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Abstract

Generalized Additive Models (GAMs) are commonly considered interpretable
within the ML community, as their structure makes the relationship between
inputs and outputs relatively understandable. Therefore, it may seem natural to
hypothesize that obtaining meaningful explanations for GAMs could be performed
efficiently and would not be computationally infeasible. In this work, we challenge
this hypothesis by analyzing the computational complexity of generating different
explanations for various forms of GAMs across multiple contexts. Our analysis
reveals a surprisingly diverse landscape of both positive and negative complexity
outcomes. Particularly, under standard complexity assumptions such as P ̸=NP,
we establish several key findings: (i) in stark contrast to many other common ML
models, the complexity of generating explanations for GAMs is heavily influenced
by the structure of the input space; (ii) the complexity of explaining GAMs varies
significantly with the types of component models used — but interestingly, these
differences only emerge under specific input domain settings; (iii) significant
complexity distinctions appear for obtaining explanations in regression tasks versus
classification tasks in GAMs; and (iv) expressing complex models like neural
networks additively (e.g., as neural additive models) can make them easier to
explain, though interestingly, this benefit appears only for certain explanation
methods and input domains. Collectively, these results shed light on the feasibility
of computing diverse explanations for GAMs, offering a rigorous theoretical picture
of the conditions under which such computations are possible or provably hard.

1 Introduction

Generalized additive models (GAMs) are a widely utilized family of models in ML [51, 88], valued
commonly for their interpretability [85, 36, 113, 24, 37, 74, 28, 48, 39, 84, 87, 47, 114] due to their
additive structure. Beyond being considered interpretable, the very assumption of “additive inter-
pretability” is a foundational one in the explainable AI community. For instance, many explanation
techniques are designed to approximate additive behaviors [94], and metrics such as infidelity [112]
assess explanation quality by measuring how well an additive approximation captures the effects of
feature perturbations on the model’s output. Furthermore, interpretable training approaches often
seek to promote near-additive behavior in models within specific domains [4].

Since GAMs are commonly regarded as an interpretable class of ML models, it may seem natural
to expect that different types of explanations for their predictions can be computed efficiently,
without encountering drastic computational intractability (e.g., NP-hardness, #P-hardness, etc.). This
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question also relates to a growing body of research in the ML community focused on understanding
the computational complexity involved in generating different types of explanations for various model
classes [16, 104, 18]. These efforts span both inherently complex models like neural networks [1] and
tree ensembles [12], where explanations are expected to be computationally hard to compute [16, 1],
as well as traditionally “interpretable” models such as decision trees [9] and monotonic classifiers [78],
where computing explanations is expected to be more efficient [16, 80, 18].

Our contributions. In this work, we investigate the computational complexity of generating various
types of explanations for different classes of GAMs across a range of contexts. We also question
the assumption that such explanations are inherently efficient to compute, given the perceived
interpretability of GAMs. Through a comprehensive analysis spanning a wide array of settings, we
uncover a surprisingly diverse landscape — revealing both tractable (efficient) and intractable (hard)
cases. Our findings reveal that the complexity of generating explanations is heavily influenced by
several factors — including some unexpected ones that were not known to impact complexity in
previously studied ML models.

Our analysis is structured around the following three dimensions:

1. Component model type used within the GAM: Here, we investigate several popular
component models that are typically used in GAMs and span the interpretability spectrum,
including: (i) Smooth GAMs — i.e., the classical use of splines [51]; (ii) Neural Additive
Models (NAMs) [3] — where each component is a neural network; and (iii) Explainable
Boosting Machines (EBMs) [36] — which use boosted tree ensembles as their components.

2. Type of explanation considered: We study the complexity of generating a diverse set
of explanation types, including: (i) Minimum sufficient reasons — a common feature
selection task that considers selecting the minimal subset of features that satisfy the common
sufficiency criterion (as well as two additional relaxations of this task); (ii) Minimum
contrastive explanations — minimal changes to the input that would alter the prediction;
(iii) Shapley value attributions — assigning importance scores to features; and (iv) Feature
redundancy identification — detecting redundant feature contributions.

3. Input domain setting: We study three general types of input domains: (i) Enumerable
discrete domain — where each input variable takes values from a constant set; (ii) Gen-
eral discrete domain — where input values are discrete but not necessarily enumerable;
(iii) Continuous domain — where inputs take real-valued features.

We prove complexity results for generating explanations across all configurations of these dimensions
— i.e., across every combination of component type × explanation type × input domain (see Table 1
for a summary of the results). This uncovers a diverse range of results — including (i) efficient
polynomial-time algorithms, (ii) intractability results (NP-hard, #P-hard, etc.), and (iii) pseudo-
polynomial time results — cases where the problem is generally intractable but becomes efficiently
solvable when the GAM’s weight coefficients are encoded in unary rather than binary. Intuitively,
pseudo-polynomial tractability suggests that although generating explanations for a GAM may be
intractable, reducing the precision of its coefficient weights can render the explanation task efficient.

Key Insights. Beyond the direct contributions that our results offer of both efficient algorithms and
intractability outcomes, they also uncover several surprising insights into the computational nature of
generating explanations for GAMs, as highlighted below:

• The complexity of computing explanations for GAMs depends heavily on the input
domain, unlike other ML models where a variation based on the input domain is
not observed. We show that for most explanation types we studied — like sufficient
explanations, contrastive explanations, and Shapley values — computing explanations
becomes exponentially harder in continuous and discrete settings compared to enumerable
discrete ones. An interesting exception is the feature redundancy explanation, which is
actually exponentially easier in the continuous case. This significant sensitivity to the
input domain is surprising since it appears to be unique to additive models, as other ML
models (e.g., decision trees, tree ensembles, neural networks) do not exhibit such diversity
in complexity across input domains.

• The complexity of obtaining explanations for GAMs largely depends on their compo-
nent models, but this effect interestingly appears only in certain input domains. We
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show that for all our explanation types, there are exponential differences in the complexity
of generating explanations for GAMs, depending on the underlying component models
(e.g., GAMs with splines are significantly easier to obtain explanations for than NAMs and
EBMs). Interestingly, however, we uncover that this complexity distinction arises only in the
continuous and general discrete input domains, but not in the enumerable discrete domain.

• An intriguing complexity separation shows that computing explanations for GAMs
used for classification is strictly harder than for regression — but only for SHAP,
not other explanations. We demonstrate this by proving polynomial-time results for the
regression setting, in contrast to the classification setting, which is #P-Hard — highlighting
a notable complexity separation.

• Some non-additive models (e.g., neural networks) are harder to obtain explanations
over compared to their additive counterparts (e.g., NAMs), but this depends critically
on the explanation type and input domain. We show that models typically hard to interpret
— such as tree ensembles and neural networks, where computing explanations is at least
NP-Hard — become tractable (e.g., solvable in polynomial time, or belonging to lower
complexity classes) in their additive forms (e.g., NAMs, EBMs). Interestingly, however, this
phenomenon does not always occur and is highly sensitive to the type of explanation and
the input domain.

Due to space limitations, we provide only a brief outline of the proofs for our claims in Section 6,
with the full proofs presented in the appendix.

2 Preliminaries

Complexity Classes. This paper assumes familiarity with basic complexity classes such as
polynomial-time (PTIME), and non-deterministic polynomial-time (NP, coNP). We also discuss
the class ΣP

2 , which includes problems solvable in NP with access to a constant-time coNP oracle.
Clearly, NP and coNP are contained in ΣP

2 , and it is also widely believed that NP, coNP ⊊ ΣP
2 [10].

Additionally, we cover #P, the class of functions that count the accepting paths of polynomial-time
nondeterministic Turing machines. Although not directly comparable since they focus on counting
rather than decision problems, it is widely believed that the #P class is strictly “harder” than ΣP

2 ,
which can be denoted as ΣP

2 ⊊#P [10].

Setting. We consider a set of input features indexed by {1, . . . , n}, where n ∈ N, and denote an input
instance as x := (x1, . . . , xn). Each feature i has a domain Xi, such that the input space is defined
as F := X1 × X2 × . . . × Xn. The predictive model f maps inputs from F either to a regression
output, f : F→ Rd with dimension d ∈ N, or to a classification label, f : F→ [c], where c ∈ N is
the number of classes. For clarity in our proofs, we restrict f to have a one-dimensional output —
i.e., f : F → R in the regression case and f : F → {0, 1} in the classification case — though we
emphasize that our results extend to multi-dimensional outputs (see Appendix D for details). The
majority of explanations we study are local, aiming to interpret the model’s prediction at a specific
instance x ∈ F — that is, to explain why f(x) was predicted. However, we also consider some global
explanations, which aim to interpret the overall behavior of f , independent of any particular input.

Generalized Additive Models (GAMs). A GAM f is defined as an additive model consisting of k
component models f1, f2, . . . , fk. Formally, in the regression setting, we define:

f(x) := β0 + β1f1(x1) + β2f2(x2) + . . . βkfk(xk) (1)

where β0, β1, . . . , βk ∈ Q are the intercept terms and f(x) ∈ R is the regressor predictive value.
For the scenario where f(x) is a classification model, we assume a step function over the additive
prediction, i.e., f(x) := step(β0 + β1f1(x1) + β2f2(x2) + . . . βkfk(xk)) where we define the step
function as step(z) = 1 if z ≥ 0, and step(z) = 0 otherwise.

3 Dimensions of the Complexity Analysis

As previously mentioned, our detailed complexity analysis spans three distinct dimensions: (i) the
input domain, (ii) the types of component models utilized within GAMs, and (iii) the explanation
types. In this section, we elaborate on each of these dimensions.
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3.1 Dimension 1: The input domain

We study the following cases for the domain Xi of feature i ∈ {1, . . . n}: (i) when the domain
is enumerable discrete, meaning each value xi is selected from a given set K ⊆ Q of a constant
number |K| of possible assignments. Intuitively, these are scenarios where each input is limited to a
predefined set of values, which is often relevant for cases such as tabular data or certain language
tasks; (ii) the discrete setting, or the general discrete setting, where Xi represents any discrete input
within a range defined by maximum and minimum values expressed in binary with q bits. This
intuitively allows a broader range of discrete assignments for each input, while still operating within
a discrete domain. (iii) The continuous setting, where Xi ⊆ R, which ensures guarantees across the
entire infinite spectrum of the specified domain. Both discrete and continuous domains are widely
used across various ML tasks, including those in vision and language tasks [46, 52, 35]. We note
that general discrete settings naturally encompass enumerable ones and are thus always at least as
computationally challenging, whereas continuous settings do not enable a direct comparison to either
and can make problems either harder or easier to solve [68, 103, 10].

3.2 Dimension 2: The component model type

We consider a diverse range of component models that can be integrated into a GAM, spanning
various levels of interpretability and reflecting commonly used approaches in the literature: (i) The
classic spline-based models [51], where each component function is piecewise polynomial. In
practice, these polynomials are typically restricted to a degree of at most three, yielding the widely
used cubic splines [51], which will be our primary focus (though our results can often be extended to
higher-order splines — see Appendix B). To distinguish these GAMs from the non-smooth variants,
we refer to GAMs with spline-based components as Smooth GAMs. (ii) Neural Additive Models
(NAMs) [3, 29, 110, 66, 101], in which each component is a neural network with ReLU activations.
(iii) Explainable Boosting Machines (EBMs) [36, 107, 89], where each component function is a
boosted tree ensemble. We present the complete formal definitions of all model types in Appendix B.

3.3 Dimension 3: The explanation type

To explore various dimensions of GAM interpretability, we examine a broad range of widely used
explanation types drawn from the existing literature. Building upon prior computational complexity
frameworks for evaluating explanations in ML models [16, 6, 18], we formalize each type of
explanation as an explainability query. Such a query takes a model f and x as inputs and aims to
address specific questions, offering a meaningful interpretation of the prediction f(x).

Sufficient reason Feature Selection. We consider the common sufficiency criterion for feature
selection, used in popular explainability methods [93, 34, 58]. A sufficient reason is a subset of input
features, S ⊆ [n], such that fixing the features in S to their values in x ∈ F guarantees the prediction
remains f(x), regardless of the assignment to S. We write (xS ; zS̄) for an input where S takes values
from x and S from z. Formally, S is a sufficient reason for ⟨f, x⟩ iff for all z ∈ F: f(xS ; zS̄) = f(x).

A common assumption in the literature is that smaller sufficient reasons (those with smaller |S|) are
more useful [93, 34, 58]. This motivates the search for cardinally minimal sufficient reasons, also
called minimum sufficient reasons, and leads to our first explainability query:

MSR (Minimum Sufficient Reason):
Input: Model f , input x, and d ∈ N
Output: Yes if there exists some S ⊆ [n] such that S is a sufficient reason with respect to ⟨f, x⟩ and
|S| ≤ d, and No otherwise.

To deepen our understanding of the complexity of sufficient reasons, we also examine two common
related explainability queries that refine the MSR query [16, 18]: (i) Check-Sufficient-Reason (CSR),
which checks if a given subset S is a sufficient reason; (ii) Count-Completions (CC), a generalized
version of CSR that measures the fraction of completions preserving the prediction, capturing the
probability of maintaining the classification. Full formalizations appear in Appendix C.

Contrastive Explanations. An alternative way to interpret models is by identifying subsets of
features that, when changed, could alter the model’s prediction [45, 50]. We define s subset S ⊆ [n]
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as contrastive if modifying its values can change the classification f(x), i.e., there exists z ∈ F such
that f(xS̄ ; zS) ̸= f(x). As with sufficient reasons, smaller contrastive subsets are typically assumed
to be more meaningful [45, 50, 57, 86], motivating a focus on cardinally-minimal contrastive reasons:

MCR (Minimum Change Required):
Input: Model f , input x, and d ∈ N.
Output: Yes, if there exists some contrastive reason S such that |S| ≤ d for f(x), and No otherwise.

Shapley Values. In the additive attribution setting, each feature i ∈ [n] is assigned an importance
weight ϕi. A common method for assigning these weights is the Shapley value attribution index [76]:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (2)

We use the standard conditional expectation value function v(S) := Ez∼Dp [f(z) | zS = xS ] [100, 76].
Moreover, as is standard in both complexity analyses [8, 102] and practical SHAP methods like
KernelSHAP [76], we assume feature independence. See Appendix C for a full formalization.

