

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

WHAT CAN AN LLM FLIP IF IT FAILS TO FLIP COINS?

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) can often accurately describe probability distributions using natural language, yet they still struggle to generate faithful samples from them. This mismatch limits their use in tasks requiring reliable stochasticity, such as Monte Carlo methods, agent-based simulations, and randomized decision-making. We investigate this gap between knowledge and sampling in the context of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a natural-language adaptation of classical rejection sampling that prompts the LLM to reason about and accept or reject proposed samples. Despite relying on the same Bernoulli mechanism internally, VRS substantially reduces sampling bias across models. We provide a theoretical analysis showing that, under mild assumptions, VRS improves over direct sampling, with gains attributable to both the algorithm and prompt design. More broadly, our results show how classical probabilistic tools can be verbalized and embedded into LLM workflows to improve reliability, without requiring access to model internals or heavy prompt engineering.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in generating coherent text and even performing reasoning tasks. An emerging question is whether LLMs can understand and reproduce probabilistic processes when prompted in natural language. In particular, if we ask an LLM to behave like a random sampler for a known distribution (e.g., produce coin flip outcomes with a given probability), will it faithfully do so? Reliable sampling underpins Monte Carlo algorithms [13, 19], probabilistic programming [4], agent-based simulations [11, 3], and randomized decision making [16, 15]; yet, despite randomness being central to modern computation, the extent to which contemporary LLMs can generate faithful i.i.d. samples remains largely unexplored.

Recent work has begun to study LLMs not just as next-word predictors but as generators of random outcomes drawn from specified distributions. Empirical evidence shows that, while LLMs can infer probability distributions [6] and do Bayesian updates to approximately infer a coin’s bias when given data [7], their own samples from a distribution remain biased [11]. Figure 1(a;b) illustrate this gap for Bernoulli distributions. Hence, LLMs know what a fair coin is, but they struggle to behave like one.

This mismatch poses concrete risks from a user’s perspective. A user who sees an LLM accurately reasoning about a distribution might trust it to sample from that distribution; hidden bias can then contaminate downstream workflows, skew survey simulators, or introduce unfairness in stochastic tie-breakers. If an LLM cannot flip a fair coin, could it be trusted to sample from more complex distributions? This raises safety, reliability, and fairness concerns across the stack.

In the setting of Bernoulli distributions, we present a comprehensive study of correcting LLM sampling bias via a language-adapted rejection-sampling framework, and uncover surprising interactions between prompt design and algorithmic guarantees. Our contributions include:

- **Sampling Faithfulness Study (Section 4).** We measure how faithfully LLMs generate i.i.d. Bernoulli samples when prompted directly. Across four models, sampling bias varies significantly with the phrasing of the distribution. *Chain-of-thought does not guarantee improvement.* We also quantify the gap between a model’s ability to identify a distribution and its ability to simulate it.
- **Verbalized Rejection Sampling (VRS) (Section 5).** We adapt the classical rejection sampling method through natural language into LLMs. VRS is model-agnostic (for both open-source and proprietary LLMs), requires no access to the model weights, and keeps the LLM in a black-box.

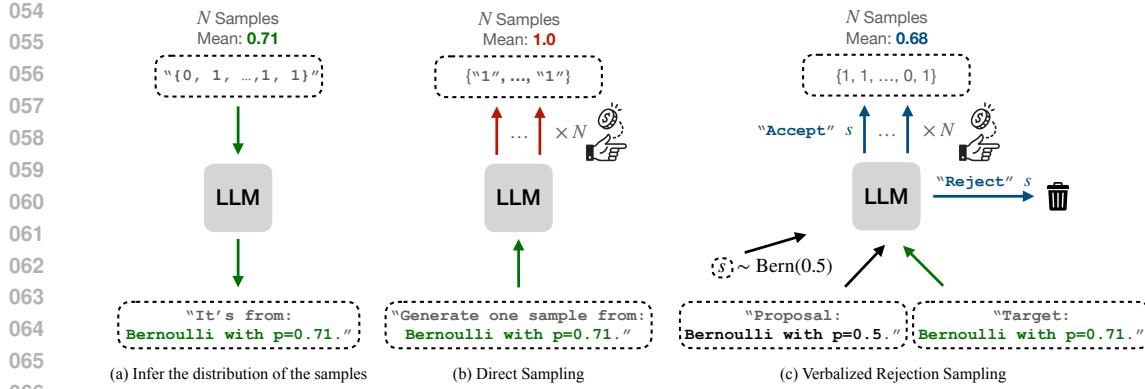


Figure 1: Illustrations of the knowledge-sampling gap and two different sampling methods.

Given a fixed prompt with textual descriptions of the target and proposal distributions alongside a candidate sample, the LLM is instructed to perform the accept/reject step. Our empirical study shows a significant reduction of the bias for the samples.

- **Empirical and Theoretical Insights (Section 6).** Effectively, VRS draws a Bernoulli random variable to decide whether to accept a proposed sample. Counter-intuitively, this indirection produces less sampling bias than prompting the model to output a sample directly. We analyze this phenomenon theoretically, proving (under mild assumptions) that VRS can generate samples with less bias than direct sampling and separating the gains attributable to the prompt phrasing from those guaranteed by the algorithm itself.

Beyond correcting the specific failure mode of Bernoulli sampling, our study opens a broader path towards integrating principled randomness into LLM-based systems. Faithful Bernoulli generation is a basic requirement for reliable LLM-driven simulations and stochastic reasoning. Our results show that a lightweight, theoretically sound wrapper—without model access or hyper-parameter tuning—substantially narrows the knowledge-sampling gap. More broadly, our work illustrates how classical statistical tools can be verbalized and paired with LLMs to deliver reliability without resorting to opaque prompt engineering.

2 RELATED WORK

Sampling and flipping coins with LLMs. Recent work shows that LLMs often exhibit a gap between knowing and sampling from a distribution. For example, LLMs can describe the target probabilities, yet when asked to “roll a die” or “flip a coin” their outputs exhibit large bias. Incorporating code generation with Python tool use can alleviate the problem [6]. In contrast, we focus on improving sampling within the natural language space, leveraging LLMs’ inherent probabilistic reasoning capabilities. While one could bypass the model to obtain true samples from a target distribution, enabling LLMs to faithfully perform such tasks themselves is both practically useful and scientifically insightful. Also, when LLMs are asked to “flip a fair coin” and “flip 20 fair coins”, they not only replicate human biases but often amplify them [14]. Another work probes the online learning setting of Bernoulli distribution from a Bayesian inference angle [7], showing that with sufficient in-context examples, LLMs update their estimate of a coin’s bias roughly following Bayes’ rule. Unlike their focus on online learning and belief updating, we do not assume sequential access to data and instead concentrate on the generation of i.i.d. samples from a fixed Bernoulli distribution. Similar gaps exist in settings beyond Bernoulli (e.g., poll simulation, categorical distribution), showing that LLMs can summarize distributions but fail to sample from them reliably, echoing the Bernoulli findings on a higher-dimensional setup [11, 8]. Together, these studies reveal a recurring pattern: LLMs know the right distributions but struggle to sample from them faithfully. Our work aims to reduce this mismatch by adapting the rejection sampling algorithm to LLMs, leveraging their internal probabilistic behavior to guide natural language based sampling.

Natural language and text based parameterization. Recent work explores using natural language to parameterize models, treating LLMs as inference engines that interpret and evaluate these descrip-

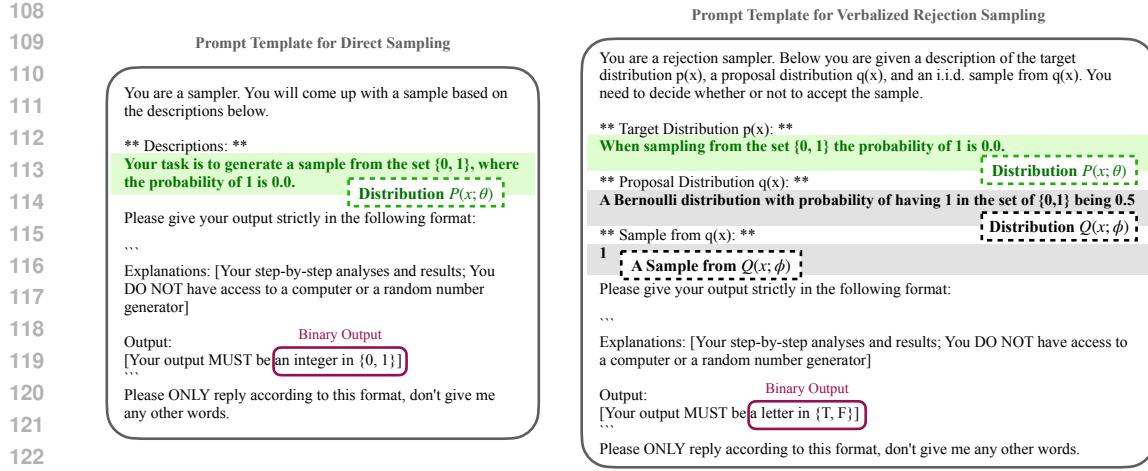


Figure 2: Prompt templates for direct sampling and Verbalized Rejection Sampling.

tions. This makes model specification more accessible and interpretable. LLM Processes [12], where LLMs generate predictive distributions conditioned on natural language inputs and in-context data, operates in an in-context, non-parametric style and requires access to token logits. In contrast, we treat language as a parametric description of a fixed distribution, without past data or logit access. In Verbalized Machine Learning (VML; [18]), prompts are treated as natural language parameters for deterministic functions. Our work instead focuses on probabilistic distributions and faithful sampling. Additionally, new theoretical frameworks demonstrating that a finite set of function compositions, analogous to a vocabulary, can approximate any continuous mapping, drawing parallels between linguistic compositionality and function approximation [2]. These studies underscore the potential of natural language as a medium for specifying probabilistic models. In our work, we focus on the Bernoulli distribution as a fundamental case study, demonstrating how LLMs can be guided to generate faithful samples from a simple yet foundational probabilistic model.

3 PROBLEM SETUP

Our investigation focuses on the ability of LLMs to generate faithful i.i.d. samples from distributions described purely in natural language. Focusing on Bernoulli distributions, defined by a single numerical parameter $p \in [0, 1]$, we treat LLMs as samplers accessed solely through text interaction.

3.1 PARAMETERIZING DISTRIBUTIONS IN NATURAL LANGUAGE

In our setting, the distribution is parameterized by a textual prompt. Formally, we denote this natural language parameterized distribution as $P(x; \theta)$, where θ captures both the underlying numerical parameter p and the linguistic phrasing of the prompt. Figure 2(left) shows an example, where

$$P(x; \theta) = \text{"Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.0."}$$

For the same p , different phrasings may lead to different sampling behaviors. We test several ways of phrasing a Bernoulli distribution, and write $P(x; p)$ for a fix phrasing. For each phrasing, we test 101 values of $p \in \{0.0, 0.01, 0.02, \dots, 1.0\}$. For each p , we query the LLM 100 times independently with the same prompt, and extract the binary output (i.e., '0' or '1') to form the resulting i.i.d. samples.

3.2 LLMs AS BLACK-BOX SAMPLERS

We treat LLMs as black-box samplers, accessed solely via APIs. The only controllable input is the prompt; the only observable output is text. For open-source models, we use vLLM [9], but we assume no access to internals such as weights, activations, or token-level logits. This contrasts with prior work [7, 8, 12] that uses output token logits to estimate sampling probabilities.

This API-only setup allows consistent evaluation across both open-source and proprietary models, reflecting realistic usage where internals are inaccessible. It also better supports techniques like

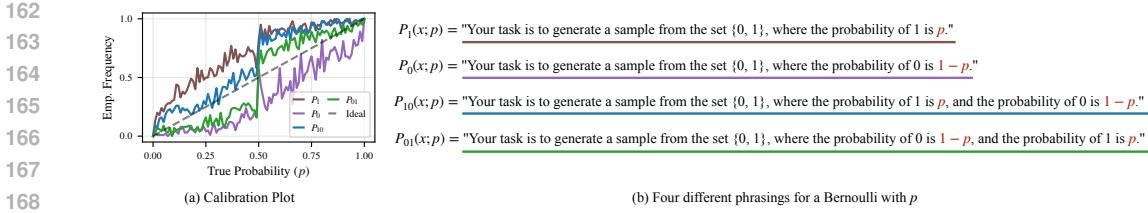


Figure 4: Calibration plots for direct sampling and the four different phrasings.

chain-of-thought (CoT; [17]) prompting, which can distort token-level probabilities by conditioning on generated reasoning: with CoT, logits reflect $p(x | \text{reasoning for } x)$ instead of the intended $p(x)$. We also fix all decoding hyperparameters (e.g., temperature, top-k) to their default values given in the API, since most real world users do not adjust them, and often do not have the ability to do so.

4 HOW RELIABLE IS DIRECT SAMPLING?

This section examines the reliability of direct sampling from LLMs. We first compare their ability to generate samples to their ability to recognize distributions, then explore how prompt phrasing affects sampling bias, and finally test whether chain-of-thought reasoning improves sample quality.

