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Abstract
We introduce EURUS, a suite of large language
models (LLMs) optimized for reasoning. Fine-
tuned from Mistral-7B and CodeLlama-70B, EU-
RUS models achieve state-of-the-art results among
open-source models on a diverse set of bench-
marks covering mathematics, code generation,
and logical reasoning problems. Notably, EURUS-
70B beats GPT-3.5 Turbo in reasoning through
a comprehensive benchmarking across 12 tests
covering five tasks, and achieves a 33.3% pass@1
accuracy on LeetCode and 32.6% on TheoremQA,
two challenging benchmarks, substantially outper-
forming existing open-source models by margins
more than 13.3%. The strong performance of EU-
RUS can be primarily attributed to ULTRAINTER-
ACT, our newly-curated large-scale, high-quality
alignment dataset specifically designed for com-
plex reasoning tasks. ULTRAINTERACT can be
used in both supervised fine-tuning and prefer-
ence learning. For each instruction, it includes a
preference tree consisting of (1) reasoning chains
with diverse planning strategies in a unified for-
mat, (2) multi-turn interaction trajectories with
the environment and the critique, and (3) pair-
wise data to facilitate preference learning. UL-
TRAINTERACT allows us to conduct an in-depth
exploration of preference learning for reasoning
tasks. Our investigation reveals that some well-
established preference learning algorithms may
be less suitable for reasoning tasks compared to
their effectiveness in general conversations. In-
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spired by this, we derive a novel reward modeling
objective which, together with ULTRAINTERACT,
leads to a strong reward model. Models and data
will be made public.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45 50 55
TheoremQA

~7B
~40B
~70B

Ours
GPT-Series

55

Zephyr-7B-

Mistral-7B-Instruct-v0.2

CL-70B-Instruct

MagiCoder-S-DS-6.7B

WizardMath-7B -v1.1

Mixtral-8x7B-Instruct

QWen1.5-72B-Chat

DeepSeek-LLM-67B-Chat OpenCI-CL-70B
Eurus-7B-KTO

DeepSeek-Coder-33B-Instruct

GPT-3.5-Turbo

OpenMath-CL-70B

Le
et

C
o

d
e

OpenMath-Mistral-7B

Eurus-70B-NCA

GPT-4

OpenCI-DS-6.7B

𝛽

Figure 1. Evaluation results on LeetCode and TheoremQA, two
challenging OOD coding and math benchmarks with only test sets.
Our EURUS-7B is comparable with baselines that are 10x larger
and EURUS-70B is the only one on par with GPT-3.5 Turbo.

1. Introduction
Current alignment techniques have significantly advanced
the development of open-source large language models
(LLMs) that effectively meet user expectations and align
with human values (Touvron et al., 2023; Tunstall et al.,
2023). On complex reasoning, success has been achieved
by specializing models for specific capabilities, such as cod-
ing (Wei et al., 2023; Guo et al., 2024a; Zheng et al., 2024)
and solving math problems (Fu et al., 2023; Yue et al., 2023;
Luo et al., 2023a; Toshniwal et al., 2024). However, these
models still fall short, by large margins, of the most ad-
vanced proprietary models in their all-around capabilities to
tackle a diverse range of challenging problems. We conjec-
ture that this performance gap can be primarily attributed to
(1) the lack of high-quality alignment data and (2) the under-
exploration of preference learning techniques for improving
models’ complex reasoning capabilities. In this paper, we
take strides towards bridging this gap by addressing both
factors and developing EURUS.
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EURUS consists of a suite of LLMs finetuned from Mistral-
7B (Jiang et al., 2023a) and CodeLLaMA-70B (Roziere
et al., 2023). Across a diverse set of complex reasoning
benchmarks that are mostly out-of-distribution (OOD), EU-
RUS achieves state-of-the-art overall performance among
all open-source models. In particular, EURUS excels in
solving challenging problems that often require sophisti-
cated planning, reasoning, tool integration, and the ability
to interact with and learn from the environment and users.
As shown in Figure 1, on university-level STEM questions
TheoremQA (Chen et al., 2023) and competition-level cod-
ing problems LeetCode Contest (Guo et al., 2024a), EU-
RUS-70B significantly outperforms all open-source models,
achieving comparable performance to GPT-3.5 Turbo.

EURUS models are trained on ULTRAINTERACT, our
newly-curated, large-scale, and high-quality alignment
data specifically designed to improve LLMs’ reasoning
capabilities. ULTRAINTERACT consists of a diverse set of
instructions spanning math, coding, and logical reasoning
problems from 12 established datasets. For each instruction,
ULTRAINTERACT collects a preference tree that includes:
(1) Diverse planning strategies in a unified pattern, such
as sequential processing (Wei et al., 2022) and tool creation
(Qian et al., 2023), followed by executing step-by-step
actions formatted in either text or code, to provide divserse
reasoning trajectories. (2) Multi-turn interaction trajec-
tories with the environment and the critique, to improve
models’ capabilities to learn from feedback and correct
previous errors (Wang et al., 2023b). (3) Paired correct
and incorrect actions organized in tree structures, to
facilitate preference learning. In total, ULTRAINTERACT
contains 86K instructions and 220K action pairs, where
each pair consists of an instruction, a correct response, and
an incorrect one. Conceptually, ULTRAINTERACT’s data
resemble imbalanced binary trees as shown in Figure 2.

ULTRAINTERACT can be used in both supervised fine-
tuning and preference learning. Our experiments show that,
using ULTRAINTERACT along with established datasets in
instruction fine-tuning already achieves strong performance.
ULTRAINTERACT further facilitates preference learning for
reasoning tasks, improving the performance even further
with KTO (Ethayarajh et al., 2024) and NCA (Chen et al.,
2024a). Surprisingly, applied to an instruction finetuned
EURUS model, DPO (Rafailov et al., 2023) hurts the perfor-
mance.

