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Abstract
This paper proposes a novel analysis for the Scaf-
fold algorithm, a popular method for dealing with
data heterogeneity in federated learning. While
its convergence in deterministic settings—where
local control variates mitigate client drift—is well
established, the impact of stochastic gradient up-
dates on its performance is less understood. To
address this problem, we first show that its global
parameters and control variates define a Markov
chain that converges to a stationary distribution in
the Wasserstein distance. Leveraging this result,
we prove that Scaffold achieves linear speed-up
in the number of clients up to higher-order terms
in the step size. Nevertheless, our analysis reveals
that Scaffold retains a higher-order bias, similar
to FedAvg, that does not decrease as the number
of clients increases. This highlights opportuni-
ties for developing improved stochastic federated
learning algorithms.

1. Introduction
This paper focuses on the federated optimization, in which
N agents collaborate to solve a problem of the form

θ⋆ ∈ argmin
θ∈Rd

f(θ) =
1

N

N∑
c=1

f(c)(θ) , (1)

where for each c ∈ {1, . . . , N}, f(c)(θ) = E[F
Z(c)

(c) (θ)]
is a local risk function of agent c for some function
(z(c), θ) 7→ F

z(c)
(c) (θ) and local observation Z(c) with dis-

tribution ν(c) over a measurable space (Z,Z).

One of the most popular methods for solving (1) is FEDAVG
(McMahan et al., 2017), where clients perform multiple
local stochastic gradient updates, and send their updated
parameters to a central server, that aggregates them. Al-
though FEDAVG’s local training reduces the number of
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communications in certain settings, client heterogeneity can
significantly hinder its convergence. When the number of
local iterations increases, clients lean towards their local
minimums, which differ from the global one due to hetero-
geneity. This phenomenon, called client drift, can induce
bias in FEDAVG. To control this bias, clients must commu-
nicate frequently, requiring at least Ω(1/ϵ) communication
rounds to reach a mean squared error of ϵ2 when objective
functions are strongly-convex (Karimireddy et al., 2020).

A key method for mitigating client drift is SCAFFOLD
(Karimireddy et al., 2020). In this algorithm, each client
updates its local model by performing gradient updates, ad-
justed using local control variates. After each aggregation
step, clients update their local control variates based on the
global model received from the server, effectively removing
heterogeneity bias. SCAFFOLD was first theoretically stud-
ied by Karimireddy et al. (2020), reducing communications
fromO(1/ϵ) toO(log(1/ϵ)) for strongly-convex objectives,
where ϵ > 0 is a precision target. Later, Mishchenko et al.
(2022); Hu & Huang (2023) proved that (a variant of) SCAF-
FOLD reaches O(log(1/ϵ)) communication cost with an
improved dependence on the problem’s condition number.
Unfortunately, in all these results, the number of gradients
computed by each client does not decrease with the num-
ber of clients.1 Yet, a fundamental promise of federated
learning is to reduce training cost through collaboration, a
phenomenon called linear speed-up (Yu et al., 2019a).

In this paper, we show for the first time, to our knowledge,
that SCAFFOLD achieves linear speed-up. To this end, we
develop a novel point of view on SCAFFOLD, showing that
its global iterates and control variates jointly form a Markov
chain, similarly to SGD (Dieuleveut et al., 2020) and FE-
DAVG (Mangold et al., 2025). For strongly-convex and
smooth objectives, we show that this Markov chain con-
verges geometrically to a unique stationary distribution. A
careful examination of the pairwise covariances of the global
parameters and control variate reveals that, in this stationary
distribution, SCAFFOLD’s global parameters’ variance re-
duces linearly with the number of clients, up to a maximum
number of clients. We then leverage this result to give a new

1We note that, although Karimireddy et al. (2020) obtain such
speed-up, they do using a global step size, which significantly
departs from common practice. See discussions in Remark 2.1.

1



Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up

Table 1: Communications and local iterations required for SCAFFOLD to reach E[∥θt − θ⋆∥2] ≤ ϵ2, for ϵ > 0, according to
multiple analyses of SCAFFOLD with stochastic gradients for µ-strongly convex and L-smooth functions.

Communication Local Iterations Linear Speed-Up Acceleration(3) General objective
Det. Sto.

Karimireddy et al. (2020)(1) O(log(1/ϵ)) O(1/ϵ2) ✗(1) ✗ ✓ ✓

Mishchenko et al. (2022)(2) O(1/ϵ) O(1/ϵ) ✗ ✓ ✗ ✓

Hu & Huang (2023)(2) O(log(1/ϵ)) O(1/ϵ2) ✗ ✓ ✓ ✓

Mangold et al. (2024) O(log(1/ϵ)) O(1/Nϵ2) ✓ ✗ ✓ ✗(4)

Ours O(log(1/ϵ)) O(1/Nϵ2) ✓ ✗ ✓ ✓

(1) they obtain a linear speed-up by introducing a global step size: in practical implementations, there is no global step size and their
analysis loses linear speed-up (see Remark 2.1); (2) based on a stochastic communication scheme; (3) acceleration means that the
algorithm benefits from local steps, when gradients are deterministic (Det.), or stochastic (Sto.); (4) only holds for quadratic functions.

non-asymptotic convergence rate for SCAFFOLD, highlight-
ing the speed-up property. Our analytical framework also
allows to derive first-order (in the step size) expansions of
this covariances, and unveils that, despite its bias-correction
mechanism, SCAFFOLD’s global iterates still suffer from a
small bias. Our contributions are:

• SCAFFOLD’s iterates converge. The global iterates and
control variates of SCAFFOLD form a Markov chain that
converges linearly to a stationary distribution in Wasser-
stein distance, with a faster rate with more local steps.

• SCAFFOLD has linear speed-up. We give a new non-
asymptotic convergence rate for SCAFFOLD, showing that
the number of gradients computed by each client to reach
a given precision decreases linearly with the number of
clients (up to a limit that we characterize). To our knowl-
edge, this is the first result of this kind for SCAFFOLD; see
Table 1 for a comparison with existing works.

• SCAFFOLD is still biased. We give first-order expan-
sions, in the step size, of the covariances of SCAFFOLD’s
iterates in the stationary distribution. Surprisingly, while
SCAFFOLD corrects heterogeneity bias, it still suffers from
another bias due to its stochastic updates.

Notations. We denote by ∇f the gradient of a differen-
tiable function f : Rd → R. If f is i-times differentiable
for i ≥ 1, we denote its i-th derivative by ∇if . We use
⟨·, ·⟩ to denote the Euclidean dot product. Vectors are
columns, and their Euclidean norm is ∥·∥. For matrices,
∥·∥ is the operator norm, Id is the identity matrix in Rd.
For two matrices A,B, we define the Kronecker-type lin-
ear operator A ⊗ B as A ⊗ B : M 7→ AMB where
A,M, and B have compatible dimensions for multiplica-
tion. For a tensor X , we denote by X⊗k its k-th tensor
power. For a sequence of matrices M1, . . . ,Mk, we define
their ordered product as

∏k
i=1Mi =MkMk−1 · · ·M1. Let

B(Rd) be the Borel σ-algebra of Rd. For two probabil-
ity measures ρ1, ρ2 over X such that

∫
ρi(dX)∥X∥2Λ < ∞,

i = 1, 2, we define the second-order Wasserstein distance as
W2

2(ρ1, ρ2) = infξ∈Π(ρ1,ρ2)

∫
∥X−X′∥2Λξ(dX,dX′), with

Π(ρ1, ρ2) the set of probability measures on X × X such
that ξ(A×X ) = ρ1(A), ξ(X ×A) = ρ2(A) for A ∈ B(X ).

2. Federated Learning and SCAFFOLD

The main challenge in federated learning arises from the fact
that each client c ∈ {1, . . . , N} only has access to its own
local function f(c), rather than the full sum in (1). Since
these functions typically differ across clients, this induces
heterogeneity, making optimization more complex.

Assumptions. Throughout this paper, we consider the
following assumptions. The first assumptions A1, A2 and
A3 define the regularity of the local objective functions.
A 1 (Strong Convexity). For every c ∈ {1, . . . , N}, the
function f(c) is twice differentiable and µ-strongly-convex.
In particular, we have ∇2f(c)(θ) ≽ µId for any θ ∈ Rd.
A2 (Smoothness). For every c ∈ {1, . . . , N} and z ∈ Z,
the function F z(c) is twice differentiable and L-smooth. In
particular, we have ∇2F z(c)(θ) ≼ LId for θ ∈ Rd.
A3 (Third Derivative). For every c ∈ {1, . . . , N}, z ∈ Z,
the function f(c) is thrice differentiable with bounded third
derivative, i.e., there exists Q ≥ 0 such that for any u ∈ Rd
and θ ∈ Rd, ∥∇3f(c)(θ)u

⊗2∥ ≤ Q∥u∥2.

These assumptions are classical in stochastic optimization
(Nesterov, 2013; Dieuleveut & Bach, 2016). We discuss the
main consequences of A1 and A2 in Appendix A.1.

To measure heterogeneity of the problem, we rely on the
gradients and Hessians of local functions at the solution.
A4 (Heterogeneity Measure). There exist ζ1, ζ2 ≥ 0 such
that, with θ⋆ as in (1)
1
N

∑N
c=1∥∇if(c)(θ

⋆)−∇if(θ⋆)∥2 ≤ ζ2i for i ∈ {1, 2} .

Finally, for a parameter θ ∈ Rd and z ∈ Z, we define the
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Algorithm 1 SCAFFOLD

Input: initial θ0 ∈ Rd and ξ0(1), . . . , ξ
0
(N) ∈ Rd, step size

γ > 0, number of rounds T > 0, number of clients N > 0,
number of local steps H > 0

1: for t = 0 to T − 1 do
2: for c = 1 to N do
3: Initialize θt,0(c) = θt

4: for h = 0 to H − 1 do
5: Receive random state Zt,h+1

(c)

6: Set θt,h+1
(c) = θt,h(c) −γ

{
∇F

Zt,h+1
(c)

(c) (θt,h(c))+ξ
t
(c)

}
7: end for
8: end for
9: Update: θt+1 = 1

N

∑N
c=1 θ

t,H
(c)

10: Update: ξt+1
(c) = ξt(c) +

1
γH (θt,H(c) − θt+1)

11: end for
12: Return: θT

stochastic part of the gradient and its covariance as

εz(c)(θ)
∆
= ∇F z(c)(θ)−∇f(c)(θ) , (2)

Cc(θ)
∆
= E

[
εz(c)(θ)ε

z
(c)(θ)

⊤] . (3)

We assume in A5 that εz(c)(θ) has bounded sixth moment.

A5 (Gradient’s Variance). There exist constants σ2
⋆, β ≥ 0

such that for θ ∈ Rd, p ∈ {1, 2, 3}, and c ∈ {1, . . . , N},

E1/p
[
∥εZ(c)

(c) (θ)∥2p
]
≤ σ2

⋆ + β∥θ − θ⋆∥2 ,

where Z(c) has values in Z and distribution ν(c).

FEDAVG. A now very popular algorithm to solve (1) is Fed-
erated Averaging (FEDAVG) (McMahan et al., 2017). This
method leverages local training to reduce communications,
by letting each client perform a number of local stochastic
gradient updates. Each final iterate of these updates are then
sent to a central server, which aggregates the model received
by all clients. More precisely, FEDAVG defines a sequence
of global iterates (ϑt)t∈N as follows. At a global time step
t ≥ 0, each client c ∈ {1, . . . , N} performs H > 0 local
iterations, starting from ϑ0(c) = ϑt, where ϑt is the current
global parameter received from the server. This writes as,
for h ∈ {0, . . . ,H − 1},

ϑt,h+1
(c) = ϑt,h(c) − γ∇F

Zt,h+1
(c)

(c) (ϑt,h(c)) ,

where {Zt,h+1
(c) }Hh=1 are i.i.d. random variables independent

among clients and from the previous iterations, with distri-
bution ν(c). After these local updates, the parameters are
aggregated by the server ϑt+1 = N−1

∑N
c=1 ϑ

t,H
(c) .

SCAFFOLD. The SCAFFOLD algorithm (Karimireddy
et al., 2020) uses control variates to mitigate client drift
by replacing the local gradient updates of FEDAVG for
h ∈ {0, . . . ,H − 1}, by

θt,h+1
(c) = θt,h(c) − γ

(
∇F

Zt,h+1
(c)

(c) (θt,h(c)) + ξt(c)

)
. (4)

These parameters are then aggregated by a central server as
in FEDAVG: θt+1 = N−1

∑N
c=1 θ

t,H
(c) . After aggregation,

each client c locally updates its control variate as

ξt+1
(c) = ξt(c) +

1

γH
(θt,H(c) − θt+1) . (5)

We give the pseudo-code of this algorithm in Algorithm 1.
Learning ξt(c) corresponds to estimating a linear correction
of the gradient of the local functions so that the corrected
gradient is zero at θ⋆. The ideal control variate for client c
is thus ξ⋆(c) = −∇f(c)(θ⋆), as this correction ensures that
all clients converge toward the same optimum.
Remark 2.1. In this paper, we aim to study the SCAFFOLD al-
gorithm as it is commonly used. Thus, contrarily to (Karim-
ireddy et al., 2020; Yang et al., 2021), we do not consider
two-sided step sizes. While this yields the desired linear
speed-up by dividing the local step size by

√
N , and in-

creasing the global one, it essentially reduces the algorithm
to mini-batch SGD, and does not give much insights on
SCAFFOLD itself. Thus, we consider in Table 1 the rate of
Karimireddy et al. (2020) without global step size.

3. Related Work
Analysis of FEDAVG. Early analyses of FEDAVG were
conducted under homogeneity assumptions on the gradi-
ents (Stich, 2019; Wang & Joshi, 2018; Haddadpour & Mah-
davi, 2019; Patel & Dieuleveut, 2019; Yu et al., 2019b; Li
et al., 2019b; Woodworth et al., 2020b). Subsequent studies
have shown that FEDAVG exhibits a fundamental bias in
heterogeneous settings (Li et al., 2019a; Malinovskiy et al.,
2020; Charles & Konečnỳ, 2021; Pathak & Wainwright,
2020; Karimireddy et al., 2020): due to client drift, the iter-
ates of FEDAVG do not converge to the true solution θ⋆, but
to a biased limit point.

In fact, even in homogeneous settings, FEDAVG remains
biased due to its stochastic updates. This appears in the
analyses of Khaled et al. (2020); Woodworth et al. (2020a);
Glasgow et al. (2022); Wang et al. (2024).

Heterogeneity mitigation. Karimireddy et al. (2020) pro-
posed SCAFFOLD, which reduces client drift with control
variates, alike variance reduction methods (Schmidt et al.,
2017), and proved its convergence. Subsequently, Mitra
et al. (2021); Gorbunov et al. (2021) established similar
rates in the smooth and strongly convex case. However,
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in all these works, the number of communication rounds
required to achieve mean squared error of order ϵ2, scales as
O(κ log(1/ϵ)), where κ is the problem’s condition number.

Mishchenko et al. (2022) then introduced PROXSKIP, which,
in a deterministic setting, achieves accelerated communica-
tion complexity, reducing the average number of communi-
cation rounds toO(

√
κ log(ϵ−1)) for reaching MSE of order

ϵ2. However, when gradients are stochastic, their analysis
requiresO(1/ϵ) rounds. Later on, Hu & Huang (2023) fixed
this, reaching O(

√
κ log(1/ϵ) rounds even in the stochastic

setting. Nonetheless, neither of these analyses achieve linear
speed-up with respect to the number of clients. Several ex-
tensions of these methods have been proposed (Malinovsky
et al., 2022; Condat et al., 2022; Condat & Richtárik, 2022;
Sadiev et al., 2022). However, the sample complexity results
established in these works do not exhibit linear speed-up
either. A notable exception is the work of Mangold et al.
(2024), who achieves linear speed-up for SCAFFOLD for
quadratic objectives; they consider an extended version of
SCAFFOLD for linear approximation, named SCAFFLSA,
requiring O(κ2 log(1/ϵ)) communications with a number
of local updates scaling in O(1/Nϵ2), effectively achieving
linear speed-up. In this work, we present a more general
analysis that holds beyond the quadratic setting.

SGD in a Markovian setup. Unlike SGD with a dimin-
ishing step size, which converges to the true optimum under
convexity assumptions, constant step-size SGD does not
converge pointwise and instead oscillates around θ⋆ (Chee
& Toulis, 2018), introducing an inherent bias. To address
this problem, Dieuleveut et al. (2020), following a stream
of works by (Pflug, 1986; Fort & Pages, 1999; Bach &
Moulines, 2013), analyze SGD with a constant step size
as a Markov chain, leveraging randomly perturbed dynam-
ical systems to characterize its convergence and limiting
behavior. Recently, Mangold et al. (2025) proposed to view
FEDAVG’s iterates as a Markov chain. They establish that
FEDAVG’s iterates converge towards a unique stationary
distribution, and give explicit first-order expansion of the
bias in O(γH). This bias decomposes into two components:
one due to heterogeneity, and one due to stochasticity of
the local gradients. Remarkably, this second bias vanishes
when optimizing quadratic functions.

4. New Convergence Rate for SCAFFOLD

In this section, we present our first main theoretical contri-
bution: SCAFFOLD achieves linear speed-up with respect to
the number of agents. To establish this result, we introduce
a new analytical framework for the study of SCAFFOLD.

First, we show in Section 4.1 that the global iterates and con-
trol variates of SCAFFOLD define a Markov chain. We then
establish that this Markov chain geometrically converges

to a unique stationary distribution in Wasserstein distance.
Next, we analyze the covariance structure of this stationary
distribution in Section 4.2. The detailed analysis of this
covariance matrix provides important insights into the be-
havior of SCAFFOLD in the stationary regime. Finally, based
on these results, we derive a non-asymptotic convergence
rate in Section 4.3, proving the linear speed-up for a range
of step-sizes and horizons.

4.1. Convergence of Global Iterates

Iterates of SCAFFOLD. We define the following operators,
that generate the iterates of SCAFFOLD. For a value θ ∈ Rd,
define the local update operator on client c as

T(c)(θ; ξ(c), z(c)) = θ − γ{∇F z(c)(c) (θ) + ξ(c)} ,

for z(c) ∈ Z. Set T0
(c)(θ; ξ(c), z) = θ and define recursively

the local parameter updates

Th+1
(c) (θ; ξ(c), z

1:h+1
(c) )=T(c)(T

h
(c)(θ; ξ(c), z

1:h
(c) ); ξ(c), z

h+1
(c) ) ,

where z1:h(c) = [z1(c), . . . , z
h
(c)], for c ∈ [N ] and h ∈ [H].

This allows to define the global update operator

T(θ; ξ(1:N), z
1:H
(1:N)) =

1
N

∑N
c=1 T

H
(c)(θ; ξ(c), z

1:H
(c) ) ,

Similarly, for θ ∈ Rd, we define the operator that updates
the control variates as

V(c)(ξ(c); θ, z
1:H
(1:N)) = ξ(c)

+
1

γH

(
TH(c)(θ; ξ(c), z

1:H
(c) )− T(θ; ξ(1:N), z

1:H
(1:N))

)
.

Thus, we can define the update of the SCAFFOLD algorithm

S :
(
θ, ξ(1:N); z

1:H
(1:N)

)
7→
(
T(θ; ξ(1:N), z

1:H
(1:N)),

V(1)(ξ(1); θ, z
1:H
(1:N)), . . . ,V(N)(ξ(N); θ, z

1:H
(1:N)))

)
.

Note that for all z1:H(1:N), S(·, z
1:H
(1:N)) is a mapping from

X = {(X(0), . . . , X(N)) ∈ R(N+1)d :
∑N
c=1X(c) = 0} ,

into itself. We equip X with the norm ∥X∥2Λ = ⟨X,ΛX⟩,
where Λ = (Id, γ

2H2

N Id, . . . , γ
2H2

N Id), or more explicitly,

∥X∥2Λ = ∥X(0)∥2 +
γ2H2

N

N∑
c=1

∥X(c)∥2 . (6)

With these notations, the SCAFFOLD updates of the parame-
ters and the control variates—see Algorithm 1—writes

Xt+1 = S
(
Xt;Zt+1,1:H

(1:N)

)
, (7)

where Xt = [θt, ξt(1), . . . , ξ
t
(N)] and {Zt,1:H(1:N)}t∈N is an i.i.d.

sequence with Zt,h(c) ∼ ν(c) for c ∈ {1, . . . , N} and h ∈
{0, . . . ,H}.
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SCAFFOLD’s iterates as a Markov chain. SCAFFOLD
updates form an iterated random function, a specific class
of Markov chains that have been extensively studied (see
Diaconis & Freedman (1999) and the references therein).
The Markov property is clear: given the present state of the
Xt = (θt, ξt(1), . . . , ξ

t
(N)), the conditional distribution of the

future state does not depend on the past. Hence SCAFFOLD’s
global iterates define a time-homogeneous Markov chain
on X equipped with its Borel σ-algebra B(X ). We denote
by K(γ,H) the corresponding Markov kernel on X . We
define, for t ≥ 1, the iterates of K(γ,H) as Kt(γ,H). For any
probability measure ρ on X and t ∈ N, the distribution of
SCAFFOLD’s iterates Xt started from X0 ∼ ρ is ρKt(γ,H).
We show below that the iterates of SCAFFOLD converge to a
unique stationary distribution. This requires a contraction in
average (see Diaconis & Freedman (1999), Theorem 1): the
next lemma shows that S defines a contractive map over X .

Lemma 4.1. Assume A 1 and A 2. Let Z = Z1:H
(1:N)

be i.i.d. random variables satisfying A 5. Let the step
size γ > 0 and number of local updates H > 0 sat-
isfy γ ≤ 1/(2L) and γH(L + µ) ≤ 1. Then, for
any θ, θ′ ∈ Rd and {ξ(c), ξ

′
(c)}

N
c=1 ∈ Rd such that∑N

c=1 ξ(c) =
∑N
c=1 ξ

′
(c) = 0, it holds that

E
[
∥S(X;Z)− S(X′;Z)∥2Λ

]
≤
(
1− γµ

4

)H
∥X−X′∥2Λ , (8)

with X=(θ, ξ(1), . . . , ξ(N)), and X′=(θ′, ξ′(1), . . . , ξ
′
(N)).

We prove this lemma in Appendix B.1. A major conse-
quence of this lemma is that SCAFFOLD’s iterates and con-
trol variates converge to a unique stationary distribution.

Theorem 4.2. Assume A1, A2, and A5. Let γ > 0, H > 0,
such that γ ≤ 1/(2L) and γH(L + µ) ≤ 1. Let {Xt}∞t=0,
with Xt = (θt, ξt(1), . . . , ξ

t
(N)), be SCAFFOLD’s iterates with

step size γ andH local steps and X0 ∼ ρ, where ρ is a prob-
ability measure on X such that

∫
∥X∥2Λρ(dX) <∞. Then,

the distribution ρKt(γ,H) of Xt converges to a unique station-
ary distribution π(γ,H) satisfying

∫
∥X∥2Λπ(γ,H)(dX) <∞,

and for any t ∈ N,

W2
2(ρK

t
(γ,H), π(γ,H)) ≤

(
1− γµ

4

)Ht
W2

2(ρ, π(γ,H)) .

