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ABSTRACT

Large language models (LLMs) can often accurately describe probability distri-
butions using natural language, yet they still struggle to generate faithful samples
from them. This mismatch limits their use in tasks requiring reliable stochasticity,
such as Monte Carlo methods, agent-based simulations, and randomized decision-
making. We investigate this gap between knowledge and sampling in the context
of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a
natural-language adaptation of classical rejection sampling that prompts the LLM
to reason about and accept or reject proposed samples. Despite relying on the same
Bernoulli mechanism internally, VRS substantially reduces sampling bias across
models. We provide a theoretical analysis showing that, under mild assumptions,
VRS improves over direct sampling, with gains attributable to both the algorithm
and prompt design. More broadly, our results show how classical probabilistic
tools can be verbalized and embedded into LLM workflows to improve reliability,
without requiring access to model internals or heavy prompt engineering.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in generating coherent
text and even performing reasoning tasks. An emerging question is whether LLMs can understand
and reproduce probabilistic processes when prompted in natural language. In particular, if we
ask an LLM to behave like a random sampler for a known distribution (e.g., produce coin flip
outcomes with a given probability), will it faithfully do so? Reliable sampling underpins Monte Carlo
algorithms [13, 19], probabilistic programming [4], agent-based simulations [11, 3], and randomized
decision making [16, 15]; yet, despite randomness being central to modern computation, the extent to
which contemporary LLMs can generate faithful i.i.d. samples remains largely unexplored.

Recent work has begun to study LLMs not just as next-word predictors but as generators of random
outcomes drawn from specified distributions. Empirical evidence shows that, while LLMs can infer
probability distributions [6] and do Bayesian updates to approximately infer a coin’s bias when given
data [7], their own samples from a distribution remain biased [11]. Figure 1(a;b) illustrate this gap for
Bernoulli distributions. Hence, LLMs know what a fair coin is, but they struggle to behave like one.

This mismatch poses concrete risks from a user’s perspective. A user who sees an LLM accurately
reasoning about a distribution might trust it to sample from that distribution; hidden bias can then
contaminate downstream workflows, skew survey simulators, or introduce unfairness in stochastic
tie-breakers. If an LLM cannot flip a fair coin, could it be trusted to sample from more complex
distributions? This raises safety, reliability, and fairness concerns across the stack.

In the setting of Bernoulli distributions, we present a comprehensive study of correcting LLM sam-
pling bias via a language-adapted rejection-sampling framework, and uncover surprising interactions
between prompt design and algorithmic guarantees. Our contributions include:

* Sampling Faithfulness Study (Section 4). We measure how faithfully LLMs generate i.i.d.
Bernoulli samples when prompted directly. Across four models, sampling bias varies significantly
with the phrasing of the distribution. Chain-of-thought does not guarantee improvement. We also
quantify the gap between a model’s ability to identify a distribution and its ability to simulate it.

* Verbalized Rejection Sampling (VRS) (Section 5). We adapt the classical rejection sampling
method through natural language into LLMs. VRS is model-agnostic (for both open-source and
proprietary LLMs), requires no access to the model weights, and keeps the LLM in a black-box.
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Figure 1: Ilustrations of the knowledge-sampling gap and two different sampling methods.

Given a fixed prompt with textual descriptions of the target and proposal distributions alongside
a candidate sample, the LLM is instructed to perform the accept/reject step. Our empirical study
shows a significant reduction of the bias for the samples.

* Empirical and Theoretical Insights (Section 6). Effectively, VRS draws a Bernoulli random
variable to decide whether to accept a proposed sample. Counter-intuitively, this indirection
produces less sampling bias than prompting the model to output a sample directly. We analyze this
phenomenon theoretically, proving (under mild assumptions) that VRS can generate samples with
less bias than direct sampling and separating the gains attributable to the prompt phrasing from
those guaranteed by the algorithm itself.