Through careful analysis, we provide evidence that the per-
formance in reasoning correlates with the value of rewards
of chosen data—a higher final reward often indicates a bet-
ter reasoning capability. Besides, our investigation suggests
that DPO may be less suitable for reasoning tasks than KTO
and NCA. Inspired by this fresh finding, we devise a new
objective for reward modeling to augment the Bradley-Terry
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Figure 2. Left: CodeActInstruct (Wang et al., 2024) and Code-
Feedback (Zheng et al., 2024); Middle: HH-RLHF (Bai et al.,
2022); Right: ULTRAINTERACT. Each instruction in ULTRAIN-
TERACT is constructed as a preference tree.

objective (Bradley & Terry, 1952), explicitly encouraging
training to increase the absolute rewards of chosen solution
and decrease those of rejected data. Furthermore, UL-
TRAINTERACT leads to our reward model EURUS-RM-7B,
which achieves a better correlation with human annotators
than all existing models on AutoJ (Li et al., 2023a) and
MT-Bench (Zheng et al., 2023), including GPT-4 (OpenAI,
2023). EURUS-RM-7B demonstrates especially strong
preference modeling performance on reasoning tasks.

2. ULTRAINTERACT: Tree-structured
Alignment Data for Reasoning

Solving complex problems often requires the model’s
capability in planning and reasoning, integrating with tools,
and interacting with and learning from both the environment
and the users. This is reflected in ULTRAINTERACT’s
design choices: (1) Its instructions are diverse, challenging,
and of a large scale (§2.1); (2) It provides multi-turn
trajectories that solve the input instruction through multiple
turns of interaction with and learning from the environment
and critique. At each turn, it breaks down the problem
into smaller ones (§2.2). (3) ULTRAINTERACT includes
pairwise data to facilitate preference learning (§2.3).

Conceptually, ULTRAINTERACT collects a preference tree
for each instruction, with the instruction being the root and
each action a node (Fig. 2). A trajectory is a root-to-leaf path
consisting of a sequence of actions. In each preference tree,
all nodes of correct actions and all trajectories ending with
correct actions can be used for SFT. Paired correct and incor-
rect nodes or trajectories can be used for preference learning.

2.1. Instruction Selection Emphasizing Complexity,
Quality, and Diversity

We target three representative reasoning tasks: math
problem-solving, code generation, and logical reasoning.
The complexity, quality, and diversity of the alignment data
are crucial to the model’s performance (Liu et al., 2023). Fol-
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In a classroom, x children have 7 books each. […] what is the value of unknown variable x ?

<thought>

Step 1: First, let's calculate the total […].
Step 2: Then, we need to add the […].
Step 3: The sum of the books should […].
</thought>

<execute>

# Step 4: First, let's calculate […].
total_books_child = x * 7
# Step 5: Next, we need to add […].
total_books = total_books_child + 8
# Step 6: We can now solve for […].
x = (78 - 8) / 7
</execute>

<solution>

x
</solution>

Generation Observation

[…] 

NameError: name 'x' is 

not defined.

Your answer is wrong.

Expert feedback:

Your thought process is 
accurate and your error lies 
in your code. You need to 
define `x` first […]

Critique

<thought>

Step 1: First, create an equation […].
Step 2: Each child has 7 books, so […].
Step 3: The teacher brings 8 […].

  Step 4: Now we can solve for x by […].
</thought>

<execute>

# Step 5: Setting up equation:
equation = "7x + 8 = 78"
# Step 6: Solving for x:
x = (78 - 8) / 7
</execute>

<solution>

x
</solution>

[…]

Out: 10.0

Your answer is 

correct.

Expert feedback:

Good job! You have fixed 
the error in last turn. 
Now your answer is 
correct. […]

1 Generation Observation

Critique

2

3

4 5

6

Figure 3. An illustrative example of an ULTRAINTERACT trajectory over two turns. In each turn, the actor model generates step-by-step
reasoning chains, and the environment and the critique model provide observations and textual critique respectively.

lowing Wang et al. (2023b), we select challenging problems
that GPT-3.5-Turbo fails to solve. We intentionally restrict
the selection of the datasets to those with ground-truth solu-
tions, aiming to ensure high-quality oversight signals rather
than relying on LLM-as-a-judge annotation (Weyssow et al.,
2024). Besides, the gold solutions also serve as references
for the critique model to generate feedback. To promote
ULTRAINTERACT’s diversity, we pick datasets of different
categories. For each dataset, we include distinct reasoning
patterns based on question categories or formulations neces-
sary to solve the problems. Table 6 summarizes the datasets
selected by ULTRAINTERACT. Except for MATH, none of
the training datasets is used in our evaluation.

2.2. Decomposition and Interaction at Each Turn

Figure 3 provides an illustrative example. In what follows,
we connect the actor model with a Python interpreter as the
“environment”. Unless otherwise specified, we use GPT-3.5
Turbo as the actor model.

Following Wang et al. (2024), the actor model first
decomposes the input problem into several sub-problems
and then solves each by generating Python code pieces
as actions and using the environment to execute them.
To promote solution diversity, the actor model randomly
samples one reasoning schema in the form of either CoT
(Wei et al., 2022) or modularization programming (Qian
et al., 2023; Yuan et al., 2023). The actor then generates
actions in text or code to solve each sub-problem, with each
step being marked by explicit notations.

Multi-turn interactions with the environment are often nec-
essary to solve challenging problems (Wang et al., 2023b).

To improve such capabilities of the models, ULTRAINTER-
ACT collects trajectories in which the actor model interacts
with the environment and a critique model (a proxy for user)
and refines its action based on their feedback.

The environment receives an action from the actor model
along with the interaction history, and then the code
interpreter returns two kinds of “Observation”: (1) Python
execution results, either program outputs or error traceback
messages; (2) binary feedback, indicating whether the
solution is correct or not. Then, the observations along with
the history will be passed to a critique model, which locates
the errors and provides suggestions for improvements. To
avoid potential bias introduced by self-correction (Wang
et al., 2023b; Xu et al., 2024), we adopt a stronger model,
GPT-4, as the critique and ensure critique quality by
providing GPT-4 with ground truth answers as references.

This procedure resembles Wang et al. (2024). However,
we adopt more diverse reasoning patterns to teach LLMs
to learn rationales rather than simply memorizing answers
(Mitra et al., 2023), and learn to create and use tools (Qian
et al., 2023; Yuan et al., 2023; Qin et al., 2023). Besides,
we believe that it is important for LLMs to learn from the
feedback provided by the critique rather than solely from
observations of the environment.

2.3. Preference Trees Facilitates Preference Learning
Across Multiple Turns

Unlike open-ended conversations, where human preference
is ambiguous and challenging to specify, many reasoning
tasks have clear and objective preferences for correct
actions. The preference annotation is threfore an evaluation
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Table 1. Some statistics of ULTRAINTERACT.