We prove this theorem in Appendix B.1. In the following,
we indifferently write π(γ,H)(dθ,dΞ) and π(γ,H)(dX).

Theorem 4.2 shows that the Markov kernel K(γ,H) is ge-
ometrically ergodic in 2-Wasserstein distance. Moreover,
the distribution of Xt converges to the limiting distribution
π(γ,H) at a linear rate (1− γµ/4), with the exponent given
by the number of effective steps H × t. As with the deter-
ministic algorithm, for a given step size γ, a larger number
of local steps H speeds up the convergence to stationarity.
We will show below that it leads to additional bias. Define

the optimal vector X⋆ = (θ⋆, ξ⋆(1), . . . , ξ
⋆
(N)), where the

optimal control variates are given by ξ⋆(c) = −∇f(c)(θ⋆).

Lemma 4.3. Assume A1, A2, A5. Let Z = Z1:H
(1:N) be i.i.d.

random variables satisfying A 5. Assume the step size γ
and the number of local updates H satisfy γH(L + µ) ≤
1. Then, for all θ ∈ Rd and {ξ(c)}

N
c=1 ⊂ Rd such that∑N

c=1 ξ(c) = 0,

E
[
∥S(X;Z)−X⋆∥2Λ

]
≤
(
1− γµ

4

)H
∥X−X⋆∥2Λ + 2γ2Hσ2

⋆ ,

with the global iterate vector X = (θ, ξ(1), . . . , ξ(N)).

We prove this lemma in Appendix B.2. Thus, for any
X ∈ X , a single iteration of SCAFFOLD brings X closer
to a neighborhood of the optimal solution X⋆, as long as
∥X − X⋆∥2Λ is sufficiently large. In Markov chain theory,
this implies that ∥X − X⋆∥2Λ serves as a Foster-Lyapunov
function for the kernel K(γ,H). From this Foster-Lyapunov
condition, we may retrieve a first rough bound on the fluctu-
ation of the estimator around X⋆.
Theorem 4.4. Assume A1, A2 and A5. Let γ > 0 be the step
size and H > 0 the number of local updates. Assume that
γ ≤ 1/4L and γH(L+ µ) ≤ 1. Then, for any T > 0 and
any X0 ∈ X , the iterates and control variates of SCAFFOLD,
XT = (θT , ξT(1), . . . , ξ

T
(N)), satisfy the inequality

E
[
∥XT −X⋆∥2Λ

]
≤
(
1− γµ

4

)HT
∥X0 −X⋆∥2Λ +

8γ

µ
σ2
⋆ ,

where X⋆ is the global optimal vector.

The proof of this theorem is given in Appendix B.2. This
preliminary bound is very similar to the ones established
in Karimireddy et al. (2020, Lemma 14) and Mishchenko
et al. (2022, Theorem 5.5) (for PROXSKIP). We include
it for completeness, to underline that a major limitation
is that it does not achieve linear speedup in the number
of clients. Nonetheless, this result is crucial to bound the
higher-order terms that appear in all our subsequent analysis.
Indeed, taking T → ∞, a consequence of Theorem 4.2
and Theorem 4.4 is

∫
∥XT −X⋆∥2Λπ(γ,H)(dX) ≤ 8γσ2

⋆/µ,
which gives the following Corollary.
Corollary 4.5. Assume A1, A2 and A5. Let Z = Z1:H

(1:N) be
i.i.d. random variables satisfying A5. Let γ > 0 be the step
size and H > 0 the number of local updates of SCAFFOLD.
Assume that γ ≲ 1/L and γH(L + µ) ≲ 1. Then, for all
h ∈ {0, . . . ,H}, it holds that∫

∥θ − θ⋆∥2π(γ,H)(dθ,dΞ) ≤
8γ

µ
σ2
⋆ ,

where Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d.
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We give a proof and a more complete version of this Corol-
lary in Appendix B.2, Corollary B.1. We may also obtain a
similar bound for local updates and control variates.

Lemma 4.6. Assume A 1, A 2. Let Z = Z1:H
(1:N) be i.i.d.

random variables satisfying A 5. Assume the step size γ
and the number of local updates H satisfy γH(L+ µ) ≲ 1.
Under these conditions, for any h ∈ {0, . . . ,H} and c ∈
{1, . . . , N}, it holds that,∫

E
[
∥Th(c)(θ; ξ(c), Z

1:h
(c) )−θ

⋆∥2
]
π(γ,H)(dθ,dΞ) ≲

γσ2
⋆

µ
,∫

∥ξ(c) − ξ⋆(c)∥
2π(γ,H)(dθ,dΞ) ≲

Lσ2
⋆

µH
.

The proof is postponed to Appendix B.3. We use ≲ to omit
numerical constants, which are provided in the full proof.
Notably, for any agent c, the variances of local iterates after
h ≤ H local iterations do not scale with 1/N . However,
it is crucial to highlight that the fluctuations of the control
variate scale inversely with H . We also give derive analog
variants of Corollary 4.5 and Lemma 4.6 for moments 2, 4,
and 6 in Lemma B.3.

4.2. Bounding the Variance of the global iterates

We now derive an upper bound on the variance of θ − θ⋆

under the stationary distribution. In particular, we show that
this variance is proportional to 1/N , up to a higher order
term in the step size. To this end, we track the relations
between the covariance matrices of the global parameters
and control variates, defined for any c, c′ ∈ [N ] as

Σ̄
θ ∆
=

∫ (
θ − θ⋆

)⊗2
π(γ,H)(dθ,dΞ) ,

Σ̄
ξ
(c,c′)

∆
=

∫ (
ξ(c)− ξ⋆(c)

)(
ξ(c′)− ξ⋆(c′)

)⊤
π(γ,H)(dθ,dΞ) ,

Σ̄
θ,ξ
(c)

∆
=

∫ (
θ − θ⋆

)(
ξ(c)− ξ⋆(c)

)⊤
π(γ,H)(dθ,dΞ) .

We emphasize that the parameter and control variates are
inherently correlated. Local gradient noise introduced in the
updates of the local parameters (4) propagates to the control
variates via their update (5). We refer to Lemma 5.1 for
a detailed discussion on these covariance matrices. There,
we provide exact first-order expansions, offering a precise
characterization of their structure and interactions.

Now, we derive an upper bound on the global parameter’s
covariance Σ̄

θ. To this end, define

Cθ = ∥Σ̄θ∥ , Cθ,ξ = 1
N

∑N
c=1∥Σ̄

θ,ξ
(c)∥ ,

Cξ = 1
N2

∑N
c,c′=1∥Σ̄

ξ
(c,c′)∥ .

We also define the following quantity, related to the variance

of noise added by clients during local updates,

ςϵ =
1

N

N∑
c=1

H−1∑
h=0

∥∥∥∫ E[Chc (θ)]π(γ,H)(dθ,dΞ)
∥∥∥ ,

where Chc (θ) = Cc(Th(c)(θ; ξ(c), Z
1:h
(c) )), and Cc(θ) is the

covariance of the local gradient noise as defined in (3). The
next lemma relates Cθ, Cθ,ξ and Cξ. We present it in a
simplified form to highlight the main dependencies.

Lemma 4.7. Assume A1, A2, A5. Assume the step size γ
and the number of local steps H satisfy γH(L + µ) ≲ 1,
then

γµHCθ ≲ γ2H2LCθ,ξ + γ4H4L2Cξ +
γ2

N
ςϵ + rθ ,

Cθ,ξ ≲ ζ2C
θ + γ3H3L2Cξ +

γ

NH
ςϵ + rθ,ξ ,

Cξ ≲ ζ22C
θ + ζ2γHLC

θ,ξ +
1

NH2
ςϵ + rξ ,

where ζ2 is the heterogeneity coefficient defined in A4, rθ,
rθ,ξ, and rξ are higher-order terms.

We prove this lemma and give exact expressions in Ap-
pendix C.3-Lemma C.8. Using these inequalities, we derive
the next theorem, that gives an upper bound on Cθ.

Theorem 4.8. Assume A1, A2, A3, A4, and A5. Furthermore,
assume that γHLζ2 ≲ µ, γH(L + µ) ≲ 1 and γβ ≲ µ.
Then, it holds that

Cθ ≲
γ

Nµ
σ2
⋆ +

γ3/2Q

µ5/2
σ3
⋆ +

γ3HQ2

µ3
σ4
⋆ .

We prove this theorem in Appendix C.3. Recall that Q is
the upper bound on the third derivative, which is defined
in A 3 and it vanishes in the quadratic case. We recover
in such case the bound on the covariance of the parameter
derived in (Mangold et al., 2024). A crucial feature of this
result, is that the covariance of the parameters’ error Σ̄θ is
proportional to γ/N , up to higher-order terms in the step
size. To our knowledge, this is the first time the variance
of SCAFFOLD with general objective function is shown to
decrease with the number of clients. It is in stark contrast
with existing analyses of SCAFFOLD (Mishchenko et al.,
2022) where variance only scales in γ.

4.3. A Non-Asymptotic Rate with Linear Speed-Up

We now state our main result, showing that our bounds
from Section 4.2 can be used to obtain non-asymptotic rates
for SCAFFOLD. This can be achieved by using the conver-
gence of SCAFFOLD to its stationary distribution through a
synchronous coupling method.

Theorem 4.9. Assume A1, A2, A3, A4, and A5. Furthermore,
assume that γHLζ2 ≲ µ, γH(L + µ) ≲ 1 and γβ ≲ µ.
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Then, the mean squared error of SCAFFOLD’s global iterates,
initialized with θ0 ∈ Rd and ξ(1) = · · · = ξ(N) = 0 ∈ Rd
is

E
[
∥θT − θ⋆∥2

]
≲
(
1− γµ

4

)HT {
2∥θ0 − θ⋆∥2 + 2γ2H2ζ21 +

σ2
⋆

Lµ

}
+

γ

Nµ
σ2
⋆ +

γ3/2Q

µ5/2
σ3
⋆ +

γ3HQ2

µ3
σ4
⋆ .

To prove this theorem, we decompose θT − θ⋆ = θT −
θ̂T + θ̂T − θ⋆, where θ̂T is obtained by running SCAFFOLD
with the same realization of noise as θT but starting from
θ̂0 in the stationary distribution. We then obtain a bound on
the error by bounding E[∥θT − θ̂T ∥2] and E[∥θ̂T − θ⋆∥2]
separately, using Lemma 4.1 and Theorem 4.8 respectively.
We give a detailed proof in Appendix D.

This theorem converts our asymptotic bound on SCAF-
FOLD’s error in the stationary regime into a non-asymptotic
bound, where the variance term scales in 1/N , up to higher-
order factors in O(γ3/2 + γ3H). This gives the following
sample and communication complexity for SCAFFOLD.

Corollary 4.10. Let ϵ > 0. With Theorem 4.9’s assump-
tions, we can set γ ≲ min( 1

L ,
Nµϵ2

σ2
⋆
, µ

5/3ϵ4/3

Q2/3σ2
⋆
, L

1/2µ3/2ϵ
Qσ2

⋆
)

and H ≲ σ2
⋆ min(1,µ/ζ2)

Lµϵ2 max( 1
N ,

Q2/3ϵ2/3

µ , QL
1/2ϵ

µ1/2 ). Then,
SCAFFOLD guarantees E[∥θT − θ⋆∥2] ≤ ϵ2 for T ≳
L
µ max(1, ζ2/µ) log(

∥θ0−θ⋆∥2+ζ21/L
2

ϵ2 ), and the number of
stochastic gradients computed by each client is

TH ≲ σ2
⋆

µ2ϵ2 max( 1
N ,

Q2/3ϵ2/3

µ , QL
1/2ϵ

µ1/2 ) log(ψ0

ϵ2 ) ,

where ψ0 = ∥θ0 − θ⋆∥2 + ζ21/L
2 + σ2

⋆/(Lµ).

We prove this corollary in Appendix D. This result combines
two crucial features: (i) SCAFFOLD has linear speed-up up to a
given number of clients: the number of gradients computed
by each client scales in 1/N ; and (ii) SCAFFOLD accelerates
stochastic gradients: the number of rounds required for con-
vergence depends logarithmically on the desired precision ϵ.
In comparison, in heterogeneous settings, FEDAVG’s num-
ber of communication scales polynomially in 1/ϵ. To our
knowledge, this is the first time that SCAFFOLD is proven to
have linear speed-up (without relying on global step sizes),
while guaranteeing acceleration with stochastic gradients.
Remark 4.11. In our analysis, we show that the number of
rounds scales in log(1/ϵ), with a multiplicative factor L/µ.
Additionally, Hu & Huang (2023) proved that this constant
can be reduced to

√
L/µ, but without linear speed-up in

the number of clients. It is an intriguing open question to
determine whether SCAFFOLD can preserve this reduction
from L/µ to

√
L/µ while guaranteeing this linear speed-up.

5. Explicit Expression for Bias and Variance
The analysis framework that we put in place in Section 4 is
guided by the study of the covariances of the global param-
eters and control variates of SCAFFOLD. We now provide
novel insights on the behaviour of SCAFFOLD in the station-
ary regime. In Section 5.1, we give exact first-order (in the
step size) expression for the covariance matrices defined in
Section 4.2. Surprisingly, this study uncovers that SCAF-
FOLD’s global parameters are still biased, and we describe
this bias in Section 5.2.

5.1. Variance of the Global Iterates

In SCAFFOLD, the only source of randomness comes from
the stochasticity of the gradient updates. These stochastic
updates then propagate in the global iterates and control
variates of the algorithm. Our analysis framework allows us
to give the following expressions of these covariances, as a
function of the gradient’s covariance at the solution θ⋆.

Lemma 5.1. Assume A1, A2, A3, A4, A5. Furthermore,
assume that the step size γ and number of local updates
H satisfy γHLζ2 ≲ µ and γH(L + µ) ≲ 1 and γβ ≲ µ.
Then, it holds that, for c ̸= c′ ∈ {1, . . . , N},

Σ̄
θ
=

γ

N
AC(θ⋆) +O(γ2H + γ3/2) ,

Σ̄
θ,ξ
(c) =

γ

N
AC(θ⋆)(∇2f(c)(θ

⋆)−∇2f(θ⋆))

+
γ

N
(Cc(θ⋆)− C(θ⋆)) +O(γ2H + γ3/2) ,

Σ̄
ξ
(c,c) =

(
1− 2

N

) 1

H
Cc(θ⋆) +

1

NH
C(θ⋆) +O(γ) ,

Σ̄
ξ
(c,c′) =

1

NH
(C(θ⋆)− Cc(θ⋆)− Cc′(θ⋆)) +O(γ) ,

where A =
(
Id⊗∇2f(θ⋆) +∇2f(θ⋆)⊗ Id

)−1
,

Cc(θ⋆) = E[(εZ(c)

(c) (θ⋆))⊗2] and C(θ⋆) = 1
N

∑N
c=1 Cc(θ⋆).

We prove this lemma in Appendix E.2. This result confirms
our finding that, in the stationary regime of SCAFFOLD, the
covariances Σ̄θ and Σ̄

θ,ξ
(c) both scale in γ/N . However, this

is not the case for the control variates, which do not even
scale in the step size γ. More remarkably, we show that,
for any c, the covariance Σ̄

ξ
(c,c) of ξ(c) does not decrease

in 1/N . Fortunately, the covariances of pairs of distinct
control variates recovers this 1/N , which is the reason why
SCAFFOLD enjoys linear speed-up.

Remark 5.2. We note that, in the analysis of PROXSKIP
(Mishchenko et al., 2022), they use a Lyapunov function sim-
ilar to (6), based on the average of the γ2H2∥ξ(c) − ξ⋆(c)∥

2.
Lemma 5.1 shows that this Lyapunov function cannot
achieve linear speed-up, as its terms only scale in O(γ2H).
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Figure 1: Mean squared error E[∥θt − θ⋆∥2] as a function of the number of communications, with H = 100 and γ = 0.05,
for linear regression (top row) and logistic regression (bottom row) problems. For each curve, we plot the average over 3
runs and the standard deviation.

5.2. Non-Vanishing Bias of SCAFFOLD

Quite surprisingly, our analysis highlights that SCAFFOLD
is still biased. We now give an expression of SCAFFOLD’s
bias, i.e., the expected error in the stationary distribution

b̄
θ ∆
=

∫
(θ − θ⋆)π(γ,H)(dθ,dΞ) . (9)

We require the fourth derivative of f(c) to be bounded.

A6 (Fourth Derivative). For c ∈ {1, . . . , N}, the function
f(c) is 4 times differentiable and satisfies, for any θ ∈ Rd
and u ∈ Rd, ∥∇4f(c)(θ)u

⊗3∥ ≤ G∥u∥3.

Given this assumption, we obtain the following theorem.

Theorem 5.3. Assume A1, A2, A3, A4, A5, A6. Furthermore,
assume that the step size γ and number of local updates H
satisfy γ(H−1)Lζ2 ≲ µ and γH(L+µ) ≲ 1 and γβ ≲ µ.
Then, the bias of SCAFFOLD is

b̄
θ
=− γ

2N
∇2f(θ⋆)−1∇3f(θ⋆)AC(θ⋆) +O(γ2H + γ3/2) .

We refer to Appendix E.3 for a proof of this theorem. Even
though SCAFFOLD eliminates heterogeneity bias, its global
iterates remain biased. This bias scales with γ/N times the
local gradient’s variance. It is not due to heterogeneity, but
solely to the stochasticity of the local updates. In fact, we
even recognize the bias of FEDAVG with homogeneous func-
tions, as presented in Mangold et al. (2025)’s Theorem 3.
We note that this bias scales with the local gradients’ covari-
ances, suggesting that SCAFFOLD may not be appropriate
in problems with very noisy gradients.

6. Numerical Results
Experimental setup. We illustrate our theoretical find-
ings on ℓ2 regularized linear and logistic regression. For
linear regression, we use make regression function
from scikit-learn (Pedregosa et al., 2011) to generate two
different datasets with 100N records and 20 features;
to simulate heterogeneity, we use different seeds and
n informative=2 and n informative=10 respec-
tively. The first dataset is split evenly among the first
N/2 clients, while the second one is split evenly across
the other half of clients. For logistic regression, we repeat
the same procedure with the make classification
function with two different seeds. Using this procedure, we
generate a regression and a classification task, where each
client has 200 records, and where the distribution is hetero-
geneous. In both settings, we run SCAFFOLD with γ = 0.05
and H = 100, T = 100 and N ∈ {10, 100, 1000, 10000}.
We estimate the gradients using batches of size 10, and
compare the result with FEDAVG with the same parameters.
The code is available online at https://github.com/
pmangold/scaffold-speed-up.

SCAFFOLD has linear speed-up. For each value of N ,
we run both SCAFFOLD and FEDAVG and report the re-
sults in Figure 1. As expected, SCAFFOLD consistently
outperforms FEDAVG in all settings. In conformity with
our theory, SCAFFOLD benefits from the presence of more
clients: as the number of clients increases, the error in sta-
tionary regime decrease, both in linear (top row) and logistic
(bottom row) regression.

Linear speed-up with many clients. Remarkably, the lin-
ear speed-up remains for number of clients gets large (up
to 1, 000), suggesting that the condition on the maximal

8
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number of clients until which the linear speed-up holds in
Corollary 4.10 is not overly restrictive. Nonetheless, there is
no more improvement from N = 1, 000 to N = 10, 000 in
our logistic regression problem (bottom row): this suggest
we have reached saturation, and that in this setting, increas-
ing the number of clients does not help beyond this point.
As predicted by our theory, this is not the case in linear
regression (top row). Indeed, in this case, the loss function
is quadratic (i.e., Q = 0) and the limit on the number of
clients stated in Corollary 4.10 is thus infinite.

7. Conclusion
In this paper, we provide a novel analytical framework for
the SCAFFOLD algorithm. We show that its global iterates
and control variates define a Markov chain, that converges
to a stationary distribution. This key property allows us
to derive the first rate which shows that SCAFFOLD achieves
linear speed-up in the number of clients. Our analysis is
based on a careful examination of the covariance of SCAF-
FOLD’s global iterates and covariance, finely tracking the
propagation of noise through the algorithm’s parameters.

Although our work provide novel insights on the behavior
of SCAFFOLD, many questions remain open. In particular,
it is yet to be understood whether SCAFFOLD can enjoy
”deterministic” accelerated communication complexity as
in Mishchenko et al. (2022); Hu & Huang (2023)’s analyses
while preserving the desired linear speed-up. Finally, our
analysis highlights that SCAFFOLD’s iterates are still biased:
designing novel methods that remove this residual bias is a
promising direction for the development of novel stochastic
federated learning methods.
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Condat, L. and Richtárik, P. Randprox: Primal-dual opti-
mization algorithms with randomized proximal updates.
arXiv preprint arXiv:2207.12891, 2022.
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A. Preliminaries
A.1. Strong convexity and Smoothness

We list here the inequalities that are consequences of strong convexity (A1) and smoothness (A2) of the functions that we
minimize in (1). For c ∈ {1, . . . , N} and Z(c) ∼ ν(c), A1 and A2 imply that, for any θ, θ′ ∈ Rd,

E
[
∥∇FZ(c)

(c) (θ)−∇FZ(c)

(c) (θ′)∥2
]
≤ L⟨∇f(c)(θ)−∇f(c)(θ′), θ − θ′⟩ . (10)

This inequality is generally referred to as co-coercivity of the gradient of f(c), and is proven in Theorem 2.1.5 of Nesterov
(2013). Assumptions A1 and A2 also imply that, for any θ, θ′ ∈ Rd,

−⟨∇f(c)(θ)−∇f(c)(θ′), θ − θ′⟩ ≤ −µ∥θ − θ′∥2 . (11)

This second inequality is generally referred to as monotonicity of the gradient of f(c). Finally, smoothness of F
z(c)
(c) , for

z(c) ∈ Z (A2), means that the gradient of F z(c) is Lipschitz, i.e., for any θ, θ′ ∈ Rd,

∥∇F z(c)(c) (θ)−∇F z(c)(c) (θ′)∥ ≤ L∥∇F z(c)(c) (θ)−∇F z(c)(c) (θ′)∥ . (12)

A.2. Iterate Operators.

We recall the operators defined in Section 4.1, that generate the local and global updates of SCAFFOLD. For c ∈ {1, . . . , N},
θ ∈ Rd, ξ(c) ∈ Rd and z(c) ∈ Z define

T(c)(θ; z(c), ξ(c)) = θ − γ
{
∇F z(c)(c) (θ) + ξ(c)

}
,

Then, set T0
(c)(θ; ξ(c), z(c)) = θ and define recursively for z1:h+1

(c) = (z1(c), . . . , z
h+1
(c) ) ∈ Zh+1,

Th+1
(c) (θ; ξ(c), z

1:h+1
(c) ) = T(c)(T

h
(c)(θ; ξ(c), z

1:h
(c) ); ξ(c), z

h+1
(c) ) .