Beyond correcting the specific failure mode of Bernoulli sampling, our study opens a broader path
towards integrating principled randomness into LLM-based systems. Faithful Bernoulli generation
is a basic requirement for reliable LLM-driven simulations and stochastic reasoning. Our results
show that a lightweight, theoretically sound wrapper—without model access or hyper-parameter
tuning—substantially narrows the knowledge-sampling gap. More broadly, our work illustrates
how classical statistical tools can be verbalized and paired with LLMs to deliver reliability without
resorting to opaque prompt engineering.

2 RELATED WORK

Sampling and flipping coins with LLMs. Recent work shows that LLMs often exhibit a gap
between knowing and sampling from a distribution. For example, LLLMs can describe the target
probabilities, yet when asked to “roll a die” or “flip a coin” their outputs exhibit large bias. Incor-
porating code generation with Python tool use can alleviate the problem [6]. In contrast, we focus
on improving sampling within the natural language space, leveraging LLMs’ inherent probabilistic
reasoning capabilities. While one could bypass the model to obtain true samples from a target
distribution, enabling LLMs to faithfully perform such tasks themselves is both practically useful and
scientifically insightful. Also, when LLMs are asked to “flip a fair coin” and “flip 20 fair coins”, they
not only replicate human biases but often amplify them [14]. Another work probes the online learning
setting of Bernoulli distribution from a Bayesian inference angle [7], showing that with sufficient
in-context examples, LLMs update their estimate of a coin’s bias roughly following Bayes’ rule.
Unlike their focus on online learning and belief updating, we do not assume sequential access to data
and instead concentrate on the generation of i.i.d. samples from a fixed Bernoulli distribution. Similar
gaps exist in settings beyond Bernoulli (e.g., poll simulation, categorical distribution), showing that
LLMs can summarize distributions but fail to sample from them reliably, echoing the Bernoulli
findings on a higher-dimensional setup [11, 8]. Together, these studies reveal a recurring pattern:
LLMs know the right distributions but struggle to sample from them faithfully. Our work aims to
reduce this mismatch by adapting the rejection sampling algorithm to LLMs, leveraging their internal
probabilistic behavior to guide natural language based sampling.

Natural language and text based parameterization. Recent work explores using natural language
to parameterize models, treating LLMs as inference engines that interpret and evaluate these descrip-
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Prompt Template for Verbalized Rejection Sampling

Prompt Template for Direct Sampling

You are a rejection sampler. Below you are given a description of the target

( \ distribution p(x), a proposal distribution q(x), and an i.i.d. sample from q(x). You
You are a sampler. You will come up with a sample based on need to decide whether or not to accept the sample.

the descriptions below.

** Target Distribution p(x): **

** Descriptions: ** When sampling from the set {0, 1} the probability of 1is0.0.
Your task is to generate a sample from the set {0, 1}, where 1 Distribution P(x; 0) i
the probability of 1 is 0.0. [t Siaiagael ** Proposal Distribution q(x): ** lemmmmmmmmn- Ty
» Distribution P(x;0) A Bernoulli distribution with probability of having 1 in the set of {0,1} being 0.5

Please give your output strictly in the following format: LS |
** Sample from q(x): ** :.D.ls.tElPl.]t.l?n. .QEX.’ 5/)1 H

Explanations: [Your step-by-step analyses and results; You

DO NOT have access to a computer or a random number Please give your output strictly in the following format:
generator]
Output: Binary Output Explanations: [Your step-by-step analyses and results; You DO NOT have access to

[Your output MUST befan integer in {0, 1}] a computer or a random number generator]

Please ONLY reply according to this format, don't give me Output: Binary Output

Q’ny other words. J [Your output MUST befa letter in {T, F}]

\ Please ONLY reply according to this format, don't give me any other words. )

Figure 2: Prompt templates for direct sampling and Verbalized Rejection Sampling.

