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Abstract

Causal discovery is a major task with utmost impor-
tance for machine learning since causal structures
can enable models to go beyond pure correlation-
based inference and significantly boost their per-
formance. However, finding causal structures from
data poses a significant challenge both in computa-
tional effort and accuracy, let alone its impossibil-
ity without interventions in general. In this paper,
we develop a meta-reinforcement learning algo-
rithm that performs causal discovery by learning
to perform interventions such that it can construct
a causal graph. Apart from being useful for possi-
ble downstream applications, the estimated causal
graph also provides an explanation for the data-
generating process. In this article, we show that
our algorithm estimates a good graph compared to
the SOTA approaches, even in environments whose
underlying causal structure is previously unseen.
Further, we make an ablation study that shows how
learning interventions contribute to the overall per-
formance of our approach. We conclude that inter-
ventions indeed help boost the performance, effi-
ciently yielding an accurate estimate of the causal
structure of a possibly unseen environment.

1 MOTIVATION AND CONTRIBUTION

From daily routines to scientific investigations, many ques-
tions can be broken down into causal questions like "Why
does this error message constantly appear on my screen?"
or "Does more physical activity reduce the risk of cardio-
vascular diseases?". As solving such a task requires strong
generalisation and transfer (of knowledge) skills, it also
stands as one of the challenges with utmost importance in
machine learning (ML) research [Schölkopf et al., 2021].

Causal discovery is the task of finding the causal structures

of environments, given some data about their observable
variables. These structures enable models to go beyond pure
correlation-based inference and significantly boost their per-
formance. This is why there has been a recent push for
causality-driven ML. This drive also goes the opposite way,
where ML supports causality research to deal with and draw
conclusions from large amounts of data [Peters et al., 2017,
Schölkopf et al., 2021, Guo et al., 2020]. To infer causal
structure from data it has been shown that it is necessary
to perform interventions [Pearl, 1993, Bareinboim et al.,
2020]; that is to experimentally ‘force’ a variable to take
on a certain value. Only these interventions allow us to, in
general, distinguish causal structures which yield the same
observational distribution over their variables.
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Figure 1: Our policy learns to intervene and estimate causal
structures during training. It can then be applied to environ-
ments that have a structure unseen during training.

We develop a meta-learning algorithm in a reinforcement
learning (RL) setting where the agent learns to intervene to
construct a causal graph. An overview is given in Figure
1. Find the code at https://github.com/sa-and/
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The research field of causal discovery has led to many
techniques. Constraint-based algorithms (e.g. PC and FCI
[Spirtes et al., 2000]) infer the causal relationships through
independence tests on purely observational data. Score-
based algorithms (e.g. GES [Chickering, 2002, Meek, 1997],
FGS [Ramsey et al., 2017], GIES [Hauser and Bühlmann,
2012]) incrementally add and delete edges such that the
structure of the causal model is improved w.r.t. some scor-
ing function. Another line of research searches over the
space of permutations rather than a graph space (e.g. GSP
[Solus et al., 2017], IGSP [Wang et al., 2017a]) with exten-
sions even to soft interventions [Yang et al., 2018]. Recent
papers also make use of ML and RL methods to discover
causal graphs. Such works range from graph-generating neu-
ral networks (e.g. CGNNs [Goudet et al., 2018, Ton et al.,
2020]) to methods that use encoder-decoder models [Yu
et al., 2019] with a search guided by RL [Zhu et al., 2019]
to constraint optimization (NOTEARS [Zheng et al., 2020]).
We point out another paper by Dasgupta et al. [Dasgupta
et al., 2019] that is not directly aimed at causal discovery.
Rather, using RL, it solves a prediction task that depends
on the ability of the model to learn causal effects from inter-
ventions in the environment.

Most causal discovery algorithms come with challenges and
shortcomings. Almost all aforementioned approaches can
not make use of interventions at all or are computationally
inefficient. This is largely due to their inability to use pre-
vious information to generalise to unseen environments. In
this work, we tackle these challenges by implementing a
meta-RL algorithm that learns to learn causal structures us-
ing interventions. Our main contributions tackle two main
common issues found in causal discovery, briefly formulated
as follows:

(I1) computationally efficient use of interventions,

(I2) generalization to environments with unseen and un-
known causal structure

In this context, we evaluate our approach by carrying out a
series of experiments and show how it compares to existing
approaches in varying sizes of environments. We then make
an ablation study to understand how much the interventions
contribute to our performance. It turns out that our approach
compares favourably to SOTA approaches regarding the
aforementioned issues.

