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Abstract

The output tendencies of Pre-trained Language
Model (PLM)s vary markedly before and af-
ter fine tuning (FT) due to the updates to the
model parameters. These divergences in output
tendencies result in a gap in the social biases of
PLMs. For example, there exits a low correla-
tion between intrinsic bias scores of a PLM and
its extrinsic bias scores under FT-based debias-
ing methods. Additionally, applying FT-based
debiasing methods to a PLM leads to a decline
in performance in downstream tasks. On the
other hand, PLMs trained on large datasets
can learn without parameter updates via in-
cotext learning (ICL) using prompts. ICL in-
duces smaller changes to PLMs compared to
FT-based debiasing methods. Therefore, we
hypothesize that the gap observed in pre-trained
and FT models does not hold true for debiasing
methods that use ICL. In this study, we demon-
strate that ICL-based debiasing methods show
a higher correlation between intrinsic and ex-
trinsic bias scores compared to FT-based meth-
ods. Moreover, the performance degradation
due to debiasing is also lower in the ICL case
compared to that in the FT case.

1 Introduction

PLMs learn not only beneficial information (Peters
et al., 2018; Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023) but also undesirable social
biases such as gender, race, and religous biases that
exist in the training data (Sun et al., 2019; Liang
et al., 2020; Schick et al., 2021; Zhou et al., 2022;
Guo et al., 2022). Overall, two major approaches
can be identified in the literature to elicit value
from PLMs in downstream tasks: FT and ICL. FT
adapts PLMs to specific tasks by updating param-
eters, while ICL uses prompts without modifying
the model parameters.

FT models diverge considerably from the origi-
nal PLMs in their output distributions (Chen et al.,
2020). Similarly, the output distribution of a PLM
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Figure 1: The gap in bias scores when evaluating and
debiasing PLMs using FT- and ICL-based methods. A
lower correlation between intrinsic and extrinsic bias
scores (a), while a larger drop in downstream task per-
formance (b) is encountered with FT compared to ICL.

is significantly affected by debiasing methods, be-
cause the parameters of the PLM are updated dur-
ing the debiasing process. Debiasing accompa-
nied by FT suffers substantial performance de-
cline in downstream tasks compared to the original
PLM (Meade et al., 2022; Kaneko et al., 2023b;
Oba et al., 2023). This is because the beneficial
information learnt during pre-training is lost during
debiasing. Furthermore, bias evaluations exhibit a
weak-level of correlation between pre-trained and
FT PLMs (Goldfarb-Tarrant et al., 2021; Kaneko
et al., 2022a; Cao et al., 2022).

On the other hand, it is not obvious whether
the prevalent wisdom regarding bias in such FT
regimes similarly pertains to ICL, devoid of con-
comitant model updates. The absence of parameter



updates precludes the elimination of beneficial en-
codings, thereby minimizing adverse impacts on
downstream task effectiveness. ICL strategies for
mitigating biases may thus pose superior viability,
while causing minimal representational damage.
Moreover, we hypothesize that the bias evaluations
that are based on pre-training and downstream tasks
exhibit heightened correlations, because the ICL-
based debiasing methods protect the model param-
eters.

In this paper, we investigate the performance gap
of debiasing methods when applied to downstream
tasks in an ICL setting. Additionally, we exam-
ine the correlation between bias evaluations for
pre-training and downstream tasks enabled by the
parameter sharing of ICL. Our experimental results
show that ICL has a smaller gap than the FT setting
with respect to (w.r.t.) performance degradation of
debiasing and correlation between evaluations in
pre-training and downstream tasks. Therefore, we
expect this paper to contribute by cautioning the
community against directly applying trends from
pre-training and downstream tasks with FT to ICL
without careful considerations.

2 Experiments

We first explain the details of bias evaluations, de-
biasing methods, and downstream tasks used in our
experiments.