4.1 MEASURING THE KNOWLEDGE-SAMPLING GAP

To assess the gap between an LLM’s understanding of a Bernoulli distribution and its ability to sample from it, we compare its evaluative and generative performance in a controlled setup, using Llama-3.1-70B-Instruct [5]. We first test the model’s ability to identify the correct Bernoulli distribution from data. For 11 equally spaced probabilities p_0, \dots, p_{10} , s.t. $p_i \in [0, 1]$, we generate 100 i.i.d. samples using Python, forming datasets S_i . For each pair (i, j) , we prompt the LLM to decide whether S_i was drawn from $\text{Bern}(p_j)$, producing an 11×11 response matrix. Diagonal entries should be “Yes”, off-diagonals “No”. We repeat this process five times and report average accuracies in Figure 3(a). We then test the model’s sampling behavior by prompting it to generate 100 samples for each p_i , using the template in Figure 2(left). The resulting sets \hat{S}_i are evaluated using the same method as before. The average accuracies over five runs are reported in in Figure 3(b).

The left panel shows high off-diagonal accuracy for Python generated data (i.e., confidently rejecting incorrect hypotheses), with minor errors along the diagonal due to natural sample variation (e.g., 48 ones out of 100 for $p = 0.5$ may lead to confusion with $p = 0.48$, hence, rejecting the correct hypotheses). In contrast, the right panel shows major degradation for LLM-generated samples. Diagonal accuracy drops significantly for all p_i , except the edge cases when $p = 0.0$ and $p = 1.0$. Moreover, we observe an asymmetry in the off-diagonal entries: the lower triangle of the matrix exhibits much worse accuracy than the upper triangle. This indicates that samples from p_i are often misclassified as having come from p_j with $j > i$, suggesting that the LLM-generated samples are consistently biased toward ones. These results reveal a clear knowledge–sampling gap: LLMs can evaluate distributions well but fail to sample from them faithfully. Unlike question answering, where each input has a correct target, i.i.d. sampling lacks per-instance ground truth, making it a fundamentally different and underexplored capability.

4.2 HOW MUCH CAN PROMPT PHRASING REDUCE SAMPLING BIAS?

The previous section used a single fixed phrasing to describe the Bernoulli distribution (see Figure 2, left). Yet, natural language allows many equivalent ways to express the same distribution, raising the question: how much can phrasing affect sampling bias? In the prior setup, the prompt emphasized the

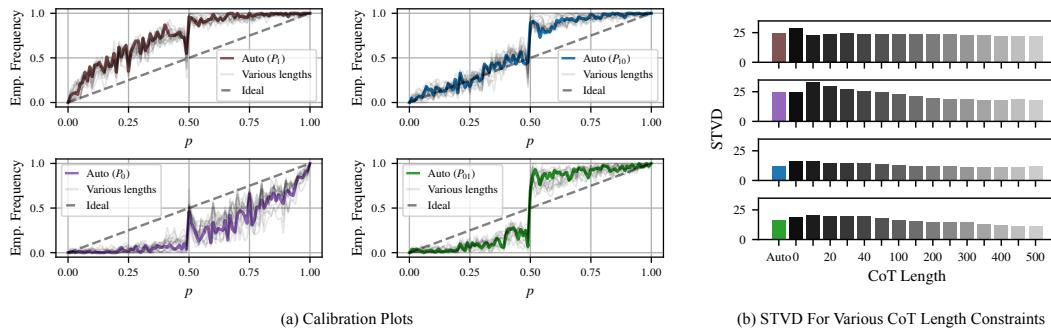


Figure 5: Calibration plots and STVD trend for various reasoning length constraints.

probability of generating a 1, denoted $P_1(x; p)$, as illustrated in Figure 4(b). Notably, this formulation focuses solely on the probability of generating a 1, which may partly explain the tendency of the model to produce more 1s than 0s in the sampled outputs.

To explore this, we test three alternative phrasings that shift or balance the focus across outcomes, as shown in Figure 4(b). For each, we sample across a range of p values using Llama-3.1 and plot the empirical frequency of 1s against the ground truth, yielding calibration curves shown in Figure 4(a). The calibration curves show that the balanced descriptions, i.e., those stating both probabilities, yield samples that are better calibrated. Nevertheless, all four phrasings result in noticeable bias. This result resonates with [1], where they found that when prompting humans to imagine a coin flip, mentioning only ‘heads’ or mentioning only ‘tails’ will lead to a similar sampling bias.

Quantitative comparison using Sum of TV Distance (STVD). To quantify the calibration performance of different phrasings, we compute the area between each calibration curve and the ideal diagonal reference line. Specifically, for each p_i , we calculate the absolute difference between the empirical sampling frequency \tilde{p}_i and the true value p_i , and sum these over all 101 values, i.e., $\text{STVD} = \sum_{i=0}^{100} |\tilde{p}_i - p_i|$. Since this absolute difference corresponds to the total variation (TV) distance between two Bernoulli distributions, we refer to the resulting metric as the Sum of TV Distances (STVD) where smaller is better. See Appendix A.1 for more details about the TV distance.

Table 1 presents the STVD values for the four phrasings under direct sampling. For Llama 3.1, the best-performing phrasing P_{10} achieves an STVD of 12.50, nearly half that of the baseline P_1 , which scores 25.36. We also include results for other LLMs, including GPT-4.1-nano, DeepSeekV3 [10], and Qwen-2.5 72B [20]. Interestingly, the best-performing phrasing varies across models, as highlighted by the underlined entries. The calibration plots for the other models can be found in Appendix B.1.

These findings suggest that while prompt design can influence sampling bias, relying solely on prompt engineering to eliminate bias can be difficult and inconsistent across model family, and additional mechanisms are likely needed for more systematic approaches to correct sampling bias.

Table 1: Quantitative comparison between Direct Sampling and VRS in STVD (\downarrow).

Method	Llama-3.1 70B				GPT-4.1-nano				DeepSeekV3				Qwen-2.5 72B							
	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean
Direct	25.36	24.79	12.50	16.59	19.81	17.87	30.23	16.63	19.24	21.00	17.76	19.39	20.78	23.26	20.30	20.73	18.72	19.00	22.64	20.27
VRS	5.73	7.64	<u>5.36</u>	5.60	6.08	12.96	13.06	9.50	<u>8.46</u>	11.00	5.34	9.06	<u>5.29</u>	6.94	6.66	5.93	6.35	<u>4.49</u>	5.12	5.47

4.3 DOES CHAIN-OF-THOUGHT (CoT) HELP SAMPLING?

Since phrasing alone does not eliminate sampling bias, we explore whether modifying the instruction for the output can help. Prior work [14, 7, 8, 12] often asks LLMs to output the sample immediately, enabling access to token logits for estimating predictive distributions. However, this approach is constrained to open-source models and treats LLMs more as likelihood models than samplers. In our setting, we only use LLMs for sampling and do not require access to logits or early output. This

allows us to apply CoT [17] prompting, where the model first generates reasoning before giving its final answer. While sampling differs from question answering, CoT may increase output variability by encouraging diverse reasoning paths, potentially reducing bias.

To test this, we instruct the model to produce reasoning of varying lengths N (ranging from 0 to 500 words) before answering, along to an ‘Auto’ setting where no length constraint is imposed. The ‘Auto’ is the default setting for experiments in previous sections, which uses the template in Figure 2(left). For different N , we modify the ‘Explanations’ instruction in the prompt template to include a sentence saying that ‘Your analysis must have around N words’.

Figure 5 presents the calibration plots (left) and STVD scores (right) for Llama-3.1 under different CoT length constraints. Overall, reasoning length has limited effect on bias, though longer CoT slightly improves calibration. Direct output without reasoning often performs worse than the ‘Auto’ setting. However, this pattern does not hold across models. As shown in Figure 6, GPT-4.1 and Qwen2.5 show no consistent improvement with longer CoT; in some cases, STVD increases as reasoning length grows. These mixed results suggest that, unlike in question answering, CoT is not a reliable method for reducing sampling bias, and its effect is model-dependent. For consistency, we use ‘Auto’ in all remaining experiments.

5 VERBALIZED REJECTION SAMPLING

In the previous section, we explored ways to reduce sampling bias through prompt phrasing and instruction design. While these strategies do influence the behavior of LLMs, the results suggest that prompt-only interventions are insufficient for reliably eliminating bias. If direct sampling cannot be fully corrected through language alone, we may instead embrace the bias and mitigate it using algorithmic techniques. In probabilistic methods, several algorithms exist to transform biased proposals into unbiased samples. One such method is rejection sampling, which generates candidate samples from a proposal distribution and selectively accepts them to match a desired target distribution. In the remainder of this section, we adapt rejection sampling to operate entirely within the language interface of LLMs, and we refer to this method as verbalized rejection sampling (VRS).

5.1 REJECTION SAMPLING

Rejection sampling is a sampling technique to generate samples from a target distribution P while only having access to samples from a (typically simpler) proposal distribution Q . We assume that both P and Q can be evaluated (but only Q can be directly sampled from). The general idea is that we can generate a sample from P by instead sampling from Q and accepting the sample with probability $P(x)/(MQ(x))$ where $M < \infty$ is a bound on the ratio $P(x)/Q(x)$. We assume that both P and Q are Bernoulli distributions with parameters p and q . In this case, we can compute M analytically as: $M = \max\{p/q, (1-p)/(1-q)\}$. Let $A(x)$ denote the acceptance probability of $x \sim Q$ which is

$$A(x) = \begin{cases} \frac{P(x)}{MQ(x)} = \frac{p}{Mq} & \text{if } x = 1 \\ \frac{P(x)}{MQ(x)} = \frac{1-p}{M(1-q)} & \text{if } x = 0 \end{cases} \quad (1)$$

The accept/reject step effectively draws a sample from $\text{Bern}(A(x))$. The overall acceptance rate is $\alpha = \sum_{x \in \{0,1\}} Q(x)A(x) = 1/M$. See Appendix A.2 for more details about rejection sampling.

5.2 ADAPTING REJECTION SAMPLING TO LLMs

Figure 1(c) illustrates the overall idea behind VRS. Classical rejection sampling requires three inputs: the target distribution P , the proposal distribution Q , and a sample $x \sim Q$. The algorithm evaluates whether to accept or reject x based on these inputs, returning a binary decision. To implement this in the LLM setting, we design a prompt template (Figure 2, right) that verbalizes all three components, i.e., descriptions of P, Q , and the proposed sample x , as natural language. These are inserted into fixed slots in the template. The model is instructed to reason through its decision and then output a single letter from {T, F}, indicating whether to accept (T) or reject (F) the sample. We send

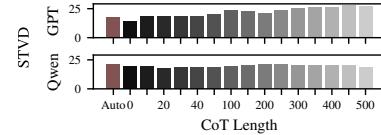


Figure 6: STVD vs CoT Length. In question answering, CoT is not a reliable method for reducing sampling bias, and its effect is model-dependent. For consistency, we use ‘Auto’ in all remaining experiments.

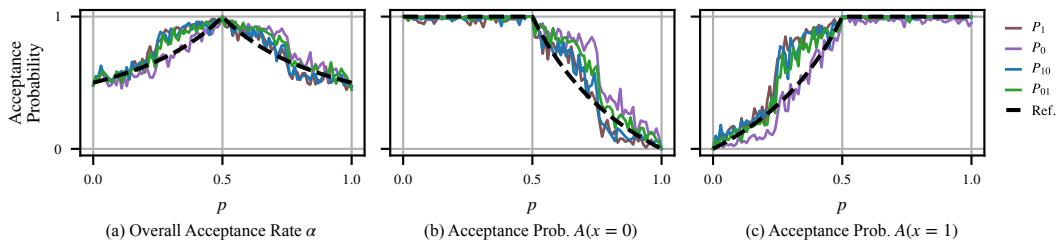


Figure 8: Empirical acceptance rates for VRS.

the completed prompt to the LLM and parse its response. If the response indicates acceptance, we retain the sample; otherwise, we generate a new proposed sample and repeat the process. This loop continues until we collect the required number of accepted samples (pseudocode in [Appendix D.1](#)).

5.3 EXPERIMENTS

We evaluate VRS on four different LLMs: Llama-3.1, GPT-4.1-nano, DeepSeekV3, and Qwen-2.5. For each model, we run VRS until it accepts 100 samples for each of the 101 values of $p \in [0.0, 1.0]$, following the same setup as in the direct sampling experiments. As the proposal distribution Q , we fix it to a uniform Bernoulli with $q = 0.5$ across all values of p . The resulting calibration plot for Llama-3.1 is shown in [Figure 7](#), and the corresponding STVD scores across all models are included in [Table 1](#). The calibration plots for other three LLMs can be found in [Appendix B.2](#).