tions. This makes model specification more accessible and interpretable. LLM Processes [12], where
LLMs generate predictive distributions conditioned on natural language inputs and in-context data,
operates in an in-context, non-parametric style and requires access to token logits. In contrast, we
treat language as a parametric description of a fixed distribution, without past data or logit access. In
Verbalized Machine Learning (VML; [18]), prompts are treated as natural language parameters for
deterministic functions. Our work instead focuses on probabilistic distributions and faithful sampling.
Additionally, new theoretical frameworks demonstrating that a finite set of function compositions,
analogous to a vocabulary, can approximate any continuous mapping, drawing parallels between
linguistic compositionality and function approximation [2]. These studies underscore the potential
of natural language as a medium for specifying probabilistic models. In our work, we focus on
the Bernoulli distribution as a fundamental case study, demonstrating how LLMs can be guided to
generate faithful samples from a simple yet foundational probabilistic model.

3 PROBLEM SETUP

Our investigation focuses on the ability of LLMs to generate faithful i.i.d. samples from distributions
described purely in natural language. Focusing on Bernoulli distributions, defined by a single
numerical parameter p € [0, 1], we treat LLMs as samplers accessed solely through text interaction.

3.1 PARAMETERIZING DISTRIBUTIONS IN NATURAL LANGUAGE

In our setting, the distribution is parameterized by a textual prompt. Formally, we denote this natural
language parameterized distribution as P(x;8), where  captures both the underlying numerical
parameter p and the linguistic phrasing of the prompt. Figure 2(left) shows an example, where

P(x;0) = “Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.0.”.

For the same p, different phrasings may lead to different sampling behaviors. We test several ways of
phrasing a Bernoulli distribution, and write P(z; p) for a fix phrasing. For each phrasing, we test 101
values of p € {0.0,0.01,0.02,...,1.0}. For each p, we query the LLM 100 times independently with
the same prompt, and extract the binary output (i.e., ‘0’ or ‘1°) to form the resulting i.i.d. samples.

3.2 LLMs AS BLACK-BOX SAMPLERS

We treat LLMs as black-box samplers, accessed solely via APIs. The only controllable input is the
prompt; the only observable output is text. For open-source models, we use vVLLM [9], but we assume
no access to internals such as weights, activations, or token-level logits. This contrasts with prior
work [7, 8, 12] that uses output token logits to estimate sampling probabilities.

This API-only setup allows consistent evaluation across both open-source and proprietary models,
reflecting realistic usage where internals are inaccessible. It also better supports techniques like
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P,(x:p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 1 is p."

Py(x; p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 0 is 1 — p."
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Pyy(x; p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 1 is p, and the probability of 0 is 1 — p."
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Py (x: p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 0 is 1 — p, and the probability of 1 is p."

(a) Calibration Plot (b) Four different phrasings for a Bernoulli with p

Figure 4: Calibration plots for direct sampling and the four different phrasings.

chain-of-thought (CoT; [17]) prompting, which can distort token-level probabilities by conditioning
on generated reasoning: with CoT, logits reflect p(x | reasoning for z) instead of the intended p(z).
We also fix all decoding hyperparameters (e.g., temperature, top-k) to their default values given in the
API, since most real world users do not adjust them, and often do not have the ability to do so.

4 How RELIABLE IS DIRECT SAMPLING?

This section examines the reliability of direct sampling from LLMs. We first compare their ability to
generate samples to their ability to recognize distributions, then explore how prompt phrasing affects
sampling bias, and finally test whether chain-of-thought reasoning improves sample quality.

4.1 MEASURING THE KNOWLEDGE-SAMPLING GAP

To assess the gap between an LLM’s understanding of a Bernoulli distribution and its ability to sample
from it, we compare its evaluative and generative performance in a controlled setup, using Llama-3.1-
70B-Instruct [5]. We first test the model’s ability to identify the correct Bernoulli distribution from
data. For 11 equally spaced probabilities py, ..., p1g, S.t. p; € [0, 1], we generate 100 i.i.d. samples
using Python, forming datasets .S;. For each pair (¢, j), we prompt the LLM to decide whether S;
was drawn from Bern(p;), producing an 11 x 11 response matrix. Diagonal entries should be “Yes”,
off-diagonals “No”. We repeat this process five times and report average accuracies in Figure 3(a).
We then test the model’s sampling behavior by prompting it to generate 100 samples for each p;,
using the template in Figure 2(left). The resulting sets S; are evaluated using the same method as
before. The average accuracies over five runs are reported in in Figure 3(b).