Task Type # Instructions # Turns per Traj. # Tokens
per Traj.

Avg. # Traj
per Ins.

Total
# Pairs

# Correct
Answersw/ Interaction? w/ Tool? T1 T2 T3 T4 T5

Math

! ! 22,928 10,440 4,122 1,898 904 5,564 1,750.0 1.0 42,780 68,033
% ! 2,757 16,154 - - - - 439.1 5.9 13,217 16,154
! % 22,639 10,708 3,521 1,459 723 6,228 1,521.9 1.0 44,750 62,182
% % 2,083 16,348 - - - - 538.1 7.8 12,624 16,348

Coding ! - 20,463 13,265 2,584 987 379 3,248 1,728.5 1.0 18,106 22,215
% - 8,495 92,618 - - - - 1,070.4 5.5 78,634 92,618

Logic ! ! 2,086 1,685 298 72 8 23 1,299.8 1.0 1,750 2,198
! % 4,467 2,453 1,674 340 0 0 1,266.7 1.0 7,958 7,231

Total - - 85,918 163,671 12,199 4,756 2,014 15,063 1,201.8 2.3 219,819 286,979

of the correctness of the solutions conditioning ground truth
ones, which come with the datasets in ULTRAINTERACT.
This eliminates the need for human or LLM-based prefer-
ence annotation and ensures high data quality. To facilitate
preference learning, ULTRAINTERACT pairs correct and
incorrect actions.

Sampling Paired Correct and Incorrect Actions at
Each Turn. For each instruction in ULTRAINTERACT, we
sample, from the actor model, a pair of correct and incorrect
actions following §2.2. We follow (Cui et al., 2023) to
sample the pair from different actor models to ensure
response diversity. To prevent models from exploiting
shortcuts based on surface features, we exclude instances
that fail to pass the Python syntax check.

Certain challenging problems in ULTRAINTERACT pose
difficulties in obtaining correct actions, even using strong
actors such as GPT-4, with nearly zero pass@100 accura-
cies. To improve the pass rates of the actor models while
keeping the expense under control, we sequentially take
the following steps. (1) Directly sampling 20 actions and
randomly keeping a correct one, if any. (2) If no correct
action is obtained, we repeat the above process up to three
times, progressively switching from more cost-effective
models to the strong yet expensive GPT-4 Turbo. (3) For
the remaining difficult problems where no correct action
is acquired after the previous two steps, we provide the
actor with ground-truth rationales and answers, and then
apply various techniques to elicit correct actions. The spe-
cific information provided and the techniques applied vary
depending on the tasks (Appendix A.2).

Tree-structured Action Pairs Across Multiple Turns.
After each turn, the correct action concludes its trajectory.
We expand the incorrect action into the next turn, and
have the actor interact with the environment and the
critique to refine its solution (§2.2). We then repeat the
procedures introduced earlier in this section to collect
an additional action pair. By expanding the incorrect
action, ULTRAINTERACT can provide data to help models

learn from feedback, and collect multiple action pairs for
preference learning across multiple turns.

Conceptually, for every instruction, ULTRAINTERACT con-
structs a binary preference tree with each action being a
node (Figure 2). We cap the tree at a maximum of five turns.

Additional Instruction-action Pairs for Challenging
Problems. We believe the challenging instructions that
make it to step (3) above can provide valuable training sig-
nals. Therefore, for a subset of these problems with multiple
ground truth solutions, we further sample additional correct
actions to cover all ground truths. Accordingly, we further
sample incorrect actions to pair with these additional cor-
rect actions, so that they can be used in both supervised
fine-tuning and preference learning.

With the tree-structured data, ULTRAINTERACT enables
comparisons at every turn, in contrast to comparing only
at the last turn (Bai et al., 2022), and thus can improve the
models’ interaction ability. Closing this section, Table 1
summarizes some statistics of ULTRAINTERACT, and more
details are in Appendix A.4.

3. EURUS: State-of-the-art Open LLMs in
Reasoning

ULTRAINTERACT helps us develop EURUS, a suite of
LLMs and a reward model (RM).

Supervised Fine-Tuning. EURUS-7B-SFT is fine-tuned
from Mistral-7B (Jiang et al., 2023a) and EURUS-70B-SFT
from CodeLLaMA-70B (Roziere et al., 2023). First, we
perform SFT using all correct actions (287K) in ULTRAIN-
TERACT. We find it yields better performance to discard
interaction history and train only on correct leaf nodes
in each tree. To improve general instruction-following
ability, we include into our SFT data mixture UltraChat
(Ding et al., 2023), ShareGPT1, and OpenOrca (Lian et al.,

1https://huggingface.co/datasets/
openchat/openchat_sharegpt4_dataset

4

https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset
https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset


Advancing LLM Reasoning Generalists with Preference Trees

Table 2. Open-source LLM baselines that we compare to.
Type Models

General Purpose
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a), Zephyr-7B-β (Tunstall et al., 2023), OpenChat-3.5-1210 (Wang et al.,
2023a), Starling-LM-7B-α (Zhu et al., 2023), Mixtral-8x7B-Instruct (Jiang et al., 2023a), DeepSeek-LLM-67B-
Chat (DeepSeek-AI, 2024), QWen1.5-72B-Chat (Bai et al., 2023)

Coding Magicoder-S-DS-6.7B (Wei et al., 2023), OpenCodeInterpreter (OpenCI for short, DS-6.7B/CL-70B) (Zheng et al.,
2024), DeepSeek-Coder-33B-Instruct (Guo et al., 2024a), and CodeLLaMA-70B-Instruct(Roziere et al., 2023).

Math MAmmoTH-7B-Mistral (Yue et al., 2023), WizardMath-7B-v1.1 (Luo et al., 2023a), OpenMath (Mistral-
7B/CodeLLaMA-70B) (Toshniwal et al., 2024).

Table 3. Overall performance. All test sets except MATH are out-of-distribution to our models and most baselines. MAmmoTH, OpenChat,
and Starling-LM have been trained on TheoremQA test sets. We strikethrough the contaminated numbers.

Coding Math Reasoning Ins-Following Multi-Turn
Model HumanE. MBPP LeetC. GSM-Plus MATH Theo.QA SVAMP ASDiv BBH IFEval Code Math Avg.

