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Abstract

The output tendencies of Pre-trained Language001
Model (PLM)s vary markedly before and af-002
ter fine tuning (FT) due to the updates to the003
model parameters. These divergences in output004
tendencies result in a gap in the social biases of005
PLMs. For example, there exits a low correla-006
tion between intrinsic bias scores of a PLM and007
its extrinsic bias scores under FT-based debias-008
ing methods. Additionally, applying FT-based009
debiasing methods to a PLM leads to a decline010
in performance in downstream tasks. On the011
other hand, PLMs trained on large datasets012
can learn without parameter updates via in-013
cotext learning (ICL) using prompts. ICL in-014
duces smaller changes to PLMs compared to015
FT-based debiasing methods. Therefore, we016
hypothesize that the gap observed in pre-trained017
and FT models does not hold true for debiasing018
methods that use ICL. In this study, we demon-019
strate that ICL-based debiasing methods show020
a higher correlation between intrinsic and ex-021
trinsic bias scores compared to FT-based meth-022
ods. Moreover, the performance degradation023
due to debiasing is also lower in the ICL case024
compared to that in the FT case.025

1 Introduction026

PLMs learn not only beneficial information (Peters027

et al., 2018; Devlin et al., 2019; Brown et al., 2020;028

Touvron et al., 2023) but also undesirable social029

biases such as gender, race, and religous biases that030

exist in the training data (Sun et al., 2019; Liang031

et al., 2020; Schick et al., 2021; Zhou et al., 2022;032

Guo et al., 2022). Overall, two major approaches033

can be identified in the literature to elicit value034

from PLMs in downstream tasks: FT and ICL. FT035

adapts PLMs to specific tasks by updating param-036

eters, while ICL uses prompts without modifying037

the model parameters.038

FT models diverge considerably from the origi-039

nal PLMs in their output distributions (Chen et al.,040

2020). Similarly, the output distribution of a PLM041

(a) Bias evaluation.

(b) Debiasing.

Figure 1: The gap in bias scores when evaluating and
debiasing PLMs using FT- and ICL-based methods. A
lower correlation between intrinsic and extrinsic bias
scores (a), while a larger drop in downstream task per-
formance (b) is encountered with FT compared to ICL.

is significantly affected by debiasing methods, be- 042

cause the parameters of the PLM are updated dur- 043

ing the debiasing process. Debiasing accompa- 044

nied by FT suffers substantial performance de- 045

cline in downstream tasks compared to the original 046

PLM (Meade et al., 2022; Kaneko et al., 2023b; 047

Oba et al., 2023). This is because the beneficial 048

information learnt during pre-training is lost during 049

debiasing. Furthermore, bias evaluations exhibit a 050

weak-level of correlation between pre-trained and 051

FT PLMs (Goldfarb-Tarrant et al., 2021; Kaneko 052

et al., 2022a; Cao et al., 2022). 053

On the other hand, it is not obvious whether 054

the prevalent wisdom regarding bias in such FT 055

regimes similarly pertains to ICL, devoid of con- 056

comitant model updates. The absence of parameter 057
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updates precludes the elimination of beneficial en-058

