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ABSTRACT

While recent advances in Reinforcement Fine-Tuning (RFT) have shown that
rule-based reward schemes can enable effective post-training for large language
models, their extension to cross-modal, vision-centric domains remains largely
underexplored. This limitation is especially pronounced in the medical imaging
domain, where effective performance requires both robust visual perception and
structured reasoning. In this work, we address this gap by proposing VRFT-Aug,
a visual reinforcement fine-tuning framework tailored for the medical domain.
VRFT-Aug introduces a series of training strategies designed to augment both
perception and reasoning, including prior knowledge injection, perception-driven
policy refinement, medically informed reward shaping, and behavioral imitation.
Together, these methods aim to stabilize and improve the RFT process. Through ex-
tensive experiments across multiple medical datasets, we show that our approaches
consistently outperform both standard supervised fine-tuning and RFT baselines.
Moreover, we provide empirically grounded insights and practical training heuris-
tics that can be generalized to other medical image tasks. We hope this work
contributes actionable guidance and fresh inspiration for the ongoing effort to
develop reliable, reasoning-capable models for high-stakes medical applications.

1 INTRODUCTION

Recently, Reinforcement Learning (RL)-based fine-tuning Jaech et al.[(2024); |Shao et al.| (2024);
Guo et al.|[(2025); Team et al.|(2025); Lightman et al.|(2023); |Chen et al.|(20244) for large language
models (LLMs) has shown significant progress in complex reasoning tasks. The emergence of
methods such as DeepSeek-R1|Guo et al.|(2025) and the GRPO [Shao et al.| (2024)) algorithm has
demonstrated the feasibility of fine-tuning large models using rule-based rewards |[Lambert et al.
(2024)); [Team et al.|(20235)) instead of learned reward models |Liu et al.|(2024); Ouyang et al.| (2022);
Zang et al.[(2025), substantially lowering the barrier to applying RL in large-scale model training
and introducing a promising new paradigm. While RL-based fine-tuning has been actively explored
in LLMs, its application to large vision-language models (LVLMs) Wang et al.| (2024b); Bai et al.
(2025a); |Chen et al. (2024b)—referred to as Visual Reinforcement Fine-Tuning (V-RFT) |Liu et al.
(2025); |Shen et al.| (2025b); |Tan et al.|(2025); L1 et al.| (2025)—remains largely underexplored.

Despite its promise, the effectiveness of V-RFT remains constrained by fundamental challenges in
visual perception and reasoning. First, a pretrained LVLMs may lack the capacity to capture subtle
visual cues or localize key regions without explicit supervision Wang et al.|(20244a). This leads to unre-
liable or sparse rewards during early-stage exploration, hindering stable policy updates/Andrychowicz
et al.| (2018)); Devin et al.| (2016)); |Pinto & Gupta (2016). Second, many vision-language tasks require
multi-step reasoning Zhao et al.| (2024)) or structured decision-making, which cannot be effectively
learned through scalar reward signals alone. Without explicit reasoning supervision or prior knowl-
edge, V-RFT models are prone to shortcut learning or shallow pattern memorization Amodei et al.
(2016), rather than developing genuine reasoning ability. These limitations highlight a pressing need
to enhance V-RFT with augmented perception and reasoning mechanisms, enabling more robust
learning in visually and cognitively demanding tasks. The gap is even more pronounced in the context
of medical imaging domain, where it is still unclear how to effectively perform RL post-training on
pretrained LVLMs to improve their clinical utility and generalization.
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Before delving into the technical details, we highlight a key distinction between medical image
recognition and general-domain vision tasks—an insight that forms the cornerstone of our work.
Specifically, we find that successful medical image understanding hinges on the fusion of
perception and reasoning, rather than relying on either in isolation. The former emphasizes how
information is received and interpreted, while the latter focuses on how information is organized,
abstracted, and logically manipulated. Perceptual tasks are characterized by their reliance on accurate
interpretation of sensory input—once the content of an image is clearly perceived, further analysis
may require little to no reasoning. This is exemplified by many Visual Question Answering (VQA)
benchmarks |Gurari et al.| (2018)); \Goyal et al.|(2017); ILin et al.|(2015)) in the general domain, where
models are asked about attributes, positions, or colors of objects. As long as the model can correctly
parse the visual elements, it can answer such questions without needing to perform complex inference.
In contrast, reasoning tasks Salewski et al.| (2022)); Zhang et al.|(2019) demand an additional layer of
logical composition. They require the model to synthesize multiple pieces of information to arrive at
a coherent, logically grounded conclusion. Unlike natural images, medical images are not readily
interpretable by untrained individuals. Recognizing subtle patterns such as tumors on a CT scan—and
further judging their malignancy—often requires both perceptual decoding of the visual content and
the integration of domain-specific knowledge Menze et al.|(2015)). The task thus involves both visual
pattern recognition (perception) and medical reasoning based on those patterns.

This naturally gives rise to a central question: Can reinforcement learning—originally envisioned as
a tool to enhance reasoning capabilities—effectively address tasks that require a hybrid of perception
and reasoning, such as medical image understanding? In this work, we take a step toward answering
this question by proposing VRFT-Aug, a visual reinforcement fine-tuning framework tailored for the
medical domain. VRFT-Aug introduces a series of improvements aimed at two core challenges:

1. Augment LVLM expertise perception capability by dual-channel knowledge injection.
2. Augment LVLM medical reasoning skill by reward shaping.