The left panel shows high off-diagonal accuracy for
Python generated data (i.e., confidently rejecting
incorrect hypotheses), with minor errors along the
diagonal due to natural sample variation (e.g., 48
ones out of 100 for p = 0.5 may lead to confusion
with p = 0.48, hence, rejecting the correct hy- .
potheses). In contrast, the right panel shows major 00 02 04 00 08 10 00 02 04 06 08 10
degradation for LLM-generated samples. Diagonal (a) Samples from Python ®) Sample:"ﬁom LLMs
accuracy drops significantly for all p;, except the ) - )
edge cases when p = 0.0 and p = 1.0. Moreover, Figure 3: Recognition accuracy matrix.

we observe an asymmetry in the off-diagonal en-

tries: the lower triangle of the matrix exhibits much worse accuracy than the upper triangle. This
indicates that samples from p; are often misclassified as having come from p; with j > 4, suggest-
ing that the LLM-generated samples are consistently biased toward ones. These results reveal a
clear knowledge—sampling gap: LLMs can evaluate distributions well but fail to sample from them
faithfully. Unlike question answering, where each input has a correct target, i.i.d. sampling lacks
per-instance ground truth, making it a fundamentally different and underexplored capability.

o
o
3
Accuracy

o
o
by

4.2 How MucH CAN PROMPT PHRASING REDUCE SAMPLING BIAS?

The previous section used a single fixed phrasing to describe the Bernoulli distribution (see Figure 2,
left). Yet, natural language allows many equivalent ways to express the same distribution, raising the
question: how much can phrasing affect sampling bias? In the prior setup, the prompt emphasized the
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Figure 5: Calibration plots and STVD trend for various reasoning length constraints.

probability of generating a 1, denoted P (x; p), as illustrated in Figure 4(b). Notably, this formulation
focuses solely on the probability of generating a 1, which may partly explain the tendency of the
model to produce more 1s than Os in the in the sampled outputs.

To explore this, we test three alternative phrasings that shift or balance the focus across outcomes, as
shown in Figure 4(b). For each, we sample across a range of p values using Llama-3.1 and plot the
empirical frequency of 1s against the ground truth, yielding calibration curves shown in Figure 4(a).
The calibration curves show that the balanced descriptions, i.e., those stating both probabilities, yield
samples that are better calibrated. Nevertheless, all four phrasings result in noticeable bias. This
result resonates with [1], where they found that when prompting humans to imagine a coin flip,
mentioning only ‘heads’ or mentioning only ‘tails’ will lead to a similar sampling bias.

Quantitative comparison using Sum of TV Distance (STVD). To quantify the calibration per-
formance of different phrasings, we compute the area between each calibration curve and the ideal
diagonal reference line. Specifically, for each p;, we calculate the absolute difference between
the empirical sampling frequency p; and the true value p;, and sum these over all 101 values, i.e.,
STVD = Z}i% |p; — pi|- Since this absolute difference corresponds to the total variation (TV)
distance between two Bernoulli distributions, we refer to the resulting metric as the Sum of TV
Distances (STVD) where smaller is better. See Appendix A.1 for more details about the TV distance.

Table 1 presents the STVD values for the four phrasings under direct sampling. For Llama 3.1, the
best-performing phrasing P achieves an STVD of 12.50, nearly half that of the baseline P;, which
scores 25.36. We also include results for other LLMs, including GPT-4.1-nano, DeepSeekV3 [10], and
Qwen-2.5 72B [20]. Interestingly, the best-performing phrasing varies across models, as highlighted
by the underlined entries. The calibration plots for the other models can be found in Appendix B.1.