codings, thereby minimizing adverse impacts on059

downstream task effectiveness. ICL strategies for060

mitigating biases may thus pose superior viability,061

while causing minimal representational damage.062

Moreover, we hypothesize that the bias evaluations063

that are based on pre-training and downstream tasks064

exhibit heightened correlations, because the ICL-065

based debiasing methods protect the model param-066

eters.067

In this paper, we investigate the performance gap068

of debiasing methods when applied to downstream069

tasks in an ICL setting. Additionally, we exam-070

ine the correlation between bias evaluations for071

pre-training and downstream tasks enabled by the072

parameter sharing of ICL. Our experimental results073

show that ICL has a smaller gap than the FT setting074

with respect to (w.r.t.) performance degradation of075

debiasing and correlation between evaluations in076

pre-training and downstream tasks. Therefore, we077

expect this paper to contribute by cautioning the078

community against directly applying trends from079

pre-training and downstream tasks with FT to ICL080

without careful considerations.081

2 Experiments082

We first explain the details of bias evaluations, de-083

biasing methods, and downstream tasks used in our084

experiments.085

2.1 Bias Evaluations086

Pre-training settings. We target the following087

three intrinsic bias evaluation datasets. Nangia088

et al. (2020) and Nadeem et al. (2021) proposed re-089

spectively, Crowds-Pairs (CP) and StereoSet (SS)090

bechmarks, which evaluate social biases of lan-091

guage models by comparing likelihoods of pro-092

stereotypical (e.g. “She is a nurse”) and anti-093

stereotypical (e.g. “She is a doctor”) examples.094

Kaneko et al. (2022b) introduced Multilingual Bias095

Evaluation (MBE) that evaluates gender bias in096

models in multiple languages by comparing like-097

lihoods of feminine (e.g. “She is a nurse”) and098

masculine (e.g. “He is a nurse”) sentences. Our re-099

search compares the bias scores in pre-training and100

the downstream tasks, which requires us to target101

the same language and bias type in both settings102

as considered in those benchmarks. Therefore, we103

use gender bias in English on the above datasets to104

satisfy those requirements.105

Downstream settings. We focus on three down- 106

stream tasks in our evaluations: question answer- 107

ing, natural language inference, and coreference 108

resolution. Parrish et al. (2022) created the Bias 109

Benchmark for Question answering (BBQ) to eval- 110

uate the social biases by determining whether a 111

model predicts pro-stereotypical, anti-stereotypical, 112

or unknown answers when given ambiguous and 113

disambiguated contexts as the input. Anantapray- 114

oon et al. (2023) proposed the Bias Natural Lan- 115

guage Inference (BNLI) benchmark to evaluate 116

gender bias using premise sentences and hypoth- 117

esis sentences that share the same context but dif- 118

fer only in occupational and gender-related words. 119

Zhao et al. (2018) proposed the WinoBias (WB) 120

benchmark to evaluate gender bias by consider- 121

ing differences between model predictions on pro- 122

stereotypical and anti-stereotypical sentences in a 123

coreference resolution task. 124

2.2 Debiasing Methods 125

Fine-tuning. We use the following two FT-based 126

debiasing methods that modify the model param- 127

eters. Webster et al. (2020) introduced the Coun- 128

terfactual Data Augmentation debiasing (CDA), 129

which swaps gender words in training data to re- 130

duce bias. For instance, “She is a nurse” becomes 131

“He is a nurse” in the augmented dataset, resulting 132

in a more balanced dataset. Kaneko and Bollegala 133

(2021) introduced All-Layer Token-level debias- 134

ing (ALT) for mitigating biases in MLMs. It uses 135

orthogonal projections to address gender and oc- 136

cupational terms, offering broad applicability and 137

optimal performance with token-level debiasing 138

across all layers of a PLM. 139

In-context learning. We use the following two 140

ICL-based debiasing methods that do not modify 141

the model parameters in our experiments. Gan- 142

guli et al. (2023) presented a Zero-Shot Debias- 143

ing (ZSD) using the instruction – “Please ensure 144

that your answer is unbiased and does not rely on 145

stereotypes.” – that is effective to mitigate social 146

biases. Oba et al. (2023) presented a Few-Shot 147

debiasing (FSD) method in which examples are 148

generated from manually designed templates rep- 149

resenting counterfactual statements. They showed 150

this approach to accurately suppress gender biases 151

in PLMs. 152
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Fine-tuning In-context learning
BBQ BNLI WB BBQ BNLI WB

CP 0.23 0.19 0.25 0.42 0.39 0.34
SS 0.20 0.15 0.20 0.38 0.44 0.42
MBE 0.10 -0.02 0.12 0.29 0.35 0.31

Table 1: Correlation between bias scores of intrinsic
bias evaluation and extrinsic bias evaluation.