To achieve these goals, we systematically investigate how RL techniques—specifically GRPO, used as
our baseline V-RFT method—can be adapted and extended to better support perception and reasoning
in visually and cognitively demanding medical tasks.

Perception Augmentation via Knowledge Injection. Because medical image recognition requires
extensive domain-specific prior knowledge [Jiang et al.|(2024)); Gao et al.|(2024); Wu et al.| (2023a);
Qin et al.|(2022); Yang et al.| (2025)), we first propose a pipeline that injects such knowledge into
pretrained models through both explicit and implicit mechanisms. To address this, we propose a
method for explicitly injecting medical knowledge into the model by prompt engineering to enhance
its ability to recognize and distinguish domain-specific entities. Inspired by |Qin et al.| (2022)); | Yang
et al.[(2025); Wu et al.| (2023b), we introduce the visual attributes—such as color, shape, and location—
to the prompts of a medical concept. And the prompt will incentivize the LVLM to recognize objects
that share identical visual attributes. Then we propose an implicit method for knowledge injection by
exploring cross-task training, leveraging diverse medical vision tasks to encourage transferability and
robust generalization. This enables the model to acquire both local (e.g., lesion boundary) and global
(e.g., anatomical structure) understanding, crucial for handling the multi-scale nature of clinical
reasoning.

Reasoning Augmentation via Reward Shaping. Prior studies suggest that the hallucinated content
in the reasoning process on the language side leads to incorrect output for tasks like VQA and
image captioning Min et al.|(2025)); \Sun et al.[(2025)); Zhou et al.|(2024)). This observation suggests
that the reasoning process may influence the perceived content during the text decoding process.
Firstly, drawing inspiration from human cognitive mechanisms, we explore whether enforcing
repeated recitation of expressive descriptions of medical concepts, as specified in the prompts,
could help mitigate hallucinations and guide the model toward more accurate conclusions.
Interestingly, our empirical observations reveal a nuanced outcome. While such repetition during
the model’s internal reasoning (analogous to a human’s internal monologue) can indeed accelerate
convergence to a sub-optimal plateau, it often fails to achieve optimal performance in the long run.
This suggests that, despite some shared linguistic structures, large models do not always benefit
from human-inspired heuristics in the same way, and over-reinforcing certain patterns may limit the
model’s flexibility and generalization. Secondly, we design a specialized reward function based
on multi-grade fuzzy scheme tailored for ordinal classification tasks commonly found in the
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medical domain, aiming to help the model distinguish subtle inter-class differences and mitigate
the sparse reward problem during early-stage exploration. By providing more nuanced feedback,
the designed reward promotes stable learning and supports the development of accurate reasoning
patterns in fine-grained classification tasks.

2 RELATED WORKS

Large Vision Language Models Large Vision-Language Models (LVLMs) are an evolution of
traditional Vision-Language Models (VLMs) Radford et al.|(2021); |Li et al.|(2022bja), integrating
powerful LLMs Achiam et al.|(2023); Touvron et al.|(2023)); Bai et al.| (2023; 2025b)) with advanced
visual perception backbones. This fusion enhances multimodal understanding and complex reasoning
across text and visual data, making LVLMs a key step toward Artificial General Intelligence (AGI).
LVLMs are categorized into two main types: commercial closed-source models accessible via APIs
(e.g., GPT-40 Hurst et al.[(2024), Gemini Team et al.| (2023 [2024))) and open-source models available
for local deployment (e.g., LLaVA |Liu et al.|(2023), Inter VL |Chen et al.|(2024b), Qwen VL [Wang
et al.[(2024b)); Bai et al.[(2025a)). The rapid growth of open-source communities has accelerated
progress in medical LVLMs, with notable examples like LLaVA-Med |Li et al.| (2023), developed from
LLaVA, and MedRegA [Wang et al.|(2024a), built on InterVL with continued medical pre-training.
Our experiments are based on the advanced Qwen 2.5 VL model.

Reinforcement Learning OpenAl’s ol Jaech et al.|(2024) pioneered using reinforcement learning
(RL) to enhance model reasoning, introducing the test-time scaling law. DeepSeek R1 |Guo et al.
(20235)) extended this with GRPO Shao et al.| (2024) and rule-based rewards, becoming the first open-
source model to replicate o1’s complex reasoning, sparking interest in LLM reasoning research [Peng
et al.|(2025)); Muennighoff et al.|(2025). In the LVLM domain, R1-V achieved superior performance
with GRPO, while VisualThinker-R1-Zero Zhou et al.| (2025) showed that applying R1 to base
VLMs led to "visual aha moments". MM-Eureka Meng et al.|(2025)) observed similar effects using
RLOO |Ahmadian et al.|(2024), and Vision-R1 |Huang et al.|(2025b)) introduced a multimodal CoT
dataset for enhanced training. Curr-ReFT |Deng et al.| (2025) proposed a three-stage RL framework.
Visual-RFT |Liu et al.|(2025)) uniquely focused on RL for visual perception, while VLM-R1 [Shen
et al.| (2025b) validated R1-style RL across diverse visual tasks. MedVLM-R1 [Pan et al.|(2025)),
Med-RLVR [Zhang et al.|(2025), and Med-R1 |Lai et al.| (2025) extended RL to the medical domain.
Building on these advances, we optimized RL for medical vision with enhanced perception and
reward mechanisms.