2 PRELIMINARIES AND NOTATION

Causal relationships are formally expressed in terms of a
structural causal model (SCM). Every SCM induces a graph
structure G in which each node and edge represent a ran-
dom variable and direct causal effect between nodes, re-
spectively. We define an SCM S as a tuple (X ,U ,F ,P)

where X = {X1, . . . , X|X |} is the set of observable
(also called endogenous) variables; U = {U1, . . . , U|U|}
is the set of unobservable (also called exogenous) vari-
ables; F = {f1, . . . , f|F|} is the set of functions whose
elements are defined as structural equations in the form of
Xi ← fi(PaGXi, Ui) in which PaGXi is the set of observable
parents of Xi w.r.t. G; P = {P1, . . . , P|U|} is a set of pair-
wise independent distributions where Ui ∼ Pi. Moreover,
we will assume that unobservable variables do not have any
parents in G i.e., every Ui is a root node.

We will assume the induced causal graph is always a di-
rected acyclic graph (DAG) i.e., acyclic SCM. We will also
make use of the notion of a partially directed acyclic graph
(PDAG) which can be thought of as a DAG where some
edges are relaxed to be bi-directional, and cyclicity is only
limited to those edges.

A intervention1 on a variable Xi is defined as replacing the
corresponding structural equation Xi ← fi(PaGXi, Ui) with
Xi ← x for some value x, which we denote as do(Xi = x).
Intervening makes the variable independent of its parents,
changing the causal mechanism of the data-generation pro-
cess. The model is causal in the sense that one can derive
the distribution of a subset X ′ ⊆ X of variables following
an intervention on a set of variables, called intervention
target, I ⊆ X \ X ′. We call the resulting distribution over
X post-interventional. When no intervention is performed
(I = ∅) we will call it the observational distribution.

3 WORKING ASSUMPTIONS

Before a detailed description of our approach, we state some
assumptions made in this paper. We make these assumptions
mainly for the simplification of the algorithm. The main
assumptions are the following:

(A1) Each environment is defined by an acyclic SCM.

(A2) Every observable variable can be intervened on.

(A3) For each environment in the training set, the underlying
SCM is given.

(A4) We perform interventions on at most one variable at a
time.

4 REINFORCEMENT LEARNING SETUP

4.1 ACTIONS

We implement two types of discrete actions. The first type
performs an intervention on the environment and observes
the resulting values of the variables. This enables the policy
to choose a (post-interventional) distribution and to sample
from it. We will refer to this kind of action as listening action.

1In this work we only consider so-called hard interventions.
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All, except for one, of the listening actions are intervention
actions that intervene on exactly one variable (i.e., |I| = 1).
Inspired by [Dasgupta et al., 2019], for each observable
variable X ∈ X , we provide an action do(X = 0) and
do(X = 5). This results in a total of 2n intervention actions
for n nodes. There is one additional listening action which
we call the non-action. When the non-action is taken, the
agent observes the current values of the observable variables
without intervening (i.e., I = ∅). This action accounts for
the collection of purely observational data.

The second type of action is responsible for constructing the
epistemic model of the causal structure of the environment,
which is the current best (PDAG) estimate of the agent.
We will refer to these actions as structure-actions. Each
structure action can either add, delete or reverse an edge of
the epistemic causal model.

For a graph with n nodes, there are n(n− 1) possible edges,
and hence there are 3n(n− 1) structure-actions. Together
with the listening-actions we have 2n+ 1 + 3n(n− 1) =
3n2 − n + 1 actions. So the size of the action-space is
quadratic in the size of nodes. Whenever a delete or reverse
action is applied to an edge that is not present in the current
model, the action is ignored. This is effectively equivalent
to performing the non-action. The same holds when the add
action is applied to an edge that is already in the epistemic
model. We do not make any further restrictions, for instance,
w.r.t. acyclicity for the structure actions.

4.2 STATE SPACE

The state of the environment consists of a concatenation of
three parts. The first one encodes the current values of the n
observable variables. The second part is a one-hot encoding
of which variable is currently being intervened on. The third
part of the state encodes the current epistemic model as a
vector. Each value of this vector represents an undirected
edge in the graph. The edges in the vector are ordered lex-
icographically. The value 0 encodes that there is no edge
between the two nodes. The value 0.5 encodes that there
is an edge going from the lexicographically smaller node
to the bigger node of the undirected edge. And the value 1
encodes that there is an edge in the opposite direction.