This allows to define the global update operator, denoting ξ(1:N) = (ξ(1), . . . , ξ(N)) and z1:H(1:N) = (z1:H(1) , . . . , z
1:H
(N))

T(θ; ξ(1:N), z
1:H
(1:N)) =

1

N

N∑
c=1

TH(c)(θ; ξ(c), z
1:H
(c) ) .

Similarly, we define the operator that updates the control variates, for c ∈ {1, . . . , N}, as

V(c)(ξ(c); θ, z
1:H
(1:N)) = ξ(c) +

1

γH

(
TH(c)(θ; ξ(c), z

1:H
(c) )− T(θ; ξ(1:N), z

1:H
(1:N))

)
.

Thus, we can define the update of the SCAFFOLD algorithm with noise z1:H(1:N) as

S :
(
θ, ξ(1), . . . , ξ(N); z

1:H
(1:N)

)
7→
(
T(θ; ξ(1:N), Z),V(1)(ξ(1); θ, z

1:H
(1:N)), . . . ,V(N)(ξ(N); θ, z

1:H
(1:N))

)
.

B. Proof of Convergence of SCAFFOLD

B.1. Convergence of Scaffold’s iterates – Proof of Lemma 4.1 and Theorem 4.2

We now analyze the convergence of SCAFFOLD’s iterates. Specifically, we aim to demonstrate that, akin to FEDAVG and
SGD, the iterates of SCAFFOLD (i.e., its parameters and control variates) converge to a unique stationary distribution.

To establish this result, we first show that SCAFFOLD’s updates exhibit contractive behavior under certain conditions. For
this purpose, we introduce the following norm, which assigns appropriate weights to each parameter and control variate,

∥X∥2Λ = ∥θ∥2 + γ2H2

N

N∑
c=1

∥ξ(c)∥
2 , (13)

12
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where X = (θ, ξ(1), . . . , ξ(N)). This can be seen as a norm on R(N+1)d such that ∥X∥2Λ = ⟨X,ΛX⟩ for X ∈ R(N+1)d and
where

Λ = diag

(
Idd,

γ2H2

N
Idd, . . . ,

γ2H2

N
Idd

)
,

and Idd is the d× d identity matrix. We now show that S is a contractive operator under the norm ∥·∥Λ.

Lemma 4.1 (Restated). Assume A1 and A2. Let Z = Z1:H
(1:N) be i.i.d. random variables satisfying A5. Let the step size

γ > 0 and number of local updates H > 0 satisfy γ ≤ 1/(2L) and γH(L + µ) ≤ 1. Then, for any θ, θ′ ∈ Rd and
{ξ(c), ξ

′
(c)}

N
c=1 ∈ Rd such that

∑N
c=1 ξ(c) =

∑N
c=1 ξ

′
(c) = 0, it holds that

E
[
∥S(X;Z)− S(X′;Z)∥2Λ

]
≤
(
1− γµ

4

)H
∥X−X′∥2Λ , (8)

with X=(θ, ξ(1), . . . , ξ(N)), and X′=(θ′, ξ′(1), . . . , ξ
′
(N)).

Proof. For readability, we define, for θ, θ′, ξ(c), ξ
′
(c) ∈ Rd, notations for the global parameter θ update, the local parameters

updates and the control variates ξ(c) updates as,

θ+ = T(θ; ξ(1:N), Z
1:H
(1:N)) , θh(c) = Th(c)(θ; ξ(c), Z

1:h
(c) ) , ξ+(c) = V(c)(ξ(c); θ, Z

1:H
(c) ) , (14)

and similarly for θ′ and ξ′(c),

θ′+ = T(θ′; ξ′(1:N), Z
1:H
(1:N)) , θ′h(c) = Th(c)(θ

′; ξ′(c), Z
1:h
(c) ) , ξ′+(c) = V(c)(ξ

′
(c); θ

′, Z1:H
(c) ) . (15)

Recall that θ+ = N−1
∑N
c=1 θ

H
(c) and θ′+ = N−1

∑N
c=1 θ

′H
(c). We can thus use the fact that

∑N
c=1 ξ(c) = 0 and

∑N
c=1 ξ

′
(c) =

0, as well as Lemma F.2 with xc = θH(c) + γHξ(c) and yc = θ′H(c) + γHξ′(c) to obtain

∥θ+ − θ′+∥2 =
∥∥∥ 1

N

N∑
c=1

(
θH(c) + γHξ(c)

)
− 1

N

N∑
c=1

(
θ′H(c) + γHξ′(c)

)∥∥∥2
=

1

N

N∑
c=1

∥∥∥θH(c) + γHξ(c) − θ′H(c) − γHξ′(c)

∥∥∥2 − 1

N

N∑
c=1

∥∥∥γH(ξ+(c) − ξ′+(c)

)∥∥∥2 , (16)

where we used the fact that γHξ+(c) = γHξ(c) + θ+ − θH(c) and γHξ′+(c) = γHξ′(c) + θ̃+ − θ̃H(c) in the second term. We now
define the shifted parameters, for c ∈ {1, . . . , N} and h ∈ {0, . . . ,H},

θ̃h(c) = θh(c) + γhξ(c) , θ̃′h(c) = θ′h(c) + γhξ′(c) . (17)

The identity (16) can be rewritten using the notations introduced in (17), which gives

∥S(X;Z)− S(X′;Z)∥2Λ =
1

N

N∑
c=1

∥θ̃H(c) − θ̃′H(c)∥
2 . (18)

It remains to derive a bound on each term of this sum. We proceed by induction, on h ∈ {0, . . . ,H − 1} we have

∥θ̃h+1
(c) − θ̃′h+1

(c) ∥2 =
∥∥∥θ̃h(c) − θ̃′h(c) − γ

(
∇F

Zh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
)∥∥∥2 .

Expanding the square and using (17), we obtain

∥θ̃h+1
(c) − θ̃′h+1

(c) ∥2

=
∥∥∥θ̃h(c) − θ̃′h(c)

∥∥∥2 + γ2
∥∥∥∇FZh+1

(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
∥∥∥2 − 2γ

〈
θ̃h(c) − θ̃′h(c),∇F

Zh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
〉

13
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=
∥∥∥θ̃h(c) − θ̃′h(c)

∥∥∥2 + γ2
∥∥∥∇FZh+1

(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
∥∥∥2

− 2γ
〈
θh(c) − θ′h(c),∇F

Zh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
〉
− 2γ2h

〈
ξ(c) − ξ′(c),∇F

Zh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
〉
.

Now, using Young’s inequality to bound 2γ2hab = 2(γ3/2L1/2ha)(γ1/2L−1/2b) ≤ γ3h2La2 + γL−1b2, we get

− 2γ2h
〈
ξ(c) − ξ′(c),∇F

Zh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
〉
≤ γ3h2L

∥∥∥ξ(c) − ξ′(c)

∥∥∥2+ γ

L

∥∥∥∇FZh+1
(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))
∥∥∥2 .

Plugging this in the previous inequality and using the co-coercivity of the gradient (10), we have

∥θ̃h+1
(c) − θ̃′h+1

(c) ∥2 ≤ ∥θ̃h(c) − θ̃′h(c)∥
2 + γ3h2L∥ξ(c) − ξ′(c)∥

2 − (γ − γ2L)⟨θh(c) − θ′h(c),∇F
Zh+1

(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ′h(c))⟩ .

Using the fact that γ ≤ 1/2L to bound −(γ − γ2L) ≤ −γ/2, taking the conditional expectation and using that Zh+1
(c) is

independent of Z1:h
(c) , and monotonicity of the gradient (11), we obtain

E
[∥∥∥θ̃h+1

(c) − θ̃′h+1
(c)

∥∥∥2 ∣∣∣∣ Z1:h
(c)

]
≤
∥∥∥θ̃h(c) − θ̃′h(c)

∥∥∥2 − γµ

2

∥∥∥θh(c) − θ′h(c)

∥∥∥2 + γ3h2L∥ξ(c) − ξ′(c)∥
2 . (19)

Now, we remark that, for a, b ∈ Rd, we have a2 = (a−b+b)2 ≤ 2(a−b)2+2b2, which implies that −(a−b)2 ≤ − 1
2a

2+b2.
Therefore, we have

−γµ
2

∥∥∥θh+1
(c) − θ̃h+1

(c)

∥∥∥2 = −γµ
2

∥∥∥θh(c) − θ′h(c) − γh(ξ(c) − ξ′(c))
∥∥∥2 ≤ −γµ

4

∥∥∥θh(c) − θ′h(c)

∥∥∥2 + γ3h2µ

2

∥∥∥ξ(c) − ξ′(c)

∥∥∥2 .

Using this inequality in (19), we obtain the following inequality

E
[∥∥∥θ̃h+1

(c) − θ̃′h+1
(c)

∥∥∥2 ∣∣∣∣ Z1:h
(c)

]
≤
(
1− γµ

4

)∥∥∥θ̃h(c) − θ̃′h(c)

∥∥∥2 + (γ3h2µ+ γ3h2L
) ∥∥∥ξ(c) − ξ′(c)

∥∥∥2 . (20)

Taking the expectation in the last inequality, a straightforward induction leads to

E
[∥∥∥θ̃H(c) − θ̃′H(c)

∥∥∥2] ≤ (1− γµ

4

)H ∥∥∥θ − θ̃
∥∥∥2 + γ3H2(H − 1)(L+ µ)

2

∥∥∥ξ(c) − ξ′(c)

∥∥∥2 .

Consequently, whenever γH(L+ µ) ≤ 1, we can sum this inequality for c = 1 to N to obtain

E

[
1

N

N∑
c=1

∥∥∥θ̃H(c) − θ̃′H(c)

∥∥∥2] ≤
(
1− γµ

4

)H ∥∥∥θ − θ
∥∥∥2 + 1

2

γ2H2

N

N∑
c=1

∥∥∥ξ(c) − ξ′(c)

∥∥∥2 ≤
(
1− γµ

4

)H ∥∥∥X−X′
∥∥∥2
Λ
,

where the second inequality comes from 1
2 · γ2H2 ≤ (1− γµ

4 )H · γ2H2.

Theorem 4.2 (Restated). Assume A1, A2, and A5. Let γ > 0, H > 0, such that γ ≤ 1/(2L) and γH(L + µ) ≤ 1. Let
{Xt}∞t=0, with Xt = (θt, ξt(1), . . . , ξ

t
(N)), be SCAFFOLD’s iterates with step size γ and H local steps and X0 ∼ ρ, where ρ

is a probability measure on X such that
∫
∥X∥2Λρ(dX) <∞. Then, the distribution ρKt(γ,H) of Xt converges to a unique

stationary distribution π(γ,H) satisfying
∫
∥X∥2Λπ(γ,H)(dX) <∞, and for any t ∈ N,

W2
2(ρK

t
(γ,H), π(γ,H)) ≤

(
1− γµ

4

)Ht
W2

2(ρ, π(γ,H)) .

Proof. We use Douc et al. (2018, Theorem 20.3.4) with the cost function c(X, X̃) = ∥X− X̃∥2Λ, where the norm ∥ · ∥Λ is
defined in (13).

Note that the convergence toward the stationary distribution is geometric.
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B.2. Bound on SCAFFOLD’s Global Iterates in the Stationary Distribution – Proof of Lemma 4.3 and Theorem 4.4

Lemma 4.3 (Restated). Assume A1, A2, A5. Let Z = Z1:H
(1:N) be i.i.d. random variables satisfying A5. Assume the step

size γ and the number of local updates H satisfy γH(L + µ) ≤ 1. Then, for all θ ∈ Rd and {ξ(c)}
N
c=1 ⊂ Rd such that∑N

c=1 ξ(c) = 0,

E
[
∥S(X;Z)−X⋆∥2Λ

]
≤
(
1− γµ

4

)H
∥X−X⋆∥2Λ + 2γ2Hσ2

⋆ ,

with the global iterate vector X = (θ, ξ(1), . . . , ξ(N)).

Proof. As in Lemma 4.1, we define, for ϑ, ξ ∈ Rd, notations for the global parameter update, the local parameter updates
and the control variates updates as,

ϑ+ = T(ϑ; ξ(1:N), Z
1:H
(1:N)) , ϑh(c) = Th(c)(ϑ; ξ(c), Z

1:h
(c) ) , ξ+(c) = V(c)(ξ(c);ϑ,Z

1:H
(c) ) , (21)

for c ∈ {1, . . . , N} and h ∈ {0, . . . ,H}. Recall that ϑ+ = N−1
∑N
c=1 ϑ

H
(c). We can thus use the fact that

∑N
c=1 ξ(c) = 0

and
∑N
c=1 ξ

⋆
(c) = 0, as well as Lemma F.2 with xc = ϑH(c) + γHξ(c) and yc = θ⋆ + γHξ⋆(c) to obtain

∥ϑ+ − θ⋆∥2 =
∥∥∥ 1

N

N∑
c=1

(
ϑH(c) + γHξ(c)

)
− 1

N

N∑
c=1

(
θ⋆ + γHξ⋆(c)

)∥∥∥2
=

1

N

N∑
c=1

∥∥∥ϑH(c) + γHξ(c) − θ⋆ − γHξ⋆(c)

∥∥∥2 − 1

N

N∑
c=1

∥∥∥γH (ξ+(c) − ξ⋆(c)

)∥∥∥2 , (22)

where we used the fact that γHξ+(c) = γHξ(c) + ϑH(c) − ϑ+ in the second term. Define for ϑ ∈ Rd, c ∈ {1, . . . , N} and
h ∈ {0, . . . ,H}

ϑ̃h(c) = Th(c)(ϑ; ξ(c)) + γh(ξ(c) − ξ⋆(c)) = ϑh(c) + γh(ξ(c) − ξ⋆(c)) . (23)

The identity in (22) can be rewritten using this expression, as well as the norm ∥·∥Λ defined in (13),

∥S(X;Z)−X⋆∥2Λ =
1

N

N∑
c=1

∥ϑ̃H(c) − θ⋆∥2 . (24)

It remains to derive a bound on each term of this sum, by induction on h ∈ {0, . . . ,H − 1}. We have, for c ∈ {1, . . . , N},

∥ϑ̃h+1
(c) − θ⋆∥2 =

∥∥∥ϑ̃h(c) − θ⋆ − γ

(
∇F

Zh+1
(c)

(c) (ϑh(c)) + ξ⋆(c)

)∥∥∥2 .

Expanding the square and using (23) to write ϑ̃h(c) = ϑh(c) + γh(ξ(c) − ξ⋆(c)), we obtain

∥ϑ̃h+1
(c) − θ⋆∥2 =

∥∥∥ϑ̃h(c) − θ⋆
∥∥∥2 − 2γ

〈
ϑ̃h(c) − θ⋆,∇F

Zh+1
(c)

(c) (ϑh(c)) + ξ⋆(c)

〉
+ γ2

∥∥∥∇FZh+1
(c)

(c) (ϑh(c)) + ξ⋆(c)

∥∥∥2
=
∥∥∥ϑ̃h(c) − θ⋆

∥∥∥2 + γ2
∥∥∥∇FZh+1

(c)

(c) (ϑh(c)) + ξ⋆(c)

∥∥∥2
− 2γ

〈
ϑh(c) − θ⋆,∇F

Zh+1
(c)

(c) (ϑh(c)) + ξ⋆(c)

〉
− 2γ2h

〈
ξ(c) − ξ⋆(c),∇F

Z(c)

(c) (ϑh(c)) + ξ⋆(c)

〉
.

Replacing ξ⋆(c) = −∇f(c)(θ⋆), we have

E
[∥∥∥ϑ̃h+1

(c) − θ⋆
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
=
∥∥∥ϑ̃h(c) − θ⋆

∥∥∥2 + γ2E
[∥∥∥∇FZh+1

(c)

(c) (ϑh(c))−∇f(c)(θ⋆)
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
− 2γ

〈
ϑh(c) − θ⋆,∇f(c)(ϑh(c))−∇f(c)(θ⋆)

〉
− 2γ2h

〈
ξ(c) − ξ⋆(c),∇f(c)(ϑ

h
(c))−∇f(c)(θ⋆)

〉
.
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Using the inequality ∥u+ v∥2 ≤ 2∥u∥2 + ∥v∥2 and bounding the two terms using co-coercivity (10) and A5, we can bound

E
[∥∥∥∇FZh+1

(c)

(c) (ϑh(c))−∇f(c)(θ⋆)
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
= E

[∥∥∥∇FZh+1
(c)

(c) (ϑh(c))−∇F
Zh+1

(c)

(c) (θ⋆) +∇F
Zh+1

(c)

(c) (θ⋆)−∇f(c)(θ⋆)
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
≤ 2L⟨ϑh(c) − θ⋆,∇f(c)(ϑh(c))−∇f(c)(θ⋆)⟩ + 2σ2

⋆ .

Now, using Young’s inequality to bound 2γ2hab = 2(γ3/2L1/2ha)(γ1/2L−1/2b) ≤ γ3h2La2 + γL−1b2 and co-coervicity
of the gradient (10), we get

−2γ2h
〈
ξ(c) − ξ⋆(c),∇f(c)(ϑ

h
(c))−∇f(c)(θ⋆)

〉
≤ γ3h2L∥ξ(c) − ξ⋆(c)∥

2 +
γ

L
∥∇f(c)(ϑh(c))−∇f(c)(θ⋆)∥2

≤ γ3h2L∥ξ(c) − ξ⋆(c)∥
2 + γ⟨ϑh(c) − θ⋆,∇f(c)(ϑh(c))−∇f(c)(θ⋆)⟩ .

Plugging the last two equations in the inequality that decompose the update above, we have

E
[∥∥∥ϑ̃h+1

(c) − θ⋆
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
≤
∥∥∥ϑ̃h(c) − θ⋆

∥∥∥2 + γ3h2L∥ξ(c) − ξ⋆(c)∥
2

− (γ − 2γ2L)⟨ϑh(c) − θ⋆,∇f(c)(ϑh(c))−∇f(c)(θ⋆)⟩ + 2γ2σ2
⋆ .

And using the fact that γ ≤ 1/4L to bound −(γ − 2γ2L) ≤ −γ/2, and the monotonocity of the gradient (11), we obtain

E
[∥∥∥ϑ̃h+1

(c) − θ⋆
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
≤
∥∥∥ϑ̃h(c) − θ⋆

∥∥∥2 − γµ

2

∥∥∥ϑh(c) − θ⋆
∥∥∥2 + γ3h2L∥ξ(c) − ξ⋆(c)∥

2 + 2γ2σ2
⋆ . (25)

Now, we remark that, for a, b ∈ Rd, we have ∥a∥2 = ∥a− b+ b∥2 ≤ 2∥a− b∥2 + 2∥b∥2, which implies that −∥a− b∥2 ≤
− 1

2∥a∥
2 + ∥b∥2. Therefore, we have

−γµ
2

∥∥∥ϑh(c) − θ⋆
∥∥∥2 = −γµ

2

∥∥∥ϑ̃h(c) − θ⋆ − γh(ξ(c) − ξ⋆(c))
∥∥∥2 ≤ −γµ

4

∥∥∥ϑ̃h(c) − θ⋆
∥∥∥2 + γ3h2µ

2

∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2 .

Using this inequality in (25), we obtain the following inequality

E
[∥∥∥ϑ̃h+1

(c) − θ⋆
∥∥∥2 ∣∣∣∣ Z1:h

(c)

]
≤
(
1− γµ

4

)∥∥∥ϑ̃h(c) − θ⋆
∥∥∥2 + (γ3h2L+ γ3h2µ/2

)
∥ξ(c) − ξ⋆(c)∥

2 + 2γ2σ2
⋆ . (26)

Applying (26) recursively, we obtain

E
[∥∥∥ϑ̃H(c) − θ⋆

∥∥∥2] ≤ (1− γµ

4

)H
∥θ − θ⋆∥2 + γ3H2(H − 1)(L+ µ)

2
∥ξ(c) − ξ⋆(c)∥

2 + 2γ2Hσ2
⋆ . (27)

Consequently, whenever γH(L+ µ) ≤ 1, we can sum this inequality for c = 1 to N to obtain

1

N

N∑
c=1

E
[
∥ϑ̃H(c) − θ⋆∥2

]
≤
(
1− γµ

4

)H
∥θ − θ⋆∥2 + 1

2

γ2H2

N

N∑
c=1

∥ξ(c) − ξ⋆(c)∥
2 + 2γ2Hσ2

⋆ (28)

≤
(
1− γµ

4

)H
∥X−X⋆∥2Λ + 2γ2Hσ2

⋆ ,

and we get the result of the lemma by taking the expectation of (24) and plugging this bound.

Theorem 4.4 (Restated). Assume A1, A2 and A5. Let γ > 0 be the step size and H > 0 the number of local updates.
Assume that γ ≤ 1/4L and γH(L+ µ) ≤ 1. Then, for any T > 0 and any X0 ∈ X , the iterates and control variates of
SCAFFOLD, XT = (θT , ξT(1), . . . , ξ

T
(N)), satisfy the inequality

E
[
∥XT −X⋆∥2Λ

]
≤
(
1− γµ

4

)HT
∥X0 −X⋆∥2Λ +

8γ

µ
σ2
⋆ ,

where X⋆ is the global optimal vector.
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Proof. The proof follows by applying recursively Lemma 4.3 with the natural filtration of the process (Xt)∞t=0.

The following corollary is a direct consequence of Theorem 4.4, and gives a crude bound on the squared error of θ in the
stationary distribution.

Corollary B.1. Assume A1, A2 and A5. Let Z = Z1:H
(1:N) be i.i.d. random variables satisfying A5. Let γ > 0 be the step

size and H > 0 the number of local updates of SCAFFOLD. Assume that γ ≤ 1/4L and γH(L + µ) ≤ 1. Then, for all
h ∈ {0, . . . ,H}, it holds that ∫ ∥∥∥θ − θ⋆

∥∥∥2π(γ,H)(dθ,dΞ) ≤
8γ

µ
σ2
⋆ , (29)

γ2H2

N

N∑
c=1

∫ ∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2π(γ,H)(dθ,dΞ) ≤
8γ

µ
σ2
⋆ , (30)

1

N

N∑
c=1

∫
E
[∥∥∥Th(c)(θ; ξ(c), Z1:h

(c) )− θ⋆
∥∥∥2]π(γ,H)(dθ,dΞ) ≤

8γ

µ
σ2
⋆ , (31)

where Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d.

Proof. Inequalities (29) and (30) follow from Theorem 4.4. The third inequality (31) is obtained by unrolling (26) until h
similarly to (27) and summing over c = 1 to N .