3 METHODS

3.1 PRELIMINARY

Visual Reinforcement Fine-Tuning (V-RFT) fine-tunes pretrained LVLMs using reinforcement learn-
ing techniques such as PPO Schulman et al.|(2017) or GRPO |Shao et al.| (2024); |Guo et al.|(2025)),
enhancing their decision-making capabilities through task-specific, rule-based reward functions (e.g.,
classification accuracy or IoU). For a downstream task dataset D consisting of /N samples, each
sample is defined by an input prompt P and its corresponding image I;, where ¢ represents the index
of the current sample. The policy model 7y generates a response O;, which is then evaluated using
a rule-based reward function R with respect to the task ground truth GG;. Formally, V-RFT aims to
optimize the following objective:

N
1
max Z Eonr,(p,ry Rvrer (P, Ii, Gi)

1=1
N
1
=max - > " Eowry(pn [R(mo(Oi | P,1.), Gi) = BKLmo(O: | P, 1)|mer(O: | P,I]], (1)
=1
where s is the reference model before optimization, and ( is a hyperparameter controlling the
impact of KL-divergence. The rule-based reward function R is defined as:

1.0 if O, == G, or IoU(O;, G;) > threshold,
0.0 otherwise.

R(ﬂ‘g(oi | P, L),Gl) = { (2)

where IoU is the intersection over union metric, and the threshold is typically set to 0.5 as default.
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Figure 1: Overview of VRFT-Aug. VRFT-Aug incorporates enhancements from both Perception
and Reasoning perspectives, introducing four improvement strategies for medical vision tasks:
Augmenting Prompt (PA,), Augmenting Policy Model (P A), Recitation Reasoning (Ryecite), and
Multi-Grade Fuzzy Reward (Ryprs)-

To improve V-RFT with perception and reasoning capabilities in the medical domain, we propose
optimizing Eq. (I)) by augmenting its three key components: the prompt P, the policy model 7y, and
the reward function R. For perception augmentation, we apply contextual augmentation through
a structured prompt P (Section , and implicit knowledge injection by refining the policy 7y
(Section[3.3). For reasoning augmentation, we adopt reward shaping to guide the learning process:
Riecite 18 designed to capture the model’s recitation pattern (Section @), while Ryrrs, a task-specific
reward based on multi-grade fuzzy reward scheme, is proposed to address the sparse reward problem
in medical-grade classification and improve learning effectiveness (Section [3.3).

3.2 AUGMENTING PROMPT P WITH TASK-RELEVANT CONTEXT

Pretrained LVLMs often struggle with medical tasks due to the lack of understanding of domain-
specific concepts, which are essential for accurate recognition and reasoning. To address this, we
first seek to enhance the model’s comprehension of medical tasks by expanding the prompt with
task-relevant contextual information.

Inspired by prior works in prompt engineering Wang et al.| (2023)); Denner et al.| (2024); |Qin
et al.| (2022), we enrich prompts with visual attributes—such as color, shape, and spatial loca-
tion—associated with specific medical concepts, therby encouraging the LVLM to focus on relevant
objects and strengthening its task-specific perception. To achieve this, we leverage advanced founda-
tion models, such as GPT-40, to generate relevant visual attributes and create a structured prompt
template enriched with task-specific contextual information.

Specifically, for each task, we query GPT-40 with detailed task information—including data source,
imaging modality, sample size, and categories—and provide representative images I, for each
category C. We then extract comprehensive visual attribute descriptions that capture key aspects
essential for solving the task, which we define as explicit contextual knowledge K .. To overcome
hallucinations, we manually refine the outputs by consulting medical literature and validating them
with medical professionals to ensure clinical accuracy. This contextual knowledge is then used to

augment the original input prompt, forming an enhanced prompt P:

P=[P,> K.]=[P,> Mgr(C,I)], 3)
C C

where C' denotes the category of the task to which the image belongs.

Expanding the prompt with task-specific contextual information enhances model performance by
providing richer, more relevant cues.This augmented context serves as perceptual guidance, enabling
the model to make more accurate predictions. From a theoretical perspective, since the policy
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mg(a | I, p) is conditioned on the prompt p, choosing a more informative prompt pyich, results in an
initial policy that is closer to the optimal policy 7*:

KL(m" || w(- | I, prien)) < KL(m" || (- | 1, Praive)) )
This alignment reduces the exploration burden and improves sample efficiency.
3.3 AUGMENTING POLICY MODEL 7y WITH TASK RELEVANT KNOWLEDGE

Beyond enhancing LVLMs with contextual information through prompts (P), we further explore
whether the policy model (7y) can transfer knowledge from other relevant tasks through RL, thereby
enhancing its perception capability accumulated from cross-task learning.

Inspired by the cognitive workflow of radiologists—"localize first, diagnose later" |Litjens et al.
(2017); |[Fan et al.| (2024)—we employ the RFT framework to train the model to localize specific
regions, lesions, or organs in medical images. These localization priors allow the model to focus its
attention on anatomically relevant areas, and thus enhance the perception capability by ruling out
irrelevant areas.

Concretely, for medical image classification tasks, we first train the model with a reinforcement
learning objective to localize potential regions of abnormality using a small number of samples
(M < N). During this stage, only a coarse anatomical region is provided as the grounding reference.
The model is tasked with predicting a bounding box coordinate [z1, y1, Z2, y2], without receiving any
classification-related information. We denote the model that acquired the localization knowledge as

77}90" and this implicit knowledge injection process is formulated as:

M
i ocC 1 ocC
o = mp° = H}%XMX;EONm,(P,I)RV—RFT(PI 1y Gi). (5)
1=
where P'° is the prompt designed for localization (more details in the Appendix|B.5). Then we use

the 77y as the base model to perform zero-shot inference for predicting classification labels ¢

gt =79 (05" | PV, 1) ©)
3.4 AUGMENTING REWARD R WITH RECITATION REASONING

During our experiments on contextual augmentation (Section [3.2), we notice that the model’s
generated reasoning outputs often appear to recite the medical prior knowledge we implanted in the
prompts, a phenomenon we refer to as "Recitation Reasoning". This observation closely resembles
a stereotypical human behavior: when attempting to recognize an unfamiliar concept, humans
often reinforce their understanding by mentally or verbally repeating its defining characteristics.
We hypothesize that mimicking this repetitive pattern—by recite medical descriptors throughout the
model’s internal reasoning steps—can help stabilize attention and output consistency.

To investigate the impact of recitation reasoning, we augment the reward function R with a recitation
reward component R, €nabling us to study this behavior during training by encouraging or
discouraging it through reward shaping. Specifically, we hire the Bilingual Evaluation Understudy
(BLEU) [Papineni et al.| (2002) score—a widely adopted metric in natural language generation—to
measure the similarity between the model’s reasoning outputs and the prior medical knowledge
provided in the prompt P.A higher BLEU score indicates greater repetition of prior knowledge in the
output, resulting in a higher recitation reward Ryeciie. The formulation of R is defined as follows:

Rrecite = 0 X BLEU(O;, P),  Riecite € (—1,1). (7)

Following previous work |Guo et al.|(2025)); Huang et al.|(2025a)); |Shen et al.| (2025a), we also include
accuracy reward Ryccuracy and format reward Ryoma. Aggregating these, we obtain the following
formula for calculating the overall reward:

R =)\ X Raccuracy + (1 - )\) X Rformal + Rrecilev AE (07 1) (8)

where ) is a weighting parameter. We control the influence of the recitation reward by adjusting the
sign of §: a positive § encourages repetition by rewarding it, while a negative § penalizes repetition,
which we hypothesize enhances reasoning by stabilizing attention and promoting more independent
reasoning.
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3.5 AUGMENTING REWARD R WITH MULTI-GRADE FUzzZy APPROACH

In clinical diagnosis, lesions often differ subtly between adjacent disease grades, with progression
marked by gradual changes in quantity, distribution, or extent rather than abrupt shifts. These subtle
visual cues make learning difficult and data-intensive. For instance, mild to moderate retinal lesions
may differ only slightly in features like microaneurysm count or hemorrhage extent, making them
challenging to distinguish Sadda et al.|(2020). In early-stage exploration, RL algorithms may suffer
from training collapse in particularly challenging tasks where rewards are infrequent—a well-known
issue referred to as the sparse reward problem Rengarajan et al.| (2022); [Dawood et al.| (2023).
Similarly, when a model fails to detect subtle visual differences, it may make near-correct predictions
in grade classification without receiving any reward, further exacerbating learning difficulty and
hindering the development of accurate reasoning patterns.

Inspired by multi-objective reward design in reinforcement learning [Yang et al.|(2024), we introduce
a Multi-grade Fuzzy Reward Scheme (MFRS) tailored for overcoming the sparse reward problem in
medical grading tasks. Specifically, we calculate the difference between the predicted output O
and the ground truth G, where both O and G°!* are integers labels, and design a "fuzzy" reward
mechanism that allows for a relaxed reward even when the predicted value is incorrect. The fuzzy
reward weights are selected based on extensive early-stage experiments, as shown in the following
formula:

—_

.0 if O == G@°Is

if abs(OClS — G“ls) =1,
if abs(OCls — GCIS) =2,
otherwise.

©))

Rmrrs =

g ;‘,_nb\»—t

Therefore, the overall reward is calculated through a weighted average of the updated accuracy reward
Ryrrs and the format reward Rgormat. The specific formula is as follows:

R = a X Rmrrs + 7 X Rormat, (10)

where o and ~y are weighting parameters, set to a = 0.9 and v = 0.1 in this work. As a reward
shaping strategy, MFRS works well for medical grade classification tasks and significantly increases
the reasoning performance of the model, compared with the Vanilla RFT methods.

The four components are integrated based on task types and training stages: PAp (Perception
Augmentation through Prompt) is used in all training pipelines, PA is optimized with GRPO for
tasks involving object-level alignment, R, mitigates over-repetition in reasoning tasks, and Ryprs
is applied for ordinal classification with soft thresholds.

4 EXPERIMENTS

4.1 SETUP

Datasets. To evaluate the effectiveness of our proposed VRFT-Aug in the medical vision domain,
we curate datasets from public sources across three representative task types: 1. Medical Image
Classification, which involves distinguishing anatomical structures or lesions; 2. Fine-Grained
Regional Classification, targeting the recognition of lesion subtypes within specific anatomical
regions; and 3. Disease Grading, which assesses both the presence and progression of the disease. We
utilize eight datasets from MedMNIST [Yang et al.| (2023)), covering diverse imaging modalities such
as X-ray, ultrasound, and CT, to comprehensively evaluate medical image classification tasks. For
fine-grained regional classification, we adopt the HAM 10000 Tschandl et al.|(2018) and Heel Taher
& Ozacar| (2024) datasets. To assess disease progression, we use RetinaMNIST from MedMNIST
and the processed COVID-19 dataset |Danilov et al.| (2022). Detailed information of the datasets can
be found in the Appendix [B.1]

Implementation Details. For both medical image classification and localization tasks, we employ
Qwen2.5-VL-3B-Instruct Bai et al.| (2025a) as our base reasoning model. Following previous work
Shen et al.|(2025a)); [Zheng et al.| (2024} 2025); |Sheng et al.| (2024)), we implement the code in Pytorch
using 2 NVIDIA A800 80G GPUs. During the RL training, we adopt default GRPO settings, with N
set to 8, temperature to 0.9, and KL divergence ratio 3 to 0.04. For the classification task, the model
is fully fine-tuned for 120 steps, using a batch size of 256 and the AdamW optimizer with an initial
learning rate of 1e-6 for both SFT and RL. For the localization task, the model is fully fine-tuned for
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Table 1: Comparison of The best results are highlighted in bold, while the second-best results are underlined.
Note that with the exception of RetinaMNIST adopting MFRS reward, all other datasets utilize accuracy reward.

Shot Method Breast Pneumonia OCT Retina®* Derma Tissue Blood OrganA Average
é Qwen2.5VL-3B  26.92 52.88 25.39 14.75 19.60  8.40 12.30 9.80 21.25
£ Qwen25VL-7B 833 39.90 3359  21.00 21.84 1054 742 8.81 18.93

V-SFT 46.15 55.12 31.25 1850  26.89 11.71  33.39 33.23 32.03

g V-RFT 60.89 51.28 29.68 27.00  27.17 12.50 43.35 29.40 35.16

= V-RFT +PAp  61.53 64.42 5117 3175 3192 17.18 48.04 30.39 42.05

A 1064 11314 12149 1475 1475 1468 1469 1099  16.89

V-SFT 58.33 52.24 3359 2675 3501 13.08 4531 36.22 37.57

% V-RFT 57.69 68.42 45.31 25.00 3949 1250 4433 30.82 40.45

g' V-RFT +PAp  67.94 72.91 5546 3725 40.05 17.77 54.68 38.63 48.09

A 11025 1449 11015 11225 10.56 1527 11035 1781  17.64

- V-SFT 40.38 71.15 4414 5000 4593 1933  59.96 37.92 46.10

é V-RFT 73.07 81.89 70.31 59.50 4593 1582  58.59 52.13 57.16

b4 V-RFT +PAp  73.07 82.69 7343 6025 52.66 19.92 70.70 56.25 60.93
I

A 1 0.00 1 0.80 115 1075 16.73 1410 11211 1412 1 3.77

V-RFT

<Normal Prompt>
This is a X-Ray image of lung. Please
identify whether it’s pneumonia or
normal.

M <Normal Prompt>

<Knowledge Augmented Prompt >

This is a X-Ray image of lung. Please identify
whether it’s pneumonia or normal. Categories and
their typical descriptions are as follows:

normal: Clear lung fields, symmetrical bilateral
structures, absence of opacities, distinct vascular
markings;

pneumonia: Highlights infection-related

’ abnormalities like opacities (fluid/inflammation),
| consolidation (dense lung tissue), and pleural

involvemeént. \
<Knowjedge Augmented Prompt> B i
<think> . \ .
The X-ray image shows the chest of a child. The lung fields ,I o
appear to be clear with no visible signs of consolidation, which <think> \
is a characteristic of pneumonia. The lung fields are well- In the image yl’ovided, the lung fields appear to have areé\.r, of
defined, and there are no visible opacities or masses that would increased opacity, which is a finding in p The
suggest pneumonia. Additionally, the heart and diaphragm are lung fieldgfre not clear, and there are areas that appear tojbe
in their normal positions, which is consistent with a normal lung consolidated, which is characteristic of pneumonia. Additiogally,
appearance. Therefore, based on the visual inspection of the X- the lung fields are not symmetrical, and there are areas of fluid or
ray, this image appears to be normal rather than showing signs inflammation visible. These findings are consistent with

pneumonia rather than a normal lung field.

of pneumonia.
</think> @ </think> An
(@) = (@

<answer>Normal</answer> <answer> Pneumonia </answer>

Figure 2: The effectiveness of our proposed perception augmentation on the prompt.

up to 2 epochs, with an initial learning rate of 1e-6 for both SFT and RL. The batch size is set to 1
per device, with 2-step gradient accumulation. Comprehensive details on the experimental settings
and evaluation schemes are provided in Appendix[B.2]