4.3 REWARDS AND EPISODES

Our task is to find the causal structure of the environment,
i.e., the DAG that corresponds to the graph induced by
the SCM. Therefore, we compare the PDAG generated by
the agent in an episode to the true causal structure of the
environment. The quantification of this comparison serves
as the reward for our algorithm.

One obvious choice is to count the edge differences between
the two graphs. This ensures that generating a model that has

more edges in common with the true DAG will be preferred
over one which has fewer edges in common. It further gives
a strong focus on causal discovery as opposed to scores
based on causal inference. The Structural Hamming Dis-
tance (SHD) [Tsamardinos et al., 2006] provides a metric
that describes a way of counting the differences between
two directed graphs. In our case, it takes two PDAGs and
counts how many of the following operations are needed to
transform the first PDAG into the second: add or delete an
undirected edge, and add, remove, or reverse the orientation
of an edge. For implementational purposes we adapt this
metric to not count reverse actions as such but by counting
them as add and delete actions instead. Further, we count
undirected edges2 as bi-directed edges. This results in a
metric that simply counts the distinguishing edges of two
directed graphs. We will refer to this metric as directed SHD
or dSHD. Given a predicted directed graph SP = (V,EP )
and a target, directed graph ST = (V,ET ), we define the
dSHD as dSHD(EP , ET ) =| EP \ ET | + | ET \ EP |.

As we need to determine when the estimation of the model
terminates, we set a finite horizon H for each episode. The
estimation of the epistemic model is complete when H − 1
actions were taken. Dynamically determining the end of the
estimations is left for future research. This is also the only
time the quality of the causal model is evaluated. Note that
when a small episode length is chosen, there might not be
enough steps available to the agent to collect enough data
and make the right changes to the epistemic model. We sug-
gest that the episode length should be at least n+n(n−1)/2,
which allows for one intervention on each node and one op-
eration per possible edge in the graph. Further, H should
not be set too large since additional learning complexity
might be introduced. At the beginning of each episode, an
SCM is sampled from the training set. The epistemic causal
model of the agent is reset to a random PDAG, to further
introduce randomness. The evaluation is done by calculating
the negative dSHD between the generated PDAG and the
true causal graph only at the end of each episode. Every
other step receives a reward of 0. The value function for a
state s and a policy π is then defined as

Vπ(s) = Eπ

[
−γHdSHD(edges(sH), EEnv) | st = s

]
where

• edges(s) is the operator that returns the edges of a state,

• EEnv are the edges of the current target graph,

• H ∈ N is the horizon.

• γ is the discount factor γ ∈ [0, 1].

We use the Actor-Critic with Experience Replay (ACER)
[Wang et al., 2017b] algorithm to solve this RL problem.
We choose this algorithm because it is a sample-efficient

2Graphs generated with other algorithms might contain undi-
rected edges.



off-policy methods and its (potential) easy extension to con-
tinuous action spaces. We use a discount factor γ = 0.99
and a buffer size of 500000. All other parameters are ac-
cording to the standard values of the Python library we used
(Stable-Baselines 2.10.1 [Hill et al., 2018]).

4.4 POLICY NETWORK

Both, the actor-network and the critic network are fully-
connected MLPs. Both networks are preceded by a shared
network that has n fully-connected feed-forward layers fol-
lowed by a single LSTM layer. The exact amounts of layers
and their sizes are specified for each experiment.

We want to emphasise the recurrent LSTM layer. It enables
the policy to memorize past information of its preceding
layers and, therefore, use information from previous obser-
vations. More specifically, it should enable the policy to
remember samples from the (post-interventional) distribu-
tions induced by the data-generating SCM earlier in that
episode. We argue that this should help to better identify
causal relations since the results of sequential interventions
can be used to estimate the distribution.

5 LEARNING TO INTERVENE

First, we develop a toy example to test whether our approach
can learn to perform the right interventions to identify causal
models under optimal conditions. To this end, we construct
a simple experiment in which two observationally equiva-
lent, yet interventionally different environments have to be
distinguished. This can only be achieved with the help of
interventions [Bareinboim et al., 2020]. Thus, if our policy
learns to distinguish those environments, it has to learn to
perform interventions. The two environments are governed
by the fully observable, 3-variable SCMs with structures
G1 : X1 ← X0 → X2 and G2 : X0 → X1 → X2. In both
environments, the root node X0 follows a normal distribu-
tion with X0 ∼ N(µ = 0, σ = 0.1). The nodes X1 and X2

take the values of their parents in the corresponding graph.
The resulting observational distributions PG1

(X0, X1, X2)
and PG2

(X0, X1, X2) are the same and so are the post-
interventional distributions after interventions on X0 or X2.
For an intervention on X1, PG1(X0, X2 | do(X1 = x)) ̸=
PG2

(X0, X2 | do(X1 = x)). Hence the two SCMs can only
be distinquished by intervening on X1.