2.1 Bias Evaluations

Pre-training settings. We target the following
three intrinsic bias evaluation datasets. Nangia
et al. (2020) and Nadeem et al. (2021) proposed re-
spectively, Crowds-Pairs (CP) and StereoSet (SS)
bechmarks, which evaluate social biases of lan-
guage models by comparing likelihoods of pro-
stereotypical (e.g. “She is a nurse”) and anti-
stereotypical (e.g. “She is a doctor”) examples.
Kaneko et al. (2022b) introduced Multilingual Bias
Evaluation (MBE) that evaluates gender bias in
models in multiple languages by comparing like-
lihoods of feminine (e.g. “She is a nurse”) and
masculine (e.g. “He is a nurse”) sentences. Our re-
search compares the bias scores in pre-training and
the downstream tasks, which requires us to target
the same language and bias type in both settings
as considered in those benchmarks. Therefore, we
use gender bias in English on the above datasets to
satisfy those requirements.

Downstream settings. We focus on three down-
stream tasks in our evaluations: question answer-
ing, natural language inference, and coreference
resolution. Parrish et al. (2022) created the Bias
Benchmark for Question answering (BBQ) to eval-
uate the social biases by determining whether a
model predicts pro-stereotypical, anti-stereotypical,
or unknown answers when given ambiguous and
disambiguated contexts as the input. Anantapray-
oon et al. (2023) proposed the Bias Natural Lan-
guage Inference (BNLI) benchmark to evaluate
gender bias using premise sentences and hypoth-
esis sentences that share the same context but dif-
fer only in occupational and gender-related words.
Zhao et al. (2018) proposed the WinoBias (WB)
benchmark to evaluate gender bias by consider-
ing differences between model predictions on pro-
stereotypical and anti-stereotypical sentences in a
coreference resolution task.

2.2 Debiasing Methods

Fine-tuning. We use the following two FT-based
debiasing methods that modify the model param-
eters. Webster et al. (2020) introduced the Coun-
terfactual Data Augmentation debiasing (CDA),
which swaps gender words in training data to re-
duce bias. For instance, “She is a nurse” becomes
“He is a nurse” in the augmented dataset, resulting
in a more balanced dataset. Kaneko and Bollegala
(2021) introduced All-Layer Token-level debias-
ing (ALT) for mitigating biases in MLMs. It uses
orthogonal projections to address gender and oc-
cupational terms, offering broad applicability and
optimal performance with token-level debiasing
across all layers of a PLM.

In-context learning. We use the following two
ICL-based debiasing methods that do not modify
the model parameters in our experiments. Gan-
guli et al. (2023) presented a Zero-Shot Debias-
ing (ZSD) using the instruction — “Please ensure
that your answer is unbiased and does not rely on
stereotypes.” — that is effective to mitigate social
biases. Oba et al. (2023) presented a Few-Shot
debiasing (FSD) method in which examples are
generated from manually designed templates rep-
resenting counterfactual statements. They showed
this approach to accurately suppress gender biases
in PLMs.



Fine-tuning In-context learning
BBQ BNLI WB BBQ BNLI WB
CP 0.23 0.19 025 042 039 034
SS 020 0.15 020 0.38 044 042
MBE 0.10 -0.02 0.12 029 035 031

Table 1: Correlation between bias scores of intrinsic
bias evaluation and extrinsic bias evaluation.

2.3 Downstream Task Evaluations

We use the following three datasets to investigate
the impact of the debiasing methods on the per-
formance of question answering, natural language
inference, and coreference resolution tasks. RACE
dataset contains ca. 100K questions collected from
the English proficiency examinations for middle
and high school students in China, covering a broad
range of topics (Lai et al., 2017). Adversarial Nat-
ural Language Inference (ANLI) dataset includes
ca. 170K pairs and is collected via an iterative,
adversarial human-and-model-in-the-loop proce-
dure (Nie et al., 2020). OntoNotes v5.0 dataset has
13K sentences and is manually annotated with syn-
tactic, semantic, and discourse information (Prad-
han et al., 2013).