∼7B

Mistral-7B-Instruct-v0.2 39.0 30.8 6.1 15.7 9.5 8.5 42.9 49.5 62.4 44.4 7.4 26.2 28.5
Zephyr-7B-β 29.3 35.8 2.2 23.3 5.0 7.8 19.1 28.0 61.8 39.7 5.2 16.9 22.8
OpenChat-3.5-1210 64.0 61.7 11.7 46.7 28.1 19.1 75.4 77.0 67.0 50.3 21.3 32.4 46.2
Starling-LM-7B-α 46.3 51.1 8.9 23.7 21.5 12.0 26.3 39.8 67.1 26.1 18.4 28.9 30.8
Magicoder-S-DS-6.7B 75.6 70.4 23.9 16.4 19.9 13.1 61.6 62.8 57.0 21.1 27.9 8.0 38.1
OpenCI-DS-6.7B 76.8 66.2 16.1 41.5 31.6 16.1 74.5 79.8 53.9 22.6 5.9 1.3 40.5
MAmmoTH-7B-Mistral 24.4 42.4 7.2 40.1 36.0 26.3 60.7 72.3 57.7 34.9 3.7 6.7 34.4
WizardMath-7B-v1.1 50.0 53.9 6.7 54.6 30.0 16.5 57.8 73.5 64.4 22.6 16.2 8.9 37.9
OpenMath-Mistral-7B 33.5 46.6 11.7 59.4 39.1 13.1 83.4 79.8 58.6 15.0 2.9 5.3 37.4
EURUS-7B-SFT 55.5 59.1 20.0 52.1 32.6 20.0 82.2 84.1 64.6 44.0 15.4 28.4 46.5

+ DPO 50.6 52.1 8.3 51.0 28.3 20.9 78.7 83.8 65.0 42.5 20.6 32.4 44.5
+ KTO 56.1 58.6 18.9 55.0 33.2 20.6 84.4 85.0 67.6 43.1 19.1 43.6 48.8
+ NCA 55.5 60.2 14.4 54.9 34.2 20.9 84.6 85.4 64.3 42.7 21.3 38.7 48.1

∼40B

Mixtral-8x7B-Instruct 50.6 50.1 5.6 49.6 25.9 20.4 66.4 68.8 73.5 48.8 12.5 37.3 42.5
DeepSeek-Coder-33B-Ins 82.3 73.9 27.8 29.5 20.2 21.9 75.2 85.0 61.5 26.1 35.3 21.8 46.7

∼70B

CodeLLaMA-70B-Instruct 56.7 58.6 14.4 34.9 12.0 8.4 63.5 70.1 74.5 24.0 3.7 14.2 36.3
DeepSeek-LM-67B-Chat 70.7 65.7 20.0 65.0 41.0 17.9 74.0 84.0 78.9 52.7 30.9 41.8 53.5
QWen1.5-72B-Chat 71.3 56.9 15.6 65.4 43.4 18.5 79.5 79.1 78.0 53.4 27.2 38.2 52.2
OpenCI-CL-70B 77.4 71.7 20.0 46.1 29.2 18.8 76.1 79.4 66.7 26.8 30.9 12.0 46.3
OpenMath-CL-70B 39.0 52.6 15.0 62.2 45.9 15.9 86.6 82.8 59.9 15.7 14.0 0.4 40.8
EURUS-70B-SFT 75.6 74.2 33.3 58.1 40.6 28.0 86.3 88.5 79.9 49.2 31.6 40.4 57.1

+ KTO 76.8 68.2 26.1 62.2 41.3 30.6 90.4 89.0 80.8 46.4 39.0 49.8 58.4
+ NCA 79.3 71.9 33.3 62.8 41.7 32.6 89.5 90.3 80.0 49.2 38.2 39.6 59.0

Proprietary Models

GPT-3.5 Turbo 76.8 82.5 23.3 61.2 37.8 35.6 83.0 90.6 70.1 56.6 29.4 36.9 57.0
GPT-4 85.4 83.5 41.8 85.6 69.7 52.4 94.8 92.6 86.7 79.7 59.6 65.8 74.8

2023). We finetune base models for 1 epoch with a 2e-5
learning rate and 0.1 warmup ratio using a cosine scheduler.
For EURUS-7B, we mix 32K UltraChat, 30K ShareGPT,
and 50K OpenOrca. For For EURUS-70B, we mix 63K
UltraChat, 30K ShareGPT, and 70K OpenOrca.

Perference Learning. Based on EURUS-SFT models, we
explore three preference learning algorithms, DPO (Rafailov
et al., 2023), KTO (Ethayarajh et al., 2024), and NCA (Chen
et al., 2024a). Differently from SFT, here we include all
multi-turn trajectory pairs in our ULTRAINTERACT (220K)
and include all UltraFeedback (Cui et al., 2023) pairs
(340K). For hyperparameters, all β is set to 0.1, and λ+/λ−
in KTO is set to 1.33 as recommended. We finetune models
for 1 epoch with a 5e-7 learning rate and 0.1 warmup ratio
using a cosine scheduler.

Reward Modeling. Similarly to the preference learning,
we use all 220K multi-turn trajectory pairs from ULTRAIN-
TERACT; it is further augmented with the 240K single-turn
action pairs from ULTRAINTERACT. More details are in the
Appendix B. We include all 340K pairs from UltraFeedback
and one pair for each instruction from UltraSafety (Guo
et al., 2024b), totaling 3K. EURUS-RM-7B is initialized
from EURUS-7B-SFT with a new linear layer. We train
RM for 1 epoch with lr=1e-5 learning rate. We also use a
cosine scheduler with a warmup ratio of 0.1.

Our findings in §6 indicate that the absolute values of re-
wards make a big difference in the models’ reasoning perfor-
mance. We therefore augment the established Bradley-Terry
(BT) objective LBT with an additional term LDR to directly
increase the reward of the chosen actions for instances from
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ULTRAINTERACT, and decrease those of the rejected ones:
LULTRAINTERACT = − log (σ (rθ (x, yc)− rθ (x, yr)))︸ ︷︷ ︸

LBT optimize relative rewards

− log (σ (rθ (x, yc))− log (σ (−rθ (x, yr)))︸ ︷︷ ︸
LR: : increase rθ(x,yc) and decrease rθ(x,yr)

For instances from other datasets, we train with LBT. θ
denotes the reward model’s parameters, rθ (·) and rθ (x, yr)
the rewards on the chosen and rejected actions respectively.
Our ablation study demonstrates the importance of both
LBT and LDR.

