our OCP finetuning experiments, we used a standard architecture with pre and post data concate-
nated before being passed to fθ (Figure 3b). This more standard architecture differs from what is

8



Figure 3: Model Architectures. FFN refers to a one hidden layer feed-forward network with a ReLU
activation.

(a) This architecture is used for EBCL, OCP Late-
Fusion, and Supervised experiments. For EBCL
we initialize θ with the final weights from EBCL
pretraining, θ∗EBCL, for OCP Late-Fusion we ini-
tialize with the final weights from OCP pretraining,
θ∗OCP, and for Supervised we randomly initialize
θ. Notice that Pre-event data and Post-event data
are passed separately into the transformer encoder
fθ , so there is no self-attention between Pre-event
and Post-event data.

(b) Architecture used for OCP finetuning. The
pre and post data is concatenated before being fed
to the transformer allowing for attention between
pre and post data. We initialize fθ with the OCP
pretrained weights θ∗OCP.

(c) Architecture used for EBCL Pretraining. Pre
Projection and Post Projection are simply linear
layers, and their weights are not shared

(d) Architecture used for OCP Pretraining. The
binary label for computing the cross entropy loss,
LCE, is whether or not the random sequence, τ i, is
swapped.
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used for the EBCL and Supervised experiments where we pass the pre and post data to fθ separately
(Figure 3a). For a fair comparison, we try OCP Late fusion (OCP LF), using the same finetuning
architecture used for EBCL and Supervised experiments (Figure 3a), but initializing fθ with the
learned OCP pretraining weights θ∗OCP.

Table 4: Performance of all models on finetuning tasks.

30-Day Readmission 1-Year Mortality 1-Week LOS

AUC APR AUC APR AUC APR

Supervised 64.3 ± 1.1 89.0 ± 0.5 80.2 ± 0.7 90.7 ± 0.3 86.3 ± 0.6 85.7 ± 0.5

OCP LF 64.6 ± 1.1 89.1 ± 0.6 79.1 ± 0.2 90.3 ± 0.1 84.1 ± 0.7 83.7 ± 0.6
OCP LF Frozen 61.5 ± 0.2 87.4 ± 0.1 67.1 ± 0.3 82.8 ± 0.2 59.9 ± 0.1 55.3 ± 0.3
OCP 68.1 ± 0.5 90.6 ± 0.2 78.0 ± 0.7 89.6 ± 0.3 84.1 ± 0.7 83.7 ± 0.6
OCP Frozen 59.1 ± 0.5 86.2 ± 0.4 65.9 ± 0.4 81.9 ± 0.2 59.9 ± 0.1 55.3 ± 0.3

EBCL 70.4 ± 0.1 91.4 ± 0.1 82.3 ± 0.1 91.8 ± 0.0 87.2 ± 0.2 86.9 ± 0.3
EBCL Frozen 68.2 ± 0.3 90.6 ± 0.1 78.4 ± 0.1 90.0 ± 0.1 79.7 ± 0.1 79.2 ± 0.1

We observe that OCP LF was consistently outperformed by EBCL, providing further evidence that
EBCL is a superior pretraining task.
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