SHAP (Shapley Additive Explanation):
Input: Model f , input x, and i ∈ [n]
Output: The shapley value ϕi(f, x).

Feature redundancy. For our final explanation form, we study the complexity of determining
whether a feature i is redundant with respect to a model f , following the notion of redundancy
explored in prior work [6, 18, 53, 43]. Unlike the previous local explanation forms, this one is global
— it checks if i is redundant for all x ∈ F. Formally, i is redundant if for all x, z ∈ F, we have
f(x) = f(x[n]\{i}; z{i}).

FR (Feature Redundancy):
Input: Model f , and integer i.
Output: Yes, if i is redundant with respect to f , and No otherwise.

4 Main Complexity Results

We examine the complexity across all analyzed settings — spanning input domains (enumerable
discrete, discrete, continuous), model types (NAMs, EBMs, Smooth GAMs), and explanation forms
(CSR, MSR, MCR, FR, CC, SHAP). We distinguish between SHAP for regression and classification
(SHAP-R vs. SHAP-C), a complexity split, which, as we explain in detail later, is unique to SHAP.
For each setting, we provide a novel complexity proof, beginning with a summary in Table 1.

Table 1: A summary of complexity results across all component-model types, input domains, and
explanations. Bold font emphasizes the most tractable complexity classes for each explanation.

Input Space Component Type CSR, MSR MCR FR CC, SHAP-C SHAP-R
Enumerable

Discrete Any PTIME PTIME coNP-C #P-C
(Pseudo-P) PTIME

Discrete Smooth GAMs PTIME PTIME coNP-C #P-C PTIME

NAMs, EBMs coNP-C NP-C coNP-C #P-C #P-C

Continuous Smooth GAMs PTIME PTIME PTIME #P-C PTIME

NAMs, EBMs coNP-C NP-C coNP-C #P-C #P-C

The results in Table 1 identify when explanations can be computed efficiently (e.g., in polynomial or
pseudo-polynomial time) and when they are computationally intractable (e.g., NP-Hard). A central
finding is the significant variation in complexity, influenced by factors such as the input domain,
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the type of component model, and whether the task is regression or classification. In Section 5, we
analyze this diverse landscape in depth and compare these complexity results to existing complexity
results for non-additive models like neural networks and tree ensembles. In Section 6, we will outline
the proofs underlying these complexity results.

5 A Computational Interpretability Hierarchy for GAMs

Our results uncover a rich and varied landscape of complexity outcomes across different settings,
which we analyze in this section. To present these complexity distinctions more elegantly, we adopt
the notation from [16], indicating when one model is strictly more computationally interpretable
(c-interpretable) than another — that is, when it belongs to a strictly lower complexity class.
Definition 1. Let C1 and C2 be two classes of models and let Q be an explainability query for which
Q(C1) is in complexity class K1 and Q(C2) is in complexity class K2. We say that C1 is strictly more
c-interpretable than C2 with respect to Q iff Q(C2) is hard for the complexity class K2 and K1 ⊊ K2.

5.1 The Sensitivity of Complexity to the Input Domain, in Contrast to Other ML Models

Our results reveal significant exponential complexity distinctions in explaining GAMs based on the
input domain — a surprising finding, as such distinctions do not appear in other popular ML models
(e.g., decision trees, tree ensembles, neural networks; see Appendix D for details). While explanations
over enumerable discrete domains are often computable in polynomial time, they become intractable
in general discrete or continuous settings. The only exception is the feature redundancy query.
Theorem 1. GAMs over enumerable discrete settings are strictly more c-interpretable than GAMs
over general discrete or continuous settings with respect to CSR, MCR, MSR, CC and SHAP.

The intuition is that in an enumerable discrete setting, the input space can be explicitly traversed
to evaluate each component fi, allowing computations such as minimum or maximum component
output computation — key for sufficient or contrastive reason queries — as well as expected value
computation, which is essential for SHAP. However, in the general discrete or continuous setting,
such iteration is infeasible, making these computations intractable.

However, interestingly, we discover that for one of the queries we analyzed — the Feature Redundancy
(FR) query, which seeks to determine whether a feature does not contribute to a model’s prediction —
this type of explanation is actually strictly easier to obtain in the continuous setting compared to the
discrete or even the enumerable discrete settings:
Theorem 2. GAMs over continuous input settings are strictly more c-interpretable than GAMs over
enumerable discrete or general discrete input settings with respect to FR.

We highlight that these complexity gaps, tied to input domains, are unique to additive models. For
other model types — decision trees, neural networks, and tree ensembles — no such gaps appear (see
Appendix D for an elaborate discussion):
Observation 1. While there exist strict complexity gaps for the CSR, MCR, CC, SHAP, and FR
queries between the different input setting configurations for GAMs, such complexity gaps do not
hold for other ML models such as decision trees, tree ensembles, and neural networks.

5.2 The Significance of the Component Models on Complexity Depends on the Input Domain

We show that while computing some explanations for certain GAMs with more interpretable com-
ponent models (such as splines) can be done efficiently, these same tasks may sometimes become
intractable for GAMs consisting of uninterpretable component models (e.g., neural networks or
boosted trees). We show that this phenomenon holds only in the continuous and discrete input spaces:
Theorem 3. GAMs over continuous or discrete inputs composed of splines (Smooth GAMs) are
strictly more c-interpretable than GAMs with neural networks or tree ensembles (NAMs, EBMs).

However, we surprisingly demonstrate that this distinction between model components does not
always hold and is dependent on the input domain. Specifically, we show that this gap emerges only
in the continuous and discrete input settings but not in the enumerable discrete setting. The intuition
behind this result is that the enumerability of the input space mitigates the complexity originating
from the component model itself, unlike in the discrete or continuous domains:
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Observation 2. While there exist strict complexity distinctions between component models when
computing explanations for GAMs in the discrete and continuous input domain, such complexity
distinctions do not hold under the enumerable discrete input domain.

We also note that the result shown in this subsection, together with our findings in Subsection 5.1 on
input domain sensitivity, offers a complementary perspective to empirical work such as [38]. These
studies demonstrate that both the choice of component model and the form of data representation
(i.e., input representation) substantially influence the learned functional structure of GAMs. Since
differing functional forms naturally correspond to different levels of computational complexity, this
aligns with our observation that the complexity of generating explanations is highly sensitive to these
modeling choices.

5.3 Complexity Distinctions Between Regression and Classification, but Only for SHAP

In the context of SHAP explanations, we reveal an intriguing complexity distinction between classifi-
cation and regression GAMs. Specifically, we show that while SHAP explanations for regression
tasks on Smooth GAMs (or general GAMs with enumerable discrete inputs) can be computed in
polynomial time, the same problem becomes computationally intractable (#P-hard) for classification
tasks. The intuition underlying this distinction is that the classification scenario introduces an ad-
ditional “step” function, whose non-linearity violates the linearity axiom essential for establishing
tractability in the regression setting. This result motivates the following:

Theorem 4. Regression Smooth GAMs and regression GAMs with enumerable inputs are strictly
more c-interpretable than classification Smooth GAMs and classification GAMs with enumerable
inputs with respect to SHAP.

We note that while SHAP allows for a direct comparison between regression and classification tasks,
adapting our other explanation types — originally defined for classification — to regression requires
redefining them (as in [109, 61]) to assess whether values lie within a specified δ-range. From a
complexity standpoint, these behave similarly to classification cases and do not produce the same
distinctions observed with SHAP. We elaborate on this in Appendix D.

5.4 Additive vs. Non-Additive Complexity Depends on the Input Domain and Explanation

As noted in the introduction, the ML community often assumes that increasing a model’s additivity
improves interpretability. For instance, NAMs [3, 92] and EBMs [36] are generally seen as more
interpretable than standard neural networks and boosted trees, respectively. It thus seems natural
to expect that explanations for additive models (e.g., NAMs) are easier to compute than their non-
additive counterparts. Our findings support this, showing a clear complexity gap between black-box
models and their additive counterparts. However, importantly, this gap is not universal — it strongly
depends on the explanation type and the input domain. Table 2 summarizes prior complexity results
for neural networks and tree ensembles, alongside our new results for NAMs and EBMs.

Table 2: Complexity distinctions in explaining non-additive black-box models — tree ensembles
(TEs) or neural networks (NNs), compared to their additive counterparts — neural additive models
(NAMs) and explainable boosting machines (EBMs). We emphasize in bold font cases where a strict
complexity separation exists between an additive and a non-additive configuration.

Enumerable Discrete Discrete, Continuous
EBMs, NAMs TEs, NNs EBMs, NAMs TEs, NNs

CSR PTIME coNP-C coNP-C coNP-C
MSR PTIME ΣP

2 -C coNP-C ΣP
2 -C

MCR PTIME NP-C NP-C NP-C
FR coNP-C coNP-C coNP-C coNP-C
CC, SHAP-C #P-C (Pseudo-P) #P-C (No Pseudo-P) #P-C #P-C
SHAP-R PTIME #P-C #P-C #P-C

Particularly, we show that in the enumerable discrete input domain, there exist many complexity
gaps between the non-additive models — neural networks and tree ensembles, and their additive
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counterparts (NAMs and EBMs). However, in the discrete and continuous input settings, while such
a complexity gap is apparent in the minimum-sufficient-reason (MSR) query, it is not apparent in the
other queries. These observations lead us to the following corollary:

Theorem 5. NAMs and EBMs over enumerable discrete input settings are strictly more c-interpretable
than neural networks and tree ensembles with respect to CSR, MSR, MCR, and SHAP for regression.
However, NAMs and EBMs over general discrete or continuous input settings are strictly more
c-interpretable than tree ensembles and neural networks with respect to MSR.

6 Proof Outline of Complexity Results

We begin by summarizing the tractable results — explanations that can be computed in polynomial
time — in Subsection 6.1. Next, in Subsection 6.2, we discuss a relaxed setting where tractabil-
ity is preserved under unary-encoded weights, referred to as pseudo-polynomial time. Finally,
Subsection 6.3 covers the intractable cases, such as NP-hardness and #P-hardness results.

6.1 Polynomial-Time Explanation Computations

Sufficient and contrastive reasons. We begin by analyzing the polynomial-time complexity of
computing sufficient and contrastive reason queries (CSR, MSR, MCR). A key observation is that
by identifying the minimal and maximal values each component βi · fi(xi) can take, we can rank
features by their “importance”, measured by how much altering each feature deviates the prediction.
A greedy algorithm, akin to those in [16, 78], then selects features by importance until a minimal
sufficient or contrastive reason is found. CSR is simpler, requiring only a sufficiency check for a
given subset. Thus, the main computational challenge lies in efficiently computing the min/max
values of each fi(xi). For enumerable discrete inputs, this can be done by enumeration; for smooth
GAMs, these values can be computed analytically, even with general discrete or continuous inputs.

Proposition 1. Given any GAM over an enumerable discrete domain, or a Smooth GAM over a
discrete or continuous domain, the CSR, MCR, and MSR queries are solvable in polynomial time.

Feature redundancy for Smooth GAMs in continuous settings. Unlike the discrete or enumerable
discrete settings, where identifying strict feature redundancies is intractable (see Subsection 6.3), in
continuous domains we show that a feature is strictly redundant if and only if its component βi ·fi(xi)
is identically zero — i.e., either βi = 0 or fi(xi) = 0 for all xi. For Smooth GAMs, this can be
checked efficiently in polynomial time. This leads to the following proposition:

Proposition 2. Given a Smooth GAM f over a continuous input space, the FR query can be obtained
in polynomial time.

SHAP explanations in regression settings. When computing SHAP, polynomial-time computation is
feasible only for GAMs in regression tasks (classification intractability is discussed in Subsection 6.3).
Leveraging the linearity axiom of Shapley values [76], we reduce the computation to evaluating the
computations of βi · Ez∼Dp

[fi(xi)]. When the model is either discretely enumerable or supports
efficient integration (e.g., in Smooth GAMs), these expectations can be computed in polynomial time.

Proposition 3. Given any regression GAM with enumerable discrete inputs, or given a regression
Smooth GAM with discrete or continuous inputs, then the SHAP query is solvable in polynomial time.

6.2 Pseudo Polynomial-Time Explanation Computations

Table 1 shows that both CC and SHAP-C queries are intractable. However, if the GAM’s weights
β0, β1, . . . , βn are given in unary (rather than binary), they become computable in polynomial time.
This pseudo-polynomial setting enables efficient computation when weight precision is bounded,
using dynamic programming similar to [16], and detailed in our proofs. It applies to enumerable
discrete domains (all component types), where enumeration makes Ez∼Dp

[f(xi)] tractable.

Proposition 4. Given any GAM over an enumerable discrete input, the CC and SHAP-C queries can
be computed in pseudo-polynomial time.
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6.3 Intractable Explanation Computations

Sufficient and contrastive reasons. As shown in Subsection 6.1, finding a cardinally minimal
sufficient or contrastive reason in GAMs requires computing the minimal and maximal values of
each fi(xi) component. We show this is intractable for neural networks and tree ensembles, as their
exponential search space makes the problem computationally hard. The main difficulty is proving
hardness even for single input-output instances, where lower expressivity demands more intricate
constructions. We overcome this by reducing the instance to an equivalent n-dimensional input,
mapping continuous or general discrete regions to their relevant counterparts, yielding the following:
Proposition 5. Let there be a NAM or an EBM over a discrete or continuous input space, then
solving the CSR, and MSR queries are coNP-Complete, and the MCR query is NP-Complete.

Feature redundancy. In contrast to the continuous case, where redundancy reduces to checking if
βi · fi(xi) = 0, in discrete settings it requires verifying whether this value falls below the decision
boundary — a task that is often computationally intractable:
Proposition 6. Given a NAM, a Smooth GAM or an EBM under an enumerable discrete or general
discrete setting, then the FR query is coNP-Complete.

Intractability of SHAP and count completions. Finally, we show that computing the SHAP
and CC queries is generally #P-Hard by reducing to the model counting problem [102], implying
intractability for EBMs and NAMs. While other settings are also intractable (see Subsection 6.2),
their complexity can be mitigated using pseudo-polynomial algorithms:
Proposition 7. Given NAMs and EBMs over discrete or continuous settings, computing SHAP for
regression tasks is #P-Complete. Moreover, given any GAM over an enumerable discrete, discrete or
continuous setting — computing the CC and SHAP queries for classification are #P-Complete.