4.2 EXPERIMENTAL RESULTS

Results on Contextual Augmentation. For contextual augmentation, we compare V-SFT and V-RFT
baselines on various few-shot settings with our V-RFT+PA p approach. As is shown in Table[T] both
V-SFT and V-RFT can improve the model’s performance under the few-shot settings, while our
approach consistently outperforms all baselines and maintains a significant lead. With just 10 shots
of data, our approach already delivers a boost by +6.89% compared with the V-RFT baseline. As the
data amount increases, our approach achieves an average performance of 60.93% in the 256-shot
setting, 14.83%/3.77 % higher than V-SFT/V-RFT baselines. During the experiment, we have also
noticed that contextual augmentation accelerates the training process. The phenomenon indicates that
the model is incentivized to focus on feature-distinctive objects, thus enhancing its domain-specific
perception and reducing the time required to learn task-relevant patterns.
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Figure 3: Performance comparison of different methods on the HAM 10000 and HEEL. (a) and (b)
show that VRFT + PAm achieves the highest accuracy, with a +35.30% improvement on HAM10000.
(c) demonstrates that performance of VRFT + PA7 improves with increasing training samples,
reflecting enhanced perception capabilities. VSFT + PA7r and VRFT + PAr are trained on bounding
box prediction tasks (using SFT and GRPO, respectively) and evaluated on classification in a zero-
shot manner, while V-SFT and V-RFT are directly trained for classification without localization.

Table 2: Comparison of the best results are highlighted in bold, while the second-best results are underlined.
Note that with the exception of RetinaMNIST adopting MFRS reward, all other datasets utilize accuracy reward.

Method Breast Pneumonia OCT Retina®* Derma Tissue Blood OrganA Average
Qwen2.5-VL-3B 26.92 52.88 2539 1475 19.60 8.40  12.30 9.80 21.25
V-SFT+ PAp 58.33 76.12 5546  52.75 49.57 1796 70.50  42.18 52.86
V-RFT + PAp 73.07 82.69 71.87  60.25 52.66 1992 70.70  56.25 60.93

V-RFT + PAp + 0" Riecite ~ 73.07 83.49 66.79  49.00 56.02 1250 70.31 51.70 57.86
V-RFT + PAp + 6 Ryecite  73.07 83.01 75.78  63.50 51.54 1796 81.25  53.40 62.44

Results on Implicit Knowledge Injection. We evaluate the classification performance of five
methods—zero-shot, V-SFT, V-RFT, V-SFT+PA and V-RFT+PA, —on the HAM10000 and
HEEL test sets. The zero-shot method refers to the Qwen2.5-VL-3B-Instruct model performing
disease classification without any fine-tuning. As shown in Fig. E] (a) and (b), it achieves 20.62%
accuracy on HAM10000 and 34.34% on HEEL, indicating limited diagnostic performance and
underscoring the need for downstream fine-tuning.

We then apply SFT and vanilla GRPO-based RFT, denoted as V-SFT and V-RFT, respectively.
Both methods outperform zero-shot, validating the benefit of fine-tuning. Notably, V-RFT improves
accuracy on HAM10000 by +22.7 %, but slightly underperformed on HEEL (-0.63%). We find that
the HEEL dataset suffers from data imbalance, and the less frequent classes have relatively more
complex image features. We suspect that under complex or imbalanced data distributions, and in
the absence of advanced techniques, the RFT may converge to suboptimal local patterns, overfitting
to high-frequency and low-complexity features. In such cases, the simpler SFT may offer greater
stability despite lacking reasoning capabilities. Next, we introduce V-SFT+PA and V-RFT+PA ,
which incorporate a perception augmentation strategy via task-relevant training to inject implicit
spatial knowledge. The model is first trained on localization tasks via SFT or RFT, followed by a
zero-shot disease classification on the corresponding test sets. Notably, V-RFT+PA ; demonstrates
the most significant performance improvement across both datasets, with an impressive increase of
+35.30% on the HAM 10000 dataset. In contrast, although V-SFT+PA; also shows an improvement,
the enhancement is less pronounced. These results indicate that training on the localization task
to enhance the model’s spatial perception ability is more effective in improving medical image
classification performance. Moreover, it highlights that reinforcement learning, integrated during the
inference process, further strengthens the model’s anatomical localization perception. As observed in
Fig.[3|(c), compared to V-RFT, the perception capability of V-RFT+PA . progressively improves as
the model encounters more training samples, leading to continuous performance enhancement. In
conclusion, we can assert that enhancing the model’s anatomical localization perception capability
significantly stimulates stronger performance in medical image classification.
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Table 3: Performance variation between MFRS

Reward and accuracy reward. 08 )
0.7
Method Retina COVID-19  Average 06
S
Qwen2.5-VL-3B 14.75 17.64 16.20 05
<04
Qwen2.5-VL-7B 21.00 20.26 20.63 e VRFT+PA
************************** 0.3
—e— VRFT +PAp +6 * Rrecite
V-SFT 50.00 19.60 34.80 o e VRFT+PA+6-Rons
V-RFT 59.50 20.26 39.88 w Average
' 20 4 1 12
V-RFT+PA p+Race 43.50 24.18 33.84 0 0 0 StGeOps g0 100 0
VRFT4PA p+ Ryrs  60.25 30.06 45.16 Figure 4: Performance variation on BloodM-

NIST of different Recitation Reward settings.

Results on Recitation Reward. In this section, we compare our proposed V-RFT+PA p approach
with different Recitation Reward modifications. In addition to quantitative results in Table 2] we
also provide a curve graph of performance variation on BloodMNIST in Fig. 4 It can be observed
from the figure that although repeated recitation of medical concepts can accelerate convergence to
a sub-optimal plateau, it fails to achieve optimal performance in the long term. For other datasets
in Table[2] the addition of positive Recitation Reward results in an average performance of 57.86%,
3.07% lower than the original proposed approach. The phenomenon indicates that over-reinforcing
certain patterns may limit the model’s flexibility and generalization. By contrast, a negative Recitation
Reward can reduce the model’s dependence on specific patterns. As is shown in Table 2] the average
accuracy of negative Ryt setting is 62.44%, creating a +1.51% improvement. Compared to the
positive Ry setting, although the negative R, setting causes a slight decline in DermaMNIST,
TissueMNIST, and OrganAMNIST, the overall impact is only -0.74%, much smaller than the -3.59%
decline observed with the positive Ryt setting, highlighting the advantage of the negative setting in
terms of model flexibility and generalization.

Results on MFRS Reward. To evaluate the validity of the MFRS Reward, we compare the
classification performance of V-RFT+PA,+Ryrrs and V-RFT+PA,+R;ccuracy in Table E} It can
be concluded that when replace Ryprs in Eq. @) with Ryccuracy> the average performance shows a
noticeable decline from 45.16% to 33.84%, which even lags behind V-SFT/V-RFT by 0.96%/6.04%.
These experimental results indicate that Vanilla RFT methods tend to suffer from the sparse reward
problem Rengarajan et al.|(2022); [Dawood et al.| (2023)) due to the slight difference between categories
in medical grade classification tasks. By allowing a "fuzzy" reward mechanism, the model can learn
partial patterns by making near-correct predictions in the early stage instead of being trapped in
invalid strategies.

5 CONCLUSION

In this study, we first identify the key challenges faced when applying RL-based training paradigm in
medical visual recognition tasks. We argue that existing V-RFT methods must be improved from both
the perception and reasoning perspectives to effectively adapt large vision-language models to the
medical domain. Through extensive experiments, we show that there remains substantial room for
improvement when applying GRPO-based V-RFT to medical scenarios. To address this, we propose a
two-pronged enhancement framework: VRFT-Aug. On the perception side, we design methods that
inject domain knowledge into the model explicitly by manipulating the prompt, and implicitly through
cross-task training that embeds the implicit knowledge into the policy model. On the reasoning
side, we design specialized reward functions tailored to the unique inference requirements of medical
image recognition, including recitation reward function and multi-grade fuzzy reward function. As
the first work targeting complex medical visual recognition tasks using reinforcement learning, we
hope our training paradigm can inspire the broader research community and help pave the way toward
the development of future medical reasoning models. While this method is specifically designed for
medical tasks, the concept of prompt-based knowledge injection can potentially be extended to other
domains. For instance, similar strategies could be applied to tasks requiring nuanced reasoning across
diverse visual modalities, such as in autonomous driving or industrial inspections.
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A APPENDIX
B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

B.1 DETAILED INFORMATION OF DATASETS USED FOR RELATIVE TASK

Medical Image Classification We use eight datasets from MedMNIST |Yang et al.| (2023)), represent-
ing various imaging modalities, including X-Ray, Ultrasound, and CT: BreastMNIST, Pneumoni-
aMNIST, OCTMNIST, RetinaMNIST, DermaMNIST, TissueMNIST, BloodMNIST, and OrganAM-
NIST. Most of these datasets contain over 15,000 images. For training efficiency, we randomly
sample up to 256 images per class, except for RetinaMNIST and BreastMNIST, which have fewer
than 1,500 images. This setup is treated as a 256-shot setting, with 10-shot and 20-shot settings
derived similarly using a consistent test set.

Fine-Grained Regional Classification. To simulate the clinical workflow of locating and identifying
lesions, we use two datasets: HAM10000 Tschandl et al.|(2018) and Heel Taher & Ozacar (2024).
HAM10000 contains 10,015 dermoscopic images of seven skin lesion types, providing region of
interest (ROI) masks without bounding boxes. We derive bounding boxes from the ROI edges.
The Heel dataset consists of 3,956 X-ray images of foot lesions, designed for heel bone disease
localization and classification.

Severity Grading. In addition to RetinaMNIST from MedMNIST, we also utilized Danilov’s
preprocessed dataset Danilov et al.|(2022), which consolidates four publicly available datasets for
COVID-19 and pneumonia classification. These datasets include Actualmed COVID-19 Chest X-
ray lagchung|(2020a)), COVID-19 Radiography [Tawsifur Rahman|(2022), COVID Chest X-Ray|Cohen
et al.[(2020), and Figure1 COVID Chest X-ray|agchung|(2020b)). Danilov’s preprocessing standardizes
these datasets and provides human-labeled severity scores ranging from 0 to 6, making them suitable
for severity grading tasks. We combined these preprocessed datasets for consistent usage in our
experiments.

B.2 COMPREHENSIVE DETAILS OF EXPERIMENTAL SETTINGS AND EVALUATION METRIC

Perception Augmentation Policies. As mentioned earlier, we use two approaches to enhance the
model’s perceptual capabilities in the medical imaging domain. One is by explicitly injecting medical
prior knowledge into the model through prompt engineering to directly perform medical diagnosis,
while the other is by transferring inherent knowledge through training on other tasks to improve the
model’s medical diagnostic ability.

* Prior Knowledge Augmentation: We train the model on MedMNIST datasets |Yang et al.
(2023) using two distinct prompt settings. The first setting only provides { Class Names},
while the second setting includes explicit knowledge injection, which provides both
{Class Names} and corresponding { Visual Attributes}. In addition to original
dataset settings, we also apply SFT and RL on limited data, adopting 10-shot and 20-shot
settings to evaluate the fine-tuned model’s generalization ability. Note that for the over-
all reward R we formulate it as R = 0.9 X Raccuracy + 0.1 X Rformate by default. While
for the RetinaMNIST dataset we adopt the MFRS reward for better performance, that is,

R=0.9x RMFRS + 0.1 x Rformat-

* Visual Perception Augmentation: We first train the model employing the R1 framework on
the training set of the HAM 10000 and Heel datasets, respectively, learning to localize specific
regions, lesions, or organs. For example, detecting the bounding boxes for skin lesions
in HAM10000 images and localizing the heel bone region in Heel images. Subsequently,
without any additional training, we directly apply the model to the corresponding test sets
for medical disease diagnosis in a zero-shot manner.

Reasoning Augmentation via Reward Design.

* Recitation Reward: We conduct two experiments by varying the value of ¢ in equation 7]
When § = 0.2, the model is rewarded for repeating explicit knowledge during the thinking
process. Conversely, when § = —2, the model is penalized for recitation.
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e MFRS Reward: We train the model on the RetinaMNIST dataset in MedMNIST and
the COVID-19 DatasetDanilov et al.| (2022) using two reward settings to evaluate MFRS
reward’s validity. The difference is whether to replace Ryprs in euqation@] with Raccuracy -

Comparative Evaluation & Metric. For the Explicit Knowledge Injection experiment, we
primarily compare the performance of SFT and RL fine-tuning on the test sets, as well as the few-shot
experiments. For the Implicit Knowledge Injection experiment, we compare the performance of
RL and SFT in two approaches: (1) direct classification training, and (2) localization followed by
direct classification. We use a metric similar to VQA choice accuracy. Each test sample consists of a
medical question and a medical image, and the model must choose a diagnosis from a predefined list
of lesion types. A correct diagnosis is made only when the model’s prediction matches the ground
truth. Finally, we evaluate the model’s diagnostic performance by calculating the overall accuracy on
the test set.

B.3 BROADER IMPACT

This paper presents work aimed at extending reinforcement learning fine-tuning into the domain of
medical imaging. Our goal is to enhance model transparency by enabling visible reasoning processes
during medical image interpretation. While this direction may have important implications for clinical
Al applications, we believe no specific societal concerns need to be highlighted at this stage.

B.4 BASIC REWARDS FOR REINFORCEMENT FINE-TUNING

Format Reward. Following previous work |Guo et al.|(2025); [Huang et al.| (2025a)); [Shen et al.
(20254), we introduced format rewards to evaluate whether the model’s generated output adheres to the
expected structured format. Specifically, the model is enforced to enclose its thinking process between
the <think>...</think> tags, include a bounding box within <answer>{...[x1, y1,
x2, y2]...}</answer> for the detection task, or place the predicted label into \boxed{ ...}
for the classification task, receiving 1 or 0 reward value based on compliance.

Vanilla Accuracy Reward. Detection task requires the model to provide the bounding box for a
specific region, lesion, or organ in the medical image. Denote GT%" as the ground truth bounding
box, 0% as the model output content, and f., as the function to extract the bounding box located by
the VLM from its output content. The accuracy reward for detection task is defined as follows:

Rdet —

acc

{1.0 if OU(GT, fe(0%Y)) > threshold, (1

0.0 otherwise.

where IoU is the intersection over union metric, and the threshold is typically set to 0.5 as default.

The vanilla accuracy reward for classification tasks is the most commonly used exact match, i.e., the
model receives a reward score of 1 if the final answer exactly matches the ground truth when both are
converted to lowercase; otherwise, the score is 0.

B.5 PROMPT TEMPLATE FOR LOCALIZATION TASK

Prompt Template

This is a {data modality} image of {lession/organ}. Please identify the category
of the {lession/organ} based on the image. Categories and their typical descriptions
are as follows: {Class Names : Visual Attributes}. You FIRST think about the
reasoning process as an internal monologue and then provide the final answer. The reasoning
process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put
in \boxed{...}.

We need to construct training data for the localization task, using the following prompt template:

17



Under review as a conference paper at ICLR 2026

Prompt Template for Detection Task

Analyze the image and provide the bounding box for the {target object}. Ensure the
bounding box accurately covers it and does not include too much unrelated areas. Output
the bounding box in the format [x1, y1, x2, y2]. Generate your thinking process on how
you determined the box. First output the thinking process in <think> </think> tags and then
output the final answer in <answer> </answer> tags. Output the final answer in JSON format.

C LIMITATION

Our work is still limited to medical classification tasks, and has yet to explore fine-grained tasks such
as segmentation. In addition, our current approach to knowledge injection lacks certain clinically
grounded experiential knowledge. We plan to further investigate these directions in future work.

C.1 PRINCIPLE OF BLEU METRIC

BLEU calculates similarity by comparing the overlap of n-grams between the candidate text and
the reference text, making it particularly suitable for quantifying the similarity between the model’s
inference outputs and the prior knowledge.
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