2.4 Pre-trained Language Models

For the experiments, a PLM needs to be of a size
that allows efficient fine-tuning and be able to fol-
low instructions for ICL. For this reason, we select
the LaMini models (Wu et al., 2023) that are knowl-
edge distilled from Large Language Model (LLM)s
using instruction data to create smaller models. We
used the following eight LaMini models': LaMini-
T5-61M, LaMini-T5-223M, LaMini-GPT-124M,
LaMini-Cerebras-111M, LaMini-Cerebras-256M,
LaMini-Flan-T5-77M, LaMini-Flan-T5-248M, and
LaMini-Neo-125M.

We followed the same configuration as LaMini
for fine-tuning, and used huggingface implementa-
tions for our experiments (Wolf et al., 2019). We
used four NVIDIA A100 GPUs for all experiments,
and all training and inference steps were completed
within 24 hours.

2.5 Correlation between Bias Evaluations in
Pre-training and Downstream Tasks

In CP, SS, and MBE, each metric evaluates gender
bias in the eight PLMs mentioned above. In BBQ,

"https://huggingface.co/MBZUAL/
LaMini-Neo-125M

BNLI, and WB, we fine-tuned PLMs on down-
stream task datasets RACE, ANLI, and OntoNotes,
respectively — and evaluated gender bias w.r.t. bias
evaluation in downstream tasks. Furthermore, we
used a few-shot ICL setting where we provided the
PLMs with 16 randomly sampled instances from
each downstream task dataset for FSD. To quantify
the relationship between bias scores from CP, SS,
and MBE and those from BBQ, BNLI, and WB
across the eight PLMs, we calculated Pearson cor-
relation coefficients. This analysis elucidates the
impact of fine-tuning PLMs on downstream tasks.
Moreover, we show an evaluation of the original
PLMs w.r.t. gender bias evaluations in pre-training
and downstream tasks.

Table 1 shows the correlation between bias eval-
uation methods on pre-train tasks (CP, SS, and
MBE) and downstream tasks (BBQ, BNLI, and
WB). Overall, we see that FT settings have low cor-
relations between bias evaluations of pre-training
and downstream tasks. On the other hand, ICL
settings have higher correlations than FT settings
in every case. Compared to FT, ICL has a rela-
tively high correlation with bias evaluations in pre-
training and downstream tasks, because it induces
smaller changes to the model parameters.

Multiple existing work have reported a negli-
gible correlation between pre-training and down-
stream task bias evaluation scores under the FT
setting (Goldfarb-Tarrant et al., 2021; Cao et al.,
2022; Kaneko et al., 2022a). Currently, similar as-
sumptions are applied to and discussed under ICL
settings as well (Oba et al., 2023; Goldfarb-Tarrant
et al., 2023). However, ICL-based debiasing results
methods must be interpretted with special care. Our
results show that bias evaluations in pre-training
tasks have the potential to reflect the social biases
related to a wide range of downstream tasks, espe-
cially when debiased with ICL-based methods.

2.6 Impact of Debiasing via Fine-tuning vs.
ICL in Downstream Task Performance

Debiasing methods decrease the downstream task
performance of PLMs due to the loss of useful se-
mantic information (Kaneko et al., 2023a). There-
fore, we must control for the degree of bias miti-
gation brought about by each debiasing method to
fairly compare their downstream task performances.
For this reason, we used a debiased model in which
the debiasing results during the fine-tuning debi-
asing training fall within £0.005 of the debiasing
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Figure 2: Performance diffirence between original and
debiased PLMs in RACE, ANLI, and WB tasks are
shown. Here, PLMs are debiased using fine-tuning-
(CDA, ATL) and ICL-based methods.

score on the ZSD and FSD, respectively.’