7 Practical Implications

Although our work is primarily theoretical, it provides several insights with practical relevance
for practitioners working with GAMs. First, we identify a broad class of efficient polynomial-time
algorithms for computing explanations with different guarantees across diverse GAM settings. In
fact, all of the tractable algorithms presented in this work (included in the appendix) are not only
polynomial-time, but even linear in the size of the GAM, underscoring their practical applicability.

Second, we show that techniques commonly used in machine learning practice can also make
explanation methods computationally feasible. In particular, we identify two strategies that can
transform otherwise hard explanation problems into tractable ones:

1. Input domain transformations. We find that the computational complexity of generating
explanations is highly sensitive to the structure of the input domain. Small changes in the
domain can shift problems from intractable to tractable. This insight motivates the use of
input transformations, such as discretization, a standard step in many GAM pipelines [36,
89], to reshape the input space in ways that make explanation computation efficient.

2. Quantization. Our pseudo-polynomial algorithms show that explanation problems that are
intractable in full generality become tractable when GAM component weights are quantized.
This suggests a promising practical approach: by quantizing model coefficients, one can
enable efficient computation of explanations that would otherwise be infeasible.

8 Related Work

Our work builds upon prior research exploring the computational complexity of obtaining various
types of explanations for ML models [16, 9, 27, 1, 26, 53, 15, 25, 72, 83, 73, 30, 111, 67]. This area
is closely tied to the subfield of interest known as formal explainable AI [79, 23] which focuses on
explanations with mathematical guarantees [58, 109, 62, 13, 43, 20, 64, 17, 31], where analyzing the
complexity of producing explanations with such guarantees plays a central role [60, 91, 11, 41, 9, 90,
102].

Previous work has mainly examined the complexity of generating explanations for specific ML
models, including black-box models like neural networks [2, 16] and interpretable models like
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decision trees [9, 32, 54]. Closer to our work are studies on linear models [16, 99, 78] — a simplified
form of GAMs — typically under binary input-output settings. In contrast, we offer a comprehensive
analysis of a broad class of GAMs, covering diverse component models, explanation types, input
assumptions, and approximation results. We elaborate further on related works in Appendix A.

Lastly, we note that some terms in our work have sometimes been referred to differently in prior
literature. For instance, while the term sufficient reasons is widely used [16, 22, 43], it is also referred
to as abductive explanations [59]. Moreover, subset-minimal sufficient reasons are closely related —
though not identical — to prime implicants in Boolean formulas [44, 43, 97].Similarly, the CC query
corresponds to the δ-relevant set [104, 62, 99], which checks if the completion count exceeds a given
threshold δ.

9 Limitations and Future Work

As in prior work on the computational complexity of obtaining explanations, our analysis focuses
on specific explanation definitions and component model types, though many other settings could
certainly be explored. Nevertheless, we believe that our work provides a broad perspective across a
wide array of popular explanation methods, component types, and input settings, highlighting various
novel aspects of the explainability landscape for GAMs and establishing a strong foundation for
exploring additional settings in future research.

More concretely, our results open the door to a wide range of future practical implementations of our
algorithms (see Section 9). From a theoretical perspective, our analysis can be extended in several
directions. A first promising avenue is to better understand how high-order interactions, which are
widely used in GAMs [37, 75, 70, 48], affect the complexity of generating explanations, and how this
varies across explanation types and component models. Another interesting direction is to study how
structural assumptions over the GAM influence complexity. For instance, one may consider the effect
of concurvity [71, 98]. In the extreme case of high concurvity, where smooth components are strongly
correlated and behave almost like a single spline, the GAM may resemble a simpler function class,
potentially making some explanation problems easier. Conversely, in the case of low concurvity,
especially for explanation types that rely on interactions, the high separability between components
may also offer computational advantages. Finally, for intractable settings, one can attempt to leverage
automated reasoning tools, such as neural network verifiers [108, 106] or MILP/MaxSAT solvers for
tree ensembles [56, 40] to obtain explanations. Moreover, while we propose two central strategies
for circumventing intractability, input transformations and quantization (see Section 9), exploring
additional circumvention approaches such as approximation guarantees, probabilistic or statistical
relaxations, and PAC-based guarantees remains an important direction for future research.

10 Conclusion

We present a theoretical framework for assessing the computational complexity involved in obtaining
various forms of explanations for different types of GAMs. Our work uncovers a nuanced spectrum
of results, demonstrating that the complexity of obtaining explanations for GAMs is significantly
influenced by (i) the input space domain (enumerable discrete, discrete, and continuous), (ii) the
type of explanation (sufficient, contrastive, shapley value explanations, etc.), (iii) the underlying
component model (e.g., neural networks, boosted trees, splines, etc.), (iv) and the distinction between
classification and regression settings. Our findings reveal a broad range of unexpected and substantial
complexity variations, driven by surprising factors — such as the input domain — which are not
apparent in other ML models. We believe that our work lays the foundation for a wide range of
implementations by enabling the development of tractable algorithms for computing explanations
for GAMs in diverse settings. At the same time, it advances the theoretical understanding of these
models by identifying when such explanations are computationally feasible and when they are not.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of this work directly reflect the proofs we
establish and their implications.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Due to space limitations, we present only a proof outline in Section 6, with all
full and detailed proofs deferred to the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA] .
Justification: This is a theoretical work; thus, experimental reproducibility is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA] .
Justification: This is a theoretical work; therefore, providing open access to data and code is
not relevant.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: This is a theoretical work; therefore, hyperparameter details are not relevant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: This is a theoretical work; therefore, experimental statistical testing is not
relevant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA] .
Justification: This is a theoretical work; thus, information about computational resources is
not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We have reviewed the NeurIPS Code of Ethics Guidelines and verified that our
paper fully complies with them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: While explainability can have social implications, our work is theoretical in
nature and therefore does not entail any direct social consequences.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our work is theoretical and therefore does not necessitate the implementation
of safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: This is a theoretical work; therefore, such assets are not relevant.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: This is a theoretical work; therefore, such assets are not relevant.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This is a theoretical work; therefore, no crowdsourcing experiments were
relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This is a theoretical study; therefore, no user studies were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: This is a theoretical work and does not involve any non-standard use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
The appendix provides formal definitions and proofs referenced throughout the paper.

Appendix A discusses extended related work.
Appendix B formalizes the GAMs that were studied in this work.
Appendix C provides additional details regarding the explainability queries analyzed in this work.
Appendix D contains possible extensions of our framework and its relationship to previous results.
Appendix E contains the proof of Proposition 1.
Appendix F contains the proof of Proposition 2.
Appendix G contains the proof of Proposition 3.
Appendix H contains the proof of Proposition 4.
Appendix I contains the proof of Proposition 5.
Appendix J contains the proof of Proposition 6.
Appendix K contains the proof of Proposition 7.

A Extended Related Work

In this section, we present a more technical overview of related work relevant to our framework.
While all explanation queries we examine have been explored in prior studies, they were analyzed in
the context of different models [16, 18, 1, 53, 54, 41, 102, 82, 49, 5, 65, 33, 81]. Notably, some results
for neural networks [16, 1, 21] and tree ensembles [91, 54, 14, 19] are somewhat related to our setting,
as NAMs and EBMs are instances of GAMs that incorporate neural networks or tree ensembles
as base models. However, as demonstrated in our work (e.g., Table 2), the shift from additive to
non-additive structures leads to fundamentally different complexity behaviors, necessitating entirely
distinct proof techniques for both membership and hardness results.

Another line of related work involves studies on the computational complexity of generating specific
types of explanations for linear models (e.g., [16, 99, 78, 102]). Some of the constructions used in
our proofs draw upon ideas introduced in these works, and we reference them where appropriate
— for instance, the use of sorting algorithms in the MSR/MCR queries and dynamic programming
techniques for the CC and SHAP queries. That said, our study is the first to explore these explanations
within the context of GAMs, while also addressing a substantially broader and more diverse set
of input settings, component models, and explanation types — requiring us to tackle considerably
more complex instances. For instance, proving hardness for various explanation queries over general
discrete and continuous domains in models like NAMs and EBMs required novel constructions that
differ substantially from those applicable to linear models.

B Generalized Additive Models

In this appendix, we outline the different generalized additive models (GAMs) analyzed in this work.
Our focus will be on GAMs used for either regression or classification tasks. For simplicity, we
assume the GAM produces a single output: a value in R for regression tasks or a single class from
{0, 1} for classification tasks. However, our results can be extended to handle multiple regression
outputs or multi-label classification. Specifically, we formalize a GAM for a regression task as
follows:

f(x) := β0 + β1f1(x1) + β2f2(x2) + . . .+ βkfk(xk) (3)

where f1, . . . , fk represent uncorrelated functions fi : Xi → R, and β0, β1, β2, . . . , βk ∈ Q denote
the intercept terms obtained during a training process. For classification tasks, we define similarly:

f(x) := step
(
β0 + β1f1(x1) + β2f2(x2) + . . .+ βkfk(xk)

)
(4)

where we define the step function as step(z) = 1 if z ≥ 0, and step(z) = 0 otherwise.
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B.1 Component-Model Types

In this subsection, we define the component-model types discussed throughout the paper: (i) spline-
based components within Smooth GAMs, (ii) neural network components within neural additive
models (NAMs), and (iii) boosted tree components within explainable boosting machines (EBMs) .

Spline components for Smooth GAMs. Here, we define each fi as the standard piecewise spline
function, corresponding to each component of the GAM [51]. Specifically, the domain Xi for each
feature xi is divided into intervals [a1, a2), [a2, a3), . . . , [ad−1, ad], and a polynomial is defined for
each intervalW . For w ∈ W , we write the polynomial as g(w) := αrw

r+αr−1w
r−1+ . . .+α1w+

α0. The function fi(xi) is defined over the domain Xi by assigning the value of the corresponding
polynomial g for each interval. Typically, the polynomials used in GAMs are of degree at most 3
(referred to as cubic splines), which is the assumption we adopt here. We note, however, that many of
our results also extend to higher-order polynomial splines. In particular, all of our hardness results
remain valid in these cases, as such splines are at least as complex as cubic splines. As for the
membership results, our findings for enumerable discrete settings still apply, since they rely only
on the assumption that inference over each component can be performed in polynomial time — a
condition satisfied by splines of any degree.

We also observe that in the simple case where each fi(xi) is the identity function — which is trivially
captured by splines as well as our other models — the overall GAM f(x) effectively reduces to a
standard linear model. This linear model can either be a regressor f(x) := β0 + β1x1 + . . .+ βkxk
or a classification model f(x) := step(β0 + β1x1 + . . .+ βkxk).

Neural network components for Neural Additive Models (NAMs). We denote a neural network f ,
consisting of t− 1 hidden layers (gj where j ranges from 1 to t− 1) and a single output layer (gt).
The layers are defined recursively — each layer g(j) is computed by applying the activation function
σ(j) to the linear combination of the outputs from the previous layer g(j−1), the corresponding weight
matrixW (j), and the bias vector b(j). This is represented as g(j) := σ(j)(g(j−1)W (j)+b(j)) for each
j in 1, . . . , t. The model includes t weight matrices (W (1), . . . ,W (t)), t bias vectors (b(1), . . . , b(t)),
and t activation functions (σ(1), . . . , σ(t)).

In this neural network, the function f is defined to output f := g(t). The initial input layer g(0) is
denoted by x, which serves as the model’s input. The dimensions of the biases and weight matrices
are specified by the sequence of positive integers d0, . . . , dt. We specifically consider weights
and biases that are rational numbers, represented as W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj , which are
parameters optimized during training. Since the model is a binary classifier for indices 1, . . . , n,
it follows that d0 = 1 (since the input of each component includes only one feature) and dt = 1.
The primary activation function σ(i) that we consider is the ReLU activation function, defined as
ReLU(x) = max(0, x). For classification tasks, we assume the output layer includes a sigmoid
function. However, since our focus is on the post-hoc interpretation of the corresponding model, we
equivalently assume, in the case of classification, the existence of a step function for the final layer
activation.

Boosted tree ensemble components for Explainable Boosting Machines (EBMs) In this scenario,
we assume that each individual model fi(xi) is a boosted tree ensemble. We begin by formalizing
decision trees, followed by an extension to tree ensembles. A decision tree is an acyclic-directed
graph that serves as a graphical model for a function t : X → R in regression and t : X → {0, 1}
in classification. This graph represents the given function as follows: (i) Each internal node v is
associated with a unique decision rule, assumed to be of the form xi ≥ r or xi < r for any r ∈ Q,
(ii) Every internal node v has exactly two outgoing edges corresponding to the values {0, 1} assigned
to v, where 1 indicates the decision rule is satisfied, and 0 indicates it is not; (iii) Each leaf node is
associated with a numerical value in R (for regression tasks) or with an associated class j ∈ [c] (for
classification tasks). Consequently, assigning a value to the input uniquely determines a path from
the root to a leaf in the DT.

Regarding tree ensembles, each fi consists of an ensemble of ki ∈ N decision trees (defined earlier)
t1, . . . , tki , with each tree assigned a weight ϕi ∈ Q. In regression tasks, fi is expressed as a weighted
sum of the individual tree outputs: fi(xi) := ϕ1t1(xi) + ϕ2t2(xi) + . . . + ϕkitki(xi) + ϕ0. For
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classification, the prediction corresponds to the class receiving the highest weighted vote: fi(xi) :=

argmaxj∈[c]

∑ki

i=1 ϕi · I[t(xi) = j], where I is the indicator function.

C Additional Query Formalizations

Here, we define the two remaining queries discussed throughout the paper: the Check-Sufficient-
Reason (CSR) and Count Completions (CC) queries, both previously studied in [16, 18]. We then
elaborate on the computational complexity of computing Shapley values, as examined in this work.

The CSR query determines whether a given subset S qualifies as a sufficient reason. More formally:

Check Sufficient Reason (CSR):
Input: A model f , an instance x, and a subset S.
Output: Yes, if S is a sufficient reason of ⟨f, x⟩, and No otherwise.

For the CC query, we consider a relaxed variant of the CSR query. Rather than checking whether a
specific subset is sufficient, it measures the relative proportion of feature completions that preserve
the original prediction, assuming the remaining features are independently and uniformly distributed.
We begin by defining the completion count for a given subset:

c(S, f, x) :=
|{z ∈ XS̄ | f(xS ; zS̄) = f(x)}|

|{z ∈ {0, 1}|S||
(5)

Where XS̄ denote the joint domain of the input features Xi for all i ∈ S. The CC query is then
defined as follows:

CC (Count Completions):
Input: Model f , input x, and subset of features S.
Output: The completion count c(S, f, x).