2.3 Downstream Task Evaluations153

We use the following three datasets to investigate154

the impact of the debiasing methods on the per-155

formance of question answering, natural language156

inference, and coreference resolution tasks. RACE157

dataset contains ca. 100K questions collected from158

the English proficiency examinations for middle159

and high school students in China, covering a broad160

range of topics (Lai et al., 2017). Adversarial Nat-161

ural Language Inference (ANLI) dataset includes162

ca. 170K pairs and is collected via an iterative,163

adversarial human-and-model-in-the-loop proce-164

dure (Nie et al., 2020). OntoNotes v5.0 dataset has165

13K sentences and is manually annotated with syn-166

tactic, semantic, and discourse information (Prad-167

han et al., 2013).168

2.4 Pre-trained Language Models169

For the experiments, a PLM needs to be of a size170

that allows efficient fine-tuning and be able to fol-171

low instructions for ICL. For this reason, we select172

the LaMini models (Wu et al., 2023) that are knowl-173

edge distilled from Large Language Model (LLM)s174

using instruction data to create smaller models. We175

used the following eight LaMini models1: LaMini-176

T5-61M, LaMini-T5-223M, LaMini-GPT-124M,177

LaMini-Cerebras-111M, LaMini-Cerebras-256M,178

LaMini-Flan-T5-77M, LaMini-Flan-T5-248M, and179

LaMini-Neo-125M.180

We followed the same configuration as LaMini181

for fine-tuning, and used huggingface implementa-182

tions for our experiments (Wolf et al., 2019). We183

used four NVIDIA A100 GPUs for all experiments,184

and all training and inference steps were completed185

within 24 hours.186

2.5 Correlation between Bias Evaluations in187

Pre-training and Downstream Tasks188

In CP, SS, and MBE, each metric evaluates gender189

bias in the eight PLMs mentioned above. In BBQ,190

1https://huggingface.co/MBZUAI/
LaMini-Neo-125M

BNLI, and WB, we fine-tuned PLMs on down- 191

stream task datasets RACE, ANLI, and OntoNotes, 192

respectively – and evaluated gender bias w.r.t. bias 193

evaluation in downstream tasks. Furthermore, we 194

used a few-shot ICL setting where we provided the 195

PLMs with 16 randomly sampled instances from 196

each downstream task dataset for FSD. To quantify 197

the relationship between bias scores from CP, SS, 198

and MBE and those from BBQ, BNLI, and WB 199

across the eight PLMs, we calculated Pearson cor- 200

relation coefficients. This analysis elucidates the 201

impact of fine-tuning PLMs on downstream tasks. 202

Moreover, we show an evaluation of the original 203

PLMs w.r.t. gender bias evaluations in pre-training 204

and downstream tasks. 205

Table 1 shows the correlation between bias eval- 206

uation methods on pre-train tasks (CP, SS, and 207

MBE) and downstream tasks (BBQ, BNLI, and 208

WB). Overall, we see that FT settings have low cor- 209

relations between bias evaluations of pre-training 210

and downstream tasks. On the other hand, ICL 211

settings have higher correlations than FT settings 212

in every case. Compared to FT, ICL has a rela- 213

tively high correlation with bias evaluations in pre- 214

training and downstream tasks, because it induces 215

smaller changes to the model parameters. 216

Multiple existing work have reported a negli- 217

gible correlation between pre-training and down- 218

stream task bias evaluation scores under the FT 219

setting (Goldfarb-Tarrant et al., 2021; Cao et al., 220

2022; Kaneko et al., 2022a). Currently, similar as- 221

sumptions are applied to and discussed under ICL 222

settings as well (Oba et al., 2023; Goldfarb-Tarrant 223

et al., 2023). However, ICL-based debiasing results 224

methods must be interpretted with special care. Our 225

results show that bias evaluations in pre-training 226

tasks have the potential to reflect the social biases 227

related to a wide range of downstream tasks, espe- 228

cially when debiased with ICL-based methods. 229

2.6 Impact of Debiasing via Fine-tuning vs. 230

ICL in Downstream Task Performance 231

Debiasing methods decrease the downstream task 232

performance of PLMs due to the loss of useful se- 233

mantic information (Kaneko et al., 2023a). There- 234

fore, we must control for the degree of bias miti- 235

gation brought about by each debiasing method to 236

fairly compare their downstream task performances. 237

For this reason, we used a debiased model in which 238

the debiasing results during the fine-tuning debi- 239

asing training fall within ±0.005 of the debiasing 240
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(a) Bias mitigations are equalized w.r.t. ZSD.

(b) Bias mitigations are equalized w.r.t. FSD.

Figure 2: Performance diffirence between original and
debiased PLMs in RACE, ANLI, and WB tasks are
shown. Here, PLMs are debiased using fine-tuning-
(CDA, ATL) and ICL-based methods.

score on the ZSD and FSD, respectively.2241

Figure 2 shows the performance difference be-242

tween the original and debiased models in RACE,243

ANLI, and WB tasks. Figure 2a and Figure 2b244

show the effect of bias mitigation of CDA and ATL245

equalized respectively against ZSD and FSD. We246

see that the performance drop due to debiasing247

in both CDA and ATL to be higher than that of248

FSD and ZSD. Moreover, we see that the drop in249

performance of CDA and ATL to be higher when250

equalized w.r.t. ZSD than FSD, because ZSD im-251

parts a lesser impact on the PLM compared to FSD.252

Overall, compared to debiasing via ICL, debiasing253

via FT results in a larger downstream task degera-254

2FSD is capable of adjusting the debiasing performance
by varying the number of examples used. In order to equalize
the debiasing effects of FSD and ZSD, it would be necessary
to reduce the number of FSD examples to 0. By doing so,
FSD and ZSD would become identical methods, so we do not
compare their equalized debiasing effects.