4. Evaluation of EURUS-7B and EURUS-70B
Evaluation Setup. We consider both single-turn and multi-
turn reasoning. For single-turn evaluation, we consider
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
and LeetCode (Guo et al., 2024a) for coding, GSM-Plus
(Li et al., 2024), MATH, TheoremQA (Chen et al., 2023),
SVAMP (Patel et al., 2021), and ASDiv (Miao et al., 2020)
for math, and BBH-Hard (Suzgun et al., 2022) for reasoning.
We evaluate with pass@1 accuracy. We also use IFEval
(Zhou et al., 2023) to assess the instruction-following ability
and report the prompt-level loose score. For multi-turn
evaluation, we adopt MINT (Wang et al., 2023b) and only
consider the coding and math problems. We report the suc-
cess rate at Turn 5. Please find further details on evaluation
setups and evaluations beyond reasoning in Appendix C.

As shown in Table 2, we compare our EURUS with general-
purpose models, and those specialized in coding and math
of various sizes. We also summarize the results of GPT-3.5
Turbo and GPT-4 reported in previous works.

4.1. Results

Results are shown in Table 3. We summarize the takeaways
as follows:

EURUS, both the 7B and 70B variants, achieve the
best overall performance among open-source models
of similar sizes. EURUS even outperform specialized
models in corresponding domains in many cases.
Notably, EURUS-7B outperforms baselines that are 5×
larger and EURUS-70B achieves better performance
than GPT-3.5 Turbo. EURUS’s instruction-following
performance is among the best general-purpose models,
substantially better than specialized ones.

Preference learning with ULTRAINTERACT can further
improve the performance, especially in math and the
multi-turn ability. KTO and NCA consistently improve the
models’ performance in all five math benchmarks and mult-
turn evaluations, while their effects vary in others. Since
SFT models only use the single-turn data from ULTRAIN-
TERACT while preference learning uses the multi-turn ones,

the improvements in interaction ability should also be at-
tributed to ULTRAINTERACT rather than the algorithms
alone. Surprisingly, we observe that DPO hurts model
performance on most benchmarks. DPO training of our
70B model fails since the rewards go down to −∞. We
analyze this phenomenon in §6.1.

5. Evaluation of EURUS-RM-7B
Evaluation Setup. We evaluate EURUS-RM-7B on three
RM benchmarks, RewardBench (Lambert et al., 2024),
AutoJ (Li et al., 2023a), and MT-Bench (Zheng et al., 2023).
Aiming for a more realistic OOD evalation, we exclude the
“prior sets” split from RewardBench, since many baselines
train on the datasets that this split contains. We compare
with PairRM (Jiang et al., 2023b), Starling-RM-7B/34B
(Zhu et al., 2023), UltraRM-13B (Cui et al., 2023), GPT-3.5
Turbo, and GPT-4. To further explore EURUS-RM-7B’s
potential in improving models’ performance through
reranking, we use it to rerank Mistral-7B-Instruct-v0.2’s
responses on HumanEval, MBPP, GSM8K, and MATH. We
report the results of random sampling, self-consistency, and
Starling-RM-34B as baselines.

5.1. Results

Table 4 summarizes reward modeling performance, and
Figure 4 plots some reranking results with others in
Appendix D.1.

EURUS-RM-7B stands out as the best 7B RM overall,
and achieves similar or better performance than much
larger baselines. Particularly, it outperforms GPT-4 in
certain tasks. EURUS-RM-7B achieves a better correla-
tion with human experts than all existing models on AutoJ
and MT-Bench, and it achieves comparable performance to
the 5× larger Starling-RM-34B on RewardBench. On Re-
wardBench, EURUS-RM-7B outperforms all baselines on
the “Chat-Hard” split while achieving very competitive per-
formance on the “Reasoning” split. Across the AutoJ splits,
EURUS-RM-7B outperforms nearly all existing models,
with the only exception being GPT-4’s results on Coding.

Our training objective is beneficial in improving RM
performance on hard problems and reasoning. Table 4
shows that optimizing LDR improves RM’s reasoning ability,
but BT modeling is still beneficial in equipping RM with
abilities in general chatting as suggested in the “Chat-Hard”
column, though its effect on reasoning may vary.

ULTRAINTERACT is compatible with other datasets
like UltraFeedback and UltraSafety, and mixing these
datasets can balance different RM abilities. Improving
RM’s capabilities in reasoning with ULTRAINTERACT does
not sacrifice others, which indicates that ULTRAINTERACT
can be a great ingredient for the training data mixture of
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Table 4. Results on reward modeling benchmarks. UF: UltraFeedback; US: UltraSafety. The best performance in each benchmark is in
bold and the second best one is underlined. Most baseline results are from (Jiang et al., 2023b) and (Lambert et al., 2024).

Model Reward Bench AutoJ MT-Bench
Chat Chat-Hard Safety Reasoning Avg. Code Math Others Overall

PairRM 90.2 53.0 31.5 60.0 58.7 58.3 52.8 58.9 59.1 59.0
Starling-RM-7B 98.0 43.4 88.6 74.6 76.2 59.2 47.2 61.4 60.8 56.8
Starling-RM-34B 96.9 59.0 89.9 90.3 84.0 65.8 54.2 62.3 62.6 60.4
UltraRM-13B 96.1 55.3 45.8 82.0 69.8 55.0 43.1 59.6 59.9 56.0
GPT-3.5 Turbo - - - - - 36.6 40.3 41.2 42.7 57.1
GPT -4 - - - - - 69.2 51.4 61.4 61.9 63.9

EURUS-RM-7B 96.5 65.3 80.7 87.0 82.4 87.5 82.5 78.0 80.7 79.4
w/o LDR 96.4 59.9 79.5 77.5 78.3 83.8 82.5 78.9 80.7 79.3
w/o LBT 96.8 58.5 83.8 84.2 80.8 88.8 92.5 79.4 81.9 79.6
w/o US 96.5 66.2 67.7 81.7 73.3 87.5 90.0 79.2 81.8 79.2
w/o UF + US 95.1 61.1 63.7 73.4 78.0 73.8 80.0 71.7 72.8 73.0
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Figure 4. Results on reranking Mistral-7B-Instruct-v0.2’s responses. Full results in Table 9.

reward models.