We present here a more detailed formalization of the Shapley value attribution method used in the
paper. The Shapley value is defined as follows:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (6)

where v(S) is the value function, and we use the common conditional expectation value function
v(S) := Ez∼Dp

[f(z)|zS = xS ] [100, 76]. We follow common conventions in frameworks that
assessed the computational complexity of computing Shapley values [8, 102], as well as practical
frameworks that compute Shapley values, such as the kernelSHAP method in the SHAP libary [76],
and assume that each input feature is independent of all other features. In the discrete settings, every
feature i ∈ [n] is assigned some probability value [0, 1]. These are called product distributions in
the work of [8] or fully-factorized in the work of [102]. Formally, given some set of discrete values
[k], we can describe a probability function p : [n]× [k]→ [0, 1]. For example, p(2, 7) = 1

9 , implies
that the probability of feature i = 2, to be set to the value k = 7 is 1

9 . Then we can define Dp as an
independent distribution over X iff:

Pr(x) :=
( ∏
i∈[n],xi=j

p(i, j)
)

(7)

The uniform distribution is a special case of Dp, obtained by setting p(i) := 1
k for every i ∈ [n]. In

the continuous setting, we define a probability function p(xi) ∈ [0, 1] for each feature xi. Under
the feature independence assumption, the joint probability for the continuous input setting is given
by Pr(x) :=

∏
i∈[n] p(xi). Additionally, we assume that p(xi) satisfies certain basic computational

properties — specifically, that the sum
∑

j∈Xi
p(i, j) can be computed in polynomial time (which we
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term poly-summability), or in the continuous case, that integration over Xi can be done in polynomial
time (termed poly-enumerability). These conditions are satisfied by many common distributions,
including the uniform distribution, where each input is assigned a fixed probability.

D Framework Extensions and Relationship to Previous Results

Regression, Probabilistic and Multi-Label Classification. In this segment, we discuss extensions
of our framework to broader output configurations, relevant relaxations, and how these settings relate
to existing works.

Our definitions can potentially be relaxed to incorporate probabilistic notions of sufficiency [104, 62,
9, 105], multi-output classification, or applications within bounded ϵ-ball regions [109, 61, 77]. In
particular, the framework could extend beyond binary classification to cover regression or probabilistic
classification. For example, in a regression setting where f : F → R, a sufficient reason may be
defined as a subset S ⊆ {1, . . . , n} of input features such that:

∀z ∈ F ||f(xS ; zS̄)− f(x)||p ≤ δ (8)

for a given ℓp-norm and some δ ∈ [0, 1]. Other notions discussed in our work — such as contrastive
explanations and the definition of feature redundancy — can similarly be adapted to this framework.
From a computational complexity standpoint, transitioning to regression for these queries does
not change the underlying complexity, as the problem effectively reduces to a binary decision:
whether the output is above or below some threshold δ. Provided that δ is not fixed, hardness results
naturally extend to cover the full domain. Likewise, membership results continue to rely on guessing
witness assignments within this domain. This stands in sharp contrast to the unique SHAP query,
whose behavior — and thus complexity — differs significantly between regression and classification
settings, as shown in our work. The same reasoning extends to multi-output classification. In terms
of hardness, results established for the single-output setting carry over directly. For membership
results — whether they establish polynomial-time tractability or membership in higher complexity
classes — it is important to note that they do not rely on the binary nature of inputs. Instead, they
are based on guessing witness assignments and verifying conditions such as f(xS ; zS̄) = f(x) or
f(xS ; zS̄) ̸= f(x), which apply similarly in both single- and multi-output configurations.

The input setting impact on other ML models. In the main paper, we noted that while the input
setting plays a significant role in shaping the computational complexity of explanation tasks in
GAMs, prior studies on other ML models — specifically decision trees, neural networks, and tree
ensembles — have not demonstrated a similar complexity separation based on the input domain.
In this section, we provide a detailed justification for this claim, explaining why existing results
suggest that such separations do not occur for these models. We begin with the simpler case of
decision trees and tree ensembles. Intuitively, transitioning from a discrete to a continuous input
domain does not alter the fundamental behavior of these models, as they compute piecewise constant
functions (or an ensemble of such functions) and their split rules do not depend on specific input
configurations. More concretely, prior work has shown that the complexity results for sufficient and
contrastive explanations extend to continuous domains (see, e.g.,[54]), and similar extensions hold
for counting-based explanations such as SHAP (e.g.,[55]). Lastly, since tree ensembles are simply
aggregations of k decision trees, the same proofs naturally extend to them as well.

In the context of neural networks, hardness results are already established even for Boolean input
settings — this holds for the CSR, MCR, MSR, and CC queries [16], the FR query [18], and the
SHAP query [102]. These results directly imply hardness in the enumerable discrete setting and, by
extension, in the general discrete setting as well. Furthermore, [95] (building on [69]) demonstrated
that satisfiability instances over binary inputs can be reduced to continuous input cases by introducing
additional activation gadgets. This reduction, in turn, implies that the same hardness results hold for
all these queries in the continuous setting.

Regarding membership results, prior work has already established that these results hold for binary
inputs [16, 18, 102]. The same membership arguments — typically based on guessing a witness
assignment — extend naturally to enumerable and general discrete domains, where the guess involves
a q-bit vector instead of a binary input. Additionally, [95] demonstrate that verifying satisfiability
queries for MLPs with ReLU activations over continuous inputs is in NP. The key idea is to guess the
activation pattern of each ReLU and then solve a corresponding linear program, which is solvable in
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polynomial time. The CSR query (with S = ∅) effectively negates a satisfiability query, implying that
CSR remains coNP-complete for continuous MLPs. Recall that the MSR query for MLPs is known
to be ΣP

2 -complete [16], due to its use of a coNP oracle to check whether a subset is sufficient (i.e.,
solving the CSR query). Since CSR extends to continuous domains, the same reasoning carries over
to MSR. Similar logic applies to the CC and SHAP queries, which are counting analogues of these
reductions [16, 102, 7]. Altogether, these results underscore that for neural networks, the complexity
class of each query remains stable across input domains, unlike the distinct separations seen in GAMs.

E Proof of Proposition 1

Proposition 1. Given any GAM over an enumerable discrete domain, or a Smooth GAM over a
discrete or continuous domain, the CSR, MCR, and MSR queries are solvable in polynomial time.

Proof. To start, we present the polynomial-time algorithms applicable to the enumerable discrete
setting, which hold for any GAM. We then extend our discussion to Smooth GAMs over general
discrete and continuous domains.

We divide the proof for the three explainability queries — CSR, MCR, and MSR — for GAMs
over enumerable discrete settings into three separate lemmas, each establishing the corresponding
complexity result. We note that the proofs across all these settings follow a similar structure to
those used for linear models [16, 99, 78], with the main distinction being the need to account for the
dependency on computing the minimum and maximum values of each component model fi(xi) to
resolve the query.
Lemma 1. The CSR query can be solved for a GAM f over an enumerable discrete input space in
polynomial time.

Proof. Let there be some instance ⟨f, x, S⟩ where f is a GAM. We note that given some feature i
we can evaluate its maximum negative affect (which we will call, similarly to [16], its ”penalty” by
fixing it to the (negative) affecting edge of the domain Xi. Formally, we define:

pi :=

{
min{βi · fi(xi) | xi ∈ Xi} if f(x) > 0

max{βi · f(xi) | xi ∈ Xi} 0 otherwise
(9)

Since the values in Xi are enumerable discrete, both min{βi · fi(xi) | xi ∈ Xi} as well as max{βi ·
fi(xi) | xi ∈ Xi} can be determined in polynomial time by simply iterating over any possible value
of xi. We can then compute all possible pi values in polynomial time. We can then simply check
whether:

sign(
∑
i∈S

βi · fi(xi) +
∑
j∈S̄

pj + β0
)
· sign(

∑
i∈n

βi · fi(xi) + β0) ≥ 0 (10)

We recall that (
∑

i∈n βi · fi(xi) + β0) represents the value of the input x when passed through f
(prior to the step function), and (

∑
i∈S βi · fi(xi) +

∑
j∈S̄ pj + β0) denotes the value for the input

vector (xS ; zS̄), where this value is maximally distant from the value of x when passed through f
for all z ∈ F (again, prior to the step function). Consequently, the signs of both sums align if and
only if both are either positive or negative. This means the sign of the prediction f(x) before the step
function matches the sign of f(xS ; zS̄) before the step function. Since (xS ; zS̄) represents the vector
whose value through f achieves the maximal distance from x when passed through f (before the step
function), the following equality holds if and only if, for any possible z′ ∈ F, the predictions of f
over x and (xS ; z′

S̄
) are both positive (or both negative) before the step function. Therefore, after

applying the step function, it holds that ∀z′ ∈ F, f(x) = f(xS ; z′
S̄
), which holds by definition if and

only if S is a sufficient reason concerning ⟨f, x⟩.

Lemma 2. The MCR query can be solved for a GAM f over an enumerable discrete input space in
polynomial time.

Proof. Given an instance ⟨f, x, k⟩, we use the same definition as in Lemma 1 of pi to denote the
“penalty” of each feature i in the GAM. We perform the following algorithm (Alg. 1), which computes
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a cardinally minimal contrastive reason. We assume, without loss of generality, that f(x) = 1.
The alternate case, where f(x) = 0, can be addressed similarly by reversing Line 4, which will
accordingly reverse the steps in the proof.

Algorithm 1 Cardinally Minimal Contrastive Reason Search
Input f , x

1: Compute all values pi for every i ∈ [n]
2: F ← {1, . . . , n} ▷ Features for iteration
3: S ← ∅ ▷ The current sufficient reason
4: Sort F in descending order by the value of vi := βi · xi − pi for each i
5: for each i ∈ F do
6: if sign(

∑
i∈S̄ βi · fi(xi) +

∑
j∈S pj + β0

)
· sign(

∑
i∈n βi · fi(xi) + β0) < 0 then

7: Break
8: end if
9: S ← S ∪ {i}

10: end for
11: return S ▷ S is a cardinally minimal contrastive reason

We note that the computations of all pi values (Line 5 in Algorithm 1) can be computed in polynomial
time due to our assumption of an enumerable discrete input space. The discrete input space means
that for any xi we can simply iterate over the entire domain Xi in polynomial time and hence obtain
both min{βi · fi(xi) | xi ∈ Xi} as well as max{βi · fi(xi) | xi ∈ Xi}. Hence, it is clear that the
algorithm runs in polynomial time.

To establish the correctness of our Lemma, it remains to demonstrate the validity of the algorithm:
Lemma 3. Algorithm 1 obtains a cardinally minimal contrastive reason for ⟨f, x⟩.

Proof. We will first prove that algorithm 1 produces a valid contrastive reason for ⟨f, x⟩.
In Lemma 1, we established that if the inequality sign

(∑
i∈S βi · fi(xi) +

∑
j∈S̄ pj + β0

)
·

sign
(∑

i∈n βi · fi(xi) + β0
)
≥ 0 holds, then S serves as a sufficient reason for ⟨f, x⟩. Simi-

larly, if the relation sign
(∑

i∈S̄ βi · fi(xi) +
∑

j∈S pj + β0

)
· sign

(∑
i∈n βi · fi(xi) + β0

)
≥ 0

holds, then S̄ is a sufficient reason, which implies by definition that S is not a contrastive reason.
Therefore, the following equivalence holds: if and only if sign

(∑
i∈S βi · fi(xi) +

∑
j∈S̄ pj + β0

)
·

sign
(∑

i∈n βi · fi(xi) + β0
)
< 0, then S is a contrastive reason with respect to ⟨f, x⟩.

We will now demonstrate that the generated set S is a cardinally minimal contrastive reason
with respect to ⟨f, x⟩. Let 1 ≤ ℓ ≤ n represent the last feature added to S in line 10 of algo-
rithm 1. Then, for S′ := S \ {ℓ}, it follows that: sign

(∑
i∈S′ βi · fi(xi) +

∑
j∈S̄′ pj + β0

)
·

sign
(∑

i∈n βi · fi(xi) + β0
)
≥ 0, implying that S′ is not a contrastive reason for ⟨f, x⟩.

Recall that F was sorted in descending order according to the values vi := βi · fi(xi)− pi, and S′

therefore represents the subset of size |S′| that maximizes
∑

j∈S′(βj · fj(xj)− pj) and hence also
maximizes the difference

(
∑
i∈n

βi · fi(xi) + β0)− (
∑
i∈S̄′

βi · fi(xi) +
∑
j∈S′

pj + β0) =
∑
j∈S̄′

(βj · fj(xj)− pj) (11)

This implies that any subset S′′ ⊆ [n] of size |S′′| ≥ |S′| satisfies:
sign

(∑
i∈S′′ βi · fi(xi) +

∑
j∈S̄′′ pj + β0

)
· sign

(∑
i∈n βi · fi(xi) + β0

)
≥ 0, indicating

that S′′ is not a contrastive reason for ⟨f, x⟩. Overall, we have shown that S is a contrastive reason
for ⟨f, x⟩, and that any subset S′′ of size |S′′| ≥ |S′| is not a contrastive reason for ⟨f, x⟩. By
definition, |S′| = |S| − 1, so we have established that there is no subset of size |S| − 1 or smaller
that is a contrastive reason for ⟨f, x⟩. This confirms that S is a cardinally minimal contrastive reason
for ⟨f, x⟩.
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Having established that algorithm 1 produces a cardinally minimal contrastive reason for S, solving
the MCR query in polynomial time simply requires running the algorithm and verifying if |S| ≥ k,
thereby completing our proof.

Lemma 4. The MSR query can be solved for a GAM f over an enumerable discrete input space in
polynomial time.