B.3. Bounds on SCAFFOLD’s Local Iterates and Control Variates in the Stationary Distribution – Proof of Lemma 4.6

Lemma B.2. Assume A1, A2, A5. Let Z = Z1:H
(1:N) be i.i.d. random variables satisfying A5. Assume the step size γ and the

number of local updates H satisfy γH(L+ µ) ≤ 1/12 and γβ ≤ L. Under these conditions, it holds that∫
E
[
∥Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆∥2

]
π(γ,H)(dθ,dΞ) ≤

18γ

µ
σ2
⋆ + 3γ2H2

∫
∥ξ(c) − ξ⋆(c)∥

2π(γ,H)(dθ,dΞ) , (32)∫
∥ξ(c)−ξ

⋆
(c)∥

2π(γ,H)(dθ,dΞ) ≤
8(L+ µ)

µH
σ2
⋆ +

4L2 + 2β

H

H−1∑
h=0

∫
E
[
∥Th(c)(θ; ξ(c), Z

1:h
(c) )−θ

⋆∥2
]
π(γ,H)(dθ,dΞ) . (33)

Proof. Let θ ∈ Rd and {ξ(c)}
N
c=1 ⊂ Rd that satisfy the constraints

∑N
c=1 ξ(c) = 0. Based on the proof of Lemma 4.3, we

define a notation for the local parameters and their counterpart with ideal control variates,

θh(c) = Th(c)(θ; ξ(c), Z
1:h
(c) ) (34)

θ̃h(c) = θh(c) + γh(ξ(c) − ξ⋆(c)) . (35)

Bound on the local iterates. Then, following the same lines of proof as Lemma 4.3 (see (26)) and using the fact that
γHL ≤ 1, we obtain, for any h ≤ H , and c ∈ {1, . . . , N},

E
[
∥θ̃h(c) − θ⋆∥2

]
≤ ∥θ − θ⋆∥2 + γ2H2

2
∥ξ(c) − ξ⋆(c)∥

2 + 2γ2Hσ2
⋆ ,

Since θh(c) = θ̃h(c) + γh(ξ(c) − ξ⋆(c)), this gives the inequality

E
[
∥θh(c) − θ⋆∥2

]
≤ 2E

[
∥θ̃h(c) − θ⋆∥2

]
+ 2γ2h2∥ξ(c) − ξ⋆(c)∥

2

≤ 2∥θ − θ⋆∥2 + 3γ2H2∥ξ(c) − ξ⋆(c)∥
2 + 4γ2Hσ2

⋆ .

Integrating over the stationary distribution of SCAFFOLD’s iterates and using (29) from Corollary B.1, we obtain (32).

Bound on control variates. For ease of notation, we define

εh+1
(c) = ε

Zh+1
(c)

(c) (θh(c)) . (36)
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Let c ∈ {1, . . . , N}, the control variate update can be written as

ξ+(c) = ξ(c) +
1

γH

(
θ − γ

H−1∑
h=0

∇f(c)(θh(c)) + ξ(c) + εh+1
(c) − θ +

γ

N

N∑
i=1

H−1∑
h=0

∇f(i)(θh(i)) + ξ(i) + εh+1
(i)

)

= ξ(c) −
1

γH

(
γ

H−1∑
h=0

∇f(c)(θh(c)) + ξ(c) + εh+1
(c) − γ

N

N∑
i=1

H−1∑
h=0

∇f(i)(θh(i)) + ξ(i) + εh+1
(i)

)
.

Using
∑N
i=1 ξ(i) = 0,

∑N
i=1 ∇f(i)(θ⋆) = 0, ξ⋆(c) = −∇f(c)(θ⋆), and reorganizing the terms, this gives

ξ+(c) − ξ⋆(c) = ξ(c) − ξ⋆(c) −
1

NH

N∑
i=1

H−1∑
h=0

(
∇f(c)(θh(c)) + ξ(c) −∇f(i)(θh(i)) + εh+1

(c) − εh+1
(i)

)
(37)

=
1

NH

N∑
i=1

H−1∑
h=0

((
∇f(i)(θh(i))−∇f(i)(θ⋆)

)
−
(
∇f(c)(θh(c))−∇f(c)(θ⋆)

)
+ εh+1

(i) − εh+1
(c)

)
. (38)

Taking the squared norm and expectation of (38), we obtain

E
[
∥ξ+(c) − ξ⋆(c)∥

2
]
≤ 2E

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

(
∇f(i)(θh(i))−∇f(i)(θ⋆)

)
−
(
∇f(c)(θh(c))−∇f(c)(θ⋆)

)∥∥∥2]

+ 2E

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

εh+1
(i) − εh+1

(c)

∥∥∥2] .

Using Jensen’s inequality, as well as E
[
εh+1
(c)

∣∣∣ Z1:h
(1:N)

]
= 0 a.s. and E

[
εh+1
(c) ε(i)

∣∣∣ Z1:h
(1:N)

]
= 0 for all c, i ∈ {1, . . . , N},

i ̸= c and h ∈ {0, . . . ,H − 1}, we have

E
[
∥ξ+(c) − ξ⋆(c)∥

2
]
≤ 4

NH

N∑
i=1

H−1∑
h=0

E
[
∥∇f(i)(θh(i))−∇f(i)(θ⋆)∥2 + ∥∇f(i)(θh(c))−∇f(c)(θ⋆)∥2

]
+

2

NH2

N∑
i=1

H−1∑
h=0

E
[
∥εh+1

(i) ∥2 + ∥εh+1
(c) ∥2

]
.

By Lipschitzness of the gradient (12) and smoothness of the error noise (A5),

E
[
∥ξ+(c) − ξ⋆(c)∥

2
]
≤ 4L2

NH

N∑
i=1

H−1∑
h=0

E
[
∥θh(i) − θ⋆∥2 + ∥θh(c) − θ⋆∥2

]
+

2

NH2

N∑
i=1

H−1∑
h=0

{
βE
[
∥θh(i) − θ⋆∥2 + ∥θh(c) − θ⋆∥2

]
+ 4σ2

⋆

}
≤ 8

H
σ2
⋆ +

4L2 + 2β

NH

N∑
i=1

H−1∑
h=0

E
[
∥θh(i) − θ⋆∥2 + ∥θh(c) − θ⋆∥2

]
.

Integrating over the stationary distribution of SCAFFOLD’s iterates and using (31) from Corollary B.1 gives inequality (33).

Lemma 4.6 (Restated). Assume A1, A2. Let Z = Z1:H
(1:N) be i.i.d. random variables satisfying A5. Assume the step size

γ and the number of local updates H satisfy γH(L + µ) ≤ 1/12. Under these conditions, for any h ∈ {0, . . . ,H} and
c ∈ {1, . . . , N}, it holds that, ∫

E
[
∥Th(c)(θ; ξ(c), Z

1:h
(c) )−θ

⋆∥2
]
π(γ,H)(dθ,dΞ) ≤

28γσ2
⋆

µ
, (9)∫

∥ξ(c) − ξ⋆(c)∥
2π(γ,H)(dθ,dΞ) ≤

54Lσ2
⋆

µH
. (10)
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Proof. Solving the system of inequations. We now aim to find constants Cθ(c) and Cξ(c), for c ∈ {1, . . . , N}, such that for
all h ∈ {0, . . . ,H},∫

E
[
∥Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆∥2

]
π(γ,H)(dθ,dΞ) ≤ Cθ(c) , and

∫
∥ξ(c) − ξ⋆(c)∥

2π(γ,H)(dθ,dΞ) ≤ Cξ(c) .

By the first part of the lemma, we have

Cθ(c) ≤
18γ

µ
σ2
⋆ + 3γ2H2Cξ(c) , and Cξ(c) ≤

9L

µH
σ2
⋆ + 12L2Cθ(c) .

Since γHL ≤ 1/12, this implies that

Cθ(c) ≤
18γ

µ
σ2
⋆ +

27γ2HL

µ
σ2
⋆ + 36γ2H2L2Cθ(c) ≤

21γ

µ
σ2
⋆ +

1

4
Cθ(c) ,

Cξ(c) ≤
16L

µH
σ2
⋆ +

12 · 28γL2

µ
σ2
⋆ + 36γ2H2L2Cξ(c) ≤

40L

µH
σ2
⋆ +

1

4
Cξ(c) ,

and the result follows.

B.4. Higher-order bounds

We now derive bounds on the moments of the error, up to the sixth moment.

Lemma B.3. Assume A1, A2 and A5. Let θ ∈ Rd and {ξ(c)}
N
c=1 ⊂ Rd that satisfy the constraint

∑N
c=1 ξ(c) = 0. Define the

global iterate vector X = (θ, ξ(1), . . . , ξ(N)), and the optimal vector X⋆ = (θ⋆, ξ⋆(1), . . . , ξ
⋆
(N)). Further, let Z = Z1:H

(1:N) be
a collection of i.i.d. random variables such that for any c ∈ {1, . . . , N} and h ∈ {1, . . . ,H}, Zh(c) ∼ ν(c).

Assume the step size γ and the number of local updates H satisfy γL ≤ 1/48, γH(L+ µ) ≤ 1/24. Then,

E
[
∥S(X;Z)−X⋆∥6Λ

]1/3 ≤ (1− γµ/6)
H ∥X−X⋆∥2Λ + 40γ2Hσ2

⋆ . (39)

Proof. We denote, for θ, ξ(1), . . . , ξ(N) ∈ Rd, notations for the global parameter update, the local parameter updates and
the control variates updates as,

θ+ = T(θ; ξ(1:N), Z
1:H
(1:N)) , θh(c) = Th(c)(θ; ξ(c), Z

1:h
(c) ) , ξ+(c) = V(c)(ξ(c); θ, Z

1:H
(c) ) ,

for c ∈ {1, . . . , N} and h ∈ {0, . . . ,H}, as well as the shifted local parameters

θ̃h(c) = θh(c) + γh(ξ(c) − ξ⋆(c)) .

We recall the identity from (24),

∥S(X;Z)−X⋆∥6Λ =
(
∥θ+ − θ⋆∥2 + γ2H2

N

N∑
c=1

∥ξ(c) − ξ⋆(c)∥
2
)3

=
( 1

N

N∑
c=1

∥θ̃H(c) − θ⋆∥2
)3

.

Thus, using Hölder’s inequality, we have

E
[
∥S(X;Z)−X⋆∥6Λ

]1/3 ≤ 1

N

N∑
c=1

E
[
∥θ̃H(c) − θ⋆∥6

]1/3
. (40)

We proceed by induction. Expanding the second power, for h ∈ {0, . . . ,H − 1}, using ξ⋆(c) = −∇f(c)(θ⋆),

∥θ̃h+1
(c) − θ⋆∥2 =

∥∥∥θ̃h(c) − θ⋆ − γ
(
∇F

Zh+1
(c)

(c) (θh(c))−∇f(c)(θ⋆)
)∥∥∥2

=
∥∥∥θ̃h(c) − θ⋆

∥∥∥2 − 2γ
〈
θ̃h(c) − θ⋆,∇F

Zh+1
(c)

(c) (θh(c))−∇f(c)(θ⋆)
〉
+ γ2

∥∥∥∇FZh+1
(c)

(c) (θh(c))−∇f(c)(θ⋆)
∥∥∥2 .
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Now, we compute the third power of this equality. We write it as (a2 − 2γb+ γ2c2)3, with

a2 = ∥θ̃h(c) − θ⋆∥2 ,

−2γb = −2γ
〈
θ̃h(c) − θ⋆,∇F

Zh+1
(c)

(c) (θh(c))−∇f(c)(θ⋆)
〉
,

γ2c2 = γ2
∥∥∥∇FZh+1

(c)

(c) (θh(c))−∇f(c)(θ⋆)
∥∥∥2 .

We remark that |b| ≤ ac, which gives

∥θ̃h+1
(c) − θ⋆∥6 =

(
a2 − 2γb+ γ2c2

)3
= a6 − 6γa4b+ 3γ2a4c2 + 12γ2a2b2 − 12γ3a2bc2 + 3γ4a2c4 − 8γ3b3 + 12γ4b2c2 − 6γ5bc4 + γ6c6

≤ a6 − 6γa4b+ 3γ2a4c2 + 12γ2a4c2 + 12γ3a3c3 + 3γ4a2c4 + 8γ3a3c3 + 12γ4a2c4 + 6γ5ac5 + γ6c6

= a6 − 6γa4b+ 15γ2a4c2 + 20γ3a3c3 + 15γ4a2c4 + 6γ5ac5 + γ6c6 . (41)

Remark that a is σ(Z1:h
(c) )-measurable. Since θ̃h(c) = θh(c) + γh(ξ(c) − ξ⋆(c)), we can split the dot product b similarly to

Lemma 4.3’s proof, using Young’s inequality to bound ⟨u, v⟩ ≤ 1/6∥u∥2 + 6∥v∥2 for any two vectors u, v ∈ Rd,

E
[
−6γa4b

∣∣∣ Z1:h
(c)

]
= −6γa4⟨θ̃h(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)⟩

= a4
(
−6γ⟨θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)⟩ − 6γ2h⟨ξ(c) − ξ⋆(c),∇f(c)(θ

h
(c))−∇f(c)(θ⋆)⟩

)
≤ a4

(
−6γ⟨θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)⟩ + 36γ3h2L∥ξ(c) − ξ⋆(c)∥

2 +
γ

L
∥∇f(c)(θh(c))−∇f(c)(θ⋆)∥2

)
.

Which gives, by co-coercivity of the gradient (10),

E
[
−6γa4b

∣∣∣ Z1:h
(c)

]
≤ −5γa4⟨θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)⟩ + 36γ3h2La4∥ξ(c) − ξ⋆(c)∥

2 .

Furthermore, we have, by Lipschitzness of the gradient (12), and smoothness of the error noise (A5), and using the definition
θ̃h(c) = θh(c) + γh(ξ(c) − ξ⋆(c)), as well as the fact that (x+ y + z)k ≤ 3k−1(xk + yk + zk) for 2 ≤ k ≤ 6,

E
[
γka6−kck

∣∣∣ Z1:h
(c)

]
= γka6−kE

[∥∥∥∇FZh+1
(c)

(c) (θh(c))−∇f(c)(θ⋆)
∥∥∥k ∣∣∣∣ Z1:h

(c)

]
≤ 2k−1γka6−k

{
E
[∥∥∥∇FZh+1

(c)

(c) (θh(c))−∇F
Zh+1

(c)

(c) (θ⋆)
∥∥∥k ∣∣∣∣ Z1:h

(c)

]
+ σk⋆

}
≤ 2k−1γka6−k{2Lk−1ak−2⟨θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)⟩ + σk⋆} , (42)

where we used (12) to bound A2 and ∥∇F
Zh+1

(c)

(c) (θ̃h(c))−∇F
Zh+1

(c)

(c) (θ⋆)∥ ≤ L∥θ̃h(c) − θ⋆∥ = La in the last inequality. Taking
the conditional expectation of (41) and plugging (42), we have

E
[
∥θ̃h+1

(c) − θ⋆∥6
∣∣∣ Z1:h

(c)

]
= E

[
a6 − 6γa4b+ 15γ2a4c2 + 20γ3a3c3 + 15γ4a2c4 + 6γ5ac5 + γ6c6

∣∣∣ Z1:h
(c)

]
≤ a6 − 5γa4

〈
θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)

〉
+ 36γ3h2La4

∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2
+ 20a4

6∑
k=2

(2γ)kLk−1
〈
θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)

〉
+ 20

6∑
k=2

(2γσ⋆)
ka6−k .

Letting γL ≤ 1/40 to bound the second term, we get

E
[
∥θ̃h+1

(c) − θ⋆∥6
∣∣∣ Z1:h

(c)

]
≤ a6 − γa4

〈
θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)

〉
+ 36γ3h2La4

∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2 + 20

6∑
k=2

(2γσ⋆)
ka6−k .
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As in the second-order bound, we use the monotonicity of the gradient (11) to bound −γa4
〈
θh(c) − θ⋆,∇f(c)(θh(c)) −

∇f(c)(θ⋆)
〉
≤ −γµa4∥θh(c)− θ

⋆∥2, which implies, using the fact that −∥u∥2 ≤ − 1
2∥u+ v∥

2+ ∥v∥2 for any pair of vectors

u, v ∈ Rd,

−γa4
〈
θh(c) − θ⋆,∇f(c)(θh(c))−∇f(c)(θ⋆)

〉
≤ −γµa4/2∥θ̃h(c) − θ⋆∥2 + γ3h2µa4∥ξ(c) − ξ⋆(c)∥

2 .

Finally, we obtain

E
[
∥θ̃h+1

(c) − θ⋆∥6
∣∣∣ Z1:h

(c)

]
≤ (1− γµ/2)a6 + 36γ3h2(µ+ L)a4

∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2 + 20

6∑
k=2

(2γσ⋆)
ka6−k

≤ (1− γµ/2)a6 + 36γ3h2(µ+ L)a4
∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2 + 30

3∑
k=1

(2γσ⋆)
2ka6−2k , (43)

using for k odd, (uv)k ≤ uk+1vk−1/2 + uk−1vk+1/2. Using Hölder inequality, we have

E[∥θ̃h+1
(c) − θ⋆∥6] ≤ (1− γµ/2)E[a6]1/3 + 36γ3h2(µ+ L)E[a6]2/3E[∥ξ(c) − ξ⋆(c)∥

6]1/3 + 30
3∑
k=1

(2γσ⋆)
2kE[a6]1−k/3 .

Therefore, we get

E[∥θ̃h+1
(c) − θ⋆∥6] ≤

(
(1− γµ/2)1/3E[a6]1/3 + 12γ3h2(µ+ L)E[∥ξ(c) − ξ⋆(c)∥

6]1/3 + 40γ2σ2
⋆

)3
. (44)

Using (1− γµ/2)1/3 ≤ 1− γµ/6 and a straightforward induction shows that

E[∥θ̃H(c) − θ⋆∥6]1/3 ≤ (1− γµ/6)∥θ − θ⋆∥2 + 12γ3H3(µ+ L)∥ξ(c) − ξ⋆(c)∥
2 + 40Hγ2σ2

⋆ .

Using (1− γµ/6) ≥ 1/2 and γH(µ+ L) ≤ 1/24 completes the proof.

Corollary B.4. Assume A1, A2 and A5. Let γ > 0 be the step size and H > 0 the number of local updates of SCAFFOLD.
Assume that γL ≤ 1/48 and γH(L+ µ) ≤ 1/24. Then, for all h ∈ {0, . . . ,H}, and p ∈ {1, 2, 3}, it holds that(∫ ∥∥∥θ − θ⋆

∥∥∥2pπ(γ,H)(dθ,dΞ)
)1/p

≤ 240γ

µ
σ2
⋆ , (45)

( 1

N

N∑
c=1

∫
E
[∥∥∥Th(c)(θ; ξ(c), Z1:h

(c) )− θ⋆
∥∥∥2p]π(γ,H)(dθ,dΞ)

)1/p
≤ 240γ

µ
σ2
⋆ , (46)

(γ2H2

N

N∑
c=1

∫ ∥∥∥ξ(c) − ξ⋆(c)

∥∥∥2pπ(γ,H)(dθ,dΞ)
)1/p

≤ 240γ

µ
σ2
⋆ , (47)

where Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d.

Proof. By Lemma B.3, we can bound the Λ-norm of the T -th element of the process (Xt)∞t=0, as

E
[
∥XT −X⋆∥6Λ

]1/3 ≤ (1− γµ/6)
HT ∥X0 −X⋆∥2Λ +

T−1∑
t=0

(1− γµ/6)
Ht · 40γ2Hσ2

⋆ .

Taking the limit as T → ∞, we obtain

lim
T→∞

E
[
∥XT −X⋆∥6Λ

]1/3 ≤ 240γH

µ
σ2
⋆ .

The result follows from derivations similar to the proof of Corollary B.1 to bound the third moment of ∥X−X⋆∥2 (i.e., the
case p = 3). The result for p = 1 and p = 2 follows by Hölder’s inequality.
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Lemma B.5. Assume A1, A2 and A5. Let γ > 0 be the step size and H > 0 the number of local updates of SCAFFOLD.
Assume that γL ≤ 1/48, γH(L+ µ) ≤ 1/24, γH1/2β1/2 ≤ 1/12 and γβ ≤ L/12. Then, for all h ∈ {0, . . . ,H},(∫

∥Th(c)(θ; ξ(c), Z
1:h
(c) )− θ⋆∥6π(γ,H)(dθ,dΞ)

)1/3

≤ 600γ

µ
σ2
⋆ , (48)(∫

∥ξ(c) − ξ⋆(c)∥
6π(γ,H)(dθ,dΞ)

)1/3

≤ 3000L

Hµ
σ2
⋆ . (49)

Proof. The proof follows the same lines as Lemma 4.6.

Bound on local iterates. Let θ ∈ Rd and {ξ(c)}
N
c=1 ⊂ Rd that satisfy the constraints

∑N
c=1 ξ(c) = 0. To bound the

local iterates, we proceed as in (34), we define θh(c) = Th(c)(θ; ξ(c), Z
1:h
(c) ) and θ̃h(c) = θh(c) + γh(ξ(c) − ξ⋆(c)). Similarly to

Lemma B.2, we use Jensen’s inequality to bound

E1/3
[
∥θh(c) − θ⋆∥6

]
≤ E1/3

[
∥θ̃h(c) − θ⋆∥6

]
+ γ2H2∥ξ(c) − ξ⋆(c)∥

2 . (50)

Then, unrolling (44) for h steps and using the fact that γH(L+ µ) ≤ 1/24, we obtain, for any h ≤ H , and c ∈ {1, . . . , N},

E1/3
[
∥θ̃h(c) − θ⋆∥6

]
≤ ∥θ − θ⋆∥6 + γ2H2

2
∥ξ(c) − ξ⋆(c)∥

2 + 40γ2Hσ2
⋆ . (51)

Plugging (51) in (50), we obtain

E1/3
[
∥θh(c) − θ⋆∥6

]
≤ ∥θ − θ⋆∥2 + 3γ2H2

2
∥ξ(c) − ξ⋆(c)∥

2 + 40γ2Hσ2
⋆ . (52)

Taking the third power of this inequality, integrating it over the stationary distribution of SCAFFOLD’s iterates and using
Corollary B.4, and using Jensen’s inequality, we obtain∫

E
[
∥θh(c)−θ

⋆∥6
]
π(γ,H)(dθ,dΞ) ≤

∫ (
32E

[
∥θ−θ⋆∥6

]
+8γ6H6∥ξ(c)−ξ

⋆
(c)∥

6 + 32 · 403 · γ6H3σ6
⋆

)
π(γ,H)(dθ,dΞ)

≤ 8γ6H6

∫
∥ξ(c) − ξ⋆(c)∥

6π(γ,H)(dθ,dΞ) +
32 · (2403 + 1) · γ3

µ3
σ6
⋆ , (53)

where we used γL ≤ 1/48 and 1/L ≤ 1/µ to bound 403γ3 ≤ 1/µ3.