EURUS-RM-7B improves LLMs’ reasoning perfor-
mance by a large margin through reranking. EURUS-
RM-7B consistently improves pass@1 accuracy across all
tasks and performs better than 5× larger baseline Starling-
RM-34B. Also, EURUS-RM-7B’s reranking performance
scales well with #responses per instruction, except a slight
decrease in HumanEval when increasing response number
form 8 to 16. In contrast, Starling-RM-34B suffers from
severe performance drop on HumanEval and it consistently
hurts model accuracy on MATH.

6. Analysis
6.1. Explicit Reward as A Proxy? Hypothesis for

Preference Learning in Reasoning

We investigate the reason why DPO behaves differently than
KTO and NCA. We start by empirically inspecting the re-
wards throughout the preference learning process, as shown
in Figure 5. Rewards for chosen rejected data both keep
decreasing through DPO, though the rewards for chosen
data is still higher hence the loss decreases. In KTO and
NCA, the rewards of chosen data keep increasing with those
of rejected data decreasing.

Therefore, we hypothesize it is the distinction in the trend of
rewards that leads to the performance gap between DPO and
the other two algorithms. This distinction can be attributed
to that DPO, derived from the Bradley-Terry model, only
optimizes the relative differences between chosen and
rejected data overlooking the absolute values of the rewards.
This is a non-issue in alignment with general human values
where preference is “relative” and there can be many valid
answers to the same input. However, in reasoning tasks,
the space of correct answers is much smaller than that
of incorrect ones. Further, we notice that the rewards of
chosen data in the last training step follow the ranking order
of KTO > NCA > DPO, positively correlate with their
performance trends. Therefore, we believe that increasing
the rewards of the chosen data is especially beneficial in
preference learning for reasoning tasks.

6.2. Ablation Study

We study the impact of ULTRAINTERACT and other open-
source alignment data on EURUS-7B-SFT’s performance.
We consider three settings: (1) With original ground-truth
answers, which replaces the generated actions with ground-
truth rationales and answers from the original datasets. If no
rationales are available, we use those from ULTRAINTER-
ACT. (2) Open-source data only. (3)ULTRAINTERACT
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Figure 5. Reward patterns of EURUS-7B preference learning with DPO, KTO, and NCA. For all algorithms, the rewards of rejected data
keep decreasing and the margins between chosen and rejected data keep increasing. However, the rewards of chosen data decrease below
zero in DPO while keeping increasing and staying positive in KTO and NCA. The absolute values of the reward in the last step (in red) of
the three algorithms positively correlate with their performance in Table 3.

Table 5. Ablation Study.

Model Coding Math Reasoning Ins-Following Avg.
HumanEval MBPP LeetCode GSM8K MATH TheoremQA SVAMP ASDiv BBH IFEval

EURUS-7B-SFT 55.5 59.1 20.0 73.7 32.6 20.0 82.2 84.1 64.6 44.0 53.6
Ground-Truth 46.3 46.4 8.9 62.2 15.0 9.6 75.1 68.8 64.4 42.9 44.0
Open-Source Only 38.4 44.1 11.1 45.3 10.8 9.3 52.7 49.4 65.3 43.6 37.0
ULTRAINTERACT Only 46.3 50.1 15.6 67.6 30.9 20.1 80.4 82.0 67.0 17.4 47.7

only. We evaluate with the same setting as §4.

In Table 5, EURUS outperforms the “Grouth-truth” model on
all tasks, confirming the advantage of ULTRAINTERACT’s
designs of divide-and-conquer and code-as-action patterns,
in line with conclusions of concurrent work (Chen et al.,
2024b; Wang et al., 2024). Training only on open-source
data without ULTRAINTERACT greatly hurts the reasoning
performance, confirming the effectiveness of ULTRAIN-
TERACT. Meanwhile, training only on ULTRAINTERACT
suffers a performance drop except for BBH, especially in
instruction following. We attribute the performance drop
to a worse instruction-following ability. This suggests the
necessity of mixing ULTRAINTERACT with other alignment
data for better all-around supervised fine-tuning.

7. Related Work
Open LLMs in Reasoning. Open-source LLMs have
shown remarkable progress in building specialists that ex-
cel in mathematics reasoning (Luo et al., 2023a; Yue et al.,
2023; Toshniwal et al., 2024) or coding abilities (Roziere
et al., 2023; Wei et al., 2023; Guo et al., 2024a; Zheng et al.,
2024). On the contrary, mastering general reasoning capabil-
ities still challenges open models, while the most advanced
ones (DeepSeek-AI, 2024; Bai et al., 2023; Touvron et al.,
2023; Jiang et al., 2024) are well behind proprietary mod-
els. More, these cutting-edge open general-purpose models
maintain their alignment recipes confidential, which fur-
ther hinders the replication and development of open-source

reasoning models.

Preference Learning for Reasoning. Aligning language
models from human or AI preferences has emerged as a
prevalent approach in the open-source community (Tun-
stall et al., 2023; Bai et al., 2023) with the proposal of
DPO (Rafailov et al., 2023) and high-quality preference
datasets (Cui et al., 2023; Zhu et al., 2023). Different from
open-domain chatbots, preference learning is largely under-
explored in complex reasoning. Recent research showed
performance degradation when applying DPO on reasoning
tasks, but some newly proposed algorithms demonstrated a
positive effect (Ethayarajh et al., 2024; Chen et al., 2024a;
Mitra et al., 2024; Shao et al., 2024). However, a deep un-
derstanding of preference learning, specifically its efficacy
on complex reasoning, is not yet established.

8. Conclusion
We strive to narrow the huge gap between open-source mod-
els and proprietary models from the perspective of align-
ment. Our work pushes the boundaries of open-source rea-
soning generalists by (1) releasing a high-quality multi-turn
reasoning dataset ULTRAINTERACT with preference trees,
(2) introducing EURUS-series LLMs which achieve new
SOTA on challenging reasoning benchmarks and (3) provid-
ing insights on preference learning for reasoning through
analysis, leading to new reward modeling objectives as well
as a powerful reward model for reasoning.
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A. Additional Details in ULTRAINTERACT
Construction

A.1. Dataset Details

Math. We adopt GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), MathQA (Amini et al., 2019),
and NumGLUE (Mishra et al., 2022)for mathematic rea-
soning, and include TabMWP (Lu et al., 2023) for tabular
processing. We retain all the instructions for all datasets
except MathQA, NumGLUE, and TabMWP. MathQA di-
vides problems into different categories according to the
topics and annotates the formula that indicates the pattern
needed to solve each problem. We apply stratified sampling
to sample at most five problems for each pattern and pri-
oritize the problems that come from the long-tail category.
Numglue contains eight different reasoning tasks and we
discard Task 5 (Reading Comprehension + Explicit Numeri-
cal Reasoning), Task 6 (Reading Comprehension + Implicit
Numerical Reasoning), and Task 7 (Quantitative NLI) due
to the simplicity (Mishra et al., 2022). For TabMWP, we
only keep the questions with difficulty levels 4 and 5 since
the rest are too easy for current state-of-the-art models.