These findings suggest that while prompt design can influence sampling bias, relying solely on prompt
engineering to eliminate bias can be difficult and inconsistent across model family, and additional
mechanisms are likely needed for more systematic approaches to correct sampling bias.

Table 1: Quantitative comparison between Direct Sampling and VRS in STVD ({).

Method Llama-3.1 70B GPT-4.1-nano DeepSeekV3 Qwen-2.5 72B

Py Py Pig Poy|mean| Py Py Pig Poi |mean| Py Py Pig Poi |mean| P1 Py Pio Po1 |mean
Direct |25.36 24.79 12.50 16.59/19.81|17.87 30.23 16.63 19.24|21.00{17.76 19.39 20.78 23.26{20.30|20.73 18.72 19.00 22.64|20.27
VRS 573 7.64 536 5.60|6.08 [12.96 13.06 9.50 8.46 [11.00] 5.34 9.06 5.29 6.94 | 6.66 | 593 6.35 4.49 5.12 | 547

4.3 DOES CHAIN-OF-THOUGHT (COT) HELP SAMPLING?

Since phrasing alone does not eliminate sampling bias, we explore whether modifying the instruction
for the output can help. Prior work [14, 7, 8, 12] often asks LLMs to output the sample immediately,
enabling access to token logits for estimating predictive distributions. However, this approach is
constrained to open-source models and treats LLMs more as likelihood models than samplers. In
our setting, we only use LLMs for sampling and do not require access to logits or early output. This
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allows us to apply CoT [17] prompting, where the model first generates reasoning before giving its
final answer. While sampling differs from question answering, CoT may increase output variability
by encouraging diverse reasoning paths, potentially reducing bias.

To test this, we instruct the model to produce reasoning of varying lengths N (ranging from O to
500 words) before answering, along to an ‘Auto’ setting where no length constraint is imposed.
The ‘Auto’ is the default setting for experiments in previous sections, which uses the template in
Figure 2(left). For different NV, we modify the ‘Explanations’ instruction in the prompt template to
include a sentence saying that ‘Your analysis must have around N words’.

Figure 5 presents the calibration plots (left) and STVD scores
(right) for Llama-3.1 under different CoT length constraints. 2
Overall, reasoning length has limited effect on bias, though U]_lll“.mll_,_,_,_,_,_l
longer CoT slightly improves calibration. Direct output with-

out reasoning often performs worse than the ‘Auto’ setting.

However, this pattern does not hold across models. As shown fu 20 AOCO}OECHZ(L w00
in Figure 6, GPT-4.1 and Qwen2.5 show no consistent im- ]

provement with longer CoT; in some cases, STVD increases as Figure 6: STVD vs CoT Length.
reasoning length grows. These mixed results suggest that, unlike in question answering, CoT is not a
reliable method for reducing sampling bias, and its effect is model-dependent. For consistency, we
use ‘Auto’ in all remaining experiments.

STVD
Qwen GPT
o

’
o !

5 VERBALIZED REJECTION SAMPLING

In the previous section, we explored ways to reduce sampling bias through prompt phrasing and
instruction design. While these strategies do influence the behavior of LLMs, the results suggest
that prompt-only interventions are insufficient for reliably eliminating bias. If direct sampling
cannot be fully corrected through language alone, we may instead embrace the bias and mitigate
it using algorithmic techniques. In probabilistic methods, several algorithms exist to transform
biased proposals into unbiased samples. One such method is rejection sampling, which generates
candidate samples from a proposal distribution and selectively accepts them to match a desired target
distribution. In the remainder of this section, we adapt rejection sampling to operate entirely within
the language interface of LLMs, and we refer to this method as verbalized rejection sampling (VRS).