Bound on control variates. To derive the second inequality, we start from (38),

ξ+(c) − ξ⋆(c) =
1

NH

N∑
i=1

H−1∑
h=0

((
∇f(i)(θh(i))−∇f(i)(θ⋆)

)
−
(
∇f(c)(θh(c))−∇f(c)(θ⋆)

)
+ εh+1

(i) − εh+1
(c)

)
.

Using Jensen’s inequality, we obtain

E1/3
[
∥ξ+(c) − ξ⋆(c)∥

6
]
≤ 2E1/3

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

(
∇f(i)(θh(i))−∇f(i)(θ⋆)

)
−
(
∇f(c)(θh(c))−∇f(c)(θ⋆)

)∥∥∥6]

+ 4E1/3

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

εh+1
(i)

∥∥∥6]+ 4E1/3

[∥∥∥ 1

H

H−1∑
h=0

εh+1
(c)

∥∥∥6] .

To control the last two terms, we note that they are reverse martingale differences w.r.t. the filtration Fh = σ(Z1:h
(1:N)). By

Burkholder’s inequality (see, e.g., Osekowski (2012), Theorem 8.6) which holds due to A5, we have

E1/3

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

εh+1
(i)

∥∥∥6] ≤ 32

N2H2
E1/3

[( N∑
i=1

H−1∑
h=0

∥εh+1
(i) ∥2

)3]
≤ 32

N2H2

N∑
i=1

H−1∑
h=0

E1/3
[
∥εh+1

(i) ∥6
]
.

22



Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up

Using the smoothness of the error noise’s moments (A5), we thus obtain

E1/3

[∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

εh+1
(i)

∥∥∥6] ≤ 32

N2H2

N∑
i=1

H−1∑
h=0

βE
[
∥θh(i) − θ⋆∥6

]1/3
+ σ2

⋆ .

Using Jensen’s inequality again, and proceeding as in Lemma 4.6’s proof using Lipschitzness of the gradient (12), we have

E1/3
[
∥ξ+(c) − ξ⋆(c)∥

6
]
≤ 4L2

NH

N∑
i=1

H−1∑
h=0

E1/3
[
∥θh(i) − θ⋆∥6

]
+ E1/3

[
∥θh(c) − θ⋆∥6

]
+

4 · 32

N2H2

N∑
i=1

H−1∑
h=0

{
βE1/3

[
∥θh(i) − θ⋆∥6

]
+ σ2

⋆

}
+

4 · 32

H2

H−1∑
h=0

{
βE1/3

[
∥θh(c) − θ⋆∥6

]
+ σ2

⋆

}
≤ 8 · 32

H
σ2
⋆ +

4L2 + 4 · 32β
NH2

N∑
i=1

H−1∑
h=0

{
E1/3

[
∥θh(i) − θ⋆∥6

]
+ E1/3

[
∥θh(c) − θ⋆∥6

]}
. (54)

Plugging (52) in (54), we obtain

E1/3
[
∥ξ+(c) − ξ⋆(c)∥

6
]
≤ 72

H
σ2
⋆ +

8L2 + 72β

H

(
∥θ − θ⋆∥2 + 3γ2H2

2
∥ξ(c) − ξ⋆(c)∥

2 + 40γ2Hσ2
⋆

)
=

72

H
σ2
⋆ + (40 · 8L2 + 40 · 72β)γ2σ2

⋆ +
8L2 + 72β

H
∥θ − θ⋆∥2 + (3 · 4L2 + 3 · 36β)γ2H∥ξ(c) − ξ⋆(c)∥

2

≤ 72

H
σ2
⋆ +

1 + 5

H
σ2
⋆ +

8L2 + 72β

H
∥θ − θ⋆∥2 +

( 1

96
+

3

16

)
∥ξ(c) − ξ⋆(c)∥

2 , (55)

where we used γL ≤ 1/48, γ(L + µ)H ≤ 1/24 and γH1/2β1/2 ≤ 1/12. Remark that 1/96 + 3/16 ≤ 1/5. Taking the
third power of (55) and using Jensen’s inequality, we obtain

E
[
∥ξ+(c) − ξ⋆(c)∥

6
]
≤ 32 · 783

H3
σ6
⋆ + 32 ·

(
8L2 + 72β

H

)3

∥θ − θ⋆∥6 + 32

53
∥ξ(c) − ξ⋆(c)∥

6 .

Integrating over π(γ,H), remarking that
∫
E
[
∥ξ+(c) − ξ⋆(c)∥

6
]
π(γ,H)(dθ,dΞ) =

∫
∥ξ(c) − ξ⋆(c)∥

6π(γ,H)(dθ,dΞ), using the

fact that 32/53 ≤ 1/10, and multiplying the resulting inequality by 10/9, we obtain∫
∥ξ(c) − ξ⋆(c)∥

6π(γ,H)(dθ,dΞ) ≤
10 · 783

H3
σ6
⋆ + 10

(8L2 + 72β

H

)3 ∫
∥θ − θ⋆∥6π(γ,H)(dθ,dΞ)

≤ 10 · 783

H3
σ6
⋆ + 10

(8L2 + 72β)3

H3
· 240

3γ3

µ3
σ6
⋆ ≤ 10 · 783

H3
σ6
⋆ + 90

83L6 + 723β3

H3
· 240

3γ3

µ3
σ6
⋆ ≤ 30003L3

µ3H3
σ6
⋆ , (56)

where the last inequality follows from γL ≤ 1/48, γβ1/2H1/2 ≤ 1/12 and γβ ≤ L/12.

Final bound on the local itrerates. From (53) and (56), we have∫
E
[
∥θh(c)−θ

⋆∥6
]
π(γ,H)(dθ,dΞ) ≤ 8γ6H6

∫
∥ξ(c) − ξ⋆(c)∥

6π(γ,H)(dθ,dΞ) +
32 · (2403 + 1) · γ3

µ3
σ6
⋆

≤ 8 · 30003γ6H3L3

µ3
σ6
⋆ +

32 · (2403 + 1) · γ3

µ3
σ6
⋆ ,

and the result follows from γHL ≤ 1/24, which ensures that 8 · 30003γ3H3L3 + 32 · (2403 + 1) ≤ 6003.

C. Bounding the Variance of SCAFFOLD

We now study the bias of the SCAFFOLD algorithm. Let X = (θ, ξ(1), . . . , ξ(N)), where the global parameter and control
variates are θ, ξ(1), . . . , ξ(N) is a vector in R(N+1)d drawn from the stationary distribution π(γ,H). To study its expected
value, we use the fact that, by definition, the S(X;Z) has the same distribution as X .
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Notations. For θ ∈ Rd and Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d, we define the variances and covariances of parameters and
control variates in the stationary distribution π(γ,H) as

Σ̄
θ ∆
=

∫
(θ − θ⋆)

⊗2
π(γ,H)(dθ,dΞ) ,

Σ̄
ξ
(c,c′)

∆
=

∫ (
ξ(c) − ξ⋆(c)

)(
ξ(c′) − ξ⋆(c′)

)⊤
π(γ,H)(dθ,dΞ) ,

Σ̄
θ,ξ
(c)

∆
=

∫ (
θ − θ⋆

)(
ξ(c) − ξ⋆(c)

)⊤
π(γ,H)(dθ,dΞ) ,

Σ̄
ξ,θ
(c)

∆
=

∫ (
ξ(c) − ξ⋆(c)

)(
θ − θ⋆

)⊤
π(γ,H)(dθ,dΞ) .

In the following, we use the following matrices and tensor, that appear in the integral remainders of our expansions

D̄2,h
(c) (θ) =

∫ 1

0

∇2f(c)(θ
⋆ + t

(
Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆

)
)dt , (57)

D̄3,h
(c) (θ) =

∫ 1

0

(1− t)∇3f(c)(θ
⋆ + t

(
Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆

)
)dt . (58)

For conciseness, we will often use the abbreviated notations

D̄2,h
(c) := D̄2,h

(c) (θ
h
(c)) and D̄3,h

(c) := D̄3,h
(c) (θ

h
(c)) . (59)

Following an update step of the SCAFFOLD algorithm, we obtain their updated counterparts, which reflect the adjustments
made during this iteration.

θ+ = T(θ; ξ(1:N), Z
1:H
(1:N)) , θh(c) = Th(c)(θ; ξ(c), Z

1:h
(c) ) , ξ+(c) = V(c)(ξ(c); θ, Z

1:H
(c) ) , (60)

for h ∈ {0, . . . ,H} and c ∈ {1, . . . , N}. We define the noise accumulated in one round, with εh(c) as defined in (36).

ε1:H(c) =

H∑
h=1

ΓH−h
(c) εh(c) .

Matrix notations. We define the contraction matrix Γ(c) = Id− γ∇2f(c)(θ
⋆), as well as its powers, for h ∈ {0, . . . ,H},

average, and scaled difference between the local matrices and their average,

Γh(c) =
(
Id− γ∇2f(c)(θ

⋆)
)h

, Γ̄ =
1

N

N∑
c=1

ΓH(c) , ∆Γ
(c) =

1

γH

(
Γ(c) − Γ̄

)
. (61)

Finally, we define

C1:H
(c) = − 1

H

H−1∑
h=0

ΓH−h−1
(c) , C̃1:H

(c) = Id− 1

H

H−1∑
h=0

ΓH−h−1
(c) , R1:H

(c) =

H−1∑
h=0

ΓH−h−1
(c) D̄3,h

(c)

(
θh(c) − θ⋆

)⊗2

. (62)

C.1. Expansions of local updates and control variates

First, we give explicit expansions of the local and global parameter updates.
Lemma C.1. Let θ ∈ Rd and Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d. After one global update of SCAFFOLD, we obtain a global
parameter θ+, N control variates ξ+(c) and N ·H local iterates θh(c) as defined in (60). These updates parameters can be
expressed as

θH(c) − θ⋆ = ΓH(c) (θ − θ⋆) + γHC1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γR1:H

(c) − γε1:H(c) , (63)

θ+ − θ⋆ = Γ̄ (θ − θ⋆) +
γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

N

N∑
c=1

R1:H
(c) − γ

N

N∑
c=1

ε1:H(c) . (64)
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Proof. Let c ∈ {1, . . . , N} and h ∈ {0, . . . ,H − 1}. Expanding the gradient at step h gives

θh+1
(c) = θh(c) − γ

(
∇f(c)(θh(c)) + ξ(c) + εh+1

(c)

)
= θh(c) − γ

(
∇f(c)(θ⋆) +∇2f(c)(θ

⋆)
(
θh(c) − θ⋆

)
+ D̄3,h+1

(c)

(
θh(c) − θ⋆

)⊗2

+ ξ(c) + εh+1
(c)

)
. (65)

Since ξ⋆(c) = −∇f(c)(θ⋆), we obtain

θh+1
(c) − θ⋆ = θh(c) − θ⋆ − γ∇2f(c)(θ

⋆)
(
θh(c) − θ⋆

)
− γ

(
ξ(c) − ξ⋆(c)

)
− γD̄3,h+1

(c)

(
θh(c) − θ⋆

)⊗2

− γεh+1
(c)

=
(
Id− γ∇2f(c)(θ

⋆)
)

︸ ︷︷ ︸
Γ(c)

(
θh(c) − θ⋆

)
− γ

(
ξ(c) − ξ⋆(c)

)
− γD̄3,h

(c)

(
θh(c) − θ⋆

)⊗2

− γεh+1
(c) .

We obtain the following expression for the local updates

θH(c) − θ⋆ = ΓH(c) (θ − θ⋆)− γ

H−1∑
h=0

ΓH−h−1
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

H−1∑
h=0

ΓH−h−1
(c) D̄3,h

(c)

(
θh(c) − θ⋆

)⊗2

− γ

H−1∑
h=0

ΓH−h−1
(c) εh+1

(c)

= ΓH(c) (θ − θ⋆) + γHC1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γR1:H

(c) − γε1:H(c) ,

which gives the first identity (63). The second identity (64) follows from averaging the first one over all clients and using
the fact that

1

N

N∑
c=1

C1:H
(c)

(
ξ(c) − ξ⋆(c)

)
=

1

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
, (66)

which follows from
∑N
c=1 ξ(c) − ξ⋆(c) = 0.

Based on Lemma C.1, we can give an expression for the control variate updates.
Lemma C.2. Let θ ∈ Rd and Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d. After one global update of Scaffold, we obtain a global
parameter θ+, N control variates ξ+(c) and N ·H local iterates θh(c) as defined in (60). The updated control variates can be
expressed as

ξ+(c) − ξ⋆(c) = ∆Γ
(c) (θ − θ⋆) + C̃1:H

(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− 1

H
R1:H

(c) +
1

NH

N∑
i=1

R1:H
(i) − 1

H
ε1:H(c) +

1

NH

N∑
i=1

ε1:H(i) .

(67)

where C1:H
(c) , C̃1:H

(c) , R1:H
(c) , and ε1:H(c) are defined in (62).

Proof. Let c ∈ {1, . . . , N}, ξ(c) is updated as ξ+(c) = ξ(c) +
1
γH

(
θH(c) − θ+

)
, which gives

ξ+(c) = ξ(c) +
1

γH

(
ΓH(c) − Γ̄

)
(θ − θ⋆) + C1:H

(c)

(
ξ(c) − ξ⋆(c)

)
+

1

N

N∑
i=1

C1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− 1

H
R1:H

(c) +
1

NH

N∑
i=1

R1:H
(i) − 1

H
ε1:H(c) +

1

NH

N∑
i=1

ε1:H(i)

= ξ⋆(c) + ξ(c) − ξ⋆(c) +∆Γ
(c) (θ − θ⋆) + C1:H

(c)

(
ξ(c) − ξ⋆(c)

)
+

1

N

N∑
i=1

C1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− 1

H
R1:H

(c) +
1

NH

N∑
i=1

R1:H
(i) − 1

H
ε1:H(c) +

1

NH

N∑
i=1

ε1:H(i) .

Then, remark that ξ(c) − ξ⋆(c) +C1:H
(c) (ξ(c) − ξ⋆(c)) = C̃1:H

(c) (ξ(c) − ξ⋆(c)) since C̃1:H
(c) = Id + C1:H

(c) .
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C.2. Covariance of the Parameters and Control Variates

C.2.1. RECURSION ON COVARIANCE MATRICES

Lemma C.3. Assume A1, A2 and A5. Assume the step size γ and the number of local updates H satisfy γH(L+ µ) ≤ 1.
Then, it holds that

Σ̄
θ
= Γ̄Σ̄

θ
Γ̄ +

γH

N

N∑
c=1

(
Γ̄Σ̄

θ,ξ
(c)C̃

1:H
(c) + C̃1:H

(c) Σ̄
ξ,θ
(c) Γ̄

)
+
γ2H2

N2

N∑
c=1

N∑
c′=1

C̃1:H
(c) Σ̄

ξ
(c,c′)C̃

1:H
(c′) +

γ2

N
Σ̄
ϵ
+Rθ ,

where Σ̄
ϵ
= 1

N

∑N
c=1 E

[
(ε1:H(c) )⊗2

]
, and Rθ = Rθ1 +Rθ1

⊤ +Rθ2 +Rθ2
⊤ +Rθ3, with

Rθ1 =
γ2

N2

N∑
c=1

∫
E
[(
ε1:H(c)

)(
R1:H

(c)

)⊤]
π(γ,H)(dθ,dΞ) ,

Rθ2 = − γ

N

N∑
c=1

∫
E
[
R1:H

(c)

]
(θ − θ⋆)

⊤
Γ̄π(γ,H)(dθ,dΞ)

− γ2H

N2

N∑
c=1

N∑
c′=1

∫
E
[
R1:H

(c)

] (
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′) π(γ,H)(dθ,dΞ) ,

Rθ3 =
γ2

N2

N∑
c=1

N∑
c′=1

∫
E
[(

R1:H
(c)

)(
R1:H

(c′)

)⊤]
π(γ,H)(dθ,dΞ) .

Proof. Using the results from Lemma C.1, we have

(
θ+ − θ⋆

)⊗2
=

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

N

N∑
c=1

R1:H
(c)

)⊗2

+
γ2

N2

(
N∑
c=1

ε1:H(c)

)⊗2

− γ

N

N∑
c=1

ε1:H(c)

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c′=1

C̃1:H
(c′)

(
ξ(c′) − ξ⋆(c′)

)
− γ

N

N∑
c′=1

R1:H
(c′)

)⊤

− γ

N

N∑
c=1

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c′=1

C̃1:H
(c′)

(
ξ(c′) − ξ⋆(c′)

)
− γ

N

N∑
c′=1

R1:H
(c′)

)⊗2 (
ε1:H(c)

)⊤
.

Taking the expectation, and using the fact that the Z(c) are independent from one client to another, we obtain

E
[(
θ+ − θ⋆

)⊗2
]
= E

(Γ̄ (θ − θ⋆) +
γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

N

N∑
c=1

R1:H
(c)

)⊗2


+
γ2

N2

N∑
c=1

E
[(
ε1:H(c)

)⊗2
]
+
γ2

N2

N∑
c=1

E
[
ε1:H(c)

(
R1:H

(c)

)⊤
+R1:H

(c)

(
ε1:H(c)

)⊤]
.

The first term can be expressed using the identity

E

(Γ̄ (θ − θ⋆) +
γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

N

N∑
c=1

R1:H
(c)

)⊗2


=

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

))⊗2

+
γ2

N2
E

[( N∑
c=1

R1:H
(c)

)⊗2
]

− γ

N

N∑
c=1

E
[
R1:H

(c)

](
Γ̄ (θ − θ⋆) +

γH

N

N∑
c′=1

C̃1:H
(c′)

(
ξ(c′) − ξ⋆(c′)

))⊤
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− γ

N

N∑
c=1

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c′=1

C̃1:H
(c′)

(
ξ(c′) − ξ⋆(c′)

))
E
[(

R1:H
(c′)

)⊤]
.

The first term can be expanded as(
Γ̄ (θ − θ⋆) +

γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

))⊗2

= Γ̄ (θ − θ⋆)
⊗2

Γ̄ +
γ2H2

N2

N∑
c=1

N∑
c′=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)(
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′)

+
γH

N

N∑
c=1

{
Γ̄ (θ − θ⋆) (ξ(c) − ξ⋆(c))

⊤C̃1:H
(c) + C̃1:H

(c) (ξ(c) − ξ⋆(c)) (θ − θ⋆) Γ̄
}

,

and the lemma follows by integrating over the stationary distribution of SCAFFOLD.

Lemma C.4. Assume A1, A2 and A5. Assume the step size γ and the number of local updates H satisfy γH(L+ µ) ≤ 1.
Then, it holds that

Σ̄
θ,ξ
(c) = Γ̄Σ̄

θ
∆Γ

(c) + Γ̄Σ̄
θ,ξ
(c)C̃

1:H
(c) − 1

N

N∑
i′=1

Γ̄Σ̄
θ,ξ
(i′)C̃

1:H
(i′) +

γH

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ,θ
(i)∆

Γ
(c)

+
γH

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ
(i,c)C̃

1:H
(c) − γH

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i) Σ̄

ξ
(i,i′)C̃

1:H
(i′) +

γ

NH

(
Σ̄
ϵ
(c) − Σ̄

ϵ
)
+Rθ,ξ(c) ,

where Σ̄
ϵ
= 1

N

∑N
c=1 E

[(
ε1:H(c)

)⊗2
]

, and Rθ,ξ(c) = Rθ,ξ(c),1 +Rθ,ξ(c),2 +Rθ,ξ(c),3 +Rθ,ξ(c),4 +Rθ,ξ(c),5, with

Rθ,ξ(c),1 =
γ

N

∫ N∑
i=1

E

[
ε1:H(i)

( 1

H
R1:H

(c) − 1

NH

N∑
i′=1

R1:H
(i′)

)⊤
+R1:H

(i)

( 1

H
ε1:H(c) − 1

NH

N∑
i′=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ) ,

Rθ,ξ(c),2 = − γ

N

N∑
i=1

∫
E
[
R1:H

(i)

] (
∆Γ

(c) (θ − θ⋆)
)⊤

π(γ,H)(dθ,dΞ) ,

Rθ,ξ(c),3 = − γ

N

N∑
i=1

∫
E
[
R1:H

(i)

](
C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i′=1

C̃1:H
(i′)

(
ξ(i′) − ξ⋆(i′)

))⊤

π(γ,H)(dθ,dΞ) ,

Rθ,ξ(c),4 =

∫
E

[(
Γ̄ (θ − θ⋆) +

γH

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

))(
− 1

H
R1:H

(c) +
1

NH

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ) ,

Rθ,ξ(c),5 =
γ

N

N∑
i=1

∫
E

[
R1:H

(i)

( 1

H
R1:H

(c) − 1

NH

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ) .

Proof. Using Lemma C.1 and Lemma C.2, we have

(
θ+ − θ⋆

)(
ξ+(c) − ξ⋆(c)

)⊤
=

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− γ

N

N∑
i=1

R1:H
(i) − γ

N

N∑
i=1

ε1:H(i)

)

×

(
∆Γ

(c) (θ − θ⋆) + C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i′=1

C̃1:H
(i′)

(
ξ(i′) − ξ⋆(i′)

)
− 1

H
R1:H

(c) +
1

NH

N∑
i′=1

R1:H
(i′) − 1

H
ε1:H(c) +

1

NH

N∑
i=1

ε1:H(i′)

)
.

27



Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up

Taking the expectation, we have

E
[(
θ+ − θ⋆

)(
ξ+(c) − ξ⋆(c)

)⊤]

=

(
Γ̄ (θ − θ⋆) +

γH

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

))(
∆Γ

(c) (θ − θ⋆) + C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i′=1

C̃1:H
(i′)

(
ξ(i′) − ξ⋆(i′)

))⊤

− γ

N

N∑
i=1

E

[
ε1:H(i) ×

(
− 1

H
ε1:H(c) +

1

NH

N∑
i′=1

ε1:H(i′)

)⊤]

− γ

N

N∑
i=1

E

[
ε1:H(i) ×

(
− 1

H
R1:H

(c) +
1

NH

N∑
i′=1

R1:H
(i′)

)⊤]
− γ

N

N∑
i=1

E

[
R1:H

(i)

(
− 1

H
ε1:H(c) +

1

NH

N∑
i′=1

ε1:H(i′)

)⊤]

+ E

[(
Γ̄ (θ − θ⋆) +

γH

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− γ

N

N∑
i=1

R1:H
(i)

)(
− 1

H
R1:H

(c) +
1

NH

N∑
i′=1

R1:H
(i′)

)⊤]

− γ

N

N∑
i=1

E
[
R1:H

(i)

](
∆Γ

(c) (θ − θ⋆) + C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i′=1

C̃1:H
(i′)

(
ξ(i′) − ξ⋆(i′)

))⊤

.

The result follows by expanding the first term of the right hand side and integrating the resulting identity over SCAFFOLD’s
stationary distribution.