Comparing the calibration plot for VRS ([Figure 7](#)) with that of direct sampling ([Figure 4a](#)), we observe a significant reduction in sampling bias. Across all four prompt phrasings, the calibration curves under VRS closely align with the ideal diagonal reference, indicating much improved fidelity to the target Bernoulli distributions. [Figure 8](#) shows the corresponding empirical acceptance probabilities, which seem to align well with the analytical targets. The improvement is also reflected quantitatively in [Table 1](#): the STVD scores for VRS are substantially lower than those for direct sampling, with most cases showing a reduction of over 50%. In some instances, STVD drops to nearly 25% of the original value. Crucially, this improvement holds across all four LLMs tested (i.e., Llama-3.1, GPT-4.1-nano, DeepSeekV3, and Qwen-2.5), demonstrating that VRS consistently mitigates bias and does so independently of the underlying model.

6 WHY DOES VERBALIZED REJECTION SAMPLING WORK?

The effectiveness of VRS in reducing sampling bias is surprising at first glance since, internally, VRS still relies on the LLM to perform a Bernoulli trial, i.e., deciding whether to accept or reject a sample, which is precisely the type of stochastic behavior we have shown LLMs to struggle with.

If LLMs are biased in direct sampling, why does wrapping the decision in rejection sampling help?

Is the improved calibration a result of the specific prompt design used in VRS? Or does the rejection sampling algorithm itself introduce structural guarantees that correct bias, even when implemented via a biased LLM? The remainder of this section explores these possibilities empirically and theoretically.

6.1 IS THE MAGIC IN THE PROMPT?

To investigate whether VRS’s improvement stems purely from prompt design, we remove external randomness by fixing the proposed sample to a constant, i.e., $x = 1$. In this case, a faithful LLM should accept with probability $A(1)$, as defined in [Equation \(1\)](#). We compare this with the empirical acceptance probability $\tilde{A}(1)$, estimated from the LLM’s responses. [Figure 8\(c\)](#) shows $\tilde{A}(1)$ for various p , using a fixed proposal $Q = \text{Bern}(0.5)$. For the trivial case $p > 0.5$, the alignment is strong.

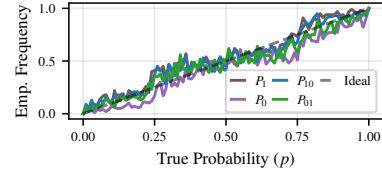


Figure 7: Calibration plot for VRS

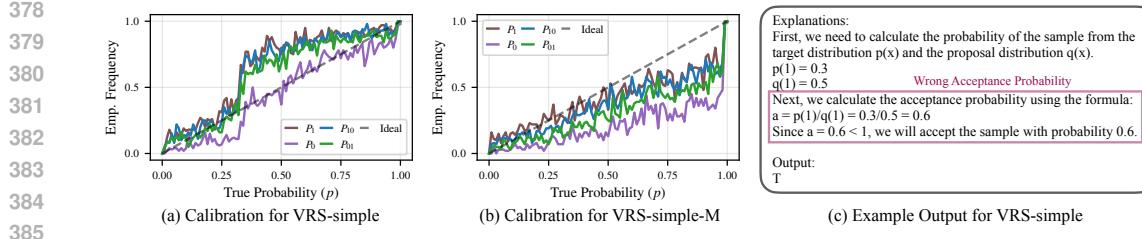


Figure 9: Calibration plots for two ablations and an example LLMs output for VRS-simple.

For $p < 0.5$, the results appear reasonable overall but show a consistent bias, particularly in the range $p \in [0.2, 0.5]$. To compare more directly with direct sampling, we evaluate $\tilde{A}(1)$ over 101 equally spaced values of $A(1)$, using the inverse of [Equation \(1\)](#) to recover the corresponding p . For each, we generate a VRS prompt with the computed p , a fixed $Q = \text{Bern}(0.5)$, and a fixed sample $x = 1$. We refer to this setup with fixed proposal and no introduced randomness as *VRS-simple*. If prompt design alone explains the improvement, VRS-simple should outperform direct sampling in calibration.

[Figure 9\(a\)](#) shows the calibration plot for VRS-simple using Llama-3.1. Compared to direct sampling ([Figure 4a](#)), the results are slightly more calibrated. [Table 2](#) confirms this, with the mean STVD dropping from 19.81 to 11.86 (see [Appendix B.4](#) for the full table). This suggests the VRS prompt helps reduce bias for direct sampling. However, VRS-simple relies on explicitly computing the inverse of [Equation \(1\)](#) to tailor the prompt to each target p , and the improvement remains modest compared to full VRS.

Magic or Mirage? To further understand why the VRS prompt improves sampling, we examine whether its structure encourages the model to reason differently. One hypothesis is that phrasing the sampling task in the context of rejection sampling prompts the LLM to internally compute acceptance probabilities, potentially disrupting its default biases learned during pretraining. To test this, we manually analyzed the model’s reasoning outputs from VRS-simple (see [Figure 9\(c\)](#)). We found that, while the model often tries to derive the acceptance probability, it frequently does so incorrectly. In the non-trivial cases where $A(x) \neq 1$, the model tends to compute only the ratio $P(x)/Q(x)$, omitting the constant M in the denominator.

Could this incorrect derivation be the reason behind the improvement? To test that, we designed variants of VRS-simple and VRS where we explicitly instruct the model to compute and use M correctly. We refer to these as VRS-simple-M and VRS-M, respectively. The calibration plot for VRS-simple-M is shown in [Figure 9\(b\)](#), with corresponding STVD scores in [Table 2](#). Through output inspection, we verified that the LLM now correctly computes the constant M in its reasoning. The correction in VRS-simple-M leads to slightly better performance from 19.81 to 18.45. However, for the full VRS setup, adding the M -instruction results in a slight degradation, with STVD rising from 6.08 to 7.36, though still outperforming direct sampling.

These results suggest that the improvement from the VRS prompt is not due to accurate computation of the acceptance probability. Instead, the prompt seems to help in an unexpected way, but it alone cannot explain the full benefit. The remaining gains likely come from the rejection sampling mechanism itself, rather than prompt phrasing alone.

6.2 IS THE IMPROVEMENT FROM THE ALGORITHM?

Prompt design alone cannot fully explain the gains from VRS. To analyze the role of the algorithm itself, we model the LLM as a biased Bernoulli sampler. In VRS, this means the acceptance decision is not sampled from the true probability $A(x)$, but from a perturbed version $\tilde{A}(x) = A(x) + e(x)$, where $e(x)$ represents the model’s bias. Based on this, we can derive the following proposition.

Proposition 1. [Informal, see [Proposition 1 in Appendix A.3](#).] Let P and Q be Bernoulli distributions (target and proposal with parameters p and q , respectively). Let \tilde{P} denote the distribution resulting from rejection sampling with acceptance probability $A(x) + e(x)$, and assume a bound on the model’s

Table 2: Ablation STVD (\downarrow)

Method	mean (over 5 runs)
Direct	19.81 ± 0.15
VRS	6.08 ± 0.12
VRS-simple	11.86 ± 0.13
VRS-simple-M	18.45 ± 0.35
VRS-M	7.36 ± 0.14

432 bias, i.e., $|e(x)| \leq c \in \mathbb{R}$. Then, with M defined in [Section 5.1](#), we have

$$434 \quad \text{TV}(\tilde{P}, P) \leq \frac{Mc}{1 - Mc}. \quad (2)$$

436 Intuitively, M implies how “different” the proposal Q is from the target P and c bounds the bias in
437 the acceptance step. For $c = 0$, we recover rejection sampling with $\text{TV}(\tilde{P}, P) = 0$. Otherwise, for a
438 fixed $c > 0$, $\text{TV}(\tilde{P}, P)$ grows quadratically with M .

439 From empirical observations (see [Figure 8\(b;c\)](#)) we note that $c \approx 0$ when the acceptance probability
440 is trivial, i.e., for $A(x) = 1$. We can integrate this assumption and get the following tighter bound.

441 **Proposition 2.** [Informal, see [Proposition 2 in Appendix A.4](#).] Following [Proposition 1](#) but with the
442 additional assumption that $A(\cdot)$ is only biased in the non-trivial case, i.e., $\tilde{A}(\hat{x}) = A(\hat{x}) + e(\hat{x})$ if
443 $A(\hat{x}) < 1$ (whereas $\tilde{A}(x^*) = A(x^*)$ if $A(x^*) = 1$), we have

$$445 \quad \text{TV}(\tilde{P}, P) \leq \frac{Q(\hat{x})Mc}{(1 - Q(\hat{x})Mc)}. \quad (3)$$

447 Out of the two possible events for x , we use \hat{x} to refer to the event that achieves non-trivial $A(\hat{x}) < 1$.
448 Intuitively, $Q(\hat{x})$ “damps” the error as $Q(\hat{x}) \leq 1$, which results in a tighter bound.

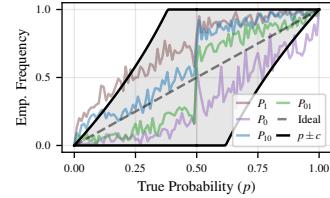
449 Let \bar{P} denote the distribution resulting from direct sampling with the same bias $e(x)$. We can now
450 derive when VRS (\tilde{P}) is better than direct sampling (\bar{P}). We get the following corollary.

451 **Corollary 1.** [Informal, see [Corollary 1 in Appendix A.5](#).] Following [Proposition 2](#) and assuming
452 that \bar{P} has the same bias as in $\tilde{A}(x)$, i.e., $\bar{p} = p + e, e \leq |c|$, then (with $\alpha = 1/M$, see [Section 5.1](#))

$$454 \quad \text{TV}(\tilde{P}, P) < \text{TV}(\bar{P}, P) \stackrel{(i)}{\iff} \frac{Q(\hat{x})}{\alpha} (1 + c) \leq 1 \stackrel{(ii)}{\iff} c < \frac{1}{Q(\hat{x})M} - 1. \quad (4)$$

456 This implies: (i) VRS is better than direct sampling if the biased event (\hat{x}) is rare, i.e., if $Q(\hat{x})$ is
457 smaller than the acceptance rate α ; (ii) equivalently, this can be translated into a bound on c , which is
458 maximized when Q and P are similar, i.e., if $M \rightarrow 1$. Otherwise, direct sampling is better than VRS.

459 In our experiments we fix the proposal to $q = 0.5$. This allows us,
460 for each p , to compute the constants M and c (i.e., the upper bound
461 on $|e(x)|$) under which VRS outperforms direct sampling. [Figure 10](#)
462 shows the calibration plot of [Figure 4\(a\)](#) and visualizes a shaded
463 black box of p plus and minus c , i.e., $\text{clip}(p \pm c, 0.0, 1.0)$. The box
464 is largest (vertically) if P and Q are similar (i.e., $M \rightarrow 1$, see (ii)
465 above). In most cases, the empirical frequencies of direct sampling
466 fall within this box, satisfying condition (ii). This provides strong
467 evidence that the primary source of VRS’s improvement comes from
468 the rejection sampling algorithm and not from prompt effects.



469
470 **7 CONCLUSION**
471
472 We examined the ability of LLMs to sample from natural-language-described distributions, using
473 Bernoulli as a test case. While LLMs can evaluate whether data matches a distribution, they struggle to
474 generate unbiased samples, revealing a clear knowledge-sampling gap. This highlights that *sampling*
475 is a fundamentally distinct ability from *question answering*: evaluation tasks have clear supervision,
476 while i.i.d. sampling lacks per-instance ground truth and is only verifiable at the distribution level.
477 We showed that prompt phrasing or chain-of-thought reasoning could not guarantee improvement. To
478 address this, we proposed Verbalized Rejection Sampling (VRS), a lightweight adaptation of classical
479 rejection sampling expressed entirely in natural language. VRS improves calibration across models
480 without accessing logits or tuning decoding parameters, and our analysis shows that the algorithm, not
481 just prompt design, is key to its success. Although our main analysis is for Bernoulli (which has been
482 widely recognized as a foundational testbed for assessing LLM sampling behavior [6, 14, 7]), we
483 observed the effectiveness of VRS also in Binomial distributions (see [Appendix C](#)), demonstrating the
484 potential that the framework can be adapted to more complex families. Beyond correcting this specific
485 failure mode, our work points to a broader path: integrating principled randomness into LLM-based
486 systems. VRS illustrates how classical probabilistic tools can be verbalized and embedded into LLM
487 workflows to improve reliability without relying on opaque prompt engineering.

486 THE USE OF LARGE LANGUAGE MODELS (LLMs)
487488 We used LLMs to aid and polish writing, but they did not contribute significantly at the level of
489 a contributing author. Our research question is also about LLMs, therefore, they are used in our
490 experiments as the subject of investigation.491
492 REFERENCES
493

[1] Maya Bar-Hillel, Eyal Peer, and Alessandro Acquisti. “heads or tails?”—a reachability bias in
494 binary choice. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 40(6):
495 1656, 2014. 5

[2] Yongqiang Cai. Vocabulary for universal approximation: A linguistic perspective of mapping
496 compositions. *arXiv preprint arXiv:2305.12205*, 2023. 3

[3] Yong Cao, Haijiang Liu, Arnav Arora, Isabelle Augenstein, Paul Röttger, and Daniel Hersh-
500 covich. Specializing large language models to simulate survey response distributions for global
501 populations. *arXiv preprint arXiv:2502.07068*, 2025. 1

[4] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
504 Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
505 programming language. *Journal of statistical software*, 76:1–32, 2017. 1

[5] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
508 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
509 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024. 4

[6] Jia Gu, Liang Pang, Huawei Shen, and Xueqi Cheng. Do llms play dice? exploring probability
511 distribution sampling in large language models for behavioral simulation. *arXiv preprint
512 arXiv:2404.09043*, 2024. 1, 2, 9

[7] Ritwik Gupta, Rodolfo Corona, Jiaxin Ge, Eric Wang, Dan Klein, Trevor Darrell, and David M
515 Chan. Enough coin flips can make llms act bayesian. *arXiv preprint arXiv:2503.04722*, 2025.
516 1, 2, 3, 5, 9

[8] Aspen K Hopkins and Alex Renda. Can llms generate random numbers? evaluating llm
518 sampling in controlled domains. In *Sampling and Optimization in Discrete Space (SODS) ICML
519 2023 Workshop*, 2023. 2, 3, 5

[9] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
522 Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
523 language model serving with pagedattention. In *ACM SIGOPS 29th Symposium on Operating
524 Systems Principles*, 2023. 3, 24

[10] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
526 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
527 arXiv:2412.19437*, 2024. 5

[11] Nicole Meister, Carlos Guestrin, and Tatsunori Hashimoto. Benchmarking distributional
530 alignment of large language models. *arXiv preprint arXiv:2411.05403*, 2024. 1, 2

[12] James Requeima, John Bronskill, Dami Choi, Richard Turner, and David K Duvenaud. Llm
532 processes: Numerical predictive distributions conditioned on natural language. In *NeurIPS*,
533 2024. 3, 5

[13] Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*,
536 volume 2. Springer, 1999. 1

[14] Katherine Van Koevering and Jon Kleinberg. How random is random? evaluating the ran-
538 domness and humanness of llms’ coin flips. *arXiv preprint arXiv:2406.00092*, 2024. 2, 5,
539 9

540 [15] Alicia Vidler and Toby Walsh. Evaluating binary decision biases in large language models:
541 Implications for fair agent-based financial simulations. *arXiv preprint arXiv:2501.16356*, 2025.
542 1

543 [16] Abraham Wald. Statistical decision functions. *The Annals of Mathematical Statistics*, pp.
544 165–205, 1949. 1

545 [17] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
546 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In
547 *NeurIPS*, 2022. 4, 6

548 [18] Tim Z Xiao, Robert Bamler, Bernhard Schölkopf, and Weiyang Liu. Verbalized machine
549 learning: Revisiting machine learning with language models. *Transactions on Machine Learning
550 Research*, 2025. 3

551 [19] Yongjian Xu, Akash Nandi, and Evangelos Markopoulos. Application of large language models
552 in stochastic sampling algorithms for predictive modeling of population behavior. *Artificial
553 Intelligence and Social Computing*, 122:10–20, 2024. 1

554 [20] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
555 Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
556 arXiv:2412.15115*, 2024. 5

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Appendix for VRS

Table of Contents

A Theoretical Analysis for Biased (Rejection) Sampling from Bernoulli Distributions	13
A.1 Total Variation Distance	13
A.2 Rejection Sampling	13
A.3 Biased Acceptance Probability	13
A.4 Half-Biased Acceptance Probability	14
A.5 Comparison of Half-Biased Sampling to Direct Sampling	15
B Additional Results for Bernoulli Distributions	17
B.1 Direct Sampling Calibration Plots for Other LLMs	17
B.2 VRS Calibration Plots for Other LLMs	18
B.3 VRS with Constant M Instruction	18
B.4 Full Results for Prompt Ablations	19
B.5 Ablations for Other LLMs	19
C Additional Results for Binomial Distributions	20
C.1 Extending the Theoretical Analysis	20
C.2 Empirical Evaluation of VRS on Binomial Distributions	23
D Experiment Setup Details	24
D.1 Pseudocode for VRS with Bernoulli	24
D.2 Computational Resources	24
E Broader Discussions	25
E.1 Why not ask the LLM to call an external sampler?	25
E.2 How practical is it to use LLMs as samplers?	25
E.3 Does VRS influence or align the LLM’s internal logits?	26
E.4 Is VRS computationally intensive?	26
E.5 Does using a programmatic sampler for the proposal Q weaken the result?	27
E.6 Is VRS a Few-Shot prompting method?	27
F Example Sampling Logs	29
F.1 Direct Sampling (Llama-3.1, CoT Length ‘Auto’, $P_1(x = 1) = 0.75$)	29
F.2 VRS (Llama-3.1, CoT Length ‘Auto’, $P_1(x = 1) = 0.75$)	30

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A THEORETICAL ANALYSIS FOR BIASED (REJECTION) SAMPLING FROM**
 649 **BERNOULLI DISTRIBUTIONS**
 650

651 This section is structured as follows. We introduce the total variation distance in [Appendix A.1](#) and
 652 state the general rejection sampling problem in [Appendix A.2](#). In [Appendix A.3](#) we bound the worst
 653 case error assuming that the acceptance probability of the rejection sampling algorithm is biased.
 654 [Appendix A.4](#) bounds the worst case error assuming that the model can draw exact samples if the
 655 acceptance probability is 1 and is biased in the other case. In [Appendix A.5](#) we compare the previous
 656 bound to the error of a biased Bernoulli distribution.
 657

658 **A.1 TOTAL VARIATION DISTANCE**
 659

660 The total variation (TV) distance measures the statistical distance between two probability distribu-
 661 tions. We will state it below for the case where both distributions are Bernoulli.

662 Let P_1 and P_2 denote the probability mass functions of Bernoulli distributions with parameters p_1
 663 and p_2 , respectively. We can write the TV distance between P_1 and P_2 as
 664

$$665 \quad D_{\text{TV}}(P_1, P_2) = \frac{1}{2} \sum_{x \in \{0,1\}} |P_1(x) - P_2(x)| = |p_1 - p_2|. \quad (\text{TV})$$

666

668 **A.2 REJECTION SAMPLING**
 669

670 Rejection sampling (RS) is a sampling technique to generate samples from a distribution P while
 671 only having access to samples from a distribution Q but assuming that both P and Q can be evaluated.
 672 The general idea is that we can generate a sample from P by instead sampling from Q and accepting
 673 the sample with probability $P(x)/(MQ(x))$ where $M < \infty$ is a bound on the ratio $P(x)/Q(x)$.
 674

675 Assume both P and Q are Bernoulli distributions with parameters p and q . We can compute M
 676 analytically as

$$677 \quad M := \max \left\{ \frac{p}{q}, \frac{1-p}{1-q} \right\}.$$

678

680 Let $A(x)$ denote the acceptance probability

$$682 \quad A(x) = \begin{cases} \frac{P(x)}{MQ(x)} = \frac{p}{Mq} & \text{if } x = 1 \\ \frac{P(x)}{MQ(x)} = \frac{1-p}{M(1-q)} & \text{if } x = 0 \end{cases}.$$

683

685 Let A denote the acceptance event. The unconditional acceptance probability $\mathbb{P}(A)$ —called the
 686 acceptance rate α —is the proportion of proposed samples that are accepted. It is given by

$$687 \quad \alpha := \mathbb{P} \left(U \leq \frac{P(x)}{MQ(x)} \right) = \mathbb{E} \left(\frac{P(x)}{MQ(x)} \right) = \sum_{x \in \{0,1\}} Q(x)A(x) = \frac{p}{M} + \frac{1-p}{M} = \frac{1}{M}.$$

688

690 where $U \sim \text{Unif}(0, 1)$. The law of the accepted samples is

$$692 \quad \mathbb{P}(X = x \mid A) = \frac{\mathbb{P}(X = x, A)}{\mathbb{P}(A)} = \frac{Q(x)A(x)}{\alpha} = \frac{Q(x) \frac{P(x)}{MQ(x)}}{\alpha} = \frac{P(x)/M}{\alpha} = P(x).$$

693

695 **A.3 BIASED ACCEPTANCE PROBABILITY**
 696

697 We will establish a worst-case bound in terms of the TV distance for the case that the acceptance
 698 probability is biased.
 699

700 **Proposition 1.** *Let $P(x), Q(x)$ be Bernoulli distributions with parameters p and q , respectively,
 701 where P is the target distribution that we want to sample from with rejection sampling and $Q(x)$
 is the proposal distribution. Further, let $\tilde{P}(x)$ denote the Bernoulli distribution resulting from*

702 a biased accept/reject step where we assume that the acceptance probability $\tilde{A}(x)$ is biased as
 703 $\tilde{A}(x) = A(x) + e(x)$ where $|e(x)| \leq c \in \mathbb{R}$. Then,
 704

$$705 D_{\text{TV}}(\tilde{P}, P) \leq \frac{Mc}{1 - Mc}, \quad (\text{L1})$$

707 where $M = \max\{p/q, (1 - p)/(1 - q)\}$.
 708

709 *Proof.* Assuming a biased acceptance probability $\tilde{A}(x)$, we can split the resulting acceptance rate
 710 into
 711

$$712 \tilde{\alpha} = \sum_{x \in \{0,1\}} Q(x)(A(x) + e(x)) = \underbrace{\sum_{x \in \{0,1\}} Q(x)A(x)}_{= \alpha} + \underbrace{\sum_{x \in \{0,1\}} Q(x)e(x)}_{= \delta},$$

715 where α corresponds to the unbiased acceptance rate and δ denotes the deviation from it. We assume
 716 that $0 \leq \tilde{A}(x) \leq 1$. Note that $|\delta| \leq c$ and, therefore, $\tilde{\alpha} = \alpha + \delta \geq \alpha - c \geq 0$. Let \tilde{A} denote the
 717 acceptance event. We denote the resulting law of the accepted samples by \tilde{P} .
 718

$$719 \mathbb{P}(X = x \mid \tilde{A}) = \frac{\mathbb{P}(X = x, \tilde{A})}{\mathbb{P}(\tilde{A})} = \frac{Q(x)\tilde{A}(x)}{\tilde{\alpha}} =: \tilde{P}(x).$$

721 We can now upper-bound a term in the TV distance as follows.
 722

$$723 |\tilde{P}(x) - P(x)| = \left| \frac{Q(x)\tilde{A}(x)}{\tilde{\alpha}} - \frac{Q(x)A(x)}{\alpha} \right| = \left| \frac{Q(x)}{\alpha\tilde{\alpha}} (\tilde{A}(x)\alpha - A(x)\tilde{\alpha}) \right| \\ 724 = \left| \frac{Q(x)}{\alpha\tilde{\alpha}} ((A(x) + e(x))\alpha - A(x)(\alpha + \delta)) \right| = \left| \frac{Q(x)}{\alpha\tilde{\alpha}} (e(x)\alpha - A(x)\delta) \right| \quad (5)$$

$$725 = Q(x) \left| \frac{e(x)\alpha - A(x)\delta}{\alpha\tilde{\alpha}} \right| \quad (6)$$

$$726 \leq Q(x) \frac{|e(x)|\alpha + |A(x)|\delta}{\alpha(\alpha - c)} \quad (7)$$

$$727 \leq Q(x) \frac{c\alpha + A(x)c}{\alpha(\alpha - c)} \quad (7)$$

$$728 = Q(x) \frac{c}{\alpha - c} \left(1 + \frac{A(x)}{\alpha} \right)$$

737 In Equation (6) we used the triangle inequality, in Equation (7) we used $|e(x)| \leq c$. For the full TV
 738 distance, we get
 739

$$740 D_{\text{TV}}(\tilde{P}, P) = \frac{1}{2} \sum_{x \in \{0,1\}} \frac{c}{\alpha - c} Q(x) \left(1 + \frac{A(x)}{\alpha} \right) = \frac{c}{\alpha - c} = \frac{Mc}{1 - Mc}.$$

743 \square

744 A.4 HALF-BIASED ACCEPTANCE PROBABILITY

746 In the following argument we assume that if $A(x) = 1$ there is no bias, i.e., no error ($A(x) = 1 \Rightarrow$
 747 $e(x) = 0$).

748 **Proposition 2.** Let $P(x), Q(x)$ be Bernoulli distributions with parameters p and q , respectively,
 749 where $P(x)$ is the target distribution that we want to sample from with rejection sampling and $Q(x)$
 750 is the proposal distribution. Further, let $\tilde{P}(x)$ denote the Bernoulli distribution resulting from a
 751 biased accept/reject step where we assume that the acceptance probability $\tilde{A}(x)$ is biased with an
 752 additive error $e(x)$ where $|e(x)| \leq c \in \mathbb{R}$ as
 753

$$754 \tilde{A}(x) = \begin{cases} A(x) + e(x) & \text{if } A(x) < 1 \\ A(x) & \text{if } A(x) = 1 \end{cases}, \quad (\text{M1})$$

756 where $|e(x)| \leq c \in \mathbb{R}$. Then,

$$758 D_{\text{TV}}(\tilde{P}, P) \leq \frac{Q(\hat{x})Mc}{(1 - Q(\hat{x})Mc)}, \quad (\text{M2})$$

760 where $M = \max\{p/q, (1 - p)/(1 - q)\}$ and \hat{x} is chosen such that $A(\hat{x}) < 1$.

761 *Proof.* Let x^* be chosen such that $A(x^*) = 1 \Rightarrow e(x^*) = 0$. Let \hat{x} be chosen such that $A(\hat{x}) < 1$.
762 The resulting acceptance rate $\tilde{\alpha}$ can be states as follows.

$$764 \tilde{\alpha} = \sum_{x \in \{0,1\}} Q(x)(A(x) + e(x)) = \underbrace{\sum_{x \in \{0,1\}} Q(x)A(x)}_{= \alpha} + \underbrace{Q(\hat{x})e(\hat{x})}_{=: \delta}$$

767 We use the law \tilde{P} resulting from the acceptance rate $\tilde{\alpha}$ to compute both terms, for x^* and \hat{x} , of the
768 TV distance. Starting form [Equation \(5\)](#), we get

$$770 |\tilde{P}(x^*) - P(x^*)| = Q(x^*) \left| \frac{e(x^*)\alpha - A(x^*)\delta}{\alpha\tilde{\alpha}} \right| = Q(x^*) \left| \frac{\delta}{\alpha\tilde{\alpha}} \right| = \frac{Q(x^*)Q(\hat{x})|c|}{\alpha\tilde{\alpha}}$$

$$772 \leq \frac{Q(x^*)Q(\hat{x})c}{\alpha(\alpha - Q(\hat{x})c)}$$

774 and

$$775 |\tilde{P}(\hat{x}) - P(\hat{x})| = Q(\hat{x}) \left| \frac{e(\hat{x})\alpha - A(\hat{x})\delta}{\alpha\tilde{\alpha}} \right| = Q(\hat{x})|e(\hat{x})| \frac{\alpha - A(\hat{x})Q(\hat{x})}{\alpha\tilde{\alpha}}$$

$$778 = \frac{Q(\hat{x})(1 - Q(\hat{x}))|e(\hat{x})|}{\alpha\tilde{\alpha}} = \frac{Q(\hat{x})Q(x^*)|e(\hat{x})|}{\alpha\tilde{\alpha}}$$

$$780 \leq \frac{Q(x^*)Q(\hat{x})c}{\alpha(\alpha - Q(\hat{x})c)}$$

782 where we used the triangle-inequality in both cases. Since

$$783 \alpha = Q(x^*)A(x^*) + Q(\hat{x})A(\hat{x}) = Q(x^*) + Q(\hat{x})A(\hat{x}) \geq Q(x^*) = 1 - Q(\hat{x}),$$

784 computing the TV distance we get

$$785 D_{\text{TV}}(\tilde{P}, P) \leq \frac{Q(x^*)Q(\hat{x})c}{\alpha(\alpha - Q(\hat{x})c)} = \frac{(1 - Q(\hat{x}))Q(\hat{x})c}{\alpha(\alpha - Q(\hat{x})c)}$$

$$788 \leq \frac{\alpha Q(\hat{x})c}{\alpha(\alpha - Q(\hat{x})c)} = \frac{Q(\hat{x})c}{(\alpha - Q(\hat{x})c)}$$

$$791 = \frac{Q(\hat{x})Mc}{(1 - Q(\hat{x})Mc)}$$

792 \square

794 A.5 COMPARISON OF HALF-BIASED SAMPLING TO DIRECT SAMPLING

796 In the following corollary we are comparing the distributions introduced in [Appendix A.4](#) and biased
797 direct sampling.

798 **Corollary 1.** Let $P(x), Q(x)$ be Bernoulli distributions with parameters p and q , respectively, where
799 $P(x)$ is the target distribution that we want to sample from with rejection sampling and $Q(x)$ is the
800 proposal distribution. Further, let $\tilde{P}(x)$ denote the Bernoulli distribution resulting from a biased
801 accept/reject step where we assume that the acceptance probability $\tilde{A}(x)$ is biased with an additive
802 error $e(x)$, where $|e(x)| \leq c \in \mathbb{R}$, if $A(x) < 1$, see [Proposition 2, Equation \(M1\)](#). Further, let $\bar{P}(x)$
803 be the Bernoulli distribution with parameter \bar{p} biased by the same additive error as

$$804 \bar{p} = p + e, |e| \leq c. \quad (\text{L1})$$

805 Then, the worst-case total variation error of half-biased rejection sampling is smaller than that of
806 direct sampling if and only if

$$808 D_{\text{TV}}(\tilde{P}, P) < D_{\text{TV}}(\bar{P}, P) \iff \frac{Q(\hat{x})}{\alpha}(1 + c) \leq 1 \iff c < \frac{1}{Q(\hat{x})M} - 1, \quad (\text{L2})$$

809 where $M = \max\{p/q, (1 - p)/(1 - q)\}$, $\alpha = 1/M$, and \hat{x} is chosen such that $A(\hat{x}) < 1$.

810 *Proof.* We assume that there is an additive error e when sampling with \bar{P} as in [Equation \(L1\)](#). We
 811 can calculate the TV distance for \bar{P} as

$$812 \quad D_{\text{TV}}(\bar{P}, P) = |e| \leq c \quad (8)$$

814 Further, from [Proposition 2](#), [Equation \(M2\)](#) we know that

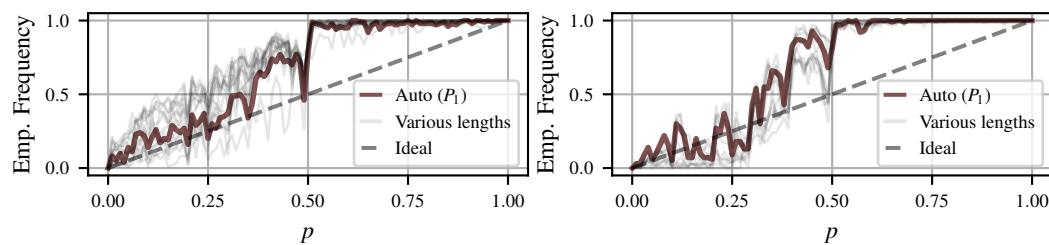
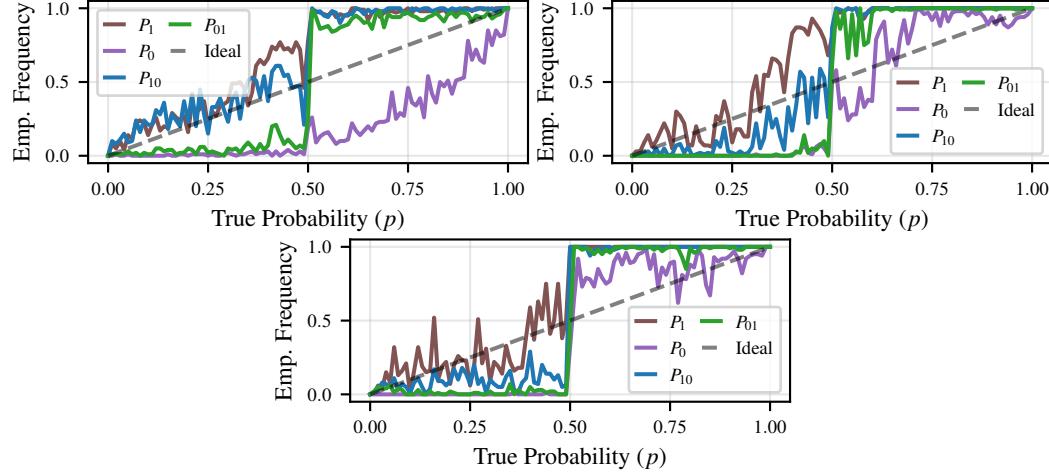
$$816 \quad D_{\text{TV}}(\tilde{P}, P) \leq \frac{Q(\hat{x})Mc}{(1 - Q(\hat{x})Mc)} \quad (9)$$

818 Therefore, the TV of half-biased rejection sampling ([Equation \(9\)](#)) to the ground truth P is smaller
 819 than the TV of direct sampling ([Equation \(8\)](#)) if

$$821 \quad \frac{Q(\hat{x})Mc}{(1 - Q(\hat{x})Mc)} < c \iff \frac{Q(\hat{x})}{\alpha}(1 + c) \leq 1 \iff c < \frac{1}{Q(\hat{x})M} - 1.$$

823 \square

824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **B ADDITIONAL RESULTS FOR BERNOUlli DISTRIBUTIONS**
865866 We present additional results and plots that were left out of the main text due to the page limit. The
867 additional results are consistent with the story discussed in the main text.
868869 **B.1 DIRECT SAMPLING CALIBRATION PLOTS FOR OTHER LLMs**
870871 Figure 11 presents the calibration plots with various reasoning length constraints for P_1 for GPT-4.1-nano
872 (left) and Qwen-2.5 72B (right). Overall, the models seem to be better calibrated for $p \in [0, 0.5]$
873 while showing a similar bias as Llama-3.1 70B (compare to Figure 5) across different reasoning
874 lengths.
875884 Figure 11: Calibration for various reasoning length constraints in direct sampling: GPT-4.1-nano
885 (left) and Qwen-2.5 72B (right) for P_1 .
886887 Figure 12 shows the calibration plots of direct sampling for GPT-4.1-nano, Qwen-2.5 72B, and
888 DeepSeekV3. The corresponding STVD scores are shown in Table 1. The corresponding VRS
889 calibration plots are shown in Figure 13.
890898 Figure 12: Calibration of direct sampling for GPT-4.1-nano (top left), Qwen-2.5 72B (top right), and
899 DeepSeekV3 (bottom).
900901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919

B.2 VRS CALIBRATION PLOTS FOR OTHER LLMs

920
921
922
923

In Figure 13 we provide calibration plots of VRS for GPT-4.1-nano (top left), Qwen-2.5 72B (top right), and DeepSeekV3 (bottom). In Table 1 we provide the corresponding STVD. We find that the smaller GPT-4.1-nano performs worse than the other two larger models. However, the plots tell the same story as the ones in the main text.

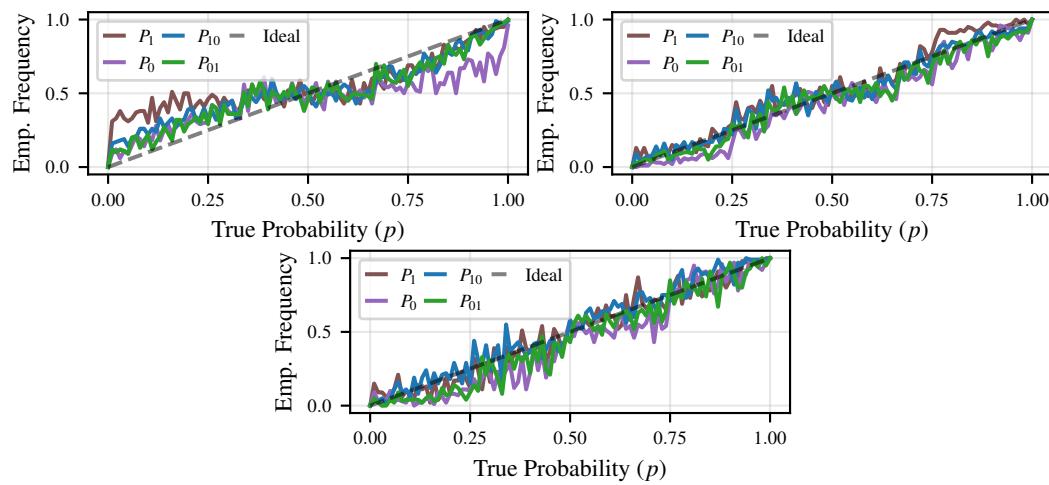
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939940
941
942
943
944

Figure 13: Calibration of VRS for GPT-4.1-nano (top left), Qwen-2.5 72B (top right), and DeepSeekV3 (bottom).

945
946
947
948B.3 VRS WITH CONSTANT M INSTRUCTION949
950
951
952
953
954
955
956
957
958
959

Figure 14 shows the calibration plot for VRS-M, which is an ablation of VRS by providing the model with the description on how M is computed. The corresponding STVD scores can be found in Table 2.