5.1 REJECTION SAMPLING

Rejection sampling is a sampling technique to generate samples from a target distribution P while
only having access to samples from a (typically simpler) proposal distribution (). We assume that
both P and @ can be evaluated (but only ) can be directly sampled from). The general idea is that we
can generate a sample from P by instead sampling from () and accepting the sample with probability
P(z)/(MQ(x)) where M < oo is a bound on the ratio P(z)/Q(x). We assume that both P and Q)
are Bernoulli distributions with parameters p and ¢. In this case, we can compute M analytically as:
M =max{p/q,(1 —p)/(1 — q)}. Let A(z) denote the acceptance probability of = ~ @ which is

_ _1-p : —_n°
Mo — Mg HT=0

Pl _ 2 ifo=1
A(w) = {%%3”) "y M

The accept/reject step effectively draws a sample from Bern(A(x)). The overall acceptance rate is
=73 cr01} Q@)A(x) =1/M. See Appendix A.2 for more details about rejection sampling.

5.2 ADAPTING REJECTION SAMPLING TO LLMS

Figure 1(c) illustrates the overall idea behind VRS. Classical rejection sampling requires three inputs:
the target distribution P, the proposal distribution (), and a sample x ~ . The algorithm evaluates
whether to accept or reject x based on these inputs, returning a binary decision. To implement this in
the LLM setting, we design a prompt template (Figure 2, right) that verbalizes all three components,
i.e., descriptions of P, (), and the proposed sample z, as natural language. These are inserted into
fixed slots in the template. The model is instructed to reason through its decision and then output
a single letter from {T,F}, indicating whether to accept (T) or reject (F) the sample. We send
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Figure 8: Empirical acceptance rates for VRS.

the completed prompt to the LLM and parse its response. If the response indicates acceptance, we
retain the sample; otherwise, we generate a new proposed sample and repeat the process. This loop
continues until we collect the required number of accepted samples (pseudocode in Appendix D.1).

5.3 EXPERIMENTS

We evaluate VRS on four different LLMs: Llama-3.1, GPT-4.1-
nano, DeepSeekV3, and Qwen-2.5. For each model, we run
VRS until it accepts 100 samples for each of the 101 values

of p € [0.0,1.0], following the same setup as in the direct i
sampling experiments. As the proposal distribution ), we fix 0 g T T T T

it to a uniform Bernoulli with ¢ = 0.5 across all values of e Pm(;:;imy (;)'75 e
p. The resulting calibration plot for Llama-3.1 is shown in o

Figure 7, and the corresponding STVD scores across all models  Figure 7: Calibration plot for VRS
are included in Table 1. The calibration plots for other three

LLMs can be found in Appendix B.2.
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Comparing the calibration plot for VRS (Figure 7) with that of direct sampling (Figure 4a), we observe
a significant reduction in sampling bias. Across all four prompt phrasings, the calibration curves
under VRS closely align with the ideal diagonal reference, indicating much improved fidelity to the
target Bernoulli distributions. Figure 8 shows the corresponding empirical acceptance probabilities,
which seem to align well with the analytical targets. The improvement is also reflected quantitatively
in Table 1: the STVD scores for VRS are substantially lower than those for direct sampling, with
most cases showing a reduction of over 50%. In some instances, STVD drops to nearly 25% of
the original value. Crucially, this improvement holds across all four LLMs tested (i.e., Llama-3.1,
GPT-4.1-nano, DeepSeekV3, and Qwen-2.5), demonstrating that VRS consistently mitigates bias and
does so independently of the underlying model.

6 WHY DOES VERBALIZED REJECTION SAMPLING WORK?

The effectiveness of VRS in reducing sampling bias is surprising at first glance since, internally, VRS
still relies on the LLM to perform a Bernoulli trial, i.e., deciding whether to accept or reject a sample,
which is precisely the type of stochastic behavior we have shown LLMs to struggle with.

If LLMs are biased in direct sampling, why does wrapping the decision in rejection sampling help?