Code. We focus on programming with Python for the sim-
plicity of integration of the interpreter. We use CodeCon-
test (Li et al., 2022) and TACO (Li et al., 2023b), two
competition-level coding datasets collected from various on-
line platforms. We filter out the overlapped questions. Note
that part of the questions in TACO only contain ground-
truth solutions and do not contain test cases for evaluation,
hence we apply GPT-4 to generate 12 test case inputs (4
basic inputs, 4 edge cases, and 4 large numbers) for each
question and then execute the ground-truth solution snippets
to produce outputs. Given that the two datasets mainly focus
on competition problems that may deviate from real-world
daily uses, we exclusively adopt Magicoder-Evol-Instruct
(Luo et al., 2023b; Wei et al., 2023), the only dataset in our
selection that does not contain test cases or ground-truth
solutions. We employ GPT-4 Turbo to judge the correct-
ness of generated code during interaction, and therefore
we do not use this dataset for preference learning since we
cannot rigorously construct pairs of correct and incorrect
actions limited by the evaluation reliability. We also include
WikiTableQuestions (Pasupat & Liang, 2015) for table
processing with code.

Logical Reasoning. we use the multi-hop reasoning
datasets HotpotQA (Yang et al., 2018) and StrategyQA
(Geva et al., 2021), and the logical reasoning dataset
ReClor (Yu et al., 2020). We follow the setting of Wang
et al. (2023b) and convert HotpotQA to a generation task,
removing the contexts and requiring LLMs to search
relevant information using Wikipedia API.
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Table 6. ULTRAINTERACT covers a diverse set of datasets spanning three tasks.

Task Datasets

Math GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), MathQA (Amini et al., 2019), NumGlue
(Mishra et al., 2022), TabMWP (Lu et al., 2023)

Coding CodeContest (Li et al., 2022), TACO (Li et al., 2023b), WikiTableQuestions (Pasupat & Liang, 2015),
Magicoder-Evol-Instruct (Luo et al., 2023b; Wei et al., 2023)

Logic ReClor (Yu et al., 2020), HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021)

A.2. Details on Preference Tree Construction

Models Adopted for Incorrect Action Sampling. We
randomly sample one model from Mistral-7B-Instruct-v0.2,
DeepSeek-Coder-33B-Instruct, Mixtral-8x7B-Instruct, and
DeepSeek-LLM-67B-Chat to generate one incorrect action
to pair with each correct one.

Correct Action Generation Based on Ground Truth An-
notations.

We adopt GPT-3.5 Turbo as the generator to generate correct
actions based on ground truth considering the instruction-
following ability. We provide different access to the ground
truth information for different tasks, specifically: (1) For
coding, where test cases are black boxes to reference so-
lutions, we provide full access to the solution codes. The
actor model will add step marks and corresponding expla-
nations to the ground-truth code to make it easier to under-
stand, or further refine the code for optimization. (2) For
tool-free math problems, to avoid the actor model directly
copying the answers to pass the correctness checking, we
mask the answer numbers in the rationale before providing
it to LLMs. This approach can better ensure response qual-
ity since it encourages LLMs to generate responses with
complete reasoning chains with each step clearly marked.
(3) For program-enhanced math reasoning, we first translate
the textual rationale into code. Then, we either directly pro-
vide it to the actor model to generate plans, or ask the actor
model to convert the code into modularization programming
and then make plans to create tools to solve problems.

A.3. Data Decomtamination

We conduct careful decontamination. Firstly, for LeetCode,
we apply the Exact Substring Matching Algorithm2 to com-
pare with each instruction in the ULTRAINTERACT and find
no overlaps. For others, we perform 8-gram exact matching
to compare ULTRAINTERACT instructions with test sets of
the same task. We remove those instructions that overlap 8
grams with any test sample.

2https://github.com/bigcode-project/
bigcode-dataset/tree/main/decontamination

A.4. Detailed Statistics

In total, ULTRAINTERACT has 86K instructions and 220K
action pairs. The Total # Pairs does not equal Total # Turns
in ULTRAINTERACT, since we fail to generate sufficient
correct actions for every incorrect action in multi-turn tra-
jectories mainly due to a lack of sufficient ground truth
annotations. The total # pairs may not equal # correct an-
swers, either, because it is also difficult and unnecessary
to sample incorrect actions for the correct ones for some
simple instructions. We present the specific information
for each dataset. In particular, we list information on human
annotation in each dataset, which plays an important role
in correct action generation (§2.3 and Appendix A.2). All
three steps of correct action sampling methods mentioned in
§2.3 can be applied to datasets that have rationales, while for
datasets only containing answers, only the first two steps are
applicable. We do not apply any of the three-step methods
to generate correct answers for Magicoder, the only dataset
without any human annotation, to construct preference pairs.

B. Additional Details on Training EURUS
Models

Regarding pair augmentation, we scale up the pairs by
matching every correct action for each instruction with one
incorrect action of other turns. This leads to NxN pairs of
single-turn actions for a trajectory of depth N. We remove
the action pairs consisting of nodes at the same turn, as
they are already part of the multi-turn trajectory pairs we
included. Next, to avoid overfitting on the training set, we
only select instructions with NxN ≤ 10, and for these in-
structions, we randomly sample at most 9 pairs with each
action occurring no more than 3 times. This leads to an
augmentation of 240k single-turn action pairs.

C. Additional Evaluation Results of EURUS

Detailed Setup in §4. For math, we test both textual
reasoning and program-enhanced settings and report the
best performance of the two. All evaluations are conducted
in 0-shot CoT with two exceptions: BBH uses 3 shots and
IFEval does not use CoT. For MINT, we select MATH,
TheoremQA, and MMLU-math from “reasoning” as a new
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Table 7. Stats breakdown

Task Dataset w/ Tool? # Prompts # Pairs # Correct Answers. Avg. Length Human Annotation

Has Answer? Has Rationale?