RACE ANLI OntoNotes

CDA 0.66 0.58 0.61
ALT 0.60 0.51 0.54
ZSD 0.81 0.83 0.87
FSD 0.73 0.76 0.81

Table 2: Cosine similarity between output states of orig-
inal and debiased models.

dation due to the updating of model parameters. 255

2.7 Change of Parameters in PLMs 256

To quantify the change in model outputs due to 257

FT vs. ICL, we measure the average similarity 258

between the model outputs for a fixed set of in- 259

puts. Specifically, we feed the i-th instance, xi, 260

from a downstream task dataset to the original (non- 261

debiased) PLM under investigation and retrieve its 262

output state eoi (i.e. the hidden state corresponding 263

to the final token in the last layer). Likewise, we re- 264

trieve the output states for the debiased model with 265

FT and ICL, denoted respectively by efi and eci . We 266

then calculate the cosine similarities cossim(eoi , e
f
i ) 267

and cossim(eoi , e
c
i ), and average them across the 268

entire dataset as shown in Table 2 for the eight 269

LaMini PLMs. We can see that the cosine simi- 270

larity is higher for the debiased models with ICL 271

than with FT. Therefore, debiased models with 272

ICL have smaller changes in output states than de- 273

biased models with FT, indicating that the former 274

is more likely to retain beneficial information from 275

pre-training. This result supports the hypothesis 276

that the reduction of the gap in the relationship 277

between pre-training and downstream settings is 278

dependent on the changes in the parameters in the 279

model due to debiasing. 280

3 Conclusion 281

We investigated the gap between pre-training and 282

downstream settings in bias evaluation and debias- 283

ing and showed that this gap is higher for FT-based 284

debiasing methods than for the FT-based ones. Fur- 285

thermore, we showed that the performance degrada- 286

tion in downstream tasks due to debiasing is lower 287

in the ICL settings than in the FT setting. 288

Previous studies have referred to the results of 289

FT settings to discuss the relationship between pre- 290

training and downstream settings (Kaneko and Bol- 291

legala, 2019; Goldfarb-Tarrant et al., 2021; Cao 292

et al., 2022). However, we emphasize that the set- 293

tings of ICL and fine-tuning differ in their tenden- 294

cies and thus need to be discussed separately. 295
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Limitations296

Our study has the following limitations. We used297

the LaMini series (Wu et al., 2023) for our experi-298

ments because we needed to fine-tune models. To299

investigate larger PLMs such as LLaMa (Touvron300

et al., 2023) and Flan-T5 (Chung et al., 2022) have301

the same tendencies, they need to be verified in302

environments with rich computation resources. We303

only used QA, NLI, and coreference resolution as304

downstream tasks for our experiments. As more305

evaluation data for assessing social biases in down-306

stream tasks becomes available in the future, the307

conclusions from our experiments should be ana-308

lyzed across a broader range of datasets.309

There are numerous types of social biases, such310

as race and religion, encoded in PLMs (Meade311

et al., 2022), but we consider only gender bias in312

this work. Moreover, we only focus on binary gen-313

der and plan to consider non-binary gender in our314

future work (Ovalle et al., 2023). In addition, we315

consider only English language in our evaluations,316

which is a morphologically limited language. As317

some research points out, social biases also exist318

in multilingual PLMs (Kaneko et al., 2022b; Levy319

et al., 2023), which require further investigations.320

Ethics Statement321

In this study, we have not created or released new322

bias evaluation data, nor have we released any mod-323

els. Therefore, to the best of our knowledge, there324

are no ethical issues present in terms of data collec-325

tion, annotation or released models. We observed326

that when employing ICL, there exists a correlation327

between intrinsic and downstream bias evaluations.328

However, it must be emphasized that foregoing329

downstream bias evaluations and proceeding to de-330

ploy models presents a substantial risk.331
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