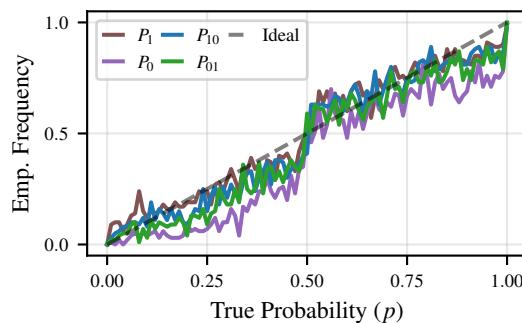
960
961
962
963
964
965
966
967
968
969
970
971

Figure 14: Calibration of VRS-M (Llama-3.1)

972 B.4 FULL RESULTS FOR PROMPT ABLATIONS
973974 We provide the full table corresponding to [Table 2](#) that includes standard deviation over 5 independent
975 trials for each method. The overall observation is the same as in [Section 6.1](#). The low standard
976 deviations indicate the observed effects are stable across runs.977 978 Table 3: Ablation STVD with Standard Deviation(\downarrow)

Method	P_1	P_0	P_{10}	P_{01}	mean
Direct	25.36 ± 0.13	24.79 ± 0.49	12.50 ± 0.35	16.59 ± 0.45	19.81 ± 0.15
VRS	5.73 ± 0.29	7.64 ± 0.23	5.36 ± 0.10	5.60 ± 0.10	6.08 ± 0.12
VRS-simple	15.53 ± 0.30	6.97 ± 0.34	13.99 ± 0.16	10.95 ± 0.32	11.86 ± 0.13
VRS-simple-M	11.19 ± 0.36	29.02 ± 0.46	14.08 ± 0.68	19.49 ± 0.74	18.45 ± 0.35
VRS-M	5.17 ± 0.28	11.40 ± 0.42	5.59 ± 0.23	7.28 ± 0.22	7.36 ± 0.14

985 B.5 ABLATIONS FOR OTHER LLMs
986987 We provide the full table corresponding to [Table 2](#) that includes all four LLMs. The overall observation
988 is the same as in [Section 6.1](#). Adding the M -instruction leads to degradations of the sampling
989 performance for both VRS-simple and VRS. Additionally, except for GPT-4.1-nano, for the three
990 other LLMs, VRS-simple improve the performance on average, indicating that the VRS prompt can
991 explain some of the improvement, but the effectiveness of the same prompt varies across LLMs.
992 Therefore, the general improvement of VRS is likely to come from the algorithm itself, rather than
993 prompt phrasing alone.994 995 Table 4: Ablation STVD for all models(\downarrow)

Method	Llama-3.1 70B				GPT-4.1-nano				DeepSeekV3				Qwen-2.5 72B							
	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean	P_1	P_0	P_{10}	P_{01}	mean
Direct	25.36	24.79	12.50	16.59	19.81	17.87	30.23	16.63	19.24	21.00	17.76	19.39	20.78	23.26	20.30	20.73	18.72	19.00	22.64	20.27
VRS	5.73	7.64	5.36	5.60	6.08	12.96	13.06	9.50	8.46	11.00	5.34	9.06	5.29	6.94	6.66	5.93	6.35	4.49	5.12	5.47
VRS-simple	15.53	6.97	13.99	10.95	11.86	36.83	22.05	25.56	22.29	26.68	8.23	20.25	11.19	15.59	13.82	13.55	8.21	10.69	8.69	10.28
VRS-simple-M	11.19	29.02	14.08	19.49	18.45	29.08	20.68	29.97	28.23	26.99	18.25	30.43	20.82	28.49	24.50	14.43	9.48	12.41	10.13	11.61
VRS-M	5.17	11.40	5.59	7.28	7.36	10.3	12.29	12.39	12.77	11.94	8.79	14.33	8.73	11.26	10.78	8.92	9.66	8.78	9.55	9.23

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 C ADDITIONAL RESULTS FOR BINOMIAL DISTRIBUTIONS

1028 In this section, we extend our results in to Binomial distributions. The binomial distribution P has
 1029 parameters p, n and the probability mass function is given by
 1030

$$1031 P(k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

1033 For two Binomial distributions P and Q with parameters n, p and n, q , respectively, we have
 1034

$$1035 M := \max_{k \in \{0, \dots, n\}} \left\{ \left(\frac{p}{q} \right)^k \left(\frac{1-p}{1-q} \right)^{n-k} \right\}. \quad (10)$$

1038 In the following [Appendix C.1](#), we show that both [Proposition 1](#) and [Proposition 2](#) generalize to
 1039 Binomial distributions (as well as other distributions with discrete state spaces, same distributional
 1040 form of P and Q , and a single outcome that maximizes the acceptance ratio) under the assumption
 1041 that the LLM arrives at the right decision if the acceptance ratio is 1 (which we observe to be true
 1042 for the Bernoulli case). Additionally, the bound presented in [Corollary 1](#) also generalizes under
 1043 the assumption that direct sampling yields a distribution within TV distance c of the target. In
 1044 [Appendix C.2](#), we verify the theoretical statements empirically and we observe that VRS can generate
 1045 samples with smaller TV error than direct sampling under several settings.
 1046

1047 C.1 EXTENDING THE THEORETICAL ANALYSIS

1049 We will establish a worst-case bound in terms of the TV distance between two Binomial distributions
 1050 P and Q for the case that the acceptance probability is biased for every k .
 1051

1052 **Proposition 3.** *Let $P(k), Q(k)$ be Binomial distributions with parameters n, p and n, q , respectively,
 1053 where P is the target distribution that we want to sample from with rejection sampling and $Q(k)$
 1054 is the proposal distribution. Further, let $\tilde{P}(k)$ denote the Binomial distribution resulting from
 1055 a biased accept/reject step where we assume that the acceptance probability $\tilde{A}(k)$ is biased as
 $\tilde{A}(k) = A(k) + e(k)$ where $|e(k)| \leq c \in \mathbb{R}$. Then,*

$$1057 D_{\text{TV}}(\tilde{P}, P) \leq \frac{Mc}{1 - Mc},$$

1058 where M is defined as in [Equation \(10\)](#).
 1059

1060 *Proof.* Let $B := \{0, \dots, n\}$. Note that $\alpha = \sum_{k \in B} Q(k)A(k) = \frac{1}{M}$. Assuming a biased acceptance
 1061 probability $\tilde{A}(x)$, we can split the resulting acceptance rate into
 1062

$$1063 \tilde{\alpha} = \sum_{k \in B} Q(k)(A(k) + e(k)) = \underbrace{\sum_{k \in B} Q(k)A(k)}_{= \alpha} + \underbrace{\sum_{k \in B} Q(k)e(k)}_{=: \delta},$$

1067 where α corresponds to the unbiased acceptance rate and δ denotes the deviation from it. Note that
 1068

$$1069 |\delta| = \sum_{k \in B} Q(k)|e(k)| \leq \sum_{k \in B} Q(k)c = c,$$

1071 and, therefore, $\tilde{\alpha} = \alpha + \delta \geq \alpha - c \geq 0$. We assume that $0 \leq \tilde{A}(k) \leq 1$. Let \tilde{A} denote the acceptance
 1072 event. We denote the resulting law of the accepted samples by \tilde{P} .
 1073

$$1074 \mathbb{P}(K = k \mid \tilde{A}) = \frac{\mathbb{P}(K = k, \tilde{A})}{\mathbb{P}(\tilde{A})} = \frac{Q(k)\tilde{A}(k)}{\tilde{\alpha}} =: \tilde{P}(k).$$

1076 We can now upper-bound a term in the TV distance as
 1077

$$1078 |\tilde{P}(k) - P(k)| = \left| \frac{Q(k)\tilde{A}(k)}{\tilde{\alpha}} - \frac{Q(k)A(k)}{\alpha} \right| \leq Q(k) \frac{c}{\alpha - c} \left(1 + \frac{A(k)}{\alpha} \right),$$

1080 which follows as in [Proposition 1](#). For the full TV distance, we get
 1081

$$\begin{aligned}
 D_{\text{TV}}(\tilde{P}, P) &= \frac{1}{2} \sum_{k \in B} \frac{c}{\alpha - c} Q(k) \left(1 + \frac{A(k)}{\alpha} \right) \\
 &= \frac{1}{2} \frac{c}{\alpha - c} \left(\sum_{k \in B} Q(k) + \frac{1}{\alpha} \sum_{k \in B} Q(k) A(k) \right) \\
 &= \frac{c}{\alpha - c} \\
 &= \frac{Mc}{1 - Mc}.
 \end{aligned}$$

□

1093 Note that we can extend [Proposition 3](#) to an arbitrary distribution with finite state space.
 1094

1095 In the following, we will assume that if $A(k^*) = 1$ there is no bias, i.e., no error ($A(k^*) = 1 \Rightarrow$
 1096 $e(k^*) = 0$). Additionally, we assume that there exists only one k^* which achieves $A(k^*) = 1$. For
 1097 all other $k \in B \setminus \{k^*\}$, we have $|e(k)| \leq c$.

1098 **Proposition 4.** *Let $P(k), Q(k)$ be Binomial distributions with parameters n, p and n, q , respectively,
 1099 where $P(k)$ is the target distribution that we want to sample from with rejection sampling and $Q(k)$
 1100 is the proposal distribution. Further, let $\tilde{P}(k)$ denote the Bernoulli distribution resulting from a
 1101 biased accept/reject step where we assume that the acceptance probability $\tilde{A}(k)$ is biased with an
 1102 additive error $e(k)$ where $|e(k)| \leq c \in \mathbb{R}$ as*

$$\tilde{A}(k) = \begin{cases} A(k) + e(k) & \text{if } A(k) < 1 \\ A(k) & \text{if } A(k) = 1 \end{cases},$$

1103 where $|e(x)| \leq c \in \mathbb{R}$. Further, we assume that there exists only one k^* , such that $A(k^*) = 1$. Then,
 1104

$$D_{\text{TV}}(\tilde{P}, P) \leq \frac{Mc\bar{q}_{k^*}}{1 - Mc\bar{q}_{k^*}}$$

1105 where M is defined as in [Equation \(10\)](#) and $\bar{q}_{k^*} = 1 - Q(k^*)$.
 1106

1107 *Proof.* Let k^* be chosen such that $A(k^*) = 1 \Rightarrow e(k^*) = 0$. The resulting acceptance rate $\tilde{\alpha}$ can be
 1108 states as follows

$$\tilde{\alpha} = \sum_{k \in B} Q(k)(A(k) + e(k)) = \underbrace{\sum_{k \in B} Q(k)A(k)}_{= \alpha} + \underbrace{\sum_{k \in B \setminus \{k^*\}} Q(k)e(k)}_{=: \delta}.$$

1109 For any k , we have
 1110

$$|\tilde{P}(k) - P(k)| = Q(k) \left| \frac{e(k)\alpha - A(k)\delta}{\alpha\tilde{\alpha}} \right|$$

1111 For k^* , we have $e(k^*) = 0, A(k^*) = 1$ and, therefore,
 1112

$$|\tilde{P}(k^*) - P(k^*)| = Q(k^*) \left| \frac{e(k^*)\alpha - A(k^*)\delta}{\alpha\tilde{\alpha}} \right| = Q(k^*) \frac{|\delta|}{\alpha\tilde{\alpha}}$$

1113 For $k \in B \setminus \{k^*\}$ we get
 1114

$$\begin{aligned}
 \sum_{k \in B \setminus \{k^*\}} |\tilde{P}(k) - P(k)| &= \sum_{k \in B \setminus \{k^*\}} Q(k) \left| \frac{e(k)\alpha - A(k)\delta}{\alpha\tilde{\alpha}} \right| \\
 &\leq \sum_{k \in B \setminus \{k^*\}} Q(k) \frac{|e(k)|\alpha + |A(k)|\delta}{\alpha\tilde{\alpha}} \\
 &= \frac{1}{\alpha\tilde{\alpha}} \left(\alpha \sum_{k \in B \setminus \{k^*\}} Q(k)|e(k)| + |\delta| \sum_{k \in B \setminus \{k^*\}} Q(k)A(k) \right)
 \end{aligned}$$

1134 Summing over all $k \in B$, we get
 1135

$$\begin{aligned}
 1136 \quad 2D_{\text{TV}}(\tilde{P}, P) &= \sum_{k \in B} |\tilde{P}(k) - P(k)| \\
 1137 &= |\tilde{P}(k^*) - P(k^*)| + \sum_{k \in B \setminus \{k^*\}} |\tilde{P}(k) - P(k)| \\
 1138 &\leq Q(k^*) \frac{|\delta|}{\alpha \tilde{\alpha}} + \frac{1}{\alpha \tilde{\alpha}} \left(\alpha \sum_{k \in B \setminus \{k^*\}} Q(k) |e(k)| + |\delta| \sum_{k \in B \setminus \{k^*\}} Q(k) A(k) \right) \\
 1141 &= \frac{1}{\alpha \tilde{\alpha}} \left(\alpha \sum_{k \in B \setminus \{k^*\}} Q(k) |e(k)| + |\delta| \left(Q(k^*) + \sum_{k \in B \setminus \{k^*\}} Q(k) A(k) \right) \right) \\
 1144 &= \frac{1}{\alpha \tilde{\alpha}} \left(\alpha \sum_{k \in B \setminus \{k^*\}} Q(k) |e(k)| + |\delta| \alpha \right) \\
 1148 &= \frac{2}{\alpha \tilde{\alpha}} \alpha |\delta| \\
 1151 &\leq \frac{2c\bar{q}_{k^*}}{\tilde{\alpha}}, \\
 1154
 \end{aligned}$$

1155 using

$$\sum_{k \in B \setminus \{k^*\}} Q(k) A(k) = \alpha - Q(k^*),$$

1159 and the upper-bound on $|\delta|$

$$1161 \quad |\delta| = \sum_{k \in B \setminus \{k^*\}} Q(k) |e(k)| \leq c \sum_{k \in B \setminus \{k^*\}} Q(k) = c(1 - Q(k^*)) =: c\bar{q}_{k^*}.$$

1163 We have

$$1165 \quad \tilde{\alpha} \geq \alpha - |\delta| \geq \alpha - c\bar{q}_{k^*}.$$

1166 We can rewrite this bound in terms of M as follows.

$$1168 \quad D_{\text{TV}}(\tilde{P}, P) \leq \frac{c\bar{q}_{k^*}}{\tilde{\alpha}} = \frac{c\bar{q}_{k^*}}{\alpha - c\bar{q}_{k^*}} = \frac{Mc\bar{q}_{k^*}}{1 - Mc\bar{q}_{k^*}}$$

1170 \square

1171 Comparing the bounds in this section to the bounds in the main text, we note that they are similar.

1173 **Remark 1** (Comparing the bounds to the main result.). While the bound in [Proposition 3](#) is the same
 1174 as [Proposition 1](#), the bound in [Proposition 4](#) is a generalization of the bound in [Proposition 2](#) by
 1175 replacing $Q(\hat{x}) = 1 - Q(x^*)$ by $1 - Q(k^*)$ (note that there are generally more than two k).

1176 With the derivations in this section, we can also generalize the bounds to other distributions.

1178 **Remark 2.** (Generalizing the bounds.) Note that we can extend [Proposition 3](#) to other distributions
 1179 with discrete state-space. Also, we can extend [Proposition 4](#) to other distributions with discrete state
 1180 space, under the assumption that P and Q are the same distribution and that there is only a single k^*
 1181 that achieves the condition $A(k^*) = 1$. The latter condition is a worst case condition, i.e., if there is
 1182 more than one k^* with $A(k^*) = 1$, the bound presented in [Corollary 2](#) is looser.

1183 In the following corollary we compare the worst case bounds derived in [Proposition 4](#) to a general
 1184 error in TV distance of $c \in \mathbb{R}$.

1186 **Corollary 2.** Let $P(k), Q(k)$ be Binomial distributions with parameters n, p and n, q , respectively,
 1187 where $P(k)$ is the target distribution that we want to sample from with rejection sampling and $Q(k)$
 1188 is the proposal distribution. Further, let $\tilde{P}(k)$ denote the Binomial distribution resulting from a

1188 biased accept/reject step where we assume that the acceptance probability $\tilde{A}(k)$ is biased with an
 1189 additive error $e(k)$, where $|e(k)| \leq c \in \mathbb{R}$, if $A(k) < 1$, see [Proposition 4](#). Additionally, let $\bar{P}(k)$ be
 1190 the Binomial distribution for which we assume

$$D_{\text{TV}}(\bar{P}, P) \leq c.$$

1193 Then, the worst-case total variation error of half-biased rejection sampling is smaller than that of
 1194 direct sampling if and only if

$$D_{\text{TV}}(\tilde{P}, P) < D_{\text{TV}}(\bar{P}, P) \iff \frac{\bar{q}_{k^*}}{\alpha}(1 + c) \leq 1 \iff c < \frac{1}{\bar{q}_{k^*} M} - 1.$$

1198 where M is defined as in [Equation \(10\)](#) and $\bar{q}_{k^*} = 1 - Q(k^*)$.

1200 *Proof.* Let

$$D_{\text{TV}}(\bar{P}, P) = |e(x)| \leq c, \quad (11)$$

1203 and

$$D_{\text{TV}}(\tilde{P}, P) \leq \frac{Mc\bar{q}_{k^*}}{1 - Mc\bar{q}_{k^*}}, \quad (12)$$

1207 following the bound in [Proposition 4](#). Then,

$$\frac{Mc\bar{q}_{k^*}}{1 - Mc\bar{q}_{k^*}} < c \iff \frac{\bar{q}_{k^*}}{\alpha}(1 + c) \leq 1 \iff c < \frac{1}{\bar{q}_{k^*} M} - 1.$$

1211 \square

1212 In [Corollary 2](#), we assume $D_{\text{TV}}(\bar{P}, P) \leq c$ instead of an additive error on the parameter of the
 1213 Bernoulli distribution as in [Corollary 1](#).

1215 **Remark 3.** (*Assumptions in Corollary 2.*) In [Corollary 2](#) we assume that the distribution \bar{P} (eventually
 1216 sampled from the LLM) is biased by $D_{\text{TV}}(\bar{P}, P) \leq c$ which is in contrast to [Corollary 1](#) where
 1217 we assume an additive error on the parameter \bar{p} , i.e., $\bar{p} = p + e$, $|e| \leq c$. This is due to the fact that
 1218 in the Bernoulli case ([Corollary 1](#)), we have a clear picture on the functional form of the error (an
 1219 additive shift on the parameter). However, in the Binomial case (and in the case of other discrete
 1220 distributions), we do not have an idea on how the error comes about, instead we assume an error
 1221 budget of $c \in \mathbb{R}^+$ measured in TV distance. For more informed bounds, future work might investigate
 1222 the structure of samples, given by LLMs, for other distributions.

1223 C.2 EMPIRICAL EVALUATION OF VRS ON BINOMIAL DISTRIBUTIONS

1225 We evaluated VRS v.s. direct sampling on Q being $\text{Binomial}(n, 0.5)$ and P being $\text{Binomial}(n, p)$
 1226 for $n \in \{1, 2, 3, 4, 5\}$, across 11 values of $p \in \{0.0, 0.1, \dots, 1.0\}$ (unlike in the main text which is
 1227 across 101 values of p). Resulting STVD \downarrow (summed over all p values) for Llama-3.1 70B is showed
 1228 in [Table 5](#). We can see that with larger n , i.e., the distribution being more complex, the STVD for
 1229 both direct sampling and VRS is getting larger. Nevertheless, the VRS still results in much smaller
 1230 STVD than direct sampling.

1231 1232 Table 5: STVD (\downarrow) for Binomial distributions.

Method	$n = 1$	$n = 2$	$n = 3$	$n = 4$	$n = 5$
Direct	1.32	2.50	3.89	3.78	4.08
VRS	0.52	1.19	2.23	2.46	2.74

1242 **D EXPERIMENT SETUP DETAILS**
12431244 In this section, we provide the pseudocode algorithms for VRS in the setting of Bernoulli, and the
1245 details for the computational resources used for our experiments.
12461247 **D.1 PSEUDOCODE FOR VRS WITH BERNOULLI**
12481249 **Algorithm 1** VRS for Bernoulli
12501251 Given: language descriptions for the target $P(x; p)$, language descriptions for the proposal $Q(x; 0.5)$,
1252 number of samples N ;

```

1253 samples = [];
1254 for n = 1, · · · , N do
1255   repeat
1256     | s ~ Bern(0.5);           // Python Sampler
1257     | resp = LLM(P, Q, s, template); // LLM API call
1258   until resp = T               // T for 'Accept', F for 'Reject';
1259   samples.append(s);
1260 end
1261 return samples

```

1263 **D.2 COMPUTATIONAL RESOURCES**
12641265 We host open-source models (e.g., Llama-3.1 70B and Qwen-2.5 72B) using the vLLM [9] framework
1266 on 4 Nvidia A100 GPUs or 4 Nvidia H100 GPUs. Generating 100 samples from the LLMs takes
1267 approximately 25 seconds in our setup.
12681269 **Licenses** For the open-source models, we use Llama-3.1 (LLAMA 3.1 COMMUNITY LICENSE
1270 AGREEMENT), DeepSeekV3 (DEEPSEEK LICENSE AGREEMENT), and Qwen-2.5 (Qwen
1271 LICENSE AGREEMENT). We buy the service from OpenAI to use GPT-4.1-nano.
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

E BROADER DISCUSSIONS

1297
 1298 We do recognize the idea of using natural language to define distributions and using LLMs as samplers
 1299 for such distributions is very much at its early stage, and it is not fully recognized by many at the
 1300 moment. However, as LLMs are playing an increasingly larger role in computing, their ability to
 1301 generate faithful samples has to be studied and improved, which is closely tied to topics like fairness
 1302 and safety. We are not hoping to solve this problem entirely in a single work, instead, we want to
 1303 use the simplest distribution, i.e., the Bernoulli, to raise the awareness and thoroughly study this
 1304 overlooked problem, and to investigate possible fixes.

1305 During the project, we came across many interesting discussions, which we believe are worth sharing
 1306 with the reader in this section. Some discussions are formatted in Q&A below.

1308

E.1 WHY NOT ASK THE LLM TO CALL AN EXTERNAL SAMPLER?

1309 We fully agree that when an external tool, e.g., Python-based sampler, is available and callable, it can
 1310 be used to generate unbiased samples efficiently. However, our work is not positioned as a replacement
 1311 for such tool-assisted approaches. Instead, we focus on a different and complementary question:

1312 *“Can large language models, operating solely in natural language, simulate stochastic processes
 1313 faithfully without access to external tools or code?”*

1314 This question arises from realistic and increasingly common LLM deployment scenarios where:
 1315 LLMs act as autonomous *agents* expected to make decisions involving chance (e.g., tie-breaking,
 1316 randomized planning), interfaces are purely natural language, with no tool execution available or
 1317 permitted, even when tools are available, their invocation may compromise interpretability, modularity,
 1318 or security (e.g., sandboxed educational or fairness-sensitive settings).

1319 In such settings, we are left with the LLM itself as the only accessible computational mechanism. The
 1320 goal of VRS is to explore whether LLMs can simulate stochasticity internally, using only structured
 1321 prompting. This is not about generating perfect randomness, but about understanding and improving
 1322 the LLM’s native stochastic behavior, an ability that is underexplored but increasingly relevant as
 1323 LLMs are deployed as autonomous agents and decision-makers.

1324 **More broadly**, VRS is not just a sampling method, *it is a case study in how to build and analyze
 1325 algorithmic prompts in a principled way*. Rather than relying on heuristic prompt engineering,
 1326 we derive a prompt-based implementation of rejection sampling and provide formal theoretical
 1327 guarantees for its behavior under model bias. This methodology, i.e., analyzing prompts through the
 1328 lens of classical algorithms and error bounds, offers a new paradigm for prompt design that bridges
 1329 empirical performance with formal analysis.

1330 **The analogy here is research on LLMs’ math capabilities:** although it’s trivial to solve math prob-
 1331 lems by calling a calculator, we still study whether LLMs can reason through equations in language,
 1332 because it tells us something fundamental about their internal representations and limitations. In the
 1333 same spirit, VRS asks whether LLMs can simulate randomness themselves, not by outsourcing it, but
 1334 by verbalizing and executing probabilistic logic in language.

1338

E.2 HOW PRACTICAL IS IT TO USE LLMs AS SAMPLERS?

1339 This work represents an early step toward enabling and understanding more advanced verbalized
 1340 probabilistic algorithms. The setup in this paper, focused on Bernoulli distributions, is intentionally
 1341 simple, not because the problem is trivial, but because it offers a concrete foundation to study a deep
 1342 and emerging capability: *probabilistic reasoning in natural language*.

1343 We fully agree that in classical settings, sampling should rely on tools, which offer well-defined
 1344 guarantees. However, our motivation arises from realistic and increasingly common LLM deployment
 1345 scenarios where: LLMs act as autonomous *agents* expected to make decisions involving chance (e.g.,
 1346 tie-breaking, randomized planning), interfaces are purely natural language, with no tool execution
 1347 available or permitted, even when tools are available, their invocation may compromise interpretability,
 1348 modularity, or security (e.g., sandboxed educational or fairness-sensitive settings).

1350 While invoking an external tool is technically sound, relying on tool use as a universal solution may
 1351 not be realistic or sufficient. Many LLM-based systems already operate in tool-free settings, and users
 1352 (often unknowingly) trust the LLM’s verbal reasoning to simulate stochasticity. We view VRS not as
 1353 a replacement for principled samplers, but as a practical, language-native safeguard that significantly
 1354 reduces sampling error in such environments.

1355 In the long term, this raises several foundational questions: How can we understand and control
 1356 stochastic behavior in LLMs through reasoning? What are the algorithmic abstractions that can
 1357 be embedded within language? How robust are these probabilistic reasoning? These are open and
 1358 important challenges. LLMs currently do not offer distributional guarantees. But if we want to reason
 1359 about and improve their probabilistic reasoning capabilities, we must begin somewhere, and this
 1360 work aims to provide that conceptual and empirical example.

1361 Finally, while VRS currently assumes access to an explicit target distribution $P(x)$, a compelling
 1362 future direction is to extend this framework to implicitly defined distributions, where $P(x)$ is only
 1363 described semantically or via examples, rather than analytically. In such cases, tool use may no longer
 1364 help, as there is no closed-form function to evaluate. Interestingly, our findings in [Section 4.1](#) show
 1365 that LLMs are often better at recognizing whether a sample fits a distribution than at generating it.
 1366 This discriminator-like ability could inspire new verbalized sampling paradigms, perhaps analogous
 1367 to adversarial models like GANs, where judgment about sample quality is used to refine generative
 1368 behavior.