Lemma C.5. Assume A1, A2 and A5. Assume the step size γ and the number of local updates H satisfy γH(L+ µ) ≤ 1.
Then, for c, c′ ∈ {1, . . . , N} such that c ̸= c′, it holds that

Σ̄
ξ
(c,c) = ∆Γ

(c)Σ̄
θ
∆Γ

(c′) +
1

H2
Σ̄
ϵ
(c) −

2

NH2
Σ̄
ϵ
(c) +

1

NH2
Σ̄
ϵ

+∆Γ
(c)Σ̄

θ,ξ
(c)C̃

1:H
(c) − 1

N

N∑
i′=1

∆Γ
(c)Σ̄

θ,ξ
(i′)C̃

1:H
(i′) + C̃1:H

(c) Σ̄
ξ,θ
(c)∆

Γ
(c) −

1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ,θ
(i)∆

Γ
(c)

+ C̃1:H
(c) Σ̄

ξ
(c,c)C̃

1:H
(c) − 1

N

N∑
i′=1

C̃1:H
(c) Σ̄

ξ
(c,i′)C̃

1:H
(i′) − 1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ
(i,c)C̃

1:H
(c) +

1

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i) Σ̄

ξ
(i,i′)C̃

1:H
(i′) +Rξ(c,c) ,

Σ̄
ξ
(c,c′) = ∆Γ

(c)Σ̄
θ
∆Γ

(c′) −
1

NH2
Σ̄
ϵ
(c) −

1

NH2
Σ̄
ϵ
(c′) +

1

NH2
Σ̄
ϵ

+∆Γ
(c)Σ̄

θ,ξ
(c′)C̃

1:H
(c′) − 1

N

N∑
i′=1

∆Γ
(c)Σ̄

θ,ξ
(i′)C̃

1:H
(i′) + C̃1:H

(c) Σ̄
ξ,θ
(c)∆

Γ
(c′) −

1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ,θ
(i)∆

Γ
(c′)

+ C̃1:H
(c) Σ̄

ξ
(c,c′)C̃

1:H
(c′) − 1

N

N∑
i′=1

C̃1:H
(c) Σ̄

ξ
(c,i′)C̃

1:H
(i′) − 1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ
(i,c′)C̃

1:H
(c′) +

1

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i) Σ̄

ξ
(i,i′)C̃

1:H
(i′) +Rξ(c,c′) ,

where Rξ(c,c′) = Rξ(c,c′),1+Rξ(c′,c),1
⊤+Rξ(c,c′),2+Rξ(c′,c),2

⊤+Rξ(⋆,c′),3+Rξ(⋆,c)
⊤+Rξ(c,c′),4+Rξ(c′,c),4

⊤+Rξ(c,c′),5, with

Rξ(c,c′),1 = − 1

H

∫
∆Γ

(c) (θ − θ⋆)E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ) ,

Rξ(c,c′),2 = − 1

H

∫
C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ) ,

Rξ(⋆,c′),3 =
1

NH

∫ N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
E

[
1

H
R1:H

(c′) −
1

NH

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ) ,

Rξ(c,c′),4 =
1

H2

∫
E

[(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)(
ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ) ,
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Rξ(c,c′),5 =
1

H2

∫
E

(R1:H
(c) +

1

N

N∑
i=1

R1:H
(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤π(γ,H)(dθ,dΞ) .

Proof. Recall the expression of ξ+(c) from Lemma C.2, we have

ξ+(c) − ξ⋆(c) = ∆Γ
(c) (θ − θ⋆) + C̃1:H

(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
− 1

H
R1:H

(c) +
1

NH

N∑
i=1

R1:H
(i) − 1

H
ε1:H(c) +

1

NH

N∑
i=1

ε1:H(i) .

Taking the expectation and expanding the product, we obtain, for any c, c′ ∈ {1, . . . , N},

E
[(
ξ+(c) − ξ⋆(c)

)(
ξ+(c′) − ξ⋆(c′)

)⊤]
= ∆Γ

(c) (θ − θ⋆)
⊗2

∆Γ
(c′) +∆Γ

(c) (θ − θ⋆)
(
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′)

− 1

N

N∑
i′=1

∆Γ
(c) (θ − θ⋆)

(
ξ(i′) − ξ⋆(i′)

)⊤
C̃1:H
(i′) − 1

H
∆Γ

(c) (θ − θ⋆)E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤
+ C̃1:H

(c)

(
ξ(c) − ξ⋆(c)

)
(θ − θ⋆)

⊤
∆Γ

(c′) + C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)(
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′)

− 1

N

N∑
i′=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)(
ξ(i′) − ξ⋆(i′)

)⊤
C̃1:H
(i′) − 1

H
C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤

− 1

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
(θ − θ⋆)

⊤
∆Γ

(c′) −
1

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)(
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′)

+
1

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)(
ξ(i′) − ξ⋆(i′)

)⊤
C̃1:H
(i′) +

1

NH

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤

− 1

H
E

[
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

](
(θ − θ⋆)

⊤
∆Γ

(c′) +
(
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′) − 1

N

N∑
i′=1

(
ξ(i′) − ξ⋆(i′)

)⊤
C̃1:H
(i′)

)
+

1

H2
E

[(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′) + ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤]

+
1

H2
E

[(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′) + ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)]
.

Integrating over the stationary distribution, this yields

Σ̄
ξ
(c,c′) = ∆Γ

(c)Σ̄
θ
∆Γ

(c′)

+∆Γ
(c)Σ̄

θ,ξ
(c′)C̃

1:H
(c′) − 1

N

N∑
i′=1

∆Γ
(c)Σ̄

θ,ξ
(i′)C̃

1:H
(i′) + C̃1:H

(c) Σ̄
ξ,θ
(c)∆

Γ
(c′) −

1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ,θ
(i)∆

Γ
(c′)

+ C̃1:H
(c) Σ̄

ξ
(c,c′)C̃

1:H
(c′) − 1

N

N∑
i′=1

C̃1:H
(c) Σ̄

ξ
(c,i′)C̃

1:H
(i′) − 1

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ
(i,c′)C̃

1:H
(c′) +

1

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i) Σ̄

ξ
(i,i′)C̃

1:H
(i′)

+
1

H2

∫
E

[(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
ε1:H(c′) −

1

N

N∑
i′=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ)
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− 1

H

∫
E

[
∆Γ

(c) (θ − θ⋆)
(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤
+
(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)
(θ − θ⋆)

⊤
∆Γ

(c′)

]
π(γ,H)(dθ,dΞ)

− 1

H

∫
E

[
C̃1:H
(c)

(
ξ(c)−ξ

⋆
(c)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)
⊤+
(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)(
ξ(c′)−ξ

⋆
(c′)

)⊤
C̃1:H
(c′)

]
π(γ,H)(dθ,dΞ)

+
1

NH

∫
E

[
N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ)

+
1

NH

∫
E

[(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

) N∑
i′=1

(
ξ(i′) − ξ⋆(i′)

)⊤
C̃1:H
(i′)

]
π(γ,H)(dθ,dΞ)

+
1

H2

∫
E

[(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)(
ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ)

+
1

H2

∫
E

[(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ)

+
1

H2

∫
E

[(
R1:H

(c) − 1

N

N∑
i=1

R1:H
(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ) .

To study the noise term, we expand

(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤
= ε1:H(c) ε

1:H
(c′)

⊤ − 1

N

N∑
i=1

ε1:H(i) ε
1:H
(c′)

⊤ − 1

N

N∑
i′=1

ε1:H(c) ε
1:H
(i′)

⊤ +
1

N2

N∑
i=1

N∑
i′=1

ε1:H(i) ε
1:H
(i′)

⊤ .

Now we distinguish two cases. First, if c ̸= c′, we have

1

H2

∫
E

[(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ) = − 1

NH2
Σ̄
ϵ
(c) −

1

NH2
Σ̄
ϵ
(c′) +

1

NH2
Σ̄
ϵ
.

Otherwise, we have c = c′ and

1

H2

∫
E

[(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i)

)(
ε1:H(c) − 1

N

N∑
i=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ) =

1

H2
Σ̄
ϵ
(c) −

2

NH2
Σ̄
ϵ
(c) +

1

NH2
Σ̄
ϵ
,

and plugging these identities in the above equality gives the lemma.

C.2.2. BOUND ON REMAINDER TERMS

Lemma C.6. Assume A1, A2 and A5. Assume the step size γ and the number of local updates H satisfy γH(L+µ) ≤ 1/48,
γβ1/2H1/2 ≤ 1/12, and γβ ≤ L/12. Then, it holds that

| trRθ| ≤ 1080γ5/2HQ

µ3/2
σ3
⋆ +

2 · 6002γ4H2Q2

Nµ2
σ4
⋆ ,

| trRθ,ξ(c) | ≤
6000γ3/2Q

µ3/2
σ3
⋆ +

2 · 6002γ3HQ2

µ2
σ4
⋆ ,

| trRξ(c,c′)| ≤
8000γ1/2Q

Hµ3/2
σ3
⋆ +

4 · 6002γ2Q2

µ2
σ4
⋆ ,

where Rθ, Rθ,ξ and Rξ are defined in Lemma C.3, Lemma C.4 and Lemma C.5 respectively.
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Proof. Bound on Rθ. We bound each of the terms from | trRθ| = |2 trRθ1 + 2 trRθ2 + 2 trRθ3| ≤ |2 trRθ1|+ |2 trRθ2|+
|2 trRθ3|. We have, using Cauchy-Schwarz and Hölder inequalities,

| trRθ1| ≤
γ2

N2

N∑
c=1

∣∣∣ ∫ E
[
tr
(
ε1:H(c)

)(
R1:H

(c)

)⊤]
π(γ,H)(dθ,dΞ)

∣∣∣
≤ γ2

N2

N∑
c=1

(∫
E
[
∥ε1:H(c) ∥2

]
π(γ,H)(dθ,dΞ)

)1/2(∫
E
[
∥R1:H

(c) ∥2
]
π(γ,H)(dθ,dΞ)

)1/2

.

By Lemma C.13 and Lemma C.14,

| trRθ1| ≤
γ2

N

(
H1/2σ⋆ +

6γ1/2β1/2H1/2

µ1/2
σ⋆

)
600γHQ

µ
σ2
⋆ =

600γ3H3/2Q

Nµ
σ3
⋆ +

6 · 600γ7/2β1/2H3/2Q

Nµ3/2
σ3
⋆ .

Then, by Corollary B.1, Lemma C.14, and Lemma 4.6

| trRθ2| ≤
γ

N

N∑
c=1

∣∣∣ ∫ trE
[
R1:H

(c)

]
(θ − θ⋆)

⊤
Γ̄π(γ,H)(dθ,dΞ)

∣∣∣
+
γ2H

N2

N∑
c=1

N∑
c′=1

∣∣∣ ∫ trE
[
R1:H

(c)

] (
ξ(c′) − ξ⋆(c′)

)⊤
C̃1:H
(c′) π(γ,H)(dθ,dΞ)

∣∣∣
≤ γ · 28γHQ

µ
σ2
⋆ ·

3γ1/2

µ1/2
σ⋆ + γ2H · 28γHQ

µ
σ2
⋆ ·

8L1/2

µ1/2H1/2
σ⋆ ,

which gives, using γHL ≤ 1/48 in the second inequality,

| trRθ2| ≤
84Qγ5/2H

µ3/2
σ3
⋆ +

224Qγ3H3/2L1/2

µ3/2
σ3
⋆ ≤ 90Qγ5/2H

µ3/2
σ3
⋆ .

Finally, by Lemma C.14, we obtain

| trRθ3| ≤
γ2

N2

N∑
c=1

N∑
c′=1

∫ ∣∣∣E [tr(R1:H
(c)

)(
R1:H

(c′)

)⊤]
π(γ,H)(dθ,dΞ)

∣∣∣ ≤ γ2
6002γ2H2Q2

µ2
σ4
⋆ .

Summing these inequalities, we obtain

| trRθ| ≤ 1200γ3(µ1/2 + 6γ1/2β1/2)H3/2Q

Nµ3/2
σ3
⋆ +

180Qγ5/2H

µ3/2
σ3
⋆ +

2 · 6002γ4H2Q2

µ2
σ4
⋆ ,

and the result follows from γβ1/2H1/2 ≤ 1/12 and γ1/2H1/2µ1/2 ≤ 1/6.

Bound on Rθ,ξ(c) . We bound each term of | trRθ,ξ(c) | = |Rθ,ξ(c),1 + trRθ,ξ(c),2 + trRθ,ξ(c),3 + trRθ,ξ(c),4 + trRθ,ξ(c),5| ≤ |Rθ,ξ(c),1| +
| trRθ,ξ(c),2|+ | trRθ,ξ(c),3|+ | trRθ,ξ(c),4|+ | trRθ,ξ(c),5|. By Lemma C.13, and Lemma C.14,

| trRθ,ξ(c),1|≤
γ

N

N∑
i=1

∣∣∣ ∫ E

[
tr ε1:H(i)

( 1

H
R1:H

(c) − 1

NH

N∑
i′=1

R1:H
(i′)

)⊤
+ trR1:H

(i)

( 1

H
ε1:H(c) − 1

NH

N∑
i′=1

ε1:H(i′)

)⊤]
π(γ,H)(dθ,dΞ)

∣∣∣
≤γ

((
H1/2σ⋆+

6γ1/2β1/2H1/2

µ1/2
σ⋆

)
· 2 · 600γQ

µ
σ2
⋆

)
+ 2γ

((
H1/2σ⋆+

6γ1/2β1/2H1/2

µ1/2
σ⋆

)
· 600γQ

µ
σ2
⋆

)
,

which implies | trRθ,ξ(c),1| ≤
2400γ2Q(µ1/2+6γ1/2β1/2)H1/2

µ3/2 σ3
⋆. Then, using Corollary B.1, Lemma C.12, and Lemma C.14,

| trRθ,ξ(c),2| ≤
γ

N

N∑
i=1

∣∣∣ ∫ trE
[
R1:H

(i)

] (
∆Γ

(c) (θ − θ⋆)
)⊤

π(γ,H)(dθ,dΞ)
∣∣∣ ≤ γ · 600γQ

µ
σ2
⋆ · ζ2 ·

3γ1/2

µ1/2
σ⋆ ,
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which gives | trRθ,ξ(c),2| ≤
1800γ5/2Qζ2

µ3/2 σ3
⋆. Furthermore, we have, from Lemma 4.6, Lemma C.11, and Lemma C.14,

| trRθ,ξ(c),3| ≤
γ

N

N∑
i=1

∣∣∣ ∫ trE
[
R1:H

(i)

](
C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− 1

N

N∑
i′=1

C̃1:H
(i′)

(
ξ(i′) − ξ⋆(i′)

))⊤

π(γ,H)(dθ,dΞ)
∣∣∣

≤ 2γ · 600γQ
µ

σ2
⋆ ·

γ(H − 1)L

2
· 8L1/2

µ1/2H1/2
σ⋆ ,

therefore, we have | trRθ,ξ(c),3| ≤
4800γ3L3/2H1/2Q

µ3/2 σ3
⋆. We also bound, using Lemma 4.6, Lemma C.10, Lemma C.11, and

Lemma C.14,

|Rθ,ξ(c),4| =
∣∣∣ ∫ trE

[(
Γ̄ (θ − θ⋆) +

γH

N

N∑
i=1

C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

))(
− 1

H
R1:H

(c) +
1

NH

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ)

∣∣∣
≤
(
3γ1/2

µ1/2
σ⋆ + γH · γHL

2
· 8L1/2

µ1/2H1/2
σ⋆

)
· 1200γQ

µ
σ2
⋆ ,

and we obtain |Rθ,ξ(c),4| ≤
(

3γ1/2

µ1/2 σ⋆ +
4γ2H2L3/2σ⋆

µ1/2H3/2

)
1200γQ

µ σ2
⋆ = 3600Qγ3/2+9600Qγ3H3/2L3/2

µ3/2 σ3
⋆. Finally, we have, by

Lemma C.14,

|Rθ,ξ(c),5| ≤
γ

N

N∑
i=1

∣∣∣ ∫ trE

[
R1:H

(i)

( 1

H
R1:H

(c) − 1

NH

N∑
i′=1

R1:H
(i′)

)⊤]
π(γ,H)(dθ,dΞ)

∣∣∣ ≤ γ · 2 · 600
2γ2HQ2

µ2
σ4
⋆ ,

summing these four inequalities gives

| trRθ,ξ(c) | ≤
2400γ2Q(µ1/2 + 6γ1/2β1/2)H1/2

µ3/2
σ3
⋆ +

1800γ5/2Qζ2
µ3/2

σ3
⋆ +

4800γ3L3/2H1/2Q

µ3/2
σ3
⋆

+
3600Qγ3/2 + 9600Qγ3H3/2L3/2

µ3/2
σ3
⋆ +

2 · 6002γ3HQ2

µ2
σ4
⋆ ,

and the result follows from γβ1/2H1/2 ≤ 1/12 and γH(L+ µ) ≤ 1/48.

Bound on Rξ(c,c′). We bound each term of | trRξ(c,c′)| = | trRξ(c,c′),1+trRξ(c′,c),1
⊤+trRξ(c,c′),2+trRξ(c′,c),2

⊤+trRξ(⋆,c′),3+

trRξ(⋆,c),3
⊤ + trRξ(c,c′),4 + Rξ(c′,c),4

⊤ + trRξ(c,c′),5| ≤ | trRξ(c,c′),1| + | trRξ(c′,c),1
⊤| + | trRξ(c,c′),2| + | trRξ(c′,c),2| +

| trRξ(⋆,c′),3|+ | trRξ(⋆,c),3
⊤|+ | trRξ(c,c′),4|+ | trRξ(c′,c),4|+ | trRξ(c,c′),5|. First, by Lemma C.12, and Lemma C.14,

| trRξ(c,c′),1| ≤
1

H

∣∣∣ ∫ tr∆Γ
(c) (θ − θ⋆)E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ)

∣∣∣ ≤ 1

H
·ζ2 ·

3γ1/2

µ1/2
σ⋆ ·

1200γHQ

µ
σ2
⋆ ,

which gives | trRξ(c,c′),1| ≤
3600γ3/2Q

µ3/2 σ3
⋆. Then, using Lemma 4.6, Lemma C.11, and Lemma C.14, we have that

| trRξ(c,c′),2| ≤
1

H

∣∣∣ ∫ tr C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
E

[
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ)

∣∣∣
≤ 1

H
· γ(H − 1)L

2
· 8L1/2

µ1/2H1/2
σ⋆ ·

1200γHQ

µ
σ2
⋆ ,

and thus | trRξ(c,c′),2| ≤ 9600γ2H1/2L3/2Q
µ3/2 σ3

⋆. The next term can be bounded using Lemma 4.6, Lemma C.11, and
Lemma C.14,

| trRξ(⋆,c′),3| =
1

NH

N∑
i=1

∣∣∣ ∫ tr C̃1:H
(i)

(
ξ(i) − ξ⋆(i)

)
E

[
1

H
R1:H

(c′) −
1

NH

N∑
i′=1

R1:H
(i′)

]⊤
π(γ,H)(dθ,dΞ)

∣∣∣
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≤ 1

H
· γ(H − 1)L

2
· 8L1/2

µ1/2H1/2
σ⋆ ·

1200γHQ

µ
σ2
⋆ ,

which implies | trRξ(⋆,c′),3| ≤
9600γ2H1/2L3/2Q

µ3/2 σ3
⋆. Moreover, we have, by Lemma C.13 and Lemma C.14,

| trRξ(c,c′),4| =
1

H2

∣∣∣ ∫ trE

(R1:H
(c) − 1

N

N∑
i=1

R1:H
(i)

)(
ε1:H(c′) −

1

N

N∑
i=1

ε1:H(i′)

)⊤π(γ,H)(dθ,dΞ)
∣∣∣

≤ 1

H2
· 1200γHQ

µ
σ2
⋆ ·
(
2H1/2σ⋆ +

12γ1/2β1/2H1/2

µ1/2
σ⋆

)
,

and thus | trRξ(c,c′),4| ≤
4800γQ(µ1/2+6γ1/2β1/2)

µ3/2H1/2 σ3
⋆. Finally, Lemma C.14 gives

| trRξ(c,c′),5| =
1

H2

∣∣∣ ∫ trE

(R1:H
(c) − 1

N

N∑
i=1

R1:H
(i)

)(
R1:H

(c′) −
1

N

N∑
i′=1

R1:H
(i′)

)⊤π(γ,H)(dθ,dΞ)
∣∣∣

≤ 1

H2

4 · 6002γ2H2Q2

µ2
σ4
⋆ .

Combining these bounds, we obtain

trRξ(c,c′) ≤
7200γ3/2ζ2Q

µ3/2
σ3
⋆ +

19200γ2H1/2L3/2Q

µ3/2
σ3
⋆ +

19200γ2H1/2L3/2Q

µ3/2
σ3
⋆

+
9600γQ

(
µ1/2 + 6γ1/2β1/2

)
µ3/2H1/2

σ3
⋆ +

4 · 6002γ2Q2

µ2
σ4
⋆ ,

and we conclude using γβ1/2H1/2 ≤ 1/12 and γH(L+ µ) ≤ 1/48.

Corollary C.7. Assume A1, A2 and A5. Assume the step size γ and the number of local updatesH satisfy γH(L+µ) ≤ 1/12.
Then, it holds that

∥Rθ∥ +
γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ ≤ 15080γ5/2HQ

µ3/2
σ3
⋆ +

8 · 6002γ4H2Q2

µ2
σ4
⋆ .

Proof. We have, using the results from Lemma C.6,

∥Rθ∥ +
γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥

≤ trRθ +
γ(H − 1)

N

N∑
c=1

trRθ,ξ(c) +
γ2(H − 1)2

N2

N∑
c,c′=1

trRξ(c,c′)

≤
(
1080γ5/2H + 6000γ3/2 · γH +

8000γ1/2

H
· γ2H2

) Q

µ3/2
σ3
⋆ +

(
2γ4H2 + 2γ3H · γH + 4γ2 · γ2H2

)6002Q2

µ2
σ4
⋆ ,

and the result follows.

C.3. Upper bound on covariance matrices – Proof of Lemma 4.7 Theorem 4.8

In this section, we derive an upper bound on SCAFFOLD’s global iterates’ error covariance ∥Σ̄θ∥. To this end, we define

Cθ = ∥Σ̄θ∥ , Cθ,ξ =
1

N

N∑
c=1

∥Σ̄θ,ξ
(c)∥ , Cξ,= =

1

N

N∑
c=1

∥Σ̄ξ
(c,c)∥ , Cξ, ̸= =

1

N(N − 1)

N∑
c ̸=c′

∥Σ̄ξ
(c,c′)∥ .
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We also define the following quantity, relating the average norm of the noise injected at each step

ςϵ =
1

N

N∑
c=1

∥Σ̄ϵ
(c)∥ .