The parameters for this experiment can be found in Ap-
pendix A.1. The algorithm is trained in both environments.
This allows us to investigate whether, given enough training
time and data, our approach can learn to distinguish the envi-
ronments. During training, we observe that the mean dSHD
of the produced graphs is 0.0 with a standard derivation of
0.0. This is a perfect reproduction of the two environments
in all cases. This indicates that our policy has learned to

use the right interventions to find the true causal structure.
After training, we apply the converged policy 10 times to
each of the environments and qualitatively analyze the be-
haviour. What the resulting 20 episodes have in common
is that, towards the beginning of each episode, they tend to
delete edges that do not overlap in the two environments.
Then an intervention on X1 is performed. Depending on the
outcome of the intervention, either G1 or G2 is ultimately
generated. This can also be seen in the example in Appendix
A.2.

This shows that our learned policy learns to use the inter-
vention on X1 to distinguish between the two environments.
Thus, our approach is capable of using interventions in a
step-wise manner to perform causal discovery. Furthermore,
these results suggest that the model has learned to only per-
form interventions that are relevant as opposed to random
interventions. This constitutes a step toward solving the
common issue of the efficient use of interventions (I1).

6 GENERALISATION OF CAUSAL
KNOWLEDGE

We now investigate how well a policy can transfer its knowl-
edge about causal discovery from a set of training envi-
ronments to unseen test environments. We benchmark our
learned policy against established methods.

Following the widely adopted practice, we test our approach
on environments that are fully observable and have an ad-
ditive linear causal model with Gaussian noise. It is known
that these kinds of environments suffer from varsortability
where good results can be achieved by ordering the variables
by the variance of their observational distribution [Reisach
et al., 2021, Kaiser and Sipos, 2021]. Since our agent suc-
cessfully leverages interventions (see Section 5 and 7) for
estimating causal structures, we argue that this effect can
only partly account for the performance. A more detailed
investigation is left for future research.

Given a structure G with a set of observable variables X ,
we model our environments as ∀X ∈ X :

X ←

 ∑
Y ∈PaG

X

WY

+ ε (1)

where ε ∼ N(µ = 0, σ = 0.1) is some random noise
and W ∼ Uniform({±0.2,±0.4,±0.6,±0.8,±1}) rep-
resents a random weight for each causal effect of a parent
to a child.

We create 24 SCMs with 3 observable variables and 542
SCMs with 4 observable variables. The SCMs in these sets
all induce distinct causal structures. The exact training setup
can be found in Appendix B. We will refer to the model
which performed best on the test set as best model.



We created a random baseline that returns a random
DAG. To compare the learned policies to established al-
gorithms, we ran our best model and the other approaches
(NOTEARS [Zheng et al., 2018, 2020], GES [Chickering,
2002, Kalainathan and Goudet, 2019], random) 20 times
on each of the environments in the test sets and computed
the directed SHD for each of the generated graphs. For
NOTEARS and GES, 1000 random samples from the obser-
vational distribution of each environment are taken as input.
Figures 2 and 3 show the boxplots of the average directed
SHD of the 20 runs on each of the environments in the test
set.
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Figure 2: Boxplots of mean dSHD over 20 runs on each en-
vironment of our policy, NOTEARS, GES, and our random
baseline on the test set for 3-variable environments. The ‘x’
indicates the mean.
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Figure 3: Boxplots of mean dSHD over 20 runs on each en-
vironment of our policy, NOTEARS, GES, and our random
baseline on the test set for 4-variable environments. The ‘x’
indicates the mean and the bar in the middle of the box is
the median.

Figure 2 shows that our approach outperforms the random
baseline, suggesting that our policy learns to estimate the
environment’s causal structure beyond randomly orienting
edges. Furthermore, we can see that our policy outper-
forms the GES algorithm which is based on purely observa-

tional data. As shown by Zheng et al. [Zheng et al., 2018],
NOTEARS outperforms FGS which is based on GES. This
can also be seen in Figures 2 and 3. Such relative higher
performance is also the reason why we focus on compar-
ing our approach to NOTEARS. The boxplots suggest that
the dSHD of our approach compares favorably to the one
of NOTEARS. To investigate this difference in more de-
tail, we performed a Wilcoxon signed-rank test between
the directed SHDs resulting from our policy and the ones
resulting from running NOTEARS. To ensure that the as-
sumption of independent samples holds, we only compare
the result of the first evaluation of each environment. In the
3-variable environments, the median of the directed SHDs
of our approach is not significantly lower than the one from
NOTEARS with p ≈ 0.159 (Note that this is based on only
5 samples for each algorithm). In the 4-variable environ-
ments, however, the median of our approach is significantly
better than NOTEARS (with p ≈ 4.8 · 10−7).

We conclude that applying our learned policy to these envi-
ronments can be preferable to applying NOTEARS or GES.
This also suggests that our model can generalise to previ-
ously unseen environments. One possible explanation is that
the quality gain w.r.t. NOTEARS and GES is attributed to
the fact that they are both based on purely observational
data, whereas our policy leverages interventional data.3 We
investigate how big the influence of interventions is in our
approach in the next section.

7 CONTRIBUTION OF INTERVENTIONS

To empirically investigate the effect of interventions on the
performance of our algorithm, we perform an ablation study.
We train a variant of our policy which is based on purely
observational data (we disallow the use of interventions)
and compare it to the model which uses interventions. We
then compare our results again to NOTEARS which is also
using purely observational data.

We measure the average directed SHD of the training set
as well as the test set of the current model every 500000
steps. We take the model which performed best on the test
set and run it 20 times on each environment of the test
set and measure the dSHD for every generated graph. We
do the same for the best models of the previous section
and the NOTEARS algorithm. We then proceed by doing
a Wilcoxon signed-rank test to evaluate whether there is a
significant difference between the model that uses interven-
tions and the one that does not. We also test whether there
is a difference between the NOTEARS algorithm and our
approach when no interventions are allowed. Note that we
perform the test only on the first run for each environment
to ensure the independence of the samples at the cost of

3A comparison to interventional SOTA approaches is left for
future research.



yielding small sample sizes.

Figure 4 shows the learning progress of our model on 4-
variable environments. We can see in the first part, that the
average dSHD on the test and training of both models com-
pares similarly. What stands out is that after approximately
10 million training steps, the performance of the model with-
out interventions turns out to be approximately constant. At
about the same amount of training steps, the model which
uses interventions starts to rapidly perform better until reach-
ing almost 30 million training steps in total. For the model
with interventions, a learning process emerges with two
fast learning regions. We argue that this behavior emerges
from a two-phase learning process. First, the model learns
to produce a graph, based on purely observational data. And
then, they learn to use interventions (if enabled) to further
increase performance.4
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Figure 4: Learning progress of an agent based on purely
observational data (blue, orange) and one that can perform
interventions (green, red) on 4-variable environments.

We also compare the three models statistically. Here, the
median dSHD of the graphs produced by the best model with
interventions is significantly lower than the one of the best
models without interventions with a p-value of≈ 4.8 ·10−8.
Furthermore, the median dSHD of the produced graphs
of the model without interventions is significantly lower
than the ones produced by NOTEARS with a p-value of
approximately 0.004. This means that even in the case of
purely observational data, our approach can outperform
NOTEARS in 4-variable environments. Similar results can
be found for the 3-variable environments as is shown in
Appendix C.

This leads to the conclusion that introducing interventions
results in the hypothesized edge over the purely observa-
tional version of our model. Ultimately, in the 4-variable
environments, our model outperforms NOTEARS no matter
whether it uses interventional data or purely observational

4Note that we trained the interventional model two additional
times where it exhibited such two-phase behavior as well. For
visualization purposes, we omitted these runs in the plot.

one. Nonetheless, the model using interventional data out-
performs the one using purely observational data. Overall,
these empirical results support the idea that interventions
help to identify causal structures from data.

8 DISCUSSION AND CONCLUSION

We proposed a new meta-learning algorithm in RL setting
for the task of causal discovery. Our exploratory experiments
showed that our policy can learn to perform interventions
that are strongly informative for the current environments
(I1). We quantified the quality of the estimated models on
previously unseen environments with 3 and 4 variables. We
showed that our policy generalises well also w.r.t. estab-
lished algorithms based on observational data (I2). In an
ablation study, we elaborate on the role that interventions
play in the good performance of our approach.

The related works from the active learning community such
as Murphy [2001], Scherrer et al. [2021], Tigas et al. [2022]
and Amirinezhad et al. [2022], we have only come to know
after the reviewers have pointed them out. Of those works,
the closest to ours is Amirinezhad et al. [2022] which em-
ploys a reinforcement learning approach as well, while fo-
cusing rather on minimising the number of interventions. In
doing so, as an architectural difference, they employ both a
graph neural network to learn the embedding vector of each
node and an additional network that scores the output of
the embedding network to choose the node to be intervened.
Then they apply intervention, and the Meek rules to orient
and reiterate the process. For a fair comparison, benchmark-
ing against these works and thorough comparative analysis
are needed and are parts of our future agenda.

Furthermore, we acknowledge that our approach needs mod-
ifications to scale to realistic environments with more vari-
ables. The resulting explosion of the action- and state-space
needs to prompt considerations about better encodings. A
further problem in a real-world setting is the availability
of a large amount of data-generating models for training.
These kinds of models are often unavailable. Another issue
arises from the assumption that every observable variable
can be an intervention target (A2). In real-world settings,
causal variables might not be accessible by interventions
(e.g., outside temperature) or the abstraction level of an in-
tervenable variable is unclear. For instance, it might be that
the input pixels are not the variables we can intervene on
but the color of a light bulb which is represented by those
pixels is. Future research can be done on an extension to in-
tervention targets of arbitrary size (A4). Also, the possibility
of transfer learning between different classes of causal mod-
els, such as those not governed by a linear additive model,
can prompt interesting investigations. Lastly, we point out
that, to fully evaluate our approach, an extensive benchmark
against SOTA interventional algorithms has to be conducted
in future research.
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A EXPERIMENTAL DETAILS FOR
PROOF OF CONCEPT

A.1 MODEL PARAMETERS

The policy network for the experiment in Section 5 has
a fully connected layer of size 30, followed by an LSTM
layer of size 30. The actor-network has one fully connected
layer of size 30, the critic-network one fully connected layer
of size 10. The length of each episode was set to 10 and
the model trained for 5 million training steps. For all other
parameters, the default values were used.

A.2 ILLUSTRATION

Here we illustrate two hand-picked episodes, one for each
environment, to render a better picture of how the graphs
are produced. These two episodes can be seen in Figure 5.
Each episode shows an application of the fully converged
policy on the environments as described in Section 5.

B TRAINING SETUP FOR
GENERALIZATION EXPERIMENT

The following configuration for the policy network worked
best after preliminary experiments for the 3-variable (4-
variable) environments: One (two) fully connected layer(s)
of size 30 (40) followed by an LSTM layer of size 30 (160).
Its outputs are fed into a fully connected layer of size 30 (60)
for the actor-network and one of size 10 (20) for the critic-
network. For this experiment, we set the episode length to
20. The network was evaluated every 500000 steps in both
cases. All runs were stopped after 14 evaluations of the
policy on the test setwere worse than the best policy found
so far to avoid overfitting. In the 3-variable set, we use the
first 18 environments for training and the last 5 for testing.
In the 4-variable set, we use the first 500 environments for
training and the last 42 for testing. The best model for the
3-variable (4-variable) environments is obtained after 14.5
(31) million training steps.

C INFLUENCE OF INTERVENTIONS ON
ENVIRONMENTS WITH 3 VARIABLES

Considering the influence of interventions on 3-variable en-
vironments, the results, at first, look slightly different as see
in Figures 6 and 7. The figures suggest that the interven-
tional model does not use interventions when applied to the
test set. Fortunately, this visual inspection is misleading as
the Wilcoxon rank-sum test on the runs of the models on
the test set shows. Here, the directed SHD of the graphs
produced by the interventional model has a lower median
than its purely observational counterpart. With a p-value
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Figure 5: Illustration of two sample episodes after training with the respective causal environments G1 and G2. Interventions
and their effects are highlighted.

≈ 0.0156, this is slightly significant even at a Bonferroni-
corrected significance level of 0.025 (mind, again, the small
sample size of 5). At the same time, there is no significant
difference in the medians of the no_intervention condition
and the NOTEARS condition when performing a two-sided
Wilcoxon rank-sum test (p ≈ 0.063).
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Figure 6: Learning progress of an agent based on purely
observational data (blue, orange) and one that can perform
interventions (green, red) on 3-variable environments.
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Figure 7: dSHD of the three models for 3-variable environ-
ments on the test set.
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