Proof. Given an instance ⟨f, x, k⟩, we will show that the MSR query can be resolved in polynomial
time. For a specific feature i, we will again (as in Lemma 1) refer to its "penalty" as the maximum
negative impact it can exert on the prediction f(x). Formally, we define pi := min{βi · fi(xi) | xi ∈
Xi} if f(x) > 0, and pi := max{βi · fi(xi) | βi ∈ Xi} otherwise. Furthermore, we require a
measure for the value of feature i when it is fixed. We define vi := βi · fi(xi)− pi. Note that when∑

i∈[n] βi · fi(xi) + β0 < 0, i.e., when f(x) = 0, a “good score” will be a highly negative one. Thus,
we specifically define vi := (βi · fi(xi)− pi) · sign(

∑
i∈[n] βi · fi(xi)+β0). However, for simplicity,

we will assume without loss of generality that f(x) > 0, and therefore vi := βi · fi(xi) − pi.
Intuitively, vi reflects the value of feature i when it is held constant rather than allowed to take on any
value, thereby influencing the penalty score pi. With these definitions, we are prepared to propose the
following algorithm for obtaining a cardinally minimal sufficient reason for the given instance ⟨f, x⟩.

Algorithm 2 Cardinally Minimal Sufficient Reason Search
Input f , x

1: Compute all values vi, pi for every i ∈ [n]
2: F ← {1, . . . , n} ▷ Features for iteration
3: S ← ∅ ▷ The current sufficient reason
4: Sort F in descending order by the value of vi := βi · fi(xi)− pi for each i
5: for each i ∈ F do
6: if sign(

∑
i∈S βi · fi(xi) +

∑
j∈S̄ pj + β0

)
· sign(

∑
i∈n βi · fi(xi) + β0) ≥ 0 then

7: Break
8: end if
9: S ← S ∪ {i}

10: end for
11: return S ▷ S is a cardinally minimal sufficient reason

Lemma 5. Algorithm 2 obtains a cardinally minimal sufficient reason for ⟨f, x⟩.

Proof. First let us prove that Algorithm 2 provides a valid sufficient reason. This result is straight-
forward since we have proven in Lemma 1 that S is a sufficient reason of ⟨f, x⟩ iff the condition
sign(

∑
i∈S̄ βi · fi(xi) +

∑
j∈S pj + β0

)
· sign(

∑
i∈n βi · fi(xi) + β0) ≥ 0 holds.

We will now demonstrate that the generated set S is a cardinally minimal sufficient reason with respect
to ⟨f, x⟩. Let 1 ≤ ℓ ≤ n represent the last feature added to S in line 10 of algorithm 2. Then, for S′ :=

S \{ℓ}, it follows that: sign
(∑

i∈S′ βi · fi(xi) +
∑

j∈S̄′ pj + β0

)
·sign

(∑
i∈n βi · fi(xi) + β0

)
<

0, implying that S′ is not a sufficient reason for ⟨f, x⟩.
Recall that F was sorted according to the values vi := βi · fi(xi)− pi in descending order, and S′

therefore represents the subset of size |S′| that maximizes
∑

j∈S′(βj · fj(xj) − pj) and hence S′

represent the subsets that minimizes the difference
∑

j∈S̄′(βj · fj(xj)− pj). This is equivalent to
stating that S′ represents the set of size |S′| that minimizes:

(
∑
i∈S′

βi · fi(xi) +
∑
j∈S̄′

pj + β0)− (
∑
i∈n

βi · fi(xi) + β0) =
∑
j∈S̄′

(βj · fj(xj)− pj) (12)

This implies that any subset S′′ ⊆ [n] for which |S′′| < |S′| and hence also |S′′| ≥ |S′| satisfies:
sign

(∑
i∈S′′ βi · fi(xi) +

∑
j∈S̄′′ pj + β0

)
· sign

(∑
i∈n βi · fi(xi) + β0

)
< 0, indicating that S′′

is a contrastive reason for ⟨f, x⟩, and hence that S′′ is not a sufficient reason for ⟨f, x⟩. Overall, we
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have shown that S is a sufficient reason for ⟨f, x⟩, and that any subset S′′ of size |S′′| < |S′| is
not a sufficient reason for ⟨f, x⟩. By definition, |S′| = |S| − 1, so we have established that there is
no subset of size |S| − 1 or smaller that is a sufficient reason for ⟨f, x⟩. This confirms that S is a
cardinally minimal sufficient reason for ⟨f, x⟩.

Having established that algorithm 2 produces a cardinally minimal sufficient reason for S, solving
the MSR query in polynomial time simply requires running the algorithm and verifying if |S| ≥ k,
thereby completing our proof.

Having established the complexity results for the three explanation types in the enumerable discrete
input setting, we now turn our attention to the general discrete or continuous input setting, focusing
on the case of Smooth GAMs. In fact, we will show that this claim holds for a broader class of model
families, including other tractable components like decision trees:

Lemma 6. Given a Smooth GAM over a general discrete or continuous input setting —- then the
CSR, MCR and MSR queries can be obtained in polynomial time.

Proof. We have established in Lemma 1, Lemma 2, and Lemma 4 that, assuming the minimum and
maximum viable values for each model component fi can be determined within the domain Xi, the
CSR, MSR, and MCR queries can be computed in polynomial time. We will now demonstrate this
for each corresponding component model.

First, consider the case where each fi is the identity function (i.e., f is a linear model). In this case,
determining the minimum and maximum values in each domain is straightforward and can be done
in polynomial time. For cubic splines, this result extends naturally, as it involves iterating over each
defined region of the piecewise polynomial fi. For each region, we evaluate the value of fi at the
domain edges and at the extreme points, which can be found by solving a polynomial equation of
degree 3 (achievable in polynomial time). Among these values (edges and polynomial extremes), the
minimum and maximum are selected. If Xi is a general discrete set, we iterate over the continuous
region representing Xi, find the extreme points as before, and for each extreme point, identify the
two nearest discrete points within Xi — one above and one below. From this set of viable extreme
points of the discrete domain Xi, we then select the minimum and maximum values.

We note that this proof applies not only to Smooth GAMs but to any model where the minimum
and maximum attainable values of each fi can be computed in polynomial time. This includes,
for example, decision trees. In the case where fi is a decision tree, we iterate over all leaf edges
(representing all viable values of fi) and select the minimum and maximum values from these leaves.
This process can also be completed in polynomial time with respect to the size of the tree.

F Proof of Proposition 2

Proposition 2. Given a Smooth GAM f over a continuous input space, then the FR query can be
obtained in polynomial time.

Proof. We will prove this for a more general class that includes any GAM f defined over continuous
inputs, where the output f(x) is continuous, and for which both min{βif(i)} and max{βif(i)} can
be computed in polynomial time for any feature i. The polynomial-time computation of min{βif(i)}
and max{βif(i)} for splines has been proven in Lemma 1. Furthermore, since splines are defined
as piecewise polynomials, it is clear that f(x) is a continuous function. Therefore, proving the
complexity results for the FR query for this family of classifiers will also encompass GAMs defined
over splines.

We first note that by definition a feature i is redundant with respect to f if and only if for any x′, xi, zi
it holds that f(x′[n]\{i}; xi) = f(x′[n]\{i}; zi) (or in other words, changing the value of feature i cannot
cause the classification to change. We will prove the following claim:

Lemma 7. Let there be some GAM f where both the input domain X is continuous, and the output
f(x) is continuous. Let us assume that i is redundant with respect to ⟨f⟩ and that f is not trivial (in
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other words, a function that always outputs 1 or always outputs 0). Then, it holds that for all xi ∈ Xi,
βifi(xi) = 0.

Proof. First we recall that by definition i is redundant with respect to f iff for any x′, xi, zi it holds
that f(x′[n]\{i}; xi) = f(x′

[n]\{i}; xi). In other words, this implies that:

[[β0 + β1f1(x1) + . . .+ βi−1fi−1(xi−1) + βi+1fi+1(xi+1) + . . .+ βkfk(xk) ≥ 0]∧
‘[β0 + β1f1(x1) + . . .+ fk(xk) ≥ 0]]

∨[[β0 + β1f1(x1) + . . .+ βi−1fi−1(xi−1) + βi+1fi+1(xi+1) + . . .+ βkfk(xk) < 0]∧
‘[β0 + β1f1(x1) + . . .+ fk(xk) < 0]]

(13)

Let us assume for contradiction that for any x, the term β0 + β1f1(x1) + . . . + βi−1fi−1(xi−1) +
βi+1fi+1(xi+1) + . . .+ βkfk(xk) is always strictly positive or always strictly negative. Since i is
redundant, it follows that adding the term βifi(xi) to the rest of the sum cannot cause the classification
to “flip,” meaning the overall term cannot change from positive to negative or vice versa. This implies
that the entire sum β0 + β1f1(x1) + . . .+ βkfk(xk) for any x is always positive or always negative,
which contradicts the assumption that f is non-trivial. Therefore, there must necessarily exist some
x, z ∈ X such that β0 + β1f1(x1) + . . . + βi−1fi−1(xi−1) + βi+1fi+1(xi+1) + . . . + βkfk(xk) is
positive, and β0 + β1f1(z1) + . . .+ βi−1fi−1(zi−1) + βi+1fi+1(zi+1) + . . .+ βkfk(zk) is negative
(or vice versa).

Moreover, since X is continuous, we can select x and z such that β0 + β1f1(x1) + . . . +
βi−1fi−1(xi−1) + βi+1fi+1(xi+1) + . . .+ βkfk(xk) and β0 + β1f1(z1) + . . .+ βi−1fi−1(zi−1) +
βi+1fi+1(zi+1) + . . .+ βkfk(zk) are infinitesimally close to the decision boundary. We will denote
these points as either 0+ or 0−, representing an infinitesimally close value that is either above or below
0. Now, assuming there exists some x′

i such that βifi(x′i) is negative, we can take an infinitesimally
small value for β0 + β1f1(x1)+ . . .+ βi− 1fi−1(xi−1)+ βi+1fi+1(xi+1)+ . . .+ βkfk(xk) above
the decision boundary (0+) such that adding βifi(x′

i) causes the decision to become negative. The
analogous condition holds for the opposite direction of the decision boundary (assuming there exists
some x′i for which βifi(x′

i) is strictly negative). Consequently, the only way for i to be redundant is
if, for every x′

i ∈ Xi, it holds that βifi(x′i) = 0, thereby concluding the proof of the lemma.

We will now use the previous Lemma to describe a simple polynomial-time algorithm for solving
this task. The algorithm iterates over all features i from 1 to n. Since fi is a spline, we can compute
the minimal and maximal values minβifi(xi) and maxβifi(xi) in polynomial time. If either both
terms are equal to 0 or βi = 0, we return that i is redundant. Otherwise, we return that it is not. The
correctness follows from the correctness of Lemma 7, the continuity of X , and the continuity of f(x)
(a result of working with splines). This concludes the proof.

G Proof of Proposition 2

Proposition 3. Given any regression GAM with enumerable discrete inputs, or given a regression
Smooth GAM with discrete or continuous inputs, then SHAP query is solvable in polynomial time.

Proof. We divide the proof into three separate lemmas. First, we establish the claim for general
GAMs under the enumerable discrete setting. Next, we address Smooth GAMs over general discrete
domains. Finally, we prove the claim for Smooth GAMs over continuous domains.

Lemma 8. Assuming f is a regression GAM over an enumerable discrete input space F, then solving
SHAP for ⟨f, x, i⟩ can be solved in polynomial time.

Proof. For a certain value function v(S), given the assumption of feature independence and the
additive structure of f , we have:
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v(S) = Ez∼Dp
[f(z)|zS = xS ] =
EzS̄ [f(xS ; zS̄)] =

Ez∼Dp
[f(xS ; zS̄)] =∑

z∈F

( ∏
ℓ∈[n],zℓ=j

p(ℓ, j)
)
· f(xS ; zS̄) =

∑
z∈F

( ∏
ℓ∈[n],zℓ=j

p(ℓ, j)
)
· (
∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

βℓfj(zj) + β0) =

∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

Ez∼Dp
[βjfj(zj)] + β0

(14)

Now, we have that:

v(S ∪ {i})− v(S) =( ∑
ℓ∈S∪{l}

βℓfℓ(xℓ) +
∑

j∈S̄\{i}

Ez∼Dp [βjfj(zj)] + β0
)
−

(∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

Ez∼Dp [βjfj(zj)] + β0
)
=

βifi(xi)− Ez∼Dp [βifi(xi)] =

βi(fi(xi)− Ez∼Dp
(fi(zi))

(15)

By incorporating it into the SHAP formulation, we obtain:

ϕi(f, x) =
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) =

∑
S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(βifi(xi)− Ez∼Dp [βifi(xi)]) =

βi
n
(fi(xi)− Ez∼Dp

(fi(zi)))

(16)

where the last equation follows from the fact that the inner product does not depend on S, and from
the well-known result that the sum of the Shapley values,

∑
S⊆[n]\{i}

|S|!(n−|S|−1)!
n! , simplifies to 1

n

through a telescoping sum. By definition, fi(xi) can be computed in polynomial time. Furthermore,
since the domain Xi is enumerable discrete, Ez∼Dp

[fi(zi)] can also be computed in polynomial
time by evaluating

∑
j∈Xi

p(i, j)fi(zi) (where the equivalence holds again by utilizing the feature
independence property), thereby completing the proof.

Lemma 9. Given a GAM f over a general discrete input space, obtaining the SHAP query for
regression can be solved in polynomial time.

Proof. We note that until our last step — proving tractability for the enumerable discrete setting
in Lemma 8, which involved showing that Ez∼Dp [fi(zi)] can be computed in polynomial time (by
evaluating

∑
j∈Xi

p(i, j)fi(zi)) — we did not assume explicit enumerability. Thus, all results up to
this point also apply to the general discrete case. In the general setting, correctness follows directly
from the poly-summability property of the distribution Dp, thereby establishing tractability.

Lemma 10. Given a GAM f over a continuous input space with poly-integrable components,
obtaining the SHAP for regression can be solved in polynomial time.

Proof. The proof will be similar to the discrete scenario. For a certain value function v(S), given the
assumption of feature independence and the additive structure of f , we have:
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v(S) = Ez∼Dp
[f(z)|zS = xS ] =

EzS̄ [f(xS ; zS̄)] =
Ez∼Dp

[f(xS ; zS̄)] =∫
z∈X

p(z) · f(xS ; zS̄) =∫
z∈X

(
p(z) · (

∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

βℓfj(zj) + β0)
)
=

∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

Ez∼Dp
[βjfj(zj)] + β0

(17)

Now, the following condition holds:

v(S ∪ {i})− v(S) =( ∑
ℓ∈S∪{l}

βℓfℓ(xℓ) +
∑

j∈S̄\{i}

Ez∼Dp
[βjfj(zj)] + β0

)
−

(∑
ℓ∈S

βℓfℓ(xℓ) +
∑
j∈S̄

Ez∼Dp
[βjfj(zj)] + β0

)
=

βifi(xi)− Ez∼Dp
[βifi(xi)] =

βi(fi(xi)− Ez∼Dp(fi(zi))

(18)

Incorporating it into the SHAP formulation yields:

ϕi(f, x) =
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) =

∑
S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(βifi(xi)− Ez∼Dp

[βifi(xi)]) =

βi
n
(fi(xi)− Ez∼Dp

(fi(zi)))

(19)

The final equality follows from the fact that the inner product is independent of S, along with the
well-known identity that the sum of Shapley coefficients,

∑
S⊆[n]\i

|S|!(n−|S|−1)!
n! , evaluates to 1

n via
a telescoping argument. By definition, fi(xi) is computable in polynomial time. Thus, the question
of whether the SHAP value is polynomial-time computable reduces to whether Ez∼Dp [fi(zi)] can be
computed in polynomial time. Under the feature independence assumption, we observe that:

Ez∼Dp
[fi(zi)] :=

∫
zi∈Xi

p(z)fi(zi) =
∫

zi∈Xi

pi(zi)fi(zi) (20)

Since fi(zi) is a smooth function bounded by degree 3, and p(zi) is poly-integrable, it follows
by definition that Ez∼Dp [fi(zi)] can be computed in polynomial time by evaluating the integral∫

zi∈Xi
pi(zi)fi(zi). This completes the proof.

H Proof of Proposition 4

Proposition 4. Given any GAM over an enumerable discrete input, or a Smooth GAM over a discrete
or continuous input, the CC and SHAP-C queries can be obtained in pseudo-polynomial time.

We will divide the proof into two lemmas, addressing the CC and SHAP queries separately, beginning
with the CC case.
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Lemma 11. Given any GAM over an enumerable discrete input setting, the CC query can be solved
in pseudo-polynomial time

Proof. We prove this by reducing the CC problem when weights are provided in unary to a variant
of the counting version of the classic #Knapsack problem, which we refer to as #Multi-Choice
Knapsack. We then show that #Multi-Choice Knapsack can be solved via a dynamic programming
algorithm. Our proof follows a similar structure to that of [16], who addressed linear models over
binary domains, but introduces additional complexity to handle arbitrary enumerable discrete input
configurations. In particular, whereas the proof in [16] addresses this problem via a reduction to
#Knapsack, our approach reduces it to the #Multi-Choice Knapsack setting.

#Multi-Choice Knapsack:
Input: w := (w1, . . . , wn) where each wi is a non-negative integer weight, a vector of sets
(S1, . . . , Sn) where each set Si contains a fixed number of associated integers, and a target integer C
which denotes the capacity.
Output: |{(x1, . . . , xn) ∈ S1 × . . .× Sn |

∑
i≤n wixi ≤ C}|

We observe that this problem resembles the classic #Knapsack problem—the counting variant of
Knapsack — except that each variable xi ranges over a set Si of enumerable integers, rather than
being restricted to {0, 1}. The work of [16] reduces the CC query for Perceptrons (i.e., linear models
over binary inputs with unary weights) to the classic #Knapsack problem via a polynomial-time
reduction, where C is set to the bias b of the linear model. We observe that applying the same
reduction — except replacing binary inputs with sets of enumerable discrete values — yields an
instance of the #Multi-Choice Knapsack problem instead (and the target integer C still equals the
bias b of the linear model. Thus, it remains to show that #Multi-Choice Knapsack is solvable in
pseudo-polynomial time, which we do by adapting the standard dynamic programming algorithm
typically used for this problem (and also discussed in [16]).

The algorithm will be constructed as follows: given an instance of #Multi-Choice Knapsack which
includes w := (w1, . . . , wn), (S1, . . . , Sn), and C, we can define the following quantity:

DP [i][C] := |{(x1, . . . , xn) ∈ S1 × . . .× Sn |
∑
i≤n

wixi ≤ C}| (21)

The final result for the #Multi-Choice Knapsack (and consequently for the CC query) is given by the
value of DP [n][b]. This can be computed using an iterative dynamic programming approach based
on the following inductive step:

DP [i+ 1][C] = DP [i][C] +
∑

sinSi+1

DP [i][C − s] (22)

We carry out this iterative computation starting from the standard dynamic programming base case
(as in the classic Knapsack and #Knapsack algorithms, and also noted in [16]): DP [0][α] = 0 for
all α < 0 and DP [0][α] = 1 for all α ≥ 0. Given the pseudo-polynomial nature of the problem,
a polynomial number of iterations suffices to compute the final value DP [n][b], which yields the
solution to the #Multi-Choice Knapsack and, consequently, the answer to the CC query in this setting.

Lemma 12. Given any GAM over an enumerable discrete input setting, the SHAP query for classifi-
cation tasks can be solved in pseudo-polynomial time.

Proof. We build on the proof introduced by [102] which showed that the computation of SHAP for a
model f and some input x can be reduced to the computation of Ez∼Dp

[f(z)] in polynomial time,
given that we assume feature independence. Hence, we are only left to prove that Ez∼Dp

[f(z)] can
be obtained in pseudo-polynomial time for GAMs over enumerable discrete input spaces. We note
that the following holds:

Ez∼Dp
[f(z)] = Ez∼Dp

[step(β0 + β1 · f1(z1) + . . . βn · fn(zn))] (23)
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Since we assume that the input space X is enumerable discrete, computing Ez∼Dp[f(z)] reduces
to counting the number of assignments (x1, . . . , xn) ∈ S1 × . . .× Sn such that β0 + β1 · f1(z1) +
. . .+ βn · fn(zn) ≥ 0. This is equivalent to counting assignments where

∑
i = 1nβi · fi(zi) ≥ −β0.

Setting the threshold C := β0, the problem becomes an instance of the #Multi-Choice Knapsack
problem described in Lemma H. As shown in that lemma, this problem can be solved in pseudo-
polynomial time via a dynamic programming approach. Therefore, the SHAP query for classification
over GAMs with enumerable discrete input domains is also solvable in pseudo-polynomial time.

I Proof of Proposition 5

Proposition 5. Let there be a NAM or an EBM over a discrete or contentious input space, then
solving the CSR, and MSR queries are coNP-Complete, and the MCR query is NP-Complete.

Proof. We will divide the proof into several lemmas, beginning with NAMs and then proceeding to
EBMs. For each model, we will first establish the results for CSR, followed by MCR, and finally the
MSR query. We will also start with continuous domains and then explain how to extend the results to
general discrete domains in each case.

Lemma 13. Given a NAM f , an input x ∈ F, and an integer k ∈ N, where f is defined over
either a continuous input space or a general discrete input space, then obtaining the CSR query is
coNP-Complete.

Proof. Membership. In the general discrete setting, the proof is straightforward. One can guess a set
of |S| assignments corresponding to the features in S. This is feasible because the domain of each
feature i, denoted Xi, is defined by a minimum and maximum value, each represented with at most q
bits. Moreover, any value in the domain can also be expressed with at most q bits. Therefore, any
value for a feature i in S can be determined by guessing the bit values for each feature representation.
Denote the guessed values for S as zS̄ , and select arbitrary assignments for the features in S (chosen
from their respective domains).

This allows us to construct a vector z that includes both the guessed values for S and the arbitrarily
chosen values for S. We then verify whether f(xS ; zS̄) ̸= f(x), which can be done in polynomial
time. If this condition holds, it implies that S is not a sufficient reason for ⟨f, x⟩, thereby establishing
membership in coNP.

In the continuous setting, the situation becomes more intricate, as guessing a witness assignment for
the input is not feasible. This is because the size of the encoding is no longer polynomial and may
not even be finite. However, as shown in a similar proof from [96], for a neural network with ReLU
activations, one can, instead of guessing the input assignment, guess the activation status of each
neuron (either active or inactive).

Once the activation status of each neuron is established, and assuming all remaining constraints are
linear, finding a satisfying assignment for the neural network reduces to solving a linear programming
problem. In our case, this indeed holds, since it involves setting lower and upper bounds for each
input (corresponding to the minimum and maximum permissible values in Xi for each feature i ∈ S)
and equality constraints for features in S. For the output constraint, we impose a condition that it
is either greater or less than zero, depending on the opposite of the classification result for f(x). If
this linear program yields a feasible solution, it demonstrates that f(xS ; zS̄) ̸= f(x), hence proving
membership in coNP.

Hardness. We begin by establishing hardness through the (complementary of) the neural network
verification problem, which has been examined in [69] and [96], among numerous other studies. This
problem, known to be NP-Complete [69, 96], is formalized as follows:

Neural Network Verification:
Input: A neural network f : Rd → Rc, a bounded continuous domain X over the input space, and a
bounded continuous domain Y over the output space.
Output: Yes, if there exists some x ∈ X and some y ∈ Y such that f(x) = y, and No otherwise
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We will prove hardness by reducing from the (complementry of) the Neural Network verification
problem, which is known to be NP-Complete [69, 96]. We note that while the authors in both [69]
and [96] describe this as a more general problem for wny piec-wise linear specification over the input
and output (and not only for bounded domains), in practice the hardness result that were proven from
the classic SAT problem were performed for specificacations of this form (bounding both the input
and the outputs). Hence, the NP-Hardness of these problems holds from these reductions. Moreover,
as noted by [96] — hardness remains for neural networks consisting of a single output neuron, and
hence we can assume that our neural network is actually of the form f : Rd → R.

We will begin by establishing an intermediate proof for our claim, which is even a stronger one that
was obtained by [96]. Particularly, we will prove that the neural network verification problem remains
NP-Hard even for a model with both a single input and a single output. We will later demonstrate
why this hardness result also applies to the general discrete input setting.
Lemma 14. Given a neural network f : R → R, a bounded continuous input domain X , and a
bounded continuous output domain Y , then solving the neural network verification problem over f is
NP-Hard.

We will begin by establishing hardness for the continuous domain and then demonstrate why these
results extend to the general discrete domain. Now, let there be a neural network f : Rd → R with
a bounded continuous input domain X , and a bounded continuous output domain Y . First, we will
show how to reduce f into a model f ′ : R → R, with some continuous bounded domain X ′ over
the (individual) input of f ′ and the same output domain Y , for which it holds that there exists some
x ∈ X , y ∈ Y for which f(x) = y if and only if there also exists some x′ ∈ X ′ for which f ′(x′) = y.

Given f we construct f ′ such that the first input layer of f ′ becomes the second hidden layer of f and
we add an additional input layer for f ′ consisting of only one input, as well as an additional hidden
layer (which is the first hidden layer of f ′, that is twice as larger than that of the input layer of f . We
connect the single input layer of f ′ to all neurons in the first hidden layer. Each pair of neurons in the
first layer is connected to a single hidden layer in the second hidden layer (which corresponds to the
original input of f ). We set the biases of all of the neurons in both the first and second hidden layers.
Let us assume some neuron x2i at the second hidden layer which represents xi from the original input
f . Let x1i and x2i denote the pair of two neurons that are connected to it from the first layer of f ′. We
set the weight that corresponds with

We first note that given some value oi that is obtained by some arbitraty neuron in an MLP, it
is possible to construct the calculation of oj := |oi| in the preceding layers by incorporating the
following procedure:

oj = ReLU(oi) + (−1)ReLU(−oi) = |oi| (24)

which can be computed by simply adding two additional neurons in the preceding layers with 1
and −1 weight and connecting them both to another preceding layer. We hence, will consider, for
simplicity that for any oi, oj := |oi| can be computed by a constant number of preceding layers. We
also note that given some oi we can simply compute:

oj = ReLU(oi) + ReLU(−oi) = oi (25)

meaning that a single value of a neuron can be passed to the subsequent layers with a simple identity
transformation with that construction. We will hence regard the identity construction as a valid one
as well. Lastly we regard the following construction:

oj = ReLU(oi)− 1 = max(oi, 0) (26)

We observe that, as previously mentioned, the proof in [96] was derived from the CNF-SAT problem,
initially assuming the input space X := 0, 1n. Consequently, we will specifically demonstrate
hardness for the neural network verification problem involving a model of the form f ′ : R→ R by
reducing it from the neural network verification problem over a model of the form f : 0, 1n → R.

Furthermore, we observe that the input domain required for our model f is a bounded continuous
domain X , defined by minimum and maximum values represented in binary. For simplicity and
clarity, we demonstrate how to reduce a model f , defined over the domain X := [0, 2n − 1], to
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the domain {0, 1}n. This reduction is achieved through a binary search construction over [0, 2n−1]
and can be generalized to any bounded continuous domain X , where the minimum value of X
corresponds to 0 and the maximum value corresponds to 2n−1.

Reducing the continuous domain [0, 2n − 1] for an individual feature to the discrete domain
{0, 1}n for n features. The construction of f ′ is as follows. Following the first input neuron o0 we
will connect it to a neuron in the preceding layers which calculates: o10 := ReLU(o0 − 2n−1) and
o11 := |o0 − 2n−1|. Where o11 := |o0 − 2n−1| can be computed given the explanation from before.
We connect o10 to the first neuron from layer o′1 via a linear transformation, i.e., o′1 := o10.

We now move on and construct another hidden layer over which we compute o20 := ReLU(o11−2n−2)
and o21 := |o11− 2n−2|. We connect o20 to the second neuron in the o′ layer via a linear transformation,
i.e., we compute o′2 := o20. We then continue performing this entire process recursively, i.e., for
the i’th iteration in this process we construct oi0 := ReLU(oi−1

1 − 2n−i, oi1 := |oi−1
1 − 2n−i|, and

connect input i in the o′ layer to oi0 via a linear transformation, i.e.,: o′i := oi0.

The following construction takes some arbitrary assignment o0 in the range [0, 2n] and performs a set
of binary decisions, each time decreasing 2i−1 and continuing with the remainder. This process hence
gives us in the first neuron o′1 a positive value iff o0 is larger than 2n−1, and otherwise will be assigned
a 0. The second neuron o′2 will get a positive value iff |o′−2n−1|−2n−2 is larger than 0, and otherwise
it will be set to 0. The third neuron o′3 will get a positive value iff ||o′ − 2n−1| − 2n−2| − 2n−3 is
larger than 0, and otherwise, it will be assigned 0. This continues for every i. It is straightforward to
show that for a value o′ = ⌊x⌋ for some 0 ≥ x ≥ 2n it holds that we can equivalentley describe o′ as
a binary vector of size n which is equivalent to the binary value of x, where each “1” value in place i
in the binary vector corresponds to some positive assignment in place i in the vector o′, and each “0”
value in place i in the binary vector corresponds to some 0 assignment in the o′ vector.

We now will describe an additional transformation over o′ that we do befor connecting it to get o′′
which we will connect to the first hidden layer of the original one in f (and hence to the preceding
layers in f as well). First, let us observe that for the following construction:

z := ReLU(1− x) + ReLU(x− 1) (27)

it holds that if 0 ≤ x ≤ 1 then z = 1. We hence can define the additional hidden layer o′′ which
comes after o′ such that for each o′i we define:

o′′i := ReLU(1− 1

2n
o′i) + ReLU(

1

2n
o′i − 1) (28)

Since the range of the original individual input of f ′: o0 is in [0, 2n], then we have that each remainder
that is propagated into the o′ layer is also in the range [0, 2n]. We hence get that for any positive
instance that was propagated into o′ (and represents its corresponding binary vector) its output will
be equal to exactly 1 in o′′.

We connect layer o′′ to the remaining hidden layers from the original f . We note that the continuous
domain [0, 2n] over the single input neuron in o0 in f is mapped exactly to any possible binary vector
{0, 1}n in layer o′′. The preceding layers after o′′ are identical between f and f ′ and hence we have
that:

maxx∈[0,2n−1]f
′(x) = maxx∈{0,1}nf(x) and minx∈[0,2n−1]f

′(x) = minx∈{0,1}nf(x) (29)

We connect layer o′′ to the remaining hidden layers from the original f . We note that the continuous
domain [0, 2n] over the single input neuron in o0 in f is mapped exactly to any possible binary vector
{0, 1}n in layer o′′. The preceding layers after o′′ are identical between f and f ′. Thus, for any
x ∈ [0, 2n−1], we can consider the binary representation of the lower value within the range that
maps to {0, 1}n (denoted as x′), satisfying f ′(x′) = f(x). This demonstrates more specifically that
there exists x ∈ X , y ∈ Y such that f(x) = y if and only if there exists some x′ ∈ X ′ = {0, 1}n for
which f(x) = f ′(x′) = y. This hence concludes the proof of our Lemma.

Extending the proof to the general discrete setting. We observe that the construction we developed
for f ′ relies on performing a binary search over the features within [0, 2n−1], mapping them into
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the discrete input space 0, 1n by associating each value with its corresponding lower value in the
binary domain. If we consider the domain X ′ := [0, 2n−1] to consist solely of discrete binary
values represented with n bits, the mapping functions identically. In this case, instead of assigning a
lower value for each mapping, the values are mapped exactly. Consequently, it is straightforward to
conclude that the hardness proof remains valid when X is assumed to be general discrete.

Finalizing the proof. We have established that the neural network verification problem for a neural
network with one input and one output, where the input domain is either continuous or general
discrete, is NP-Hard. We now aim to leverage this hardness result to demonstrate that the CSR query
for a NAM defined over either a general discrete or a continuous domain is coNP-Hard. We observe
that the hardness proof we derived applies to a specific scenario in which the output specification
Y mandates that the prediction of f(x) must be positive (i.e., f(x) ≥ 0). Consequently, we will
demonstrate hardness by reducing such an instance — a neural network with a single input and output,
a bounded input domain X , where the task is to determine whether f(x) ≥ 0 — to the (complement
of) the CSR query.

Given a model f and an input specification X , we construct a NAM f ′ consisting of only one MLP,
f1 := f . We start by selecting an arbitrary assignment x ∈ X and checking if f(x) < 0. If this
condition is satisfied, we define the weight of the corresponding model as β1 := 1 and set the bias
term as β0 := 0. Furthermore, we initialize the subset S := ∅. It is easy to see that if there exists
a satisfying assignment z ∈ X for which f(z) ≥ 0, then [n] := {1} is a contrastive reason, since
1 = f ′(z) ̸= f ′(x) = 0 and thus ∅ is not a sufficient reason for ⟨f ′, x⟩. In summary, we have
constructed an instance of the CSR query where S (the empty set) acts as a sufficient reason for
⟨f ′, x⟩ if and only if no satisfying assignment exists for the neural network f .

For the second case, where f(x) ≥ 0, we construct f ′ in the same way, but this time setting the
weight β1 := −1, while keeping β0 := 0 and S := ∅. Similarly, we observe that if there exists a
satisfying assignment z ∈ X such that f(z) ≥ 0, then [n] := {1} serves as a contrastive reason, as
0 = f ′(z) ̸= f ′(x) = 1, implying that ∅ is not a sufficient reason for ⟨f ′, x⟩. To summarize, we have
constructed a CSR query instance where S (the empty set) serves as a sufficient reason for ⟨f ′, x⟩ if
and only if no satisfying assignment exists for the neural network f .

This establishes that obtaining the CSR query for a NAM, where X is defined as either a general
discrete or a continuous input domain, is coNP-Hard.

Lemma 15. Given a NAM f , an input x ∈ F, and an integer k ∈ N, where f is defined over either a
continuous input space or a general discrete input space, then the MCR query is NP-Complete.

Proof. Membership. For proving membership in NP, we follow the exact same procedure used for
proving membership in coNP for the CSR query in Lemma 13. However, instead of verifying that
f(x) ̸= f(xS ; zS̄), we check that f(x) = f(xS ; zS̄) while introducing an additional constraint that
|S| ≤ k. Since these conditions can still be determined in polynomial time (with the difference being
that we now demonstrate the existence of an instance, rather than the lack of one), this establishes
membership in NP.

Hardness. We have proven in Lemma 14 that the neural network verification problem for a neural
network with one input and one output, where the input domain is either continuous or general
discrete, is NP-Hard. We now aim to leverage this hardness result to demonstrate that the MCR query
for a NAM defined over either a general discrete or a continuous domain is NP-Hard.

We observe that the hardness proof we derived applies to a specific scenario in which the output
specification Y mandates that the prediction of f(x) must be positive (i.e., f(x) ≥ 0). Consequently,
we will demonstrate hardness by reducing such an instance—a neural network with a single input
and output, a bounded input domain X , where the task is to determine whether f(x) ≥ 0 — to the
MCR query.

Given a model f and an input specification X , we construct a NAM f ′ consisting of only one MLP,
f1 := f . We start by selecting an arbitrary assignment x ∈ X and checking if f(x) < 0. If this
condition is satisfied, we define the weight of the corresponding model as β1 := 1 and set the bias term
as β0 := 0. Furthermore, we set k := 1. It is easy to see that if there exists a satisfying assignment
z ∈ X for which f(z) ≥ 0, then [n] := {1} is a contrastive reason, since 1 = f ′(z) ̸= f ′(x) = 0 and
thus there exists a contrastive reason of size 1 for ⟨f ′, x⟩.
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For the second case, where f(x) ≥ 0, we construct f ′ in the same way, but this time setting the
weight β1 := −1, while keeping β0 := 0 and, again, setting k := 1. Similarly, we observe that if
there exists a satisfying assignment z ∈ X such that f(z) ≥ 0, then [n] := {1} serves as a contrastive
reason, as 0 = f ′(z) ̸= f ′(x) = 1, implying that there exists a contrastive reason of size 1. To
summarize, we have constructed an MCR query instance where there exists a contrastive reason of
size k := 1 if and only if there exists a satisfying assignment for the neural network f .

This establishes that obtaining the MCR query for a NAM, where X is defined as either a general
discrete or a continuous input domain, is NP-Hard.

Lemma 16. Given a NAM f , an input x ∈ F, and an integer k ∈ N, where f is defined over
either a continuous input space or a general discrete input space, then obtaining the MSR query is
coNP-Complete.

Proof. Membership. We will start by establishing the claim for the general discrete setting. Since
each domain Xi for feature xi is defined by a minimum and maximum value represented as a set of
q binary features, and since each value in the domain consists of at most q binary features, we can
non deterministically guess input assignments for each feature (corresponding to guessing the values
of the binary encoding). Consequently, we obtain a value z ∈ F based on our guess. Analogous to
the process outlined in both algorithms 1 and 2, we determine the “penalty” value for each feature
i, but now this is done not for the entire domain Xi, but solely with respect to the guessed input zi.
Specifically, we define:

pi :=

{
min{βi · xi , βi · zi} if f(x) > 0

max{βi · xi , βi · zi} 0 otherwise
(30)

Furthermore, similarly to algorithms 1 and 2, we will require a measure for the value of feature
i when it is fixed. We define vi := βi · xi − pi. Note that when

∑
i∈[n] βi · xi + β0 < 0, i.e.,

when f(x) = 0, a “good score” will be a highly negative one. Thus, we specifically define vi :=
(βi · xi − pi) · sign(

∑
i∈[n] βi · xi + β0). However, for simplicity, we will assume without loss of

generality that f(x) > 0, and therefore vi := βi · xi − pi. Intuitively, vi reflects the value of feature
i when it is held constant rather than allowed to take on any value, thereby influencing the penalty
score pi.

We proceed with the following procedure: first, we sort all features i ∈ [n] in descending order based
on their value vi := βi ·xi− pi. Next, we define S as the set of the last n−k features in this ordering
(i.e., the n− k features with the lowest ranking). Finally, we compute:

sign(
∑
i∈S̄

βi · xi +
∑
j∈S

pj + β0
)
· sign(

∑
i∈n

βi · xi + β0) < 0 (31)

And if this condition holds, the algorithm concludes that there is no sufficient reason of size k or
less for ⟨f, x⟩ (and this will determine membership in coNP). We will now explain the correctness
of the procedure: we have demonstrated in algorithms 1 that sign(

∑
i∈S̄ βi · xi +

∑
j∈S pj + β0) ·

sign(
∑

i∈n βi · xi + β0) < 0 is true if and only if S is a contrastive reason of ⟨f, x⟩ (equivalently,
this means S is not a sufficient reason). Recall that we have sorted the values in descending order of
vi := βi · xi − pi, which determines that the subset S is the subset of size n− k that minimizes the
difference:

(
∑
i∈n

βi · xi + β0)− (
∑
i∈S̄

βi · xi +
∑
j∈S

pj + β0
)
=

∑
j∈S

(βj · xj − pj) (32)

This implies that, since for S it holds that sign(
∑

i∈S̄ βi·xi+
∑

j∈S pj+β0
)
·sign(

∑
i∈n βi·xi+β0) <

0, it must necessarily follow that for any other subset S′ of size n−k, sign(
∑

i∈S̄′ βi ·xi+
∑

j∈S′ pj+

β0
)
· sign(

∑
i∈n βi ·xi + β0) < 0. This establishes that S′ is contrastive. Consequently, every subset

of size n− k is a contrastive reason for ⟨f, x⟩, which further implies that any subset of size n− k
or larger serves as a contrastive reason for ⟨f, x⟩. In summary, this demonstrates that no sufficient
reason of size k or less exists for ⟨f, x⟩, which demonstrates membership in coNP.
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For the continuous setting, we first observe that determining whether a satisfying assignment exists
over a continuous input domain for a ReLU-based neural network, given piecewise-linear input
and output specifications, can be formulated as a piecewise-linear program, as discussed in prior
works [96, 69]. Specifically, when the activation status of each ReLU in the neural network is fixed as
either active or inactive, the problem of verifying whether a set of linear constraints on the input (e.g.,
upper and lower bounds) can produce a specified output (e.g., ensuring the target class exceeds all
others) reduces to solving a linear program. The "exponential" complexity arises from enumerating
all possible activation combinations, as each ReLU can either activate or remain inactive. Indeed, the
proof provided by [96] to establish NP membership for this problem involves guessing the ReLU
activations and solving the corresponding linear program. However, the intricate structure of the
MSR query in our case prevents directly applying such an approach, necessitating a different solution
method.

We observe that for a set of m constraints in a linear program, each represented as a rational number
pi

qi
, it is straightforward to demonstrate that the linear program can be solved within a tolerance of

1
q1·q2·...·qm . Typically, tighter tolerances are achieved by considering subdeterminants [42] or by
assuming approximations in the input. Since determining the existence of a satisfying assignment
corresponds to a piecewise-linear program, the tolerance for solving this problem must account for
each ReLU activation (either activated or inactivated), resulting in the smallest possible tolerance
overall. It is evident that for any given constraint (including those on the input, weights, and biases,
all of which involve inequalities or summations over terms of the form pi

qi
), selecting the largest qi

from all m constraints (let us denote it by q∗) shows that the tolerance is bounded by 1
(q∗)m .

Naturally, the binary representation of inputs within this tolerance can be encoded using m · log(q∗)
bits, which remains polynomial. By enumerating all possible assignments under this precision, it is
possible to determine whether a satisfying output assignment exists for any given domain over the
inputs (defined by linear constraints). Thus, we can apply the exact procedure described earlier for the
general discrete setting, which involves guessing assignments (equivalent to guessing the bit values of
each input) by extending it to this instance. Specifically, given the model f , we can define a piecewise
linear program that represents the verification query over f as outlined in [96], incorporating upper
and lower bounds on the input and output. From there, we calculate an upper bound for the tolerance
and ensure the number of bits required to validate the existence of a satisfying assignment for f is
maintained (using m · log(q∗)). We then proceed with the same approach described for the general
discrete setting to demonstrate membership within coNP.

Hardness. We have proven in Lemma 14 that the neural network verification problem for a neural
network with one input and one output, where the input domain is either continuous or general
discrete, is NP-Hard. We can now leverage this hardness result to demonstrate that the MSR query
for a NAM defined over either a general discrete or a continuous domain is coNP-Hard.

We, again, can observe that the hardness proof we derived applies to a specific scenario in which
the output specification Y mandates that the prediction of f(x) must be positive (i.e., f(x) ≥ 0).
Consequently, we will demonstrate hardness by reducing such an instance — a neural network with a
single input and output, a bounded input domain X , where the task is to determine whether f(x) ≥ 0
— to the (complement of) the MSR query.

Given a model f and an input specification X , we construct a NAM f ′ consisting of only one MLP,
f1 := f . We start by selecting an arbitrary assignment x ∈ X and checking if f(x) < 0. If this
condition is satisfied, we define the weight of the corresponding model as β1 := 1 and set the bias term
as β0 := 0. Furthermore, we set k := 0. It is easy to see that if there exists a satisfying assignment
z ∈ X for which f(z) ≥ 0, then [n] := {1} is a contrastive reason, since 1 = f ′(z) ̸= f ′(x) = 0 and
thus there does not exist a sufficient reason of size 0 for ⟨f ′, x⟩.
For the second case, where f(x) ≥ 0, we construct f ′ in the same way, but this time setting the
weight β1 := −1, while keeping β0 := 0 and, again setting k := 0. Similarly, we observe that if
there exists a satisfying assignment z ∈ X such that f(z) ≥ 0, then [n] := {1} serves as a contrastive
reason, as 0 = f ′(z) ̸= f ′(x) = 1, implying that there exists a contrastive reason of size 1, and hence
there does not exist a sufficient reason of size 0. To summarize, we have constructed an MSR query
instance where there does not exist a sufficient reason of size k := 0 if and only if there exists a
satisfying assignment for the neural network f .
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This establishes that obtaining the MSR query for a NAM, where X is defined as either a general
discrete or a continuous input domain, is coNP-Hard.

Having completed the proofs for all NAM instances, we now turn to proving the complexity results for
EBMs. We will break down the proof into separate lemmas, each handling the complexity argument
for one of the explanation types (CSR, NCR, and MSR), starting with the continuous case and then
extending to the general discrete case.
Lemma 17. Given an EBM over either a continuous or general discrete input space, then the CSR
query is coNP-Complete.

Proof. Membership. Although we can directly prove membership for EBMs, we choose to establish
it via a reduction to NAMs. Given that the same task is already shown to be coNP-complete for
NAMs, and since coNP is closed under polynomial-time reductions, this approach immediately yields
membership in coNP. A key advantage of this proof is that it extends naturally to other queries —
such as MCR and MSR — since the same reduction applies to them as well.

We can directly reduce any EBM to a NAM by transforming each boosted tree ensemble fi into a
neural network f ′i . This is done by converting each decision tree into a neural network, following
the method proposed in [16, 18]. To account for the ensemble structure, we introduce an additional
hidden layer that assigns a weight ϕj to each tree j. A standard weighted sum over the outputs then
yields a neural network equivalent to the original boosted ensemble. This transformation preserves
equivalence for any given input.

Hardness. We perform a reduction from the classic tautology problem (TAUT) for 3-DNFs (which is
coNP-Complete), defined as follows:

TAUT (Tautology):
Input: A boolean 3-DNF formula ψ := t1 ∨ t2 ∨ . . . tm.
Output: Yes, if ψ is a tautology and No otherwise.

We will begin by proving the hardness for the general discrete input space and then explain how
to extend the results to the continuous input space. Given a DNF ϕ := t1 ∨ t2 ∨ . . . ∨ tm, we will
construct an EBM f := ⟨f1⟩, i.e., the EBM f is composed of only one boosted tree. It is worth
noting that reducing DNFs to boosted trees has been proposed in previous work [63]. However, our
situation differs because the boosted tree f1 is defined over only one input feature x1 and operates on
some input space X , i.e., f1 : X → R and f : X → {0, 1}.
We recall that ϕ is defined over a set of n literals X1, X2, . . . , Xn and m clauses. Given ϕ, we will
construct a boosted tree model f1 (which will thereby define f := ⟨f1⟩) and set the general discrete
input space Xi to encompass any possible integer within the range [0, 2n − 1]. Each feature Xi will
be associated with its corresponding bit representation in a vector containing n bits.

We note that f1 has one input, x1, defined over the domain Xi. The model f1 will be an ensemble
comprising m decision trees. Each decision tree’s input is the feature x1. Consider a clause
ti := c1 ∧ c2 ∧ c3, where each conjunct is a clause within X1, . . . , Xn or its negation. For each
conjunct ti := c1 ∧ c2 ∧ c3, we will construct a decision tree corresponding to that conjunct.

This decision tree will have three splits, one for each feature c1, c2, c3. Assume, without loss of
generality, that these features are represented by Xj , Xk, and Xl, where each feature may also be
represented negatively as X̄j , X̄k, or X̄l. The splits of the tree will check conditions such as x1 ≥ 2j ,
x1 ≥ 2k, or x1 ≥ 2l (representing literals Xj , Xk, Xl, respectively), or x1 < 2j , x1 < 2k, or x1 < 2l

(representing literals X̄j , X̄k, X̄l, respectively). If all three conditions are satisfied, the tree will
output a value of 1; otherwise, it will output 0.

For example, consider the conjunct t5 := Xj ∧ X̄k ∧ Xl. In this scenario, tree number 5 in the
constructed boosted tree ensemble f1 will perform three splits: first, it will check if xi ≥ 2j , then
whether xi < 2j , and finally whether xi ≥ 2l. If all three conditions hold true, the tree will output a
value of 1. Otherwise, it will output 0. The α terms (the weights of each tree in f1) will all be set to
1. For the intercept terms of f , we will set β1 = 1 and β0 = −1. This defines the full construction
of the EBM f . Additionally, we will set S := ∅. Finally, we construct the input x, which is any
integer within the range [0, 2n − 1], as follows: First, we form a binary vector x′ ∈ {0, 1}n in the
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following way: we start by choosing an arbitrary conjunct from c1, . . . , cm. For a specific conjunct,
we assign the corresponding literals to their respective bits in the vector, while assigning any values
to the remaining bits. For instance, consider the clause ci := X1 ∧ X̄5 ∧X8. In this case, we create
a vector x′ where x′1 := 1, x′5 := 0, and x′

8 := 1, while the other features in x′ (besides features 1,
5, and 8) are assigned arbitrary values. We then define the input x as the integer represented by the
binary vector x′. In summary, the entire reduction constructs ⟨f, x, S⟩, where f is the constructed
EBM defined over the input space Xi for the single feature xi of f , x is the constructed input, and
S := ∅ is the constructed (empty) subset.

We will now prove that ϕ is a tautology if and only if S := ∅ is a sufficient reason for ⟨f, x⟩. From
our construction of x (the integer representation of the binary vector x′, which expands binary bits
representing literals from a given conjunct), it follows that for the specific conjunct ci over which
x′ was constructed, the corresponding tree in the ensemble will reach a terminal node with value
1. Consequently, since all other trees output either 0 or 1, and given the intercept term β0 = −1,
we have f(x) = 1. Knowing that f(x) = 1, proving that S = ∅ is a sufficient reason is equivalent
to showing that for any z, it holds that f(x) = 1 = f(z). Conversely, proving that S = ∅ is not a
sufficient reason amounts to demonstrating the existence of some z such that f(x) = 1 ̸= f(z) = 0.

From our construction, we know that for any assignment of literals z′ ∈ {0, 1}n over ϕ, if a conjunct
ci is satisfied, propagating z (the integer representation of the binary vector z′) through the i-th tree
of the ensemble will yield a terminal node with value 1. Since the outputs of all other trees are either
0 or 1, it follows that f1(z) ≥ 1. Including the intercept β0 = −1, we get f(z) = 1 = f(x).

On the other hand, if for some assignment z ∈ {0, 1}n, no conjunct in ϕ is satisfied, all trees will
reach terminal nodes with value 0, resulting in f(z) = 0 ̸= 1 = f(x). Thus, if there exists an
assignment over ϕ that evaluates to false (i.e., ϕ is not a tautology), there will exist an assignment z
such that f(z) = 0 ̸= 1 = f(x), implying that S := ∅ is not a sufficient reason for ⟨f, x⟩. Conversely,
if no such assignment exists (i.e., ϕ is a tautology), then for any z, it holds that f(x) = 1 = f(z),
implying that ∅ is a sufficient reason. This concludes the proof.

Finally, we note that, for simplicity, we assumed X1, the domain of the single input x1, to be a general
discrete domain containing all integer values within [0, 2n − 1]. However, the result also holds if X1

is defined as the entire continuous domain [0, 2n − 1]. Notably, in our construction of the single tree
ensemble f1 within the EBM, the decision rule checking whether x ≥ 2k or x < 2k applies equally
to the entire continuous domain. Thus, the hardness results extend to the continuous domain as well.

Lemma 18. Given an EBM over either a continuous or general discrete input space, then obtaining
the MCR query is NP-Complete.

Proof. For membership, we can use the same reasoning as in Lemma 17, where the given EBM is
reduced to an equivalent NAM. Since NP is closed under polynomial-time reductions, Lemma 18
establishes membership in NP.

For hardness, we reduce from the (complement) of the CSR query for EBMs, which we have shown
to be coNP-Complete. Specifically, we established coNP-hardness for the CSR query by reducing
from the TAUT problem to CSR when S := ∅. Consequently, we prove hardness by reducing from
CSR in the special case where S := ∅. Given an instance ⟨f, x, S := ∅⟩, where f is an EBM, we
construct an instance ⟨f, x, k = n⟩, where f remains the same EBM, and k = n corresponds to
setting k of the MCR query to match the input dimension size. We observe that S = ∅ is a sufficient
reason for ⟨f, x⟩ if and only if S is not a contrastive reason for ⟨f, x⟩. Thus, S = ∅ is a sufficient
reason for ⟨f, x⟩ if and only if no contrastive reason of size n exists for ⟨f, x⟩, thereby establishing
the reduction.

Lemma 19. Given an EBM over either a continuous or general discrete input space, then the MSR
query is coNP-Complete.

Proof. For membership, the same reasoning as in Lemma 17 and Lemma 18 applies, where the
given EBM is reduced to an equivalent NAM. As coNP is closed under polynomial-time reductions,
Lemma 17 confirms membership in coNP.
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For hardness, we reduce from the CSR query for EBMs, which has been shown to be coNP-Complete.
Specifically, coNP-hardness for the CSR query was established by reducing from the TAUT problem
to CSR when S := ∅. Accordingly, hardness is proved by reducing from CSR in the specific
case where S := ∅. For an instance ⟨f, x, S := ∅⟩, where f is an EBM, we construct an instance
⟨f, x, k = 0⟩, where f remains the same EBM and k = 0 corresponds to setting k of the MSR
query. It is observed that S = ∅ if and only if a sufficient reason of size 0 exists for ⟨f, x⟩, thereby
establishing the reduction.

J Proof of Proposition 6

Proposition 6. Given a NAM, a Smooth GAM or an EBM under an enumerable discrete or general
discrete setting, the FR query is coNP-Complete.

Proof. Membership. Given a GAM f defined over either an enumerable discrete or general
discrete input space, and an input feature i ∈ [n], we can guess two input assignments for feature
i: xi, zi such that xi ̸= zi. This is achievable due to the discrete nature of the input space: by
selecting a single input for each coordinate in the enumerable discrete case, or by choosing a binary
vector in the general discrete case. We can additionally guess some assignment for the features
[n] \ {i}, which we will denote by x′ (and the correctness holds for the same reasoning). Now, if
f(x′

[n]\{i}; xi) ̸= f(x′
[n]\{i}; zi), then by definition, i is not redundant with respect to ⟨f, i⟩, thereby

completing the membership proof. We note that this membership result holds regardless of the
specific type of GAM — it applies to any GAM, provided that the inference of its components can be
performed in polynomial time. Therefore, it directly extends to models such as NAMs, EBMs, and
Smooth GAMs.

Hardness. The study in [18] established coNP-Hardness for the FR query (referred to there as G-FR)
for linear classifiers over a binary input space. Given that this represents a specific instance of the
enumerable discrete input setting, where the explicit values Xi for each feature xi are {0, 1} (and
is therefore also a particular case of the general discrete input setting), the coNP-hardness results
apply to these settings as well. We note that linear models are a particular instance of Smooth GAMs,
NAMs and EBMs, where each component fi is taken to be the identity function. Since each of these
model types (neural networks, tree ensembles, and piecewise polynomial splines) can trivially be
represented as constant identity functions that always produce the same output, the hardness result
naturally extends to EBMs, Smooth GAMs, and NAMs.

K Proof of Proposition 7

Proposition 7. Given NAMs and EBMs over discrete or continuous settings, computing SHAP for
regression tasks is #P-Complete. Moreover, given any GAM over an enumerable discrete, discrete or
continuous setting - computing the CC and SHAP queries for classification are #P-Complete.

Proof. We will divide the upcoming proof into two distinct lemmas.

Lemma 20. Given NAMs and EBMs over discrete or continuous settings, computing SHAP for
regression tasks is #P-Hard.

Proof. We will start by proving the results for NAMs. First, similarly to the proof in Lemma 5, we
will assume we are dealing with a single input-output neural network, and hence, hardness for this
scenario will directly apply to full NAMs. We base the reduction based on the results obtained by [7]
and [102] which showed that computing SHAP for a model f and an input x is at least as hard as the
model counting problem for f , under the uniform distribution assumption (and this clearly shows
hardness for the more general distribution setting). CNF formulas can be reduced in polynomial time
to neural networks, as was shown by multiple studies [16, 69, 95, 18] (and this claim actually holds
even for boolean circuits [16]). As shown by [69] and later refined by [95], a neural network defined
over a continuous domain can be reduced to the discrete case, thereby transferring the hardness results
to the continuous setting as well.
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In Lemma 5, we showed that a neural network verification problem for a full network can be reduced
to one involving a single input-output pair. Since the former is known to be hard via a reduction from
CNF-SAT [69, 95], this implies that the counting version of CNF-SAT can likewise be reduced to
counting the number of satisfying assignments in a single input-output neural network. This yields a
parsimonious reduction, establishing #P-hardness. As EBMs can be reduced from NAMs (as we
show in Lemma 5), this hardness result extends to EBMs as well.

Lemma 21. Given any GAM over an enumerable discrete, discrete or continuous setting - computing
the CC and SHAP queries for classification are #P-Hard.

Proof. Hardness results for GAMs persist because they apply even to linear classification models,
which are a special case of GAMs. Consequently, the hardness remains for GAMs. Specifically,
for the CC query, this result was established by [16], and for the SHAP query, it was demonstrated
by [102]. Linear models can be viewed as a special case of Smooth GAMs, NAMs, and EBMs, where
each component function fi is simply the identity function. Since neural networks, tree ensembles,
and piecewise polynomial splines can trivially replicate this behavior by acting as constant identity
functions that yield a fixed output, the hardness result directly extends to EBMs, Smooth GAMs, and
NAMs.
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