We now derive a system of inequations that relate all the quantities we just defined. This Lemma is a complete version of
Lemma 4.7.
Lemma C.8. Assume A1, A2 and A5. Assume the step size γ and the number of local updates H satisfy γH(L+µ) ≤ 1/12,
then

Cθ ≤ (1− γµ)HCθ + γ2H(H − 1)LCθ,ξ +
γ4H2(H − 1)2L2

4

(
1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+
γ2

N
ςϵ + ∥Rθ∥ , (68)

Cθ,ξ ≤ 2ζ2C
θ + 4γ3H(H − 1)2L2

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

4γ

NH
ςϵ +

2

N

N∑
c=1

∥Rθ,ξ(c)∥ , (69)

1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸= ≤ 2ζ22C

θ +
9

NH2
ςϵ + 4ζ2γ(H − 1)LCθ,ξ +

2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ . (70)

Proof. Parameter Covariance. Taking the operator norm of Lemma C.3 and using triangle inequality and sub-
multiplicativity of the matrix operator norm, we have

∥Σ̄θ∥ ≤ ∥Γ̄Σ̄θ
Γ̄∥ +

γH

N

N∑
c=1

∥Γ̄Σ̄θ,ξ
(c)C̃

1:H
(c) ∥ + ∥C̃1:H

(c) Σ̄
ξ,θ
(c) Γ̄∥

+
γ2H2

N2

N∑
c=1

N∑
c′=1

∥C̃1:H
(c) Σ̄

ξ
(c,c′)C̃

1:H
(c′) ∥ +

γ2

N
∥Σ̄ϵ∥ + ∥Rθ∥

≤ ∥Γ̄∥∥Σ̄θ∥∥Γ̄∥ +
γH

N

N∑
c=1

∥Γ̄∥∥Σ̄θ,ξ
(c)∥∥C̃1:H

(c) ∥ + ∥C̃1:H
(c) ∥∥Σ̄ξ,θ

(c)∥∥Γ̄∥

+
γ2H2

N2

N∑
c=1

N∑
c′=1

∥C̃1:H
(c) ∥∥Σ̄ξ

(c,c′)∥∥C̃1:H
(c′) ∥ +

γ2

N
∥Σ̄ϵ∥ + ∥Rθ∥ .

This gives, using Lemma C.10, Lemma C.11,

Cθ ≤ (1− γµ)HCθ +
γ2

N
∥Σ̄ϵ∥ + ∥Rθ∥ +

γH

N

N∑
c=1

{
∥Σ̄θ,ξ

(c)∥ · γ(H − 1)L

2
+
γ(H − 1)L

2
· Cθ,ξ

}

+
γ2H2

N2

N∑
c=1

γ(H − 1)L

2
· Cξ,= · γ(H − 1)L

2
+
γ2H2

N2

N∑
c=1

N∑
c′=1

γ(H − 1)L

2
· Cξ, ̸= · γ(H − 1)L

2

≤ (1− γµ)HCθ +
γ2

N
∥Σ̄ϵ∥ + ∥Rθ∥

+ γ2H(H − 1)LCθ,ξ +
γ4H2(H − 1)2

4N
Cξ,= +

γ4H2(H − 1)2L2

4

(
1− 1

N

)
Cξ, ̸= .

Parameter-Control Variate Covariance. By Lemma C.4, we have

∥Σ̄θ,ξ
(c)∥ ≤ ∥Γ̄∥∥Σ̄θ∥∥∆Γ

(c)∥ + ∥Γ̄∥∥Σ̄θ,ξ
(c)∥∥C̃1:H

(c) ∥

+
1

N

N∑
i′=1

∥Γ̄∥∥Σ̄θ,ξ
(i′)∥∥C̃1:H

(i′) ∥ +
γH

N

N∑
i=1

∥C̃1:H
(i) ∥∥Σ̄ξ,θ

(i) ∥∥∆Γ
(c)∥

+
γH

N

N∑
i=1

∥C̃1:H
(i) ∥∥Σ̄ξ

(i,c)∥∥C̃1:H
(c) ∥ +

γH

N2

N∑
i=1

N∑
i′=1

∥C̃1:H
(i) ∥∥Σ̄ξ

(i,i′)∥∥C̃1:H
(i′) ∥ +

γ

NH
∥Σ̄ϵ

(c) − Σ̄
ϵ∥ + ∥Rθ,ξ(c)∥ ,
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Averaging this inequality for c = 1 to N and using Lemma C.10, Lemma C.11, and Lemma C.12 gives

Cθ,ξ ≤ (1− γµ)H · ζ2 · ∥Σ̄
θ∥ + (1− γµ)H · γ(H − 1)L · Cθ,ξ + γH · γ(H − 1)L · ζ2 · Cθ,ξ

+ γH · γ(H − 1)L ·
( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
· γ(H − 1)L

+
γH

N2

N∑
i=1

N∑
i′=1

γ(H − 1)L ·
( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
· γ(H − 1)L+

γ

NH
∥Σ̄ϵ

(c) − Σ̄
ϵ∥ + ∥Rθ,ξ(c)∥ ,

which gives

Cθ,ξ ≤ ζ2 · Cθ + γ(H − 1)LCθ,ξ + γ2H(H − 1)Lζ2 · Cθ,ξ + 2γ3H(H − 1)2L2
( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

γ

NH
∥Σ̄ϵ

(c) − Σ̄
ϵ∥ +

1

N

N∑
c=1

∥Rθ,ξ(c)∥ ,

and the second inequality follows from γHL+ γ2H(H − 1)Lζ2 ≤ 1/2.

Control variate covariance. By Lemma C.5, we have

∥Σ̄ξ
(c,c′)∥ ≤ ∥∆Γ

(c)∥∥Σ̄
θ∥∥∆Γ

(c′)∥ +
1

NH2
∥Σ̄ϵ

(c)∥ +
1

NH2
∥Σ̄ϵ

(c′)∥ +
1

NH2
∥Σ̄ϵ∥

+ ∥∆Γ
(c)∥∥Σ̄

θ,ξ
(c′)∥∥C̃1:H

(c′) ∥ +
1

N

N∑
i′=1

∥∆Γ
(c)∥∥Σ̄

θ,ξ
(i′)∥∥C̃1:H

(i′) ∥ + ∥C̃1:H
(c) ∥∥Σ̄ξ,θ

(c)∥∥∆Γ
(c′)∥ +

1

N

N∑
i=1

∥C̃1:H
(i) ∥∥Σ̄ξ,θ

(i) ∥∥∆Γ
(c′)∥

+ ∥C̃1:H
(c) ∥∥Σ̄ξ

(c,c′)∥∥C̃1:H
(c′) ∥ +

1

N

N∑
i′=1

∥C̃1:H
(c) ∥∥Σ̄ξ

(c,i′)∥∥C̃1:H
(i′) ∥ +

1

N

N∑
i=1

∥C̃1:H
(i) ∥∥Σ̄ξ

(i,c′)∥∥C̃1:H
(c′) ∥

+
1

N2

N∑
i=1

N∑
i′=1

∥C̃1:H
(i) ∥∥Σ̄ξ

(i,i′)∥∥C̃1:H
(i′) ∥ + ∥Rξ(c,c′)∥ .

Averaging over all pairs c, c′ ∈ {1, . . . , N} with c ̸= c′, we have

Cξ, ̸= ≤ ζ2 · Cθ · ζ2 +
1

NH2
ςϵ +

1

NH2
ςϵ +

1

NH2
ςϵ + ζ2 · Cθ,ξ ·

γ(H − 1)L

2
+ 2ζ2 · Cθ,ξ · γ(H − 1)L

+
γ2(H − 1)2L2

4
Cξ, ̸= + 2 · γ

2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+
γ2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

1

N(N − 1)

∑
c̸=c′

∥Rξ(c,c′)∥

≤ ζ22C
θ +

3

NH2
ςϵ + 3ζ2γ(H − 1)LCθ,ξ

+
γ2(H − 1)2L2

4
Cξ, ̸= +

3γ2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

1

N(N − 1)

∑
c̸=c′

∥Rξ(c,c′)∥ .

Bounding γ2(H−1)2L2

4 Cξ, ̸= + 2 · γ
2(H−1)2L2

4 Cξ, ̸= + γ2(H−1)2L2

4 Cξ, ̸= ≤ 1/2Cξ, ̸=, we obtain the third inequality of the
lemma. With similar derivations, we bound the control variates’ covariances

Cξ,= ≤ ζ2 · Cθ · ζ2 +
1

H2
ςϵ +

2

NH2
ςϵ +

1

NH2
ςϵ + ζ2 · Cθ,ξ ·

γ(H − 1)L

2
+ 2ζ2 · Cθ,ξ · γ(H − 1)L

+
γ2(H − 1)2L2

4
Cξ,= + 2 · γ

2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+
γ2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

1

N

N∑
c=1

∥Rξ(c,c)∥
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≤ ζ22C
θ +

4

H2
ςϵ + 3ζ2γ(H − 1)LCθ,ξ

+
γ2(H − 1)2L2

4
Cξ,= +

3γ2(H − 1)2L2

4

( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

1

N

N∑
c=1

∥Rξ(c,c)∥ .

Summing these two inequalities, we obtain

1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸= ≤ ζ22C

θ +
8

NH2
ςϵ + 3ζ2γ(H − 1)LCθ,ξ

+ γ2(H − 1)2L2
( 1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸=

)
+

1

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ .

Since γ2(H − 1)2L2 ≤ 1/122, we obtain

1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸= ≤ 2ζ22C

θ +
9

NH2
ςϵ + 4ζ2γ(H − 1)LCθ,ξ +

2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ ,

which is the third inequality of the lemma.

Lemma C.9. Assume A1, A2, A3, A4, and A5. Furthermore, assume that 5γ(H − 1)Lζ2 ≤ µ/2 and γH(L+ µ) ≤ 1/12
and γβ

µ ≤ 1/19. Then, it holds that

Cθ ≤ 10γ

Nµ
σ2
⋆ +

2

γµH

∥Rθ∥ +
γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥

 .

Proof. Plugging (70) in (69), we obtain

Cθ,ξ ≤ 2ζ2C
θ+4γ3H(H−1)2L2

(
2ζ22C

θ+
9ςϵ

NH2
+4ζ2γ(H−1)LCθ,ξ+

2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥

)
+

4γ

NH
ςϵ+

2

N

N∑
c=1

∥Rθ,ξ(c)∥

≤ 3ζ2C
θ +

5γ

NH
ςϵ + 16γ4H(H − 1)3L3ζ2C

θ,ξ +
8γ3H(H − 1)2L2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ +
2

N

N∑
c=1

∥Rθ,ξ(c)∥ ,

where we used γHL ≤ 1/12 to bound 4γ3H(H − 1)2L2 · 2ζ22 ≤ ζ2 and 4γ3H(H − 1)2L2 · 9
NH2 ≤ γ

NH . Using this
inequality again, we have 16γ4H(H − 1)3L3ζ2 ≤ 1/122. This allows to simplify the previous inequality, obtaining

Cθ,ξ ≤ 4ζ2C
θ +

6γ

NH
ςϵ +

9γ3H(H − 1)2L2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ +
3

N

N∑
c=1

∥Rθ,ξ(c)∥ . (71)

Plugging this bound in (70), we obtain

1

N
Cξ,= +

(
1− 1

N

)
Cξ, ̸= ≤ 4ζ22C

θ +
10

NH2
ςϵ +

3

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ +
12ζ2γ(H − 1)L

N

N∑
c=1

∥Rθ,ξ(c)∥ , (72)

where we used 4ζ2γ(H − 1)L · 4ζ2 ≤ 2ζ22 , 4ζ2γ(H − 1)L · 6γ
NH ≤ 1

NH2 and 4ζ2γ(H − 1)L · 9γ3H(H−1)2L2

N2 ≤ 1
N2 .

We now plug (71) and (72) in (68), which gives

Cθ ≤ (1− γµ)HCθ +

(
γ2H(H − 1)L+

γ4H2(H − 1)2L2ζ2
4

)
· 4ζ2Cθ

+

(
6γ3H(H − 1)L

NH
+

10γ4H2(H − 1)2L2

4NH2
+
γ2

N

)
ςϵ
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+

(
γ2H(H − 1)L · 9γ3H(H − 1)2L2 +

3γ4H2(H − 1)2L2

4

)
1

N2

N∑
c,c′=1

∥Rξ(c,c′)∥

+

(
3γ2H(H − 1)L+

γ4H2(H − 1)2L2

4
· 12ζ2γ(H − 1)L

)
1

N

N∑
c=1

∥Rθ,ξ(c)∥ + ∥Rθ∥ ,

which can be simplified using γHL ≤ 1/12 to obtain

Cθ ≤ (1− γµ)HCθ + 5γ2H(H − 1)Lζ2C
θ +

2γ2

N
ςϵ + ∥Rθ∥ +

γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ .

Now, using γHµ ≤ 1, we have (1− γµ)H ≤ 1− γµH/2. Consequently, we have (1− γµ)HCθ + 5γ2H(H − 1)ζ2C
θ ≤

1− γH(µ− 5γ(H − 1)Lζ2. Since we assumed 5γ(H − 1)Lζ2 ≤ µ/2, we obtain

Cθ ≤ (1− γµH/2)Cθ +
2γ2

N
ςϵ + ∥Rθ∥ +

γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ .

We then bound the variance term using Lemma C.13, which implies that

ςϵ ≤ Hσ2
⋆ +

28γβH

µ
σ2
⋆ .

Plugging this bound in the previous inequality, we obtain

γµH

2
Cθ ≤ 2γ2H

N
σ2
⋆ +

56γ3βH

Nµ
σ2
⋆ + ∥Rθ∥ +

γ(H − 1)

N

N∑
c=1

∥Rθ,ξ(c)∥ +
γ2(H − 1)2

N2

N∑
c,c′=1

∥Rξ(c,c′)∥ ,

which gives the first inequality of the theorem.

Theorem 4.8 (Restated). Assume A1, A2, A3, A4, and A5. Furthermore, assume that γHLζ2 ≤ µ/10, γH(L+ µ) ≤ 1/48
and γβ ≤ µ/19. Then, it holds that

Cθ ≤ 10γ

Nµ
σ2
⋆ +

6 · 15080γ3/2Q
µ5/2

σ3
⋆ +

48 · 6002γ3HQ2

µ3
σ4
⋆ .

Proof. The result follows from Lemma C.9 and Corollary C.7.

C.4. Bounds on intermediate quantities

C.4.1. BOUND ON MATRICES

Lemma C.10. Bound on Γ(c)’s powers Let h > 0, γ ≥ 0, recall Γ(c) = Id − γ∇2f(c)(θ
⋆). Assume A1, A2, and that

γ ≤ 1/L, then it holds that

∥Γh(c)∥ ≤ (1− γµ)h .

Proof. Follows from A1 and A2 with γ ≤ 1/L.

Lemma C.11. Let h > 0, γ ≥ 0, recall Γ(c) = Id− γ∇2f(c)(θ
⋆). Assume A1, A2, and that γ ≤ 1/L, then it holds that

∥C̃1:H
(c) ∥ ≤ γ(H − 1)L

2
,

Proof. Recall that C̃1:H
(c) = Id− 1

H

∑H−1
h=0 ΓH−h−1

(c) . Since for any (square) matrix A anyγ > 0 and any k ∈ N∗ we get that

Id−
(
I − γA

)k
= γA

k−1∑
ℓ=0

(
Id− γA

)ℓ
,
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we obtain

C̃1:H
(c) =

1

H

H−1∑
h=0

(
Id− (Id− γ∇2f(c)(θ

⋆))H−h−1
)
=

γ

H
∇2f(c)(θ

⋆)

H−1∑
h=0

(H − h− 1)(Id− γ∇2f(c)(θ
⋆))h . (73)

Using the triangle inequality, A2 and Lemma C.10, we obtain

∥C̃1:H
(c) ∥ =

γL

H

H−1∑
h=0

(H − h− 1)(1− γµ)h ,

and the lemma follows from
∑H−1
h=0 h = H(H−1)

2 .

Lemma C.12. Let h > 0, γ ≥ 0, recall Γ(c) = Id− γ∇f(c)(θ⋆). Assume A1, A2, A4, and that γ ≤ 1/L, then it holds that

∥∆Γ
(c)∥ ≤ ζ2 .

Proof. We have, using Lemma F.1,

1

γH

(
ΓH(c) − Γ̄

)
=

1

γHN

N∑
i=1

((
Id− γ∇f(c)(θ⋆)

)H −
(
Id− γ∇f(i)(θ⋆)

)H)
=

1

HN

N∑
i=1

H∑
h=0

(
Id− γ∇f(c)(θ⋆)

)h−1(∇f(c)(θ⋆)−∇f(i)(θ⋆)
)
−
(
Id− γ∇f(i)(θ⋆)

)H−h−1
.

The result follows from taking the norm, using triangle inequality, Lemma C.10, and A4.

C.4.2. BOUND ON THE NOISE TERMS

Lemma C.13. Assume A1, A2 and A5. Let γ > 0, H > 0, such that γH(L+ µ) ≤ 1/12, then∫
E
[
∥ε1:H(c) ∥2

]
π(γ,H)(dθ,dΞ) ≤ Hσ2

⋆ +
28γβH

µ
σ2
⋆ .

Proof. Since εh(c) is a martingale difference sequence, we have

E
[
∥ε1:H(c) ∥2

]
=

H−1∑
h=0

E
[
∥ΓH−h−1

(c) εh+1
(c) ∥2

]
≤
H−1∑
h=0

∥ΓH−h−1
(c) ∥E

[
∥εh+1

(c) ∥2
]
. (74)

By Lemma C.10, and A5, we have

E
[
∥ε1:H(c) ∥2

]
≤
H−1∑
h=0

(1− γµ)h
(
σ2
⋆ + β∥Th(c)(θ; ξ(c))− θ⋆∥2

)
. (75)

Integrating over the stationary distribution π(γ,H), and using Lemma 4.6 gives the result.

C.4.3. BOUND ON THE REMAINDERS

Lemma C.14. Assume A1, A2, A3, and A5. Let γ > 0, H > 0, such that γH(L+ µ) ≤ 1/12, then∫
E
[
∥R1:H

(c) ∥
]
π(γ,H)(dθ,dΞ) ≤

28γHQ

µ
σ2
⋆ .

If γL ≤ 1/48, γH(L+ µ) ≤ 1/24, γH1/2β1/2 ≤ 1/12 and γβ ≤ L/12, then it also holds that∫
E
[
∥R1:H

(c) ∥2
]
π(γ,H)(dθ,dΞ) ≤

6002γ2H2Q2

µ2
σ4
⋆ .
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Proof. Taking the norm of R1:H
(c) , and using the triangle inequality, A3, and Lemma C.10, we have

∥R1:H
(c) ∥ ≤

H−1∑
h=0

∥∥∥ΓH−h−1
(c) D̄3,h

(c)

(
Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆

)⊗2 ∥∥∥ ≤
H−1∑
h=0

Q∥Th(c)(θ; ξ(c), Z
1:h
(c) )− θ⋆∥2 .

Integrating over the stationary distribution and taking the expectation, and using Lemma 4.6, we obtain the first inequality.
The second inequality follows from similar computations, using Jensen’s inequality to bound

∥R1:H
(c) ∥2 ≤ H

H−1∑
h=0

∥∥∥ΓH−h−1
(c) D̄3,h

(c)

(
Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆

)⊗2 ∥∥∥2 ≤ H

H−1∑
h=0

Q2∥Th(c)(θ; ξ(c), Z
1:h
(c) )− θ⋆∥4 ,

and the result follows from taking the expectation and integrating over SCAFFOLD’s stationary distribution, then using
Lemma B.5 to bound each term of the sum.

D. Non-Asymptotic Rates for SCAFFOLD – Proof of Theorem 4.9
Theorem 4.9 (Restated). Assume A1, A2, A3, A4, and A5. Furthermore, assume that γHLζ2 ≤ µ/10, γH(L+ µ) ≤ 1/48
and γβ ≤ µ/19. Then, the mean squared error of SCAFFOLD’s global iterates, initialized with θ0 ∈ Rd and ξ(1) = · · · =
ξ(N) = 0 ∈ Rd is

E
[
∥θT − θ⋆∥2

]
≤
(
1− γµ

4

)HT {
2∥θ0 − θ⋆∥2 + 2γ2H2ζ21 +

64σ2
⋆

Lµ

}
+

20dγ

Nµ
σ2
⋆ +

12 · 15080dγ3/2Q
µ5/2

σ3
⋆ +

96 · 6002dγ3HQ2

µ3
σ4
⋆ .

Proof. Let θ̂0 ∈ Rd and ξ̂0(1), · · · , ξ̂
0
(N) ∈ Rd be sampled from SCAFFOLD’s stationary distribution

X̂0 =
(
θ̂0, ξ̂0(1), · · · , ξ̂

0
(N)

)
∼ π(γ,H) .

For an i.i.d. sequence {Zt,1:H(1:N)}t∈N determining the randomness of the algorithm, where Zt,h(c) ∼ ν(c) for c ∈ {1, . . . , N}

and h ∈ {0, . . . ,H}, we define two sequences, starting respectively from X0 =
(
θ0, ξ0(1), · · · , ξ

0
(N)

)
and X̂0 =(

θ̂0, ξ̂0(1), · · · , ξ̂
0
(N)

)
, and following the recursion for t ≥ 0,

Xt+1 =
(
θt+1, ξt+1

(1) , · · · , ξ
t+1
(N)

)
= S

(
Xt;Zt+1,1:H

(1:N)

)
,

X̂t+1 =
(
θ̂t+1, ξ̂t+1

(1) , · · · , ξ̂
t+1
(N)

)
= S

(
X̂t;Zt+1,1:H

(1:N)

)
.

The first sequence are the actual iterates of SCAFFOLD, while the second one is its counterpart with the same realization of
noise, but initialized in the stationary distribution. By definition of the stationary distribution, all iterations of this second
sequence also follow the stationary distribution, i.e., for all t ≥ 0,

X̂t ∼ π(γ,H) .

We can thus decompose the error in two parts

E
[
∥θT − θ⋆∥2

]
≤ 2E[∥θT − θ̂T ∥2] + 2E[∥θ̂T − θ⋆∥2] , (76)

where we recall X⋆ =
(
θ⋆, ξ⋆(1), . . . , ξ

⋆
(N)

)
is the optimal vector. The first term is an optimization term, which determines

the distance from current iterate to an iterate drawn in the stationary distribution. The second term is the variance in the
stationary distribution. We now bound each of these two terms.
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Bounding the optimization term. Using Lemma 4.1 recursively with the natural filtration of the process {Xt}t≥0, we can
bound the first term as

2E[∥θT − θ⋆∥2] ≤ 2E[∥XT − X̂T ∥2]

≤ 2
(
1− γµ

4

)HT
∥X0 − X̂0∥2

≤ 4
(
1− γµ

4

)HT
∥X0 −X⋆∥2 + 4

(
1− γµ

4

)HT
∥X̂0 −X⋆∥2 . (77)

Integrating (77) over the stationary distribution and using Corollary B.1, we have

2E[∥θT − θ⋆∥2] ≤ 4
(
1− γµ

4

)HT
∥X0 −X⋆∥2 +

(
1− γµ

4

)HT 64γ

µ
σ2
⋆ . (78)

Bounding the variance term. For the second term, we use Theorem 4.8 to bound

2E[∥θ̂T − θ⋆∥2] = 2

∫
∥θ − θ⋆∥2π(γ,H)(dθ,dΞ) ≤ 2d∥Σ̄θ∥

≤ 20dγ

Nµ
σ2
⋆ +

12 · 15080dγ3/2Q
µ5/2

σ3
⋆ +

96 · 6002dγ3HQ2

Nµ3
σ4
⋆ . (79)

Final rate. Plugging (78) and (79) in (76), we obtain

E
[
∥θT − θ⋆∥2

]
≤
(
1− γµ

4

)HT (
∥θ − θ⋆∥2 + γ2H2

N

N∑
c=1

∥ξ(c) − ξ⋆(c)∥
2 +

64γ

µ
σ2
⋆

)

+
20dγ

Nµ
σ2
⋆ +

16 · 15080γ3/2Q
µ5/2

σ3
⋆ +

96 · 6002dγ3HQ2

Nµ3
σ4
⋆ ,

and the result follows by taking ξ(c) = 0 for all c ∈ {1, . . . , N} and using the fact that ξ⋆(c) = −∇f(c)(θ⋆).