Math

GSM8K ! 4,522 10,277 17,392 1,746.7 ! !

% 7,257 10,879 15,752 823.3 ! !

MATH ! 7,474 22,905 34,667 1,189.0 ! !

% 7,471 25,765 36,005 1,735.0 ! !

MathQA ! 7,552 15,079 20,328 2,338.5 ! !

% 7,159 17,743 22,500 1,916.3 ! !

NumGLUE ! 3,020 3,601 5,717 1,474.6 ! %

% 2,835 2,987 4,273 1,056.1 ! %

TabMWP ! 3,117 4,135 6,083 842.6 ! %

Coding

CodeContest - 8,167 44,319 44,666 2,061.7 ! !

TACO - 9,016 50,877 58,191 2,143.5 ! !

WikiTableQuestions - 1,401 1,544 1,738 1,794.8 ! %

Magicoder-Evol-Instruct - 10,374 0 10,238 687.1 % %

Logic
Reclor % 4,467 7,958 7,231 1,266.7 ! %

HotpotQA ! 1,182 1,009 1,230 1,333.2 ! %

StrategyQA ! 904 741 968 1,256.2 ! %

Table 8. MMLU and MT-Bench.
Model MMLU MT-Bench

∼7B

Mistral-7B-Instruct-v0.2 58.9 7.60
Zephyr-7B-β 59.7 7.34
OpenChat-3.5-1210 63.4 7.81
Starling-LM-7B-α 64.0 8.09
Magicoder-S-DS-6.7B 37.1 -
OpenCI-DS-6.7B 37.2 -
MAmmoTH-7B-Mistral 56.2 -
WizardMath-7B-v1.1 60.3 -
OpenMath-Mistral-7B 58.3 -
EURUS-7B-SFT 61.8 7.15
+ DPO 62.4 7.38
+ KTO 62.2 7.38
+ NCA 62.2 7.38

∼40B

Mixtral-8x7B-Instruct 70.3 8.30
DeepSeek-Coder-33B-Ins 40.2 -

∼70B

CodeLLaMA-70B-Instruct 55.1 -
DeepSeek-LM-67B-Chat 72.3 -
QWen1.5-72B-Chat 72.9 8.61
OpenCI-CL-70B 52.4 -
OpenMath-CL-70B 60.2 -
EURUS-70B-SFT 59.1 7.69
+ KTO 59.5 7.93
+ NCA 59.4 7.54

Proprietary Models

GPT-3.5 Turbo 70.0 7.94
GPT-4 86.4 8.96

“math” split. We also evaluate 5-shot MMLU (Hendrycks
et al., 2021a) for STEM knowledge and MT-Bench (Zheng
et al., 2023) for conversation abilities to study whether
EURUS needs to trade off other capabilities for reasoning.

Results. Results are shown in Table 8.

On MMLU, EURUS outperforms baselines dedicated to
coding and math, and achieves higher results than Mistral-
Instruct-v0.2 and CodeLLaMA-70B-Instruct, the official
aligned versions of our base model built by their authors.
Compared to general-purpose baseline models, EURUS-7B
achieves comparable performance with the top-performance
OpenChat and Starling-LM, though EURUS-70B does not
achieve the same level of performance as other general-
purpose models, which is expected due to the gap in the base
models since CodeLLaMA-70B has not been intentionally
optimized for knowledge.

On MT-Bench, we report baseline numbers from the official
leaderboard3. EURUS matches the performance of main-
stream open-source general-purpose models, and EURUS-
70B-KTO further achieves the score of GPT-3.5 Turbo.

D. Detailed Results on Reward Modeling
D.1. Additional Results on Reranking

We present the full results on reranking in Table 9, where
the conclusions are consistent with those drawn from §D:
(1) Our reward models always achieve the highest accu-
racy on all test sets across different N, except when N=2

3https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard
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Table 9. Detailed results of reranking Mistral-Instruct-v0.2’s responses on coding and math.

Datasets HumanEval MBPP GSM8K MATH

N 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Random 41.5 39.0 40.2 39.6 33.1 33.6 34.3 30.1 45.0 43.1 44.5 40.2 11.5 11.3 10.0 8.5
Top Logits 43.3 43.3 43.3 43.3 35.3 35.3 35.3 35.3 45.7 45.7 45.7 45.7 12.1 12.1 12.1 12.1
Self-Consistency 43.3 42.7 42.1 40.9 35.3 36.3 36.6 37.1 45.7 49.5 52.2 52.8 12.1 13.8 15.8 16.8
Starling-RM-34B 47.6 47.0 49.4 45.7 37.8 38.8 39.6 40.4 49.1 52.8 56.0 56.5 6.5 7.2 7.7 7.7

EURUS-RM-7B 44.5 45.7 47.6 47.0 39.3 42.6 43.4 43.9 49.8 53.7 56.3 57.3 14.3 16.2 17.1 17.3
w/o LDR 45.7 44.5 46.3 50.0 39.3 42.4 42.4 42.1 49.4 53.2 55.4 56.3 14.2 16.1 17.0 16.9
w/o LBT 45.1 44.5 47.0 48.2 38.6 40.6 39.6 40.1 49.1 52.5 55.2 57.8 14.3 16.3 17.2 17.1
w/o US 45.7 47.0 49.4 50.6 39.3 41.1 41.4 42.9 49.4 53.8 57.4 58.7 14.5 16.6 17.2 17.5
w/o UF + US 43.9 43.3 47.0 46.3 36.3 38.1 36.6 35.3 49.4 52.3 54.6 57.2 14.3 16.5 17.4 17.4

Pass@N 62.8 73.8 88.4 92.7 42.4 48.1 52.6 58.6 54.9 64.1 73.2 80.4 16.9 22.7 28.9 35.5

on HumanEval. (2) Both LBT and LDR consistently help
improve reranking performance on three test sets except
for HumanEval, where removing either of the objectives
can prevent the accuracy from dropping when increasing
N from 8 to 16. (3) Modeling safety hurts reranking per-
formance in reasoning. When removing UltraSafety from
the training data, the RM achieves higher accuracies than
EURUS-RM-7B except on MBPP.
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