Is the improved calibration a result of the specific prompt design used in VRS? Or does the rejection
sampling algorithm itself introduce structural guarantees that correct bias, even when implemented via
a biased LLM? The remainder of this section explores these possibilities empirically and theoretically.

6.1 IS THE MAGIC IN THE PROMPT?

To investigate whether VRS’s improvement stems purely from prompt design, we remove external
randomness by fixing the proposed sample to a constant, i.e., z = 1. In this case, a faithful LLM
should accept with probability A(1), as defined in Equation (1). We compare this with the empirical
acceptance probability A(1), estimated from the LLM’s responses. Figure 8(c) shows A(1) for
various p, using a fixed proposal Q = Bern(0.5). For the trivial case p > 0.5, the alignment is strong.
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Figure 9: Calibration plots for two ablations and an example LLMs output for VRS-simple.

For p < 0.5, the results appear reasonable overall but show a consistent bias, particularly in the range
p € [0.2,0.5]. To compare more directly with direct sampling, we evaluate fl(l) over 101 equally
spaced values of A(1), using the inverse of Equation (1) to recover the corresponding p. For each, we
generate a VRS prompt with the computed p, a fixed @ = Bern(0.5), and a fixed sample x = 1. We
refer to this setup with fixed proposal and no introduced randomness as VRS-simple. If prompt design
alone explains the improvement, VRS-simple should outperform direct sampling in calibration.

Figure 9(a) shows the calibration plot for VRS-simple using Llama-  Typle 2: Ablation STVD (|)
3.1. Compared to direct sampling (Figure 4a), the results are slightly

more calibrated. Table 2 confirms this, with the mean STVD drop- ~ Method | mean (over 5 runs)
ping from 19.81 to 11.86 (see Appendix B.4 for the full table). This Direct 19.81 £ 0.15
VRS ‘ 6.08 £ 0.12

suggests the VRS prompt helps reduce bias for direct sampling.

However, VRS-simple relies on explicitly computing the inverse of VRS-simple 11.86 +0.13
. . . VRS-simple-M | 18.45 + 0.35
Equation (1) to tailor the prompt to each target p, and the improve- VRS-M 736+ 0.14

ment remains modest compared to full VRS.

Magic or Mirage? To further understand why the VRS prompt improves sampling, we examine
whether its structure encourages the model to reason differently. One hypothesis is that phrasing the
sampling task in the context of rejection sampling prompts the LLM to internally compute acceptance
probabilities, potentially disrupting its default biases learned during pretraining. To test this, we
manually analyzed the model’s reasoning outputs from VRS-simple (see Figure 9(c)). We found
that, while the model often tries to derive the acceptance probability, it frequently does so incorrectly.
In the non-trivial cases where A(z) # 1, the model tends to compute only the ratio P(z)/Q(x),
omitting the constant M in the denominator.

Could this incorrect derivation be the reason behind the improvement? To test that, we designed
variants of VRS-simple and VRS where we explicitly instruct the model to compute and use M
correctly. We refer to these as VRS-simple-M and VRS-M, respectively. The calibration plot for
VRS-simple-M is shown in Figure 9(b), with corresponding STVD scores in Table 2. Through output
inspection, we verified that the LLM now correctly computes the constant M in its reasoning. The
correction in VRS-simple-M leads to slightly better performance from 19.81 to 18.45. However, for
the full VRS setup, adding the M -instruction results in a slight degradation, with STVD rising from
6.08 to 7.36, though still outperforming direct sampling.

These results suggest that the improvement from the VRS prompt is not due to accurate computation
of the acceptance probability. Instead, the prompt seems to help in an unexpected way, but it
alone cannot explain the full benefit. The remaining gains likely come from the rejection sampling
mechanism itself, rather than prompt phrasing alone.