1369 In short, we agree that faithful sampling from LLMs is a difficult and unresolved problem, but it is
 1370 precisely because it is difficult, and increasingly relevant, that we believe it deserves attention now.
 1371

1372 E.3 DOES VRS INFLUENCE OR ALIGN THE LLM’S INTERNAL LOGITS?

1374 This question gets to the heart of why we believe VRS is both interesting and distinct from other
 1375 approaches.
 1376

1377 **VRS does not modify or align logits.** Unlike direct sampling, where the LLM is prompted to
 1378 output “0” or “1” and the resulting logits directly correlate with the sample distribution, VRS prompts
 1379 the model to sample a decision to accept (T) or reject (F) the proposed sample. Thus, VRS operates
 1380 over a different output space and does not influence or depend on the logits used in direct sampling.

1381 While VRS does not try to align the model’s internal probabilities, it does yield samples that better
 1382 match the target distribution. As shown in [Section 6.2](#), this is not due to logit manipulation but to
 1383 the algorithmic structure imposed by the prompt. This distinguishes VRS from tool-calling (which
 1384 delegates randomness to external code) and from methods requiring internal model access.
 1385

1386 **VRS intentionally accepts biased logits and works around them.** In contrast to methods that
 1387 modify LLM behavior by adjusting weights (via fine-tuning) or prompts (via prompt engineering),
 1388 VRS embraces the fact that the logits are biased and uses a probabilistic mechanism (executed by
 1389 LLMs) to correct for it, without needing access to or control over the internal distributions. This
 1390 is conceptually aligned with classical sampling theory: for decades, rejection sampling and similar
 1391 methods have been used to generate unbiased samples from biased sources. VRS brings this idea to
 1392 the language interface of LLMs.
 1393

1394 E.4 Is VRS COMPUTATIONALLY INTENSIVE?

1396 VRS incurs higher computational cost than direct sampling, and this is both expected and meaningful.
 1397 The key point, however, is that *VRS is an algorithm that operates in a fundamentally different space: the informal, natural language domain.*
 1398

1399 In classical settings, sampling algorithms like rejection sampling or MCMC are implemented in
 1400 formal programming environments (e.g., Python). These are efficient, but they also assume the user
 1401 has already formalized the problem, encoded it in code, and specified exact parameters (e.g., manually
 1402 calculated the acceptance probability). In contrast, VRS addresses a very different use case: the user
 1403 specifies the problem informally in natural language, and the computation itself happens within the
 language space.

1404 This shift, what we might call **verbalized computing**, has important implications. While inference
 1405 in this space may be more computationally expensive, it is also more accessible. A user can invoke
 1406 VRS by simply describing a desired distribution in plain text. There is no need to write or call code,
 1407 craft sampling functions, or define rejection logic programmatically. This convenience is not free,
 1408 but it lowers the barrier of entry for users who otherwise would not engage with formal stochastic
 1409 computation. Viewed this way, **the “cost” of VRS is offset by the elimination of the cost of**
 1410 **formalization, which is often unacknowledged in computational models, yet a dominant factor**
 1411 **in practice.**

1412 Moreover, *we believe this reframes how we think about computational complexity in the LLM era.*
 1413 Traditional complexity theory does not account for the cost of formalization, and directly starts with
 1414 an already formalized problem to analyze its complexity. In LLM-based systems, where both problem
 1415 specification and computation occur in natural language, the relevant complexity includes the effort
 1416 saved by not formalizing the task, and that’s where natural-language-based algorithms like VRS
 1417 shines.

1418 We also want to clarify that the actual sampling overhead of VRS is bounded and modest in the
 1419 Bernoulli case. Since we use a symmetric proposal distribution (i.e., $q = 0.5$), the worst-case
 1420 acceptance probability is 0.5, meaning we expect to draw twice as many proposals as needed samples
 1421 in the worst case. This remains in the same complexity class: generating n accepted samples via
 1422 VRS still takes $\mathcal{O}(n)$ calls to the model.

1423

1424 E.5 DOES USING A PROGRAMMATIC SAMPLER FOR THE PROPOSAL Q WEAKEN THE RESULT?

1425

1426 In our implementation, the proposed sample $s \sim Q$ (where $Q = \text{Bern}(0.5)$) is generated programmatically.
 1427 This can be done using standard libraries (e.g., Python’s random module) or deterministically,
 1428 for example by submitting half the prompts with $s = 1$ and the other half with $s = 0$. Nevertheless,
 1429 we believe it does not weaken the results for the following reasons:

1430 **The LLM’s stochastic behavior is still central.** A crucial step in our method is whether the LLM
 1431 can reliably carry out the accept/reject decision in a probabilistic way, purely through reasoning over
 1432 language. This is precisely where LLMs have struggled in direct sampling, and where VRS shows a
 1433 surprising improvement. The fact that the input s is sampled externally does not diminish this core
 1434 finding.

1435

1436 **Programmatic randomness is standard in computational sampling.** Virtually all stochastic
 1437 processes in simulations or machine learning, whether it’s sampling from a Gaussian, Bernoulli, or
 1438 any complex distribution, ultimately rely on deterministic procedures to generate pseudo-randomness.
 1439 For example, diffusion models begin with noise sampled from a programmatic Gaussian, which is
 1440 then transformed into structured outputs (e.g., images).

1441

1442 **VRS mirrors this classical setup.** In traditional rejection sampling, we begin with samples from a
 1443 simpler proposal distribution (often programmatically generated), then apply an acceptance rule to
 1444 match the target. VRS follows this paradigm: $s \sim Q$ comes from a simple source, while the LLM
 1445 plays the key role of evaluating and filtering these proposals to better approximate P .

1446 In short, while VRS relies on a basic external sampler for proposals (as do many probabilistic
 1447 systems), it is the LLM’s ability to perform probabilistic filtering in natural language that lead to the
 1448 result.

1449

1450 E.6 Is VRS A FEW-SHOT PROMPTING METHOD?

1451

1452 VRS is not a few-shot prompting method, but a structured natural-language implementation of a
 1453 classical algorithm. In VRS, the LLM is given a single instance of a target distribution, a proposal
 1454 distribution, and a candidate sample. It is then asked, via a fixed instruction template, to reason about
 1455 whether to accept or reject the sample based on this input information. This process is repeated
 1456 independently to build samples from the target distribution.

1457 There are no demonstration examples, no in-context learning, and no adaptation from previous queries.
 1458 Instead, the LLM is executing a natural-language instruction (accept/reject logic) conditioned on input

1458 values, resembling algorithmic reasoning more than imitation of the inputs (also, there is nothing to
1459 imitate with). Each invocation of VRS is stateless, self-contained, and purely instructional.
1460

1461 This structure makes VRS fundamentally different from few-shot prompting. It embodies a form of
1462 natural language computation, where prompts are used not to imitate prior outputs, but to implement
1463 algorithmic decisions.
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **F EXAMPLE SAMPLING LOGS**
15131514 **F.1 DIRECT SAMPLING (LLAMA-3.1, CoT LENGTH ‘AUTO’, $P_1(x = 1) = 0.75$)**
15151516 **Sampling History: Direct Sampling**
15171518 **Sampling Prompt** —————

1519 You are a sampler. You will come up with a sample based on the descriptions below.

1520 **** Descriptions: ****

1521 *Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.75.*

1522 Please give your output strictly in the following format:

1523 “

1524 Explanations:

1525 [Your step-by-step analyses and results; You DO NOT have access to a computer or a random number generator]

1526 Output:

1527 [Your output MUST be an integer in {0, 1}]

1528 ”

1529 Please ONLY reply according to this format, don’t give me any other words.

1530 **Sampling Output (1 out of 100 queries)** —————

1531 Explanations:

1532 Since the probability of 1 is 0.75, we can use a method like “quartering” to make a decision. Flip a fair coin three times. If all three flips are heads, the result is 0. If any of the flips are tails, the result is 1.

1533 Assuming the flips are: tails, heads, tails, which is a valid outcome.

1534 Output:

1535 1

1536 **Sampling Output (1 out of 100 queries)** —————

1537 Explanations:

1538 To generate a sample from the set {0, 1} with a probability of 1 being 0.75, we can use a simple manual method. Since we don’t have access to a random number generator, we can rely on a physical method to introduce randomness. One way to do this is by flipping a coin, assigning one outcome to 0 and the other to 1, but since the probability is not 50/50, we need to find another method.

1539 Given the constraint of the format and the lack of access to a computer or random number generator, we’ll simulate a situation that mimics the probability. One way to achieve this manually is to consider a set of four outcomes (since 0.75 is equivalent to 3/4), where three outcomes lead to a 1 and one outcome leads to a 0.

1540 Let’s assign these outcomes to the numbers 1-4: 1, 2, and 3 for 1; 4 for 0.

1541 Output:

1542 1

1543 **Many outputs for the rest i.i.d. queries ...**1544 **Sampling Output (1 out of 100 queries)** —————

1545 Explanations:

1546 Given the probability of 1 is 0.75, I will simulate this by dividing the interval [0, 1] into two parts: [0, 0.75) for 1 and [0.75, 1) for 0. Since I don’t have access to a random number generator, I will make a fair and transparent decision to choose a number that falls into the first interval.

1547 Output:

1548 1

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 F.2 VRS (LLAMA-3.1, COT LENGTH ‘AUTO’, $P_1(x = 1) = 0.75$)

1567

1568

1569

1570

Sampling History: Verbalized Rejection Sampling

Sampling Prompt (the proposed sample being 1)

You are a rejection sampler. Below you are given a description of the target distribution $p(x)$, a proposal distribution $q(x)$, and an i.i.d. sample from $q(x)$. You need to decide whether or not to accept the sample.

Target Distribution $p(x)$:

When sampling from the set {0, 1} the probability of 1 is 0.75.

Proposal Distribution $q(x)$:

A Bernoulli distribution with probability of having 1 in the set of {0,1} being 0.5

Sample from $q(x)$:

1

Please give your output strictly in the following format:

“

Explanations:

[Your step-by-step analyses and results; You DO NOT have access to a computer or a random number generator]

Output:

[Your output MUST be a letter in {T, F}]

”

Please ONLY reply according to this format, don't give me any other words.

Sampling Output when the proposed sample is 1 (1 out of many queries)

Explanations:

First, calculate the probability of the sample from the target distribution $p(x)$ and the proposal distribution $q(x)$. $p(1) = 0.75$ and $q(1) = 0.5$. Next, calculate the acceptance probability. Since $p(1)/q(1) = 0.75/0.5 = 1.5$, which is greater than 1, we will always accept this sample.

Output:

T

Sampling Output when the proposed sample is 1 (1 out of many queries)

Explanations:

To determine whether to accept the sample, we need to calculate the probability of acceptance. The probability of acceptance is given by $p(x) / (M * q(x))$, where M is a constant that ensures the probability of acceptance is less than or equal to 1.

First, we need to find M . The maximum value of $p(x)$ is 0.75, and the maximum value of $q(x)$ is 0.5. Therefore, $M = \max(p(x)) / \min(q(x)) = 0.75 / 0.5 = 1.5$.

Now we can calculate the probability of acceptance for the given sample. $p(1) = 0.75$ and $q(1) = 0.5$. Therefore, the probability of acceptance $= p(1) / (M * q(1)) = 0.75 / (1.5 * 0.5) = 1$.

Since the probability of acceptance is 1, we accept the sample.

Output:

T

Many outputs for the rest i.i.d. queries ...

Sampling Output when the proposed sample is 0 (1 out of many queries)

Explanations:

To decide whether to accept the sample from $q(x)$, we need to calculate the probability of acceptance using the formula for rejection sampling. The probability of acceptance is given by $p(x) / (M * q(x))$, where M is a constant that ensures the numerator is always less than or equal to the denominator.

First, we need to calculate the value of M . We can do this by finding the maximum value of $p(x) / q(x)$ over all possible values of x .

For $x = 0$, $p(0) = 0.25$ and $q(0) = 0.5$, so $p(0) / q(0) = 0.5$.

For $x = 1$, $p(1) = 0.75$ and $q(1) = 0.5$, so $p(1) / q(1) = 1.5$.

Therefore, the maximum value of $p(x) / q(x)$ is 1.5, so we can set $M = 1.5$.

Now, we can calculate the probability of acceptance for the sample $x = 0$:

$p(0) / (M * q(0)) = 0.25 / (1.5 * 0.5) = 0.25 / 0.75 = 0.3333$.

Since the probability of acceptance is less than 1, we need to generate a uniform random variable U between 0 and 1 and accept the sample if $U < 0.3333$. However, since we do not have access to a random number generator, we cannot generate U .

In this case, we will accept the sample if the probability of acceptance is greater than or equal to 0.5 (a rough estimate). Since $0.3333 < 0.5$, we reject the sample.

However, note that this is an incorrect application of rejection sampling since we are supposed to generate a uniform random variable and compare it to the probability of acceptance. Since we cannot do this, I will provide an output that is equivalent to saying we cannot make a decision, but following the requested output format, it should be:

Output:

F

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673