Figure 2 shows the performance difference be-
tween the original and debiased models in RACE,
ANLI, and WB tasks. Figure 2a and Figure 2b
show the effect of bias mitigation of CDA and ATL
equalized respectively against ZSD and FSD. We
see that the performance drop due to debiasing
in both CDA and ATL to be higher than that of
FSD and ZSD. Moreover, we see that the drop in
performance of CDA and ATL to be higher when
equalized w.r.t. ZSD than FSD, because ZSD im-
parts a lesser impact on the PLM compared to FSD.
Overall, compared to debiasing via ICL, debiasing
via FT results in a larger downstream task degera-

2ESD is capable of adjusting the debiasing performance
by varying the number of examples used. In order to equalize
the debiasing effects of FSD and ZSD, it would be necessary
to reduce the number of FSD examples to 0. By doing so,
FSD and ZSD would become identical methods, so we do not
compare their equalized debiasing effects.

RACE ANLI OntoNotes
CDA 0.66 0.58 0.61
_ALT_ 060 051 054
ZSD  0.81 0.83 0.87
FSD 0.73 0.76 0.81

Table 2: Cosine similarity between output states of orig-
inal and debiased models.

dation due to the updating of model parameters.

2.7 Change of Parameters in PLMs

To quantify the change in model outputs due to
FT vs. ICL, we measure the average similarity
between the model outputs for a fixed set of in-
puts. Specifically, we feed the i-th instance, x;,
from a downstream task dataset to the original (non-
debiased) PLM under investigation and retrieve its
output state ef (i.e. the hidden state corresponding
to the final token in the last layer). Likewise, we re-
trieve the output states for the debiased model with
FT and ICL, denoted respectively by e{ and ef. We
f

then calculate the cosine similarities cossim(e?, e; )

and cossim(e?, €f), and average them across the
entire dataset as shown in Table 2 for the eight
LaMini PLMs. We can see that the cosine simi-
larity is higher for the debiased models with ICL
than with FT. Therefore, debiased models with
ICL have smaller changes in output states than de-
biased models with FT, indicating that the former
is more likely to retain beneficial information from
pre-training. This result supports the hypothesis
that the reduction of the gap in the relationship
between pre-training and downstream settings is
dependent on the changes in the parameters in the
model due to debiasing.

3 Conclusion

We investigated the gap between pre-training and
downstream settings in bias evaluation and debias-
ing and showed that this gap is higher for FT-based
debiasing methods than for the FT-based ones. Fur-
thermore, we showed that the performance degrada-
tion in downstream tasks due to debiasing is lower
in the ICL settings than in the FT setting.

Previous studies have referred to the results of
FT settings to discuss the relationship between pre-
training and downstream settings (Kaneko and Bol-
legala, 2019; Goldfarb-Tarrant et al., 2021; Cao
et al., 2022). However, we emphasize that the set-
tings of ICL and fine-tuning differ in their tenden-
cies and thus need to be discussed separately.



Limitations

Our study has the following limitations. We used
the LaMini series (Wu et al., 2023) for our experi-
ments because we needed to fine-tune models. To
investigate larger PLMs such as LLaMa (Touvron
et al., 2023) and Flan-T5 (Chung et al., 2022) have
the same tendencies, they need to be verified in
environments with rich computation resources. We
only used QA, NLI, and coreference resolution as
downstream tasks for our experiments. As more
evaluation data for assessing social biases in down-
stream tasks becomes available in the future, the
conclusions from our experiments should be ana-
lyzed across a broader range of datasets.

There are numerous types of social biases, such
as race and religion, encoded in PLMs (Meade
et al., 2022), but we consider only gender bias in
this work. Moreover, we only focus on binary gen-
der and plan to consider non-binary gender in our
future work (Ovalle et al., 2023). In addition, we
consider only English language in our evaluations,
which is a morphologically limited language. As
some research points out, social biases also exist
in multilingual PLMs (Kaneko et al., 2022b; Levy
et al., 2023), which require further investigations.

Ethics Statement

In this study, we have not created or released new
bias evaluation data, nor have we released any mod-
els. Therefore, to the best of our knowledge, there
are no ethical issues present in terms of data collec-
tion, annotation or released models. We observed
that when employing ICL, there exists a correlation
between intrinsic and downstream bias evaluations.
However, it must be emphasized that foregoing
downstream bias evaluations and proceeding to de-
ploy models presents a substantial risk.
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