6.2 IS THE IMPROVEMENT FROM THE ALGORITHM?

Prompt design alone cannot fully explain the gains from VRS. To analyze the role of the algorithm
itself, we model the LLLM as a biased Bernoulli sampler. In VRS, this means the acceptance decision

is not sampled from the true probability A(z), but from a perturbed version A(z) = A(x) + e(z),
where e(x) represents the model’s bias. Based on this, we can derive the following proposition.
Proposition 1. [Informal, see Proposition I in Appendix A.3.] Let P and Q) be Bernoulli distributions

(target and proposal with parameters p and q, respectively). Let P denote the distribution resulting
Sfrom rejection sampling with acceptance probability A(x)+ e(x), and assume a bound on the model’s
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bias, i.e., |e(x)| < ¢ € R. Then, with M defined in Section 5.1, we have
- Mc
TV(P,P) < . 2
V(P,P) < 1 @)
Intuitively, M implies how “different” the proposal () is from the target P and ¢ bounds the bias in

the acceptance step. For ¢ = 0, we recover rejection sampling with TV(I5 , P) = 0. Otherwise, for a
fixed ¢ > 0, TV(P, P) grows quadratically with M.

From empirical observations (see Figure 8(b;c)) we note that ¢ ~ 0 when the acceptance probability
is trivial, i.e., for A(x) = 1. We can integrate this assumption and get the following tighter bound.

Proposition 2. [Informal, see Proposition 2 in Appendix A.4.] Following Proposition 1 but with the
additional assumption that A(-) is only biased in the non-trivial case, i.e., A(%) = A(%) + e(2) if
A(Z) < 1 (whereas A(z*) = A(x*) if A(x*) = 1), we have

Q(&)Me
01— Q@M
Out of the two possible events for x, we use Z to refer to the event that achieves non-trivial A(Z) < 1.
Intuitively, Q(Z) “damps” the error as Q(&) < 1, which results in a tighter bound.

TV(P,P) < 3

Let P denote the distribution resulting from direct sampling with the same bias e(x). We can now
derive when VRS (P) is better than direct sampling (P). We get the following corollary.

Corollary 1. [Informal, see Corollary 1 in Appendix A.5.] Following Proposition 2 and assuming
that P has the same bias as in fl(m), ie,D=p+e,e<|c|, then (witha = 1/M, see Section 5.1)

TV(P,P) < TV(P, P) <% @(He) <18 < ~L )

Q(z)M
This implies: (i) VRS is better than direct sampling if the biased event (Z) is rare, i.e., if Q(%) is
smaller than the acceptance rate «; (i7) equivalently, this can be translated into a bound on ¢, which is
maximized when @) and P are similar, i.e., if M — 1. Otherwise, direct sampling is better than VRS.

In our experiments we fix the proposal to ¢ = 0.5. This allows us,
for each p, to compute the constants M and c (i.e., the upper bound
on |e(z)|) under which VRS outperforms direct sampling. Figure 10
shows the calibration plot of Figure 4(a) and visualizes a shaded
black box of p plus and minus ¢, i.e., clip(p % ¢, 0.0, 1.0). The box
is largest (vertically) if P and @ are similar (i.e., M — 1, see (i7) "0 is . . . ,
above). In most cases, the empirical frequencies of direct sampling e Pobiiy oy
fall within this box, satisfying condition (i¢). This provides strong
evidence that the primary source of VRS’s improvement comes from
the rejection sampling algorithm and not from prompt effects.

=)
!

Emp. Frequency
o

Py = Ideal
Po= ptc

Figure 10: Calibration plots
with error bounds +-c overlaid.

7 CONCLUSION

We examined the ability of LLMs to sample from natural-language-described distributions, using
Bernoulli as a test case. While LLMs can evaluate whether data matches a distribution, they struggle to
generate unbiased samples, revealing a clear knowledge-sampling gap. This highlights that sampling
is a fundamentally distinct ability from question answering: evaluation tasks have clear supervision,
while i.i.d. sampling lacks per-instance ground truth and is only verifiable at the distribution level.
We showed that prompt phrasing or chain-of-thