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Abstract
Turning the multi-round vanilla Federated Learn-
ing into one-shot FL (OFL) significantly reduces
the communication burden and makes a big leap
toward practical deployment. However, this work
empirically and theoretically unravels that exist-
ing OFL falls into a garbage (inconsistent one-
shot local models) in and garbage (degraded
global model) out pitfall. The inconsistency mani-
fests as divergent feature representations and sam-
ple predictions. This work presents a novel OFL
framework FAFI that enhances the one-shot train-
ing on the client side to essentially overcome
inferior local uploading. Specifically, unsuper-
vised feature alignment and category-wise proto-
type learning are adopted for clients’ local train-
ing to be consistent in representing local sam-
ples. On this basis, FAFI uses informativeness-
aware feature fusion and prototype aggregation
for global inference. Extensive experiments on
three datasets demonstrate the effectiveness of
FAFI, which facilitates superior performance com-
pared with 11 OFL baselines (+10.86% accu-
racy). Code available at https://github.
com/zenghui9977/FAFI_ICML25

1. Introduction
As a distributed machine learning paradigm featured with
privacy-preserving, Federated Learning (FL) enables mul-
tiple clients to collaboratively integrate their knowledge
without exposing their local data (McMahan et al., 2017;
Zeng et al., 2021; 2025; Karimireddy et al., 2020; Yurochkin
et al., 2019; Tang et al., 2024b; Huang et al., 2024; Wan
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et al., 2025). Basically, FL allows clients to train local mod-
els independently, collects the locally trained models for
aggregation, and broadcasts the aggregated global model
for iterative local training. However, such a multi-round
client-server interaction process would incur a heavy com-
munication burden (e.g., more than 250GB for a simple
VGG19 model cumulatively (Zeng et al., 2024; Wu et al.,
2020)) and high communication time (e.g., more than 194
hours for one-round transmission of GPT-3 (Tang et al.,
2024a)), criticized for being prohibitive in real-world appli-
cations (Zhang et al., 2022a; Dai et al., 2023; Chen et al.,
2023; Tang et al., 2024a; Liu et al., 2024).

To reduce the communication costs, one-shot Federated
Learning (OFL) has emerged recently by compressing the
multi-round communications of vanilla FL into just one
round (Guha et al., 2019). In OFL, clients perform long-
term local training individually based on their private data
and upload these well-trained local models to the server
for aggregation. In this manner, OFL is believed to be
well-suited for the prevalent model market scenarios (Zhang
et al., 2022a; Zeng et al., 2024; Liu et al., 2025), where users
are willing to trade their models for next-stage knowledge
fusion instead of joining into a redundant training process.
In the current OFL, clients are supposed to train locally for
only one time, gaining one-shot local models, while the
server is expected to provide a deliberate aggregation by
reforming a global model with one-shot local ones.

Existing OFL aggregation designs, building on optimization-
based methods (McMahan et al., 2017; Zeng et al., 2021;
Jhunjhunwala et al., 2024; Liu et al., 2024; Dennis et al.,
2021; Su et al., 2023), distillation-based methods (Li et al.,
2021b; Zhou et al., 2020; Yang et al., 2023), generative
methods (Yang et al., 2024b; Heinbaugh et al., 2022), and
selective ensemble methods (Zhang et al., 2022a; Dai et al.,
2023; Zeng et al., 2024), focus solely on the server side.
Unfortunately, there is no free lunch to reduce the cost of
communication. The reported performance of OFL methods
has a significant gap (over 30%) compared with multi-round
FL (Tang et al., 2024a; Zeng et al., 2021; Gao et al., 2022).

This work identifies, for the first time, that existing OFL
falls in a garbage (inferior one-shot local models) in and
garbage (degraded global model) out pitfall. Vanilla FL
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overcomes such a pitfall by implicitly exchanging local
knowledge via multi-round iterations while existing OFL
lacks such a measure by reactively gathering the garbage
inputs. We further unravel the root cause of such garbage
inputs as two aspects of inconsistency in the face of data
heterogeneity (§ 3). (1) Intra-model inconsistency. A one-
shot local model is shown to have divergent predictions for
samples under the same semantics. (2) Inter-model inconsis-
tency. Different one-shot local models from different clients
manifest distinct parameters, causing divergent predictions
for even the same sample.

Intuitively, the OFL paradigm would be more effective if
provided with one-shot but consistent local models. How-
ever, dealing with inconsistencies in OFL is non-trivial.
On one hand, we find that the heterogeneity of different
categories of one client’s samples leads to intra-model in-
consistency. How can we construct a model capable of
capturing invariant features and achieving stable predic-
tions under such heterogeneous conditions (Challenge #1)?
On the other hand, we observe that better local performance
is always accompanied by larger parameter discrepancies.
A more tricky challenge is how can we effectively leverage
models with parameter discrepancies in a one-shot manner
(Challenge #2)?

In view of these challenges, this work presents a novel one-
shot Federated Learning framework, named FAFI. For Chal-
lenge #1, we design Self-Alignment Local Training (SALT),
a dual-step training strategy, which leverages contrastive
learning to capture invariant feature representations and em-
ploys a learnable category-wise prototype to address the pre-
diction inconsistency by establishing semantically aligned
decision boundary. Working in an unsupervised manner,
SALT could improve the generalization of the one-shot lo-
cal training with a tuned feature extractor and category-wise
templates (i.e., prototypes).

For Challenge #2, instead of directly utilizing divergent
parameters, FAFI performs informativeness-aware feature
fusion based on local-uploaded extractors and aggregate pro-
totypes for each category during inference, namely, Infor-
mative Feature Fused Inference (IFFI) in the server. Specifi-
cally, to reduce the impact of local extractors with uncertain
understanding of a sample, the sample’s representation from
each extractor is compared with a noise representation of
the same extractor. Those with noise-proximal features are
assigned with attenuated attention during fusion. Subse-
quently, the inference is made by finding the nearest aggre-
gated prototype for the fused feature of that sample.

Our main contributions are summarized as follows:

• We empirically and theoretically reveal model inconsis-
tencies within and across local models, which leads to poor
performance for existing model merging designs in OFL.
• We present the novel one-shot Federated Learning design

of client-side Self-Alignment Local Training and server-
side Informative Feature Fused Inference (FAFI), mitigating
inconsistency in OFL for enhanced inference performance
without requiring additional sample or local model exchang-
ing.
• We conduct extensive evaluations on real datasets with
various levels of data heterogeneity, accompanied by a set
of ablative studies. Experimental results demonstrate the
performance superiority of the proposal (10.86% accuracy
improvement over 11 baselines on 3 datasets) and the indis-
pensability of each module.

2. One-shot Federated Learning
One-shot Federated Learning (OFL) is a variant of FL that
requires only one round of interaction between the clients
and server to reduce the heavy communication cost. Ex-
isting OFL methods focus on designing aggregation mech-
anisms on the server side, which can be categorized into
three categories.

(1) Optimization-based methods focus on reconstructing
a better global model with the parameters of local models.
Traditional aggregation methods such as FedAvg (McMahan
et al., 2017), Median (Yin et al., 2018), Krum (Blanchard
et al., 2017), and FedCav (Zeng et al., 2021; 2025) can be
directly applied in OFL, but achieve low performance. MA-
Echo (Su et al., 2023) tries to get the Pareto optimum of
the local clients via exploring common harmonized optima.
FedFisher (Jhunjhunwala et al., 2024) and FedLPA (Liu
et al., 2024) require additional Fisher information matri-
ces for reaggregation. However, the nonlinear structure
of DNNs makes it difficult to obtain a comparable global
model through parameter optimization (Tang et al., 2024a).
Besides, directly analyzing the model parameters requires
all local models to have the same architecture, whose setting
is impractical in real-world heterogeneous scenarios.

(2) Distillation-based methods try to introduce knowledge
distillation (KD) to transfer the massive local knowledge
into one global model. The local models (Guha et al.,
2019; Li et al., 2021b; Diao et al., 2022) or locally dis-
tilled data (Zhou et al., 2020) are viewed as teachers and
the newly constructed global model is the student. (Guha
et al., 2019) firstly uses the ensemble prediction of local
models as the teachers’ output. FedKT (Li et al., 2021b)
designs a two-tier PATE structure relying on public data to
improve the ensemble of local models. To alleviate the label
skews, FedOV (Diao et al., 2022) adopts open-set voting in
OFL to enhance the generalization. k-FED (Dennis et al.,
2021) runs a variant of Lloyd’s method for k-means clus-
tering and obtains an aggregated model through one round
iteration of exchanging local cluster means. Some dataset
distillation-based one-shot methods, such as FedD3 (Song
et al., 2023) and FedMD (Li & Wang, 2019), transmit the
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Figure 1. Empirical demonstration of intra-model inconsis-
tency. (a) The inconsistent features extracted by the one-shot
local model and (b) the inconsistent predictions of the one-shot
local model on the original and flipped samples.

locally distilled dataset rather than models to the server in a
one-shot manner. However, these methods require auxiliary
public data or pre-trained models which may be impractical
in privacy-sensitive scenarios, such as biomedical domains.

(3) Generative methods use the generative models to synthe-
size proxy samples for centralized training on the server side.
FedCAVE (Heinbaugh et al., 2022) modifies the local learn-
ing task into training a conditional variation auto-encoder
(CAVE) and uses KD to compress the ensemble into a pow-
erful decoder. The decoder can be used to generate training
samples for the global model. FedCADO (Yang et al., 2023)
adopts the popular diffusion models to get the synthetic
data. FedDEO (Yang et al., 2024b) trains local descriptions
that serve as the medium for conditional generation with
diffusion models. However, these generative data samples
may leak the privacy of the local clients.

(4) Selective ensemble-based methods try to assign pro-
portions for each local model and use them for prediction
based on ensemble learning. DENSE (Zhang et al., 2022a)
and Ensemble (Wang et al., 2023) equally average the pre-
dictions of all local models. Co-Boosting (Dai et al., 2023)
designs a learnable weight for each local model and synthe-
sizes data and the ensemble model mutually enhances each
other progressively. IntactOFL (Zeng et al., 2024) trains
a MoE for dynamic routing. However, all these methods
focus on improving performance through server-side design,
ignoring that the root cause of low performance in OFL is
the inconsistent one-shot local models.

3. Motivation
Existing OFL aggregation methods focus on better model
merging designs on the server side, which easily falls in a
garbage in garbage out pitfall. In this part, we empirically
and theoretically unravel the root cause of such ‘garbage
input’ as two aspects of inconsistency (intra-model and inter-
model levels) in the face of data heterogeneity.
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Figure 2. Empirical demonstration of inter-model inconsistency.
(a) The inconsistent features across different one-shot local models.
(b) The inconsistent parameters (measured by parameter variance)
and averaged training loss under different data heterogeneity. The
solid blue lines represent the parameter variance, and the dotted
red lines represent the average training loss.

3.1. Intra-model Inconsistency

In this part, we first investigate the intra-model inconsistency
in existing one-shot local models in heterogeneous data,
which is a common issue in FL, that the categories of one
client’s training samples are totally different (Luo et al.,
2021; Li et al., 2023).

Empirically Demonstration. As shown in Figure 1a and
Figure 1b, the one-shot local model exhibits significant in-
consistencies in their extracted feature (visualized by Grad-
CAM (Zhou et al., 2016)) and prediction for identical sam-
ples when subjected to simple augmented transformations,
such as flipping. Besides, with the increased non-IID de-
gree (lower Dirichlet Distribution parameter alpha), the
intra-model inconsistency (measured by the performance
gap between original and flipped samples) becomes more
significant. We attribute this to the heterogeneity of local
data, which hinders the acquisition of a one-shot local model
with good generalizability.

Theoretical Analysis. We represent the mth client local
model wm = θm ·Φm, where Φm is the classifier and θm is
the feature extractor. Existing OFL methods primarily train
local models in a supervised manner, using the cross-entropy
loss as the supervised loss. Considering a classification task
with C categories, the loss can be represented as:

Lsup
i (wm) = E(x,y)∈Dm

[ℓsupm (Φm, θm; (x, y))]

= − 1

nm

nm∑
j=1,yj=c

log
exp(ΦT

m,cθ
T
m,cxj)∑C

k=1 exp(Φ
T
m,kθ

T
m,kxj)

,
(1)

where nm is the number of samples in the m-th client. The
one-shot local model should have consistent predictions for
samples with the same semantics. Thus, we define the intra-
model inconsistency as the performance discrepancy of the
model on the original samples (x, y) and augmented sam-
ples (A(x), ya), where A is the data augmentation function,
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such as RotateX/Y and Flip. We assume that the augmented
samples have significant differences from the original sam-
ples without losing semantics (Cao et al., 2024), that is,
∥A(x)− x∥ > 0, y = ya.

We use the ∆intra = |L(x, y) − L(x′, y)|, which is the
performance discrepancies between any two samples x, x′

with the same label y. We have the following analysis.
Theorem 3.1. (Intra-model inconsistency. See proof in
Appendix A). The intra-model inconsistency of the one-shot
local model on the original samples (x, y) and augmented
samples (A(x), y) can be represented as:

∥∆intra∥2 ≥ ∥ (p · ∇ga · ∇A)
T
(x−A(x))∥2 > 0, (2)

where p =
∑C

c=1(zc − yc), z is the prediction of wi acti-
vated by softmax function with the augmented samples A(x),
∇ga is the gradient of the local model wi, and ∇A is the
gradient of the data augmentation function.

Theorem 3.1 indicates that the intra-model inconsistency is
inevitable in the one-shot local model when trained through
existing OFL paradigms on heterogeneous data. Specifically,
it is mainly caused by three factors. (1) The performance on
augmented samples, which is represented by p∇ga. (2) The
transformations property of the data augmentation function,
which is represented by ∇A. (3) The discrepancy between
the original samples and augmented samples, which is rep-
resented by (x − A(x)). However, all these factors are
larger than zero, leading to the existence of intra-model
inconsistency.

3.2. Inter-model Inconsistency

Notably, inconsistency exists not only within individual
one-shot local models but also significantly across multiple
models trained on different clients.

Empirically Demonstration. We visualize the features
extracted by different local models for the same sample in
Figure 2a. We observe that the features extracted by differ-
ent local models are significantly different. Besides, we use

parameter variance σw =
√

1
M

∑M
i=1(wi − ŵ)2 to mea-

sure the inter-model inconsistency of one-shot local models.
As demonstrated in Figure 2b, we observe that inter-model
inconsistency increases continuously during the training pro-
cess, even when the loss is close to convergence. Existing
research, such as ‘client drift ’ (Gao et al., 2022; Karim-
ireddy et al., 2020; Huang et al., 2023a; 2022), discusses the
optimization direction inconsistency in multi-round short-
term local training scenarios. Differently, our observation
focuses on one-shot long-term local training, where better
performance is always accompanied by larger inter-model
inconsistency.

Theoretical Analysis. Let zjc = exp(wT xc)∑C
k=1 exp(wT

k xk)
, where

Fc is the feature of the c-th class and w = θ · Φ is the one-
shot local model. We denote xc and z as the average input
samples and prediction of all local models, respectively.

Theorem 3.2. (Inter-model inconsistency. See proof in
Appendix B). For any two client u and v with the same
quantity of samples nu = nv , the one-step model deviation
between the two clients ∆inter = ∇wu − ∇wv can be
represented as:

∥∆inter∥2

= ∥ η

nu
[(nu,c(1− zu,c)xu,c − nv,c(1− zv,c)xv,c)

− (
∑

c′∈[Cu]\c

nu,c′zu,c′xu,c′ −
∑

c′∈[Cv ]\c

nv,c′zv,c′xv,c′)]∥2

> 0,
(3)

where η is the learning rate, nu,c and nv,c is the sample
quantity of c-th class, c′ is the negative classes except c.

Theorem 3.2 unravels that for any two clients, each local
training step would cause the inconsistency of one-shot local
models. With more local training steps E, the inter-model
inconsistency becomes more significant, which can also be
verified in Figure 2b.

In this section, we empirically and theoretically demon-
strate the negative effect on one-shot local models at both
intra-model levels and inter-model levels. We show that
the current OFL local training strategies inevitably cause
‘garbage’ one-shot local models, making it challenging for
server-side aggregation.

4. Method
4.1. Overview

Motivated by the analysis in § 3, we propose a novel OFL
framework, namely FAFI. It consists of two components:
self-alignment local training and informative feature fused
inference. (1) On the client side, we train the feature ex-
tractor to enable the model to learn invariant features that
can be generalized to diverse augmented samples. We also
design category-wise prototype learning for distinctive pro-
totypes, replacing the original classifier, thereby mitigating
the negative impact on the prediction. (2) On the server side,
we aggregate the prototypes from all clients into a global
prototype. During the inference stage, we informatively
fuse the features extracted by the local models to alleviate
the inter-model inconsistency. The overview of FAFI is
illustrated in Figure 3.

4.2. Self-alignment Local Learning

Motivation. According to Theorem 3.1, we note that the key
factor leading to intra-model inconsistency is the model’s
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Figure 3. An overview of the proposed FAFI. All clients perform local training and upload the trained models to the server once. (1)
Through self-alignment local training, clients could upload generalizable feature extractors and category-wise prototypes. (2) The server
aggregates all local prototypes into a global prototype, while in the inference stage, the server informative fuses the features extracted
from the local models. It is best viewed in color.

inability to handle augmented samples with the same se-
mantics, i.e., when ∆ga ≫ 0. Unfortunately, the current
supervised learning paradigm can only learn fixed semantics
based on labels and original input, lacking generalization to
diverse augmented samples. If the model can perform well
on any augmented samples, i.e., ∆ga = 0, then the intra-
model inconsistency will be alleviated. Intuitively, it seems
that directly adopting data augmentation could resolve this
problem. However, constrained by the supervised training
paradigm, as long as training with labels, p ̸= 0, the intra-
model inconsistency will inevitably occur. Besides, existing
works have shown that solely adopting data augmentation
can lead to the problem of complete collapse (Grill et al.,
2020). To this end, we introduce self-alignment learning to
learn invariant features and an unbiased classifier that can
generalize to diverse augmented samples.

Feature Alignment. To enable the model to learn more
generalized features and reduce the impact of biased data,
we focus on learning invariant features related to themselves
rather than features aligned with labels. We introduce a
contrastive learning approach. Specifically, consider the
mth clients with its local dataset Dm = {xi, yi}nm

i=1 and
the augmented dataset Da

m = {A(xi), yi}nm
i=1, where A

denotes the augmentation operator. Through self-supervised
learning, we aim to learn invariant features Fxi

= f(θm;xi)
and FA(xi) = f(θm;A(xi)) that can generalize to diverse

augmented samples. With similarity function sim, the self-
supervised learning loss, whose objective is to minimize
the discrepancy with the same semantics and different the
representation to all other semantics, can be formulated as
follows:

Lssl = − 1

nm

nm∑
i=1

log
s(Fxi

,Fx+
i
)∑

j∈Ng(yi)
s(Fxi ,Fxj )

, (4)

where s(Fxi
,Fx+

i
) = exp(cos(Fxi

,Fx+
i
)/τ), τ denotes

the temperature parameter, x+
i represents the set of samples

that have the same label with xi, Ng(yi) denotes the set
of sample indexes that are different from yi, and the cos
function is cosine similarity.

Category-wise Prototype Learning. While contrastive
learning can achieve invariant features, the classifier often
displays biased behaviors and is sensitive to data hetero-
geneity, resulting in inconsistent predictions. Inspired by
the success of prototype learning in various heterogeneous
data scenarios, the learnable contrastive prototypes replace
the original classifier, thereby mitigating the negative im-
pact of data heterogeneity on the classification (Zhang et al.,
2024; Wan et al., 2024a). Our goal is to obtain a set of
representative and highly discriminative prototypes. (1)
Closely align with the features to retain semantic informa-
tion. (2) maintain category-wise distinctions between each
prototype. Specifically, we define each client maintains a set
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of prototypes Pm = {pm,1, pm,2, . . . , pm,C}, where C is
the number of classes. During local training, the prototypes
are updated to minimize the contrastive loss between the
features extracted by the local model and the prototypes.
The contrastive loss for the mth client can be formulated as:

Lproto = − 1

nm

nm∑
i=1

log
exp(FT

xi
pm,yi

/τ)∑
j∈[C\yi]

exp(FT
xi
pm,j/τ)

, (5)

where Fxi is the feature extracted by the local model for
sample xi, pu,yi

is the prototype corresponding to the
ground truth class yi, and τ is the temperature parameter.

Overall Objective. Thus, the overall local training objective
can be:

Llocal = Lssl + Lproto. (6)

Notably, the objective of self-supervised local learning loss
is consistent with alleviating inter-model inconsistency. And
the two losses in it are complementary to each other. For
learnable category-wise prototypes Pu, the prediction of the
original sample and augmented sample can be formulated
as FT

xi
Pu and FT

A(xi)
Pu, respectively. Using the cosine

similarity as the distance metrics, the prediction discrepancy,
i.e., inter-model inconsistency, can be formulated as:

∆intra = −cos( FT
xi
Pm︸ ︷︷ ︸

Lproto∝

, FT
A(xi)

Pm︸ ︷︷ ︸
Lproto∝

)

= − cos(Fxi
,FA(xi))︸ ︷︷ ︸

Lssl∝

Pm,

(7)

we can observe that the optimization objective of Lproto in
Eq.(5) is to learn a discriminative representation, ensuring
that the samples with the same semantics have similar pre-
dictions, which aligns with the goal of reducing intra-model
inconsistency (first line in Eq.(7)). Simultaneously, the ob-
jective of Lssl in Eq.(4) is to enable the local model to learn
informative and consistent features (second line in Eq.(7)),
which also help to reduce intra-model inconsistency.

4.3. Informative Feature Fused Inference

Motivation. The aforementioned theoretical analysis Theo-
rem 3.2 and recent studies indicate that inter-model incon-
sistency caused by data heterogeneity is inevitable. The root
cause of the low performance due to inter-model inconsis-
tency lies in the inability to reconstruct a well-performing
global model through parameter-level aggregation from sig-
nificantly different local models. Inspired by the Mixture
of Experts (MoE) (Zeng et al., 2024; Zhu et al., 2024b),
an architecture that enhances the inference capability by
leveraging the outputs of expert models. Instead of aggre-
gating model parameters, we fuse the features extracted by
inconsistent local models to integrate semantics, thereby

mitigating the negative impact of data heterogeneity and
enhancing the inference capability. Additionally, we also
note that the features extracted by different models exhibit
discrepancies during the fusion process. To address this, we
design an attention-based feature fusion mechanism.

Feature Fusion. Specifically, let Fm be the feature ex-
tracted by the u-th client’s local model. To fuse the features
from different clients, we design a mechanism to infor-
matively aggregate the features. The features with less
information, which are similar to noise should be down-
weighted, while the features with more information should
be up-weighted. Thus, we define the rescaling factor αu as:

αm = 1− cos(Fm,FN (µ,σ)
m ), (8)

where sim(·, ·) is the cosine similarity, and FN (µ,σ)
u is a

feature extracted by a Gaussian distribution with mean µ
and standard deviation σ. We use the standard Gaussian
distribution N (0, 1) in our implementation.

Next, we aggregate the features from different clients using
the weighted average:

Ffused =

M∑
m

αm∑M
v αv

Fm, (9)

where M is the number of clients.

Inference with Global Prototype. After obtaining the
fused feature Ffused, we use the similarity between the fused
feature and the discriminative global prototype for predic-
tion. Specifically, let Pg = 1

M

∑M
m=1 Pm be the global

prototype aggregated from the clients’ learnable prototypes.
The prediction ŷ can be formulated as:

ŷ = arg max
c∈[C]

cos(Ffused,Pg,c), (10)

where cos(·, ·) is a the cosine similarity. This approach
leverages the fused features and the discriminative power
of the global prototype to make accurate predictions. The
detail process is presented in Appendix C Algorithm 1.

4.4. Discussion

Privacy Security. Transmitting prototypes from clients
to the server instead of classifier is a common practice in
FL (Tan et al., 2022; Mu et al., 2023) that does not com-
promise privacy security, as prototypes are statistical-level
information of category that does not contain the privacy of
individual samples (Huang et al., 2023b; Wan et al., 2024b).
Besides, category-wise prototype learning aims to capture
the common abstract features of the same category, thereby
reducing the exposure risk for individual samples.

Comparison with Analogous Methods.
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• Prototypes in FL. Existing prototype-based methods,
such as FedProto (Tan et al., 2022) and FedTGP (Zhang
et al., 2024), rely on multi-round interactions to obtain
a representative global prototype, which limits their appli-
cability in one-shot FL scenarios. In contrast, FAFI can
achieve a semantically aligned global prototype with just
one-shot aggregation.
• Model Merging in LLMs. Some studies consider that
the existing aggregation process in OFL is akin to model
merging and try to improve the performance by either us-
ing weighted-based model merging (Tao et al., 2024; Yang
et al., 2024a), subspace-based merging (Zhu et al., 2024a;
Yadav et al., 2024), or routing-based merging (Zeng et al.,
2024). However, (1) all these methods still suffer from
the ’garbage in, garbage out’ pitfall, as they only focus on
server-side merging and overlook the negative effect caused
by inconsistent pre-trained models; (2) All these methods
lack privacy-preserving properties, as they require source
data or additional information that is highly relevant for
post-calibration after merging. In contrast, FAFI does not
require the source data or any other auxiliary information.

Limitations. Our framework exhibits limitations in domain
shift and multi-task scenarios where static class represen-
tations fail to adapt to conflicting feature distributions or
divergent task objectives. This limitation is shared by other
prototype-based methods. (Tan et al., 2022; Huang et al.,
2023b; Zhang et al., 2024; Mu et al., 2023). One possible
solution for this limitation is to cluster and ensemble feature
representations across various domains or tasks, allowing
unbiased representations to encapsulate multi-domain/task
knowledge (Huang et al., 2023b).

5. Experiments
5.1. Experimental Setup

Datasets. Adhere to the previous work (Tan et al., 2022;
Huang et al., 2023b; Zeng et al., 2024; Zhang et al., 2022a;
Tang et al., 2024a), we evaluate the efficacy on three widely
used benchmarks:

• CIFAR-10 contsins 50k, 10k images for training and
testing. Images are in size 32×32 with 10 classes.
• CIFAR-100 have the same format and size as CIFAR-10,
but with 100 classes.
• Tiny-Imagenet contains 100k, 10k images for training
and testing. Images are in size 64×64 with 200 classes.

Data Heterogeneity. Considering the heterogeneous envi-
ronment, we partitioned the dataset through a widely-used
non-IID partition method, namely Dirichlet Sampling, in
which the coefficient α refers to the non-IID degree. A
small α represents a biased distribution. Following the set-
ting in (Zeng et al., 2024; Zhang et al., 2022a; Zeng et al.,
2022), we set α ∈ {0.05, 0.1, 0.3, 0.5}, respectively. More
details are shown in Appendix E.

Baselines. We compare with several OFL methods, catego-
rized into three types:

• Optimization-based: one-shot FedAvg (O-
FedAvg) (McMahan et al., 2017; Guha et al., 2019)
[arXiv’19], MA-Echo (Su et al., 2023) [NN’23], and
FedFisher (Jhunjhunwala et al., 2024) [AISTATS’24].
• Distillation-based: DENSE (Zhang et al., 2022a)
[NeurIPS’22], FedDF (Lin et al., 2020) [NeurIPS’20], F-
ADI (Yin et al., 2020) [CVPR’20], and F-DAFL (Chen et al.,
2019) [ICCV’19].
• Selective ensemble learning-based: directly Ensemble,
Co-Boosting (Dai et al., 2023) [ICLR’23], IntactOFL (Zeng
et al., 2024) [MM’24].

Besides, we also consider some iterative methods, i.e.,
FuseFL (Tang et al., 2024a) [NeurIPS’24], which improves
the performance through iteratively sharing intermediate
features. To ensure fair comparisons, we neglect some meth-
ods that require additional information, such as FedKT (Li
et al., 2021b), FedOV (Diao et al., 2022), and FedGen (Zhu
et al., 2021).

5.2. Effectiveness

Table 1 illustrates the effectiveness of our proposed FAFI
compared with popular OFL methods in non-IID settings.
(1) It clearly depicts that our method achieves a significant
performance improvement over the baselines on all datasets
and all settings (10.86% averaged). (2) Notably, in some
extreme cases such as α = {0.05, 0.1} on Tiny-Imagenet,
our method exhibits a more significant performance advan-
tage (17.71% averaged) over the baseline algorithms. (3)
Besides, the FuseFL which iteratively shares intermediate
features between clients can achieve the second-best perfor-
mance in some settings. We attribute this to the fact that
the FuseFL mitigates the feature inconsistencies by shar-
ing intermediate features, leaving intra-model inconsistency
unsolved. In summary, the FAFI is effective in various
data heterogeneous scenarios and achieves competitive
performance over all baselines.

5.3. Scalability

We assess the scalability of FAFI by varying the number
of clients m. As presented in Table 2, FAFI consistently
achieves the best performance across different client scales.
As suggested in (Lian et al., 2017), the server can become
a major bottleneck while the number of clients increases.
We also reach a similar conclusion, with more clients m,
the performance decreases, which is consistent with (Zhang
et al., 2022a; Dai et al., 2023; Lian et al., 2017; Zeng et al.,
2024). In summary, the FAFI is scalable across diverse
distributed networks of varying sizes.
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Table 1. Comparison with the state-of-the-art OFL methods: in CIFAR-10, CIFAR-100, and Tiny-ImageNe scenarios with skew
ratio α ∈ {0.05, 0.1, 0.3, 0.5}. Underline/bold fonts highlight the best baseline/the proposed FAFI. ∆ represents the performance
improvement compared with the best baseline. We report the 5 trials’ results in the form of mean±variance. See details in § 5.2.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Methods

α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.05 α = 0.1 α = 0.3 α = 0.5

MA-Echo 36.77±0.91 51.23±0.28 60.14±0.21 64.21±0.23 19.54±0.45 29.11±0.26 37.77±0.24 41.94±0.21 15.46±0.66 22.23±0.56 23.46±0.19 28.21±0.42

O-FedAvg 12.13±2.11 17.43±0.51 28.07±0.89 35.42±0.67 4.77±0.21 6.45±0.71 10.67±0.31 12.13±0.05 5.67±0.45 8.31±0.21 13.61±0.10 13.71±0.16

FedFisher 40.03±1.11 47.01±1.81 49.33±1.52 50.34±1.32 16.56±2.67 18.98±2.09 27.24±1.92 31.44±1.87 15.65±1.54 17.89±1.46 19.54±1.31 20.77±1.15

FedDF 35.53±0.67 41.58±0.80 44.78±0.60 54.58±0.73 15.07±0.74 27.17±0.55 31.23±0.79 35.39±0.47 11.45±0.40 16.32±0.33 17.79±0.57 27.55±0.66

F-ADI 35.93±1.56 48.35±1.23 52.66±1.44 58.78±1.67 14.65±0.98 28.13±1.24 33.18±0.67 39.44±1.11 13.92±1.99 19.00±1.78 26.01±1.44 29.98±1.34

F-DAFL 38.32±1.40 46.34±1.12 54.03±1.71 59.09±2.23 16.31±0.33 26.80±1.33 34.89±1.45 37.88±1.34 15.12±1.34 19.01±1.11 23.78±1.23 27.98±1.10

DENSE 38.37±1.08 50.26±0.24 59.76±0.45 62.19±0.12 18.37±2.43 32.03±0.44 37.33±0.48 38.84±0.39 18.77±0.67 22.25±0.33 28.14±0.34 32.34±0.32

Ensemble 41.36±0.67 45.43±0.32 62.18±0.34 61.61±0.23 20.46±0.62 26.23±0.55 38.01±0.67 41.61±0.77 13.28±0.67 15.38±0.23 17.53±0.31 28.50±0.46

Co-Boosting 39.20±0.81 58.49±1.24 67.21±1.76 70.24±2.34 20.19±1.44 27.59±1.35 39.30±1.30 42.67±1.40 19.00±1.45 21.90±1.20 29.24±1.32 30.78±2.01

FuseFL 54.42±0.41 73.79±0.34 84.58±0.91 84.34±0.88 29.12±0.23 36.86±0.38 45.12±0.51 49.30±0.32 22.15±2.11 29.28±2.04 33.04±1.79 34.34±1.81

IntactOFL 48.22±0.43 61.13±0.63 70.21±0.60 79.93±0.23 27.99±0.67 39.15±0.46 41.86±0.60 46.78±0.78 20.45±0.34 28.43±0.17 30.15±0.12 35.09±0.14

Ours 71.84±1.53 77.83±1.32 84.76±0.46 88.74±0.11 31.02±1.17 45.48±1.01 56.65±0.91 61.07±0.55 36.96±0.92 43.62±0.77 53.32±0.50 56.48±0.32

∆ ↑ 17.42 ↑ 6.04 ↑ 0.18 ↑ 4.40 ↑ 1.90 ↑ 6.33 ↑ 11.53 ↑ 11.77 ↑ 14.81 ↑ 14.34 ↑ 20.28 ↑ 21.39
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Figure 4. Test Accuracy v.s. Communication Cost on CIFAR-10. FAFI is more efficient than all other baselines, while achieving higher
performance without large communication overhead. See details in § 5.4.

Table 2. Scalability under different number of clients, m =
{5, 10, 25, 50, 100} on CIFAR-10 with α = 0.5. See in § 5.3.

Client scales m
Methods

5 10 25 50 100

MA-Echo 64.21 52.64 48.36 45.35 38.54
O-FedAvg 35.42 32.09 28.03 28.24 27.14
FedFisher 50.34 45.67 34.66 29.09 28.89

FedDF 54.58 48.88 35.44 29.91 25.66
F-ADI 59.34 46.33 31.83 27.66 24.89

F-DAFL 58.59 45.45 32.88 29.98 28.91
DENSE 62.19 54.67 49.32 48.67 43.34

Ensemble 61.61 60.44 58.44 52.51 45.72
Co-Boosting 55.34 51.11 49.32 44.56 42.45

FuseFL 84.34 78.28 62.12 42.18 37.11
IntactOFL 79.93 69.11 64.32 59.45 53.21

Ours 88.74 86.96 85.25 81.32 75.37

5.4. Efficiency

We compare the accuracy and communication cost of FAFI
to existing OFL methods and multi-round FL baselines in
Figure 4. We select six representative multi-round FL meth-
ods, more details are shown in Appendix E. Note that FAFI
achieves higher performance than all other baselines, while

Table 3. Ablation Study on Key Components of FAFI on CIFAR-
10 with skew ratio α ∈ {0.05, 0.1, 0.3, 0.5}. See details in § 5.5.

SALT IFFI α = 0.05 α = 0.1 α = 0.3 α = 0.5

12.13 17.43 28.07 35.42
✓ 53.12 55.76 58.95 61.67

✓ 55.23 63.75 68.49 70.44
✓ ✓ 71.84 77.83 84.76 88.74

incurring a lower communication overhead. Notably, with
more communication budget, multi-round FL methods can
achieve better performance (Figure 4 only presents the first
80 rounds’ results of multi-round FL methods). However,
as these methods get convergent, the performance improve-
ment diminishes, and communication costs become pro-
hibitive. In summary, FAFI achieves a better efficiency
compared with existing FL methods (both OFL and
multi-round FL), making it more suitable for practical
deployment.

5.5. Ablation Study

Key Components. For thoroughly analyzing the efficacy of
each module, we perform an ablation study to investigate the
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Table 4. Ablation Study on Lssl and Lproto of SALT on CIFAR-
10 with Dir(0.1). The default loss function is Lce.

Lssl Lproto Types CIFAR-10 CIFAR-100 Tiny-ImageNet
Classifier 17.34 6.45 8.31

✓ Classifier 22.34 12.45 10.44
Prototypes 18.23 7.12 8.92

✓ Prototypes 50.12 31.89 22.34
✓ Prototypes 52.34 33.34 23.12

✓ ✓ Prototypes 77.83 45.48 43.62
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Figure 5. Analysis on hyper-parameter. Performance with hyper-
parameter τ and batch size on four data heterogeneity α ∈
{0.05, 0.1, 0.3, 0.5}. See details in § 5.5.

effectiveness of Self-alignment Local Training (SALT) and
Informative Feature Fused Inference (IFFI). The results in
Table 3 show that the two modules contribute significantly
to the performance improvement of FAFI. The combination
of the two modules achieves the best performance, under-
scoring the effectiveness of our proposed method.

Key Loss Functions in SALT. We investigate two impor-
tant loss functions (Lssl and Lproto ) in SALT. The results
in Table 4 present the effectiveness of each loss function.
We also find that compared with traditional classifiers, lever-
aging prototypes helps mitigate model inconsistencies by
providing feature-level alignment anchors.

Hyper-parameter. We first investigate the τ and batch
size in self-alignment local learning. For τ , we note that
its impact on performance when τ ∈ [0.1, 1]. When τ =
0.01, it would have a certain degree of degradation. For
batch size, we note that a larger batch size would benefit
the performance while requiring more resources. With the
minimum batch size, the performance is still competitive.

6. Conclusion
In this paper, we propose a novel OFL framework, namely
FAFI, to mitigate the model inconsistency. We first empir-
ically and theoretically present the inconsistencies at both
intra-model and inter-model levels in existing OFL meth-
ods. To this end, we propose Self-alignment Local Training
for semantically aligned feature extractors and distinctive
prototypes, and use Informative Feature Fused Inference to
fuse the features for inference. Extensive experiments on
three datasets show the superiority of our methods.
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A. Proof of Theorem 3.1
We first provide a lemma to demonstrate the prediction discrepancy of the one-shot local model on the original sample (x, y)
and augmented samples A(x), y as follows.
Lemma A.1. (Prediction discrepancy). For any sample (x, y) and its augmented sample (A(x), y), the prediction
discrepancy can be represented as:

∆intra ≥ (p · ∇ga · ∇A)
T
(x−A(x)), (11)

where p =
∑C

c=1(zc − yc), z is the prediction of wi activated by softmax function with the augmented samples A(x), ∇ga
is the gradient of the local model wi, and ∇A is the gradient of the data augmentation function.

We provide the proof of Lemma A.1 as follows:

Proof. We derive the performance discrepancy of the local model on the original samples (x, y) and augmented samples
(A(x), y) as follows.

∆intra = Lsup
i (wi; (x, y))− Lsup

i (wi; (A(x), y)). (12)

We use the Taylor expansion to approximate the loss function on the original samples (x, y) as follows:

Lsup
i (wi; (x, y)) ≈ Lsup

i (wi; (A(x), y)) +∇Lsup
i (wi; (A(x), y))T (x−A(x)). (13)

We can further simplify Equ. 12 as follows:

∆intra ≥∇Lsup
i (wi; (A(x), y))T (x−A(x)). (14)

If we adopt cross-entropy loss as the supervised loss L(z, y) = −
∑C

c=1 yk log zk, where z is the softmax prediction, y is
the ground truth label, we have:

∆intra ≥
(
∂L
∂z

∂z

∂A

∂A

∂x

)T

(x−A(x))

≥

(
C∑

c=1

(zc − yc)
∂z

∂A
∇A

)T

(x−A(x)).

(15)

Note that ∂z
∂A is the gradient ∇g of local model wi with respect to the augmented data A(x), and ∇A = ∂A

∂x is the

transformations property of the data augmentation function A. Since zc =
exp(ΦT

i,cθ
T
i,cA(xj))∑C

k=1 exp(ΦT
i,kθ

T
i,kA(xj))

is the output of a softmax

function, zc ∈ (0, 1), y is the one-shot encoded vector, yc ∈ {0, 1}, thus, |zc − yc| > 0. Finally, we finish the proof:

∆intra ≥ (p · ∇ga · ∇A)
T
(x−A(x)), (16)

where p =
∑C

c=1(zc − yc), ∇ga is the gradient of the local model wi, and ∇A is the gradient of the data augmentation
function A.

Then we provide the proof the Theorem 3.1 with Lemma A.1 as follows:

Proof. Based on Lemma A.1, we derive the intra-model inconsistency for any local models trained by existing OFL methods.
When ∇ga ̸= 0 and ∥A(x)− x∥ > 0, ∇A ̸= 0, we have:

∥∆intra∥2 = ∥(p · ∇ga · ∇A)T (x−A(x))∥2

= p2 · ∥∇ga∥2 · ∥∇A∥2 · ∥(x−A(x))∥2
(17)

Since |p| > 0, ∥∇ga∥2 > 0, ∥∇A∥2 > 0, and ∥(x−A(x))∥2 > 0, we can induce that ∥∆intra∥2 > 0.

We finish the proof.

Note that in Theorem 3.1, the ∇ga = 0 represents the augmented data A(x) is not sensitive to the local model wi, which is
a rare case in practice. If the ∇A = 0, it means the data augmentation function A have fully changed the semantics of the
original data x. In conclusion, we can infer that the intra-model inconsistency is inevitable in existing OFL methods.
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B. Proof of Theorem 3.2
Proof. We derive the gradient of cross-entropy loss as :

∆w =

C∑
c

(∇(Φu,cθu,c)−∇(Φv,cθv,c))

≈
C∑
c

(
ηnu,c

nu
(1− zu,c)xu,c −

ηnv,c

nv
(1− zv,c)xv,c

− (
η

nu

∑
c′∈[Cu]\c

nu,c′zu,c′xu,c′ −
η

nv

∑
c′∈[Cv ]\c

nv,c′zv,c′xv,c′))

(18)

where the term of ≈ holds from the Property 1 in (Zhang et al., 2022b). If nu = nv , we have

∆w =

C∑
c

{ η

nu
[(nu,c(1− zu,c)xu,c − nv,c(1− zv,c)xv,c)︸ ︷︷ ︸

∆+
w

− (
∑

c′∈[Cu]\c

nu,c′zu,c′xu,c′ −
∑

c′∈[Cv]\c

nv,c′zv,c′xv,c′)︸ ︷︷ ︸
∆−

w

]}.
(19)

We consider the ∥∆w∥2 under heterogeneous data distribution, and we omit the
∑C

c for simplicity.

When xu,c ̸= xv,c, we have

∥∆w∥2 ≥ η2

n2

∣∣∥∆+
w∥2 − ∥∆−

w∥2
∣∣ > 0. (20)

When xu,c = xv,c, c ∈ [Cu] ∩ [Cv], zu,c = zv,c, that is, two clients have same prediction and feature on selected positive
class c, then c′ ∈ [Cu]\{[Cu] ∩ [Cv]}, we have

∥∆w∥2 =
η2

n2
∥∆−

w∥2

=
η2

n2
∥

∑
c′∈[Cu]\{[Cu]∩[Cv]}

nu,c′zu,c′xu,c′ −
∑

c′∈[Cu]\{[Cu]∩[Cv ]}

nv,c′zv,c′xv,c′∥2
(21)

If we assume the equation above equals to zero, we have zu,c′xu,c′ = zv,c′xv,c′ , which requires a perfect feature extractor
for all clients. It is not a practical condition in FL according to (Zhou et al., 2024).

When xu,c = xv,c, c ∈ [C]\{[Cu] ∪ [Cv]}, nu,c = nv,c = 0, we have the same formulation with Equ. 21, we can obtain
∥∆w∥2 > 0.

When xu,c = xv,c, c ∈ [Cu]\{[Cu] ∩ [Cv]}, nv,c = 0, we have

∥∆w∥2 =
η2

n2
∥nu,c(1− zu,c)xu,c − (

∑
c′ ̸=c

nu,c′zu,c′xu,c′ −
∑
c′ ̸=c

nv,c′zv,c′xv,c′)∥2

≈ η2

n2
∥nu,cxu,c − zu,cxu,c∥

(22)

where the equality holds if and only if nu,c(1− zu,c)xu,c = ∆−
w . In the training phase, it is challenging to maintain this

condition between any two clients, so we use the term ≈ since zu,c′ ≪ zu,c < 1. We say that the ∥∆w∥2 is more likely to
be positive. The other cases, c ∈ [Cv]\{[Cu] ∩ [Cv]} can get the same conclusion.

In summary, we conclude that the ∥∆w∥2 > 0 under different heterogeneous scenarios. We finish the proof.
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C. Algorithm Details
Here, we present the detailed algorithm of FAFI. The FAFI consists of two parts. For the client side, the clients perform
self-alignment local training for semantically aligned feature extractors and category-wise distinctive prototypes. Then the
server aggregates the local prototypes into a global prototype. By dynamically fusing the feature with more information,
FAFI makes predictions by computing the similarity between the global prototypes and the fused feature.

Algorithm 1 FAFI

Input: Number of clients m, number of classes C, number of local epochs E, learning rate η, batch size B, data
heterogeneity α.

Output: Global prototypes Pg , local models wi, prediction of test set ytest
Client Side:
for each client i ∈ [m] in parallel do

Sample local data Di with heterogeneity α.
Initialize local feature extractor θi and local prototypes Pi.
for each local epoch e ∈ [E] do

Sample a mini-batch Bi from Di.
Update local feature extractor θi and local learnable prototypes Pi with self-alignment local training loss:
L = Lssl(θi) + Lproto(Pi, θi)

end for
Send the local feature extractor θi and local learnable prototypes Pi to the server.

end for
Server Side:
Global prototypes aggregation Pg = 1

M

∑M
m=1 Pm

Informative Feature Fusion
αm = 1− cos(Fm,FN (µ,σ)

m )

Ffused =

M∑
m

αm∑M
v αv

Fm

Inference ytest = argmaxc∈[C] cos(Ffused,Pg,c)

D. More Related Work
D.1. Prototype Learning

Prototype refers to the representative feature vector of the instances belonging to a specific class. It is a popular and effective
method widely used in various tasks, such as supervised classification tasks and unsupervised learning. Since the prototypes
can provide abstract knowledge while preserving data privacy, few works introduce prototypes into federated learning.
FedProto (Tan et al., 2022) and FedProc (Mu et al., 2023) aim to achieve a feature-wise alignment with global prototypes.
CCVR (Luo et al., 2021) generates virtual features based on an approximated Gaussian Mixture Model (GMM). VHL (Tang
et al., 2022) builds a virtual homogeneous dataset for mitigating data heterogeneity. However, existing federated prototype
learning methods rely on multi-round interactions between the clients and server, which is not practical in one-shot federated
learning.

D.2. Contrastive Learning

Contrastive learning (CL) is a promising direction in self-supervised learning. Contrastive learning constructs positive and
negative pairs for each training instance and designs various loss functions to contrast positiveness against negativeness, such
as InfoNCE (Oord et al., 2018), and SupCon (Khosla et al., 2020). One branch of CL focuses on selecting the informative
positive pairs and negative pairs (Chongjian et al., 2023). Another branch investigates the semantic structure and involves
clustering methods to construct more representative prototypes (Caron et al., 2020; Li et al., 2021a).
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Table 5. Impact of different local epochs: in CIFAR-10, CIFAR-100, and Tiny-ImageNe scenarios with skew ratio α ∈
{0.05, 0.1, 0.3, 0.5}.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Local Epoch E

α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.05 α = 0.1 α = 0.3 α = 0.5

5 42.34 45.88 54.53 63.76 10.04 13.25 18.28 22.31 10.88 13.68 20.74 23.61
10 52.65 58.25 66.03 73.97 12.73 20.17 27.71 32.43 15.92 21.04 29.88 34.81
50 57.79 63.55 72.21 77.96 15.32 25.83 33.82 39.01 20.36 35.96 36.44 41.16
100 62.08 68.12 76.11 82.03 24.35 31.34 41.48 46.77 23.34 36.96 40.91 46.48
150 69.67 72.53 81.64 86.78 29.17 43.19 49.09 59.38 31.06 40.42 46.39 52.13
200 71.84 77.83 84.76 88.74 31.02 45.48 56.65 61.07 36.96 43.62 53.32 56.48
300 72.33 77.92 85.12 89.23 31.67 46.65 57.12 62.11 37.04 43.14 53.65 57.23

Table 6. Impact of Model Architecture: ResNet-18, ResNet-50, and ViT-base on Tiny-ImageNet.
Architecture Accuracy(%) Memory Cost Computation Cost
ResNet-18 57.23 11.2 M 3.2 min/epoch
ResNet-50 58.12 25.6 M 4.6 min/epoch
ViT-base 58.09 86 M 5.5 min/epoch

E. Experimental Details
Models and Learning Rate. Following the advanced OFL works (Zeng et al., 2024), we train ResNet-18 on all datasets.
We use the SGD optimizer with a momentum coefficient of 0.9, set the batch size to 256, and make local train E = 200
steps. We report the best results by varying the learning rate in 0.05, 0.01, 0.001. We adopt the temperature of contrastive
learning as τ = 0.5, the noise is the standard Gaussian noise N (0, 1). We use the output of the last layer of ResNet-18 as
the feature, and the prototype of each category has the same dimension as the feature. Source code and models are available
at https://github.com/zenghui9977/FAFI_ICML25.

Federated Settings. For OFL methods (including FAFI), we adopt the same settings with (Zeng et al., 2024; Zhang et al.,
2022a). We set the number of clients as 5, and the local training epochs of 200. For multi-round FL methods, we select six
representative methods, including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy
et al., 2020), FedCav (Zeng et al., 2021; 2025), FedProto (Tan et al., 2022), FedDC (Gao et al., 2022). To ensure a
fair comparison framework, all multi-round FL methods are evaluated under identical experimental conditions as OFL
approaches, including matching client numbers, equivalent heterogeneous data distributions, and consistent local learning
rates. We try to adopt the same local training epochs as OFL methods do in multi-round FL. However, this configuration
unexpectedly led to performance degradation that persisted at levels comparable to O-FedAvg for extended training rounds.
To effectively highlight the advantages of FAFI, we consequently adopt the conventional local epoch setting (E=5), a
parameter configuration widely validated in FL literature. Under this optimized configuration, our experimental results
demonstrate that conventional multi-round FL methods still require over 80 communication rounds to attain accuracy levels
equivalent to those achieved by FAFI.

F. More Experimental Results

Original

Flip

Figure 6. Visualization of FAFI with Grad-Cam. The features are consistent with the same semantics.
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Table 7. Applicability to Resource-constrained Scenarios: ResNet-18 and MobileNet on CIFAR-10 with Dir(0.05).
Models Methods Batch Size Memory Cost CPU Time GPU Time Accuracy(%)

MobileNet

O-FedAvg 512 1942 MB 138 s 6 s 10.44
IntactOFL 512 1942 MB 141 s 8 s 32.31

FAFI 32 1086 MB 183 s 11 s 55.21
FAFI 256 1838 MB 227 s 14 s 58.33
FAFI 512 3082 MB 240 s 17 s 59.64

ResNet-18

O-FedAvg 512 4638 MB 197 s 8 s 12.13
IntactOFL 512 4638 MB 204 s 10 s 48.33

FAFI 32 2789 MB 307 s 18 s 69.73
FAFI 256 8792 MB 319 s 27 s 70.24
FAFI 512 14723 MB 428 s 32 s 71.84

Table 8. Model Heterogeneity Scenarios: ResNet-18 and MobileNet on CIFAR-10 with Dir(0.05).
Client 0 Client 1 Client 2 Client 3 Client 4 IntactOFL Ours

Case #1 LeNet ResNet-18 VGG MobileNet ResNet-50 48.33 71.84
Case #2 VGG MobileNet ResNet-50 LeNet ResNet-18 52.55 72.12
Case #3 ResNet-50 LeNet ResNet-18 VGG MobileNet 54.12 72.45

Table 9. Impact of the Feature Fusion Strategy in IFFI: in CIFAR-10 with Dir(0.05).
Feature Fusion Strategy CIFAR-10 CIFAR-100 Tiny-ImageNet

Average 72.83 37.48 30.12
N (0, 5) 71.83 35.4 28.09
N (0, 10) 70.12 33.02 26.34
N (0, 50) 68.23 31.12 24.12
N (1, 1) 69.12 32.77 25.12

N (0, 1) (Ours) 77.83 45.48 43.62

Impact of Local Epochs. We tested how different numbers of local training rounds affect performance across three datasets.
As shown in Table 5, model accuracy keeps improving when we increase the number of training rounds. However, the
improvements become very small after 200 rounds - pushing to 300 rounds only brings less than 0.8% better accuracy
compared to 200 rounds, but makes the computation much heavier. After comparing how accuracy improves versus how
much computing power is needed, we chose 200 rounds as our standard setting.

Impact of Model Architecture. We used ResNet-18 as the default feature extractor in the previous study. In this part, we
investigate the impact of different model architectures. We select ResNet-18, ResNet-50, and ViT-base. We compare the
memory cost (measured by #parameters), computation cost (measured by the computation time per epoch), and accuracy
on Tiny-ImageNet in Table 6. Note that the impact of model architecture on performance is relatively low, but there are
significant differences in computational and storage costs. The enhancement in performance is attributed to the designed
framework (FAFI), rather than the model.

Applicability to Resource-constrained Scenarios. We investigate the applicability of FAFI under the resource-constrained
scenarios, which present limited computation capability and memory space. Thus, we select a typical light-weight model,
i.e., MobileNet, and report the memory cost and computation cost (CPU or GPU time) in Table 7. We use the GPU
memory occupied during local training as the metric for memory cost, while computation cost is measured by the time
taken per epoch on the GPU(RTX 4090) and the CPU(Intel Core i7-11700K). We believe that FAFI can achieve competitive
performance even in resource-constrained scenarios, requiring only 11 seconds on a GPU with less than 2GB of memory or
approximately 3 minutes on a CPU.

Model Heterogeneity Scenarios. We test FAFI under model heterogeneity scenarios, where different clients own different
model architectures. We list three cases on CIFAR-10 with Dir(0.1) with five different architectures (LeNet, ResNet-18,
VGG, MobileNet, ResNet-50). As presented by Table 8, we note that FAFI can still achieve better performance under
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heterogeneous models.

Impact of the Feature Fusion Strategy. We investigate the impact of different feature fusion strategies in IFFI on CIFAR-10
with Dir(0, 1). We notice that the standard Gaussian distribution achieves better performance than other settings. We
attribute this to the fact that the distance from standard Gaussian noise better reflecting the informativeness of the extracted
features (Elbatel et al., 2024).

Visualization. We visualize the features extracted by the local models trained by FAFI in Figure 6. We select one of the
local models trained by FAFI and choose some samples for visualization. We found that the features extracted under the
same semantics are consistent, which proves the effectiveness of the Self-alignment Local Training.
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