Corollary 4.10 (Restated). Let ϵ > 0. With Theorem 4.9’s assumptions, we can set γ ≲ min( 1
L ,

Nµϵ2

σ2
⋆
, µ

5/3ϵ4/3

Q2/3σ2
⋆
, L

1/2µ3/2ϵ
Qσ2

⋆
)

and H ≲ σ2
⋆ min(1,µ/ζ2)

Lµϵ2 max( 1
N ,

Q2/3ϵ2/3

µ , QL
1/2ϵ

µ1/2 ). Then, SCAFFOLD guarantees E[∥θT − θ⋆∥2] ≤ ϵ2 for T ≳
L
µ max(1, ζ2/µ) log(

∥θ0−θ⋆∥2+ζ21/L
2

ϵ2 ), and the number of stochastic gradients computed by each client is

TH ≲ σ2
⋆

µ2ϵ2 max( 1
N ,

Q2/3ϵ2/3

µ , QL
1/2ϵ

µ1/2 ) log(ψ0

ϵ2 ) ,

where ψ0 = ∥θ0 − θ⋆∥2 + ζ21/L
2 + σ2

⋆/(Lµ).

Proof. By Theorem 4.9, we have

E
[
∥θT − θ⋆∥2

]
≲
(
1− γµ

4

)HT{
∥θ0 − θ⋆∥2 + γ2H2ζ1 +

γσ2
⋆

µ

}
+

γ

Nµ
σ2
⋆ +

γ3/2Q

µ5/2
σ3
⋆ +

γ3HQ2

µ3
σ4
⋆ .

For the last three terms to be smaller than ϵ2, we require

γ ≲ min
( 1
L
,
Nµϵ2

σ2
⋆

,
µ5/3ϵ4/3

Q2/3σ2
⋆

,
L1/2µ3/2ϵ

Qσ2
⋆

)
,

where the first two conditions follow from the terms in γ and γ3/2 and the last one follows from the term in γ3H , using
the property γH ≤ 1/L. To choose H , we remark that, in Theorem 4.9, we require γHL ≲ 1 and γHLζ2 ≲ µ. Thus,
choosing the largest step size possible, we have

H ≲
1

γL
min(1, µ/ζ2) ≲

σ2
⋆min(1, µ/ζ2)

Lµϵ2
max

( 1

N
,
Q2/3ϵ2/3

µ
,
QL1/2ϵ

µ1/2

)
. (80)
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This gives

E
[
∥θT − θ⋆∥2

]
≲
(
1− γµ

4

)HT{
∥θ0 − θ⋆∥2 + γ2H2ζ21 +

γσ2
⋆

µ

}
+ ϵ2 .

Now, we choose γ and H as big as possible, which gives

T ≳
L

µ
max(1, ζ2/µ) log

(
∥θ0 − θ⋆∥2 + ζ21/L

2 + σ2
⋆/(Lµ)

ϵ2

)
, (81)

such that E
[
∥θT − θ⋆∥2

]
≤ ϵ2. Since each client computes TH gradients, the result follows from (80) and (81).

E. Bias of SCAFFOLD

We now give first-order expression of the bias of SCAFFOLD. For θ ∈ Rd and Ξ = (ξ(1), . . . , ξ(N)) ∈ RN×d, we define the
bias in the stationary distribution of the parameters and control variates as

b̄
θ ∆
=

∫
(θ − θ⋆)π(γ,H)(dθ,dΞ) , b

∆
=

∫ (
ξ(c) − ξ⋆(c)

)
π(γ,H)(dθ,dΞ) .

Alike the tensors defined in (57) and (58), we define the following tensor that will be used to expand the gradients to third
order,

D̄4,h
(c) (θ) =

∫ 1

0

(1− t)2∇4f(c)(θ
⋆ + t

(
Th(c)(θ; ξ(c), Z

1:h
(c) )− θ⋆

)
)dt . (82)

As in Appendix C, we will often denote D̄4,h
(c) = D̄4,h

(c) (θ
h
(c)) for conciseness.

Lemma E.1. Assume the step size γ and the number of local updates H satisfy γH(L+µ) ≤ 1/12. Under these conditions,
it holds that

Γh(c) = Id− γh∇2f(c)(θ
⋆) +O(γ2H2) ,

Γ̄ = Id− γH∇2f(θ⋆) +O(γ2H2) ,

C̃1:H
(c) =

γ(H − 1)

2
∇2f(c)(θ

⋆) +O(γ2H) .

Proof. The first equality follows from expanding Γ(c) =
(
Id− γ∇2f(c)(θ

⋆)
)h

using the Binomial theorem and the fact
that Id and ∇2f(c)(θ

⋆) commute. Then, terms of higher order can be bounded by bounding the remainder terms using the
exponential series and the fact that ∇2f(c)(θ

⋆) ≼ L with γHL ≤ 1. The second equality follows from the first one with
h = H and ∇2f(θ⋆) = 1

N

∑N
c=1 ∇2f(c)(θ

⋆). The last identity follows from (73) and Lemma C.10.

E.1. Bias on the Control Variates

Lemma E.2 (Bias of Control Variates). Assume A1, A2 and A5. Let c ∈ {1, . . . , N}, Z = Z1:H
(1:N) be i.i.d. random variables.

Assume the step size γ and the number of local updates H satisfy γH(L + µ) ≤ 1/12. Under these conditions, control
variates’ bias satisfies

b̄
ξ
(c) = (∇2f(c)(θ

⋆)−∇2f(θ⋆))b̄
θ
+O(γ) , (83)

Proof. Let θ ∈ Rd and ξ(1), . . . , ξ(N) ∈ Rd. For c ∈ {1, . . . , N} and h ∈ {0, . . . ,H}, define

θhc = Th(c)(θ; ξ(c)) = θ − γ

h−1∑
ℓ=0

{
∇f(c)(Tℓ(c)(θ; ξ(c))) + εℓ+1

(c) (Zℓ+1
(c) ) + ξ(c)

}
, (84)

ξ+(c) = V(c)(ξ(c); θ, Z
1:H
(1:N)) = ξ(c) +

1

γH

(
TH(c)(θ; ξ(c), Z

1:H
(c) )− T(θ; ξ(1:N), Z

1:H
(1:N))

)
. (85)
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First, we derive a first-order expansion of the local updates error. Using Corollary B.1 to bound the remainder term, we have

θhc − θ⋆ = θ − θ⋆ − γ

h−1∑
ℓ=0

{
∇f(c)(θ⋆) + εℓ+1

(c) (Zℓ+1
(c) ) + ξ(c) +O(γ1/2)

}
(86)

= θ − θ⋆ − γh(ξ(c) − ξ⋆(c))− γ

h−1∑
ℓ=0

εℓ+1
(c) (Zℓ+1

(c) ) +O(γ3/2h) . (87)

Then, we recall the expression of the control variates updates

ξ+(c) = ξ(c) +
1

γH

(
TH(c)(θ; ξ(c), Z

1:H
(c) )− T(θ; ξ(1:N), Z

1:H
(1:N))

)
(88)

= ξ(c) −
1

H

(
H∑
h=0

∇f(c)(θhc ) + εℓ+1
(c) (Zℓ+1

(c) ) + ξ(c) −
1

N

N∑
i=0

H∑
h=0

∇f(i)(θhi ) + εℓ+1
(i) (Zℓ+1

(i) ) + ξ(i)

)
. (89)

Taking the conditional expectation, and expanding the gradients we have

E
[
ξ+(c)

]
= − 1

H

(
H∑
h=0

∇f(c)(θ⋆) +∇2f(c)(θ
⋆)E

[
θhc − θ⋆

]
− 1

N

N∑
i=0

H∑
h=0

∇2f(i)(θ
⋆)E

[
θhi − θ⋆

]
+O(γ)

)

= − 1

H

(
H∑
h=0

−ξ⋆(c) +∇2f(c)(θ
⋆)E

[
θhc − θ⋆

]
− 1

N

N∑
i=0

H∑
h=0

∇2f(i)(θ
⋆)E

[
θhi − θ⋆

]
+O(γ)

)
.

Since E
[
θhi − θ⋆

]
= θ − θ⋆ +O(γH), we have

E
[
ξ+(c) − ξ⋆(c)

]
= (∇2f(c)(θ

⋆)−∇2f(θ⋆))(θ − θ⋆) +O(γ) , (90)

and the result of the lemma follows.

E.2. Expression of the Parameter’s Variance – Proof of Lemma 5.1

Lemma 5.1 (Restated). Assume A1, A2, A3, A4, A5. Furthermore, assume that the step size γ and number of local updates
H satisfy γHLζ2 ≤ µ/10 and γH(L+ µ) ≤ 1/48 and γβ ≤ µ/19. Then, it holds that, for c ̸= c′ ∈ {1, . . . , N},

Σ̄
θ
=

γ

N
AC(θ⋆) +O(γ2H + γ3/2) ,

Σ̄
θ,ξ
(c) =

γ

N
AC(θ⋆)(∇2f(c)(θ

⋆)−∇2f(θ⋆)) +
γ

N
(Cc(θ⋆)− C(θ⋆)) +O(γ2H + γ3/2) ,

Σ̄
ξ
(c,c) =

(
1− 2

N

) 1

H
Cc(θ⋆) +

1

NH
C(θ⋆) +O(γ) ,

Σ̄
ξ
(c,c′) =

1

NH
(C(θ⋆)− Cc(θ⋆)− Cc′(θ⋆)) +O(γ) ,

where A =
(
Id⊗∇2f(θ⋆) +∇2f(θ⋆)⊗ Id

)−1
, Cc(θ⋆) = E[(εZ(c)

(c) (θ⋆))⊗2] and C(θ⋆) = 1
N

∑N
c=1 Cc(θ⋆).

Proof. Lemma C.9 gives Σ̄θ
= O(γ). Then, by Lemma 4.7-(69) and Lemma 4.6, it holds that 1

N

∑N
c=1∥Σ̄

θ,ξ
(c)∥ = O(γ).

Finally, Lemma 4.6 ensures that Σ̄ξ
(c,c′) = O(1/H) for all c, c′ ∈ {1, . . . , N}.

We recall the expression from Lemma C.3,

Σ̄
θ
= Γ̄Σ̄

θ
Γ̄ +

γH

N

N∑
c=1

(
Γ̄Σ̄

θ,ξ
(c)C̃

1:H
(c) + C̃1:H

(c) Σ̄
ξ,θ
(c) Γ̄

)
+
γ2H2

N2

N∑
c=1

N∑
c′=1

C̃1:H
(c) Σ̄

ξ
(c,c′)C̃

1:H
(c′) +

γ2

N
Σ̄
ϵ
+Rθ .

By Lemma E.1, to expand the matrices Γ̄ and C̃1:H
(c) for c ∈ {1, . . . , N}, and using γH = O(1), we thus have

Σ̄
θ
= Σ̄

θ − γH∇2f(θ⋆)Σ̄
θ − γHΣ̄

θ∇2f(θ⋆) +
γ2

N
Σ̄
ϵ
+O(γ3H2) +O(γ5/2H) , (91)
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where we also used Lemma C.6 to obtain Rθ = O(γ5/2H). Finally, we expand Σ̄
ϵ using A5 and Corollary B.1, which gives

Σ̄
ϵ
= HC(θ⋆) +O(γH) .

Plugging this equation in (91) and reorganizing the terms gives the result.

Covariance of θ and ξ(c). From Lemma C.4, recall

Σ̄
θ,ξ
(c) = Γ̄Σ̄

θ
∆Γ

(c) + Γ̄Σ̄
θ,ξ
(c)C̃

1:H
(c) − 1

N

N∑
i′=1

Γ̄Σ̄
θ,ξ
(i′)C̃

1:H
(i′) +

γH

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ,θ
(i)∆

Γ
(c)

+
γH

N

N∑
i=1

C̃1:H
(i) Σ̄

ξ
(i,c)C̃

1:H
(c) − γH

N2

N∑
i=1

N∑
i′=1

C̃1:H
(i) Σ̄

ξ
(i,i′)C̃

1:H
(i′) +

γ

NH

(
Σ̄
ϵ
(c) − Σ̄

ϵ
)
+Rθ,ξ(c) ,

which gives

Σ̄
θ,ξ
(c) = Σ̄

θ
∆Γ

(c) +
γ

NH

(
Σ̄
ϵ
(c) − Σ̄

ϵ
)
+O(γ2H) +O(γ3/2) ,

and the result follows.

Covariance of control variates. Similarly, we obtain

Σ̄
ξ
(c,c) = ∆Γ

(c)Σ̄
θ
∆Γ

(c′) +
1

H2
Σ̄
ϵ
(c) −

2

NH2
Σ̄
ϵ
(c) +

1

NH2
Σ̄
ϵ
+O(γ2H + γ3/2) ,

Σ̄
ξ
(c,c′) = ∆Γ

(c)Σ̄
θ
∆Γ

(c′) −
1

NH2
Σ̄
ϵ
(c) −

1

NH2
Σ̄
ϵ
(c′) +

1

NH2
Σ̄
ϵ
+O(γ2H + γ3/2) ,

and the last two identities follow.

E.3. Bias on the Parameters – Proof of Theorem 5.3

Lemma E.3. Assume A1, A2 and A5. Let Z = Z1:H
(1:N) be i.i.d. random variables. Assume the step size γ and the number of

local updates H satisfy γH(L+ µ) ≤ 1/12. Under these conditions, it holds that∫
E
[(
θh(c) − θ⋆

)⊗2
]
π(γ,H)(dθ,dΞ) =

∫ (
θ − θ⋆

)⊗2

π(γ,H)(dθ,dΞ) + Uh(c) ,

where Uh(c) = O(γ2H).

Proof. To this end, we expand the gradient in θh(c) − θ⋆ = θ − γ
∑h−1
ℓ=0

{
∇f(c)(θℓ(c)) + ξ(c) + εℓ+1

(c)

}
− θ⋆, which gives

(
θh(c) − θ⋆

)⊗2

=
(
θ − θ⋆ − γh(ξ(c) − ξ⋆(c))− γε1:h(c) − γ

h−1∑
ℓ=0

D̄2,ℓ
(c)

(
θℓ(c) − θ⋆

))⊗2

.

Expanding the square, we get the result with Uh(c) given by

Uh(c) = −γh
∫ (

θ − θ⋆
)(
ξ(c) − ξ⋆(c) +

1

h

h−1∑
ℓ=0

E
[
D̄2,ℓ

(c)

(
θℓ(c) − θ⋆

)])⊤
π(γ,H)(dθ,dΞ)

+ γ2h2
∫ (

ξ(c) − ξ⋆(c) +
1

h

h−1∑
ℓ=0

D̄2,ℓ
(c)

(
θℓ(c) − θ⋆

))⊗2

π(γ,H)(dθ,dΞ) + γ2
∫

E
[(
ε1:h(c)

)⊗2
]
π(γ,H)(dθ,dΞ)

+ γ2
h−1∑
ℓ=0

∫
E
[
D̄2,ℓ

(c)

(
θℓ(c) − θ⋆

)(
ε1:h(c)

)⊤
+
(
ε1:h(c)

)
D̄2,ℓ

(c)

(
θℓ(c) − θ⋆

)⊤]
π(γ,H)(dθ,dΞ) ,

which satisfies Uh(c) = O(γ2h) by Corollary B.1, Lemma 4.6, Corollary B.4, Lemma B.5 and γHL ≤ 1.
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Lemma E.4. Assume A1, A2 and A5. Let Z = Z1:H
(1:N) be i.i.d. random variables. Assume the step size γ and the number of

local updates H satisfy γH(L+ µ) ≤ 1/12. Under these conditions, it holds that

b̄
θ
= − 1

2N
∇2f(θ⋆)−1∇3f(θ⋆)Σ̄

θ
+O(γ2H + γ3/2) .

Proof. By definition of the local updates, we have, for h ∈ {0, . . . ,H − 1}, assuming θh+1
(c) is Fh

c -measurable,

E
[
θh+1
(c) − θ⋆

∣∣∣ Fh
c

]
= θh(c) − θ⋆ − γ∇f(c)(θh(c))− γξ(c) .

Like in (65), we expand the gradient, but for one more order, and use ξ⋆(c) = −∇f(c)(θ⋆),

E
[
θh+1
(c) − θ⋆

∣∣∣ Fh
c

]
= θh(c) − θ⋆ − γ∇2f(c)(θ

⋆)
(
θh(c) − θ⋆

)
− γ

2
∇3f(c)(θ

⋆)
(
θh(c) − θ⋆

)⊗2

− γ

2
D̄4,h+1

(c)

(
θh(c) − θ⋆

)⊗3

− γ
(
ξ(c) − ξ⋆(c)

)
.

Taking the expectation, unrolling this equality and averaging the result over c = 1 to N , we obtain

E
[
θ+ − θ⋆

]
= Γ̄ (θ − θ⋆) +

γH

N

N∑
c=1

C̃1:H
(c)

(
ξ(c) − ξ⋆(c)

)
− γ

2N

N∑
c=1

H−1∑
h=0

ΓH−h−1
(c) ∇3f(c)(θ

⋆)E
[(
θh(c) − θ⋆

)⊗2
]
− γ

2N

N∑
c=1

H−1∑
h=0

ΓH−h−1
(c) E

[
D̄4,h

(c)

(
θh(c) − θ⋆

)⊗3
]
.

Integrating over the stationary distribution of SCAFFOLD and using Lemma E.3, we obtain

b̄
θ
= Γ̄b̄

θ
+
γH

N

N∑
c=1

C̃1:H
(c) b̄

ξ
(c) −

γ

N

N∑
c=1

H−1∑
h=0

ΓH−h−1
(c) ∇3f(c)(θ

⋆)
(
Σ̄
θ
+Uh(c)

)
+W ,

where W = − γ
2N

∑N
c=1

∑H−1
h=0 ΓH−h−1

(c) D̄4,h
(c)

(
θh(c) − θ⋆

)⊗3

satisfies W = O(γ5/2H) by A6 and Lemma B.5. Plugging
in the expansions from Lemma E.1, we obtain

b̄
θ
=
(
Id− γH∇2f(θ⋆) +O(γ2H2)

)
b̄
θ
+
γH

N

N∑
c=1

(
γ(H − 1)

2
∇2f(c)(θ

⋆) +O(γ2H)

)
b̄
ξ
(c)

− γ

2N

N∑
c=1

H−1∑
h=0

(Id +O(γH))∇3f(c)(θ
⋆)
(
Σ̄
θ
+Uh(c)

)
+W ,

which gives

γH∇2f(θ⋆)b̄
θ
=
γ2H(H − 1)

2N

N∑
c=1

∇2f(c)(θ
⋆)b̄

ξ
(c) −

γ

2N

N∑
c=1

H−1∑
h=0

∇3f(c)(θ
⋆)Σ̄

θ
+O(γ3H2 + γ5/2H) .

The result follows by multiplying by (γH∇2f(c)(θ
⋆))−1 on both sides, and using Lemma E.2 to bound b̄

ξ
(c).

Theorem 5.3 (Restated). Assume A1, A2, A3, A4, A5, A6. Furthermore, assume that the step size γ and number of local
updates H satisfy γ(H − 1)Lζ2 ≤ µ/10 and γH(L+ µ) ≤ 1/12 and γβ ≤ µ/19. Then, the bias of SCAFFOLD is

b̄
θ
=− γ

2N
∇2f(θ⋆)−1∇3f(θ⋆)AC(θ⋆) +O(γ2H + γ3/2) .

Proof. The result follows by plugging the expression of Σ̄θ from Lemma 5.1 in Lemma E.4.
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F. Useful Lemmas
Lemma F.1 (Matrix Product Coupling). For any matrix-valued sequences (Mk)k∈N, (M ′

k)k∈N and for any K ∈ N, it holds
that

K∏
k=1

Mk −
K∏
k=1

M ′
k =

K∑
k=1

{
k−1∏
ℓ=1

Mℓ

}(
Mk −M ′

k

){ M∏
ℓ=k+1

M ′
ℓ

}
.

Lemma F.2 (Projection). Let N > 0, x = (x1, . . . , xN ) and y = (y1, . . . , yN ) with xc, yc ∈ Rd for c ∈ {1, . . . , N}. We
define x̄ = (x̄, . . . , x̄) and ȳ = (ȳ, . . . , ȳ) with x̄ = N−1

∑N
c=1 xc and ȳ = N−1

∑N
c=1 yc. It holds that

∥x̄− ȳ∥2 = ∥x− y∥2 − ∥(x̄− x)− (ȳ − y)∥2 ,

where ∥·∥ is the ℓ2-norm over RNd. Since ∥x̄− ȳ∥2 = N∥x̄− ȳ∥, we also have

∥x̄− ȳ∥2 =
1

N

N∑
c=1

{∥xc − yc∥2 − ∥(x̄− xc)− (ȳ − yc)∥2} .

Proof. Expanding the norm, we have

∥x̄− ȳ∥2 = ∥x− y + x̄− x− ȳ + y∥2

= ∥x− y∥2 + 2⟨x− y, x̄− x− ȳ + y⟩ + ∥x̄− x− ȳ + y∥2

= ∥x− y∥2 + 2⟨x̄− ȳ, x̄− x− ȳ + y⟩ − ∥x̄− x− ȳ + y∥2 .

Then, we notice that

2⟨x̄− ȳ, x̄− x− ȳ + y⟩ = 2
∑N
c=1⟨x̄− ȳ, x̄− xi − ȳ + yi⟩ = 2⟨x̄− ȳ, N(x̄− ȳ) +

∑N
c=1{yi − xi}⟩ .

And we have 2⟨x̄− ȳ, N(x̄− ȳ) +
∑N
c=1{yi − xi}⟩ = 0 since Nx̄ =

∑N
c=1 xi and Nȳ =

∑N
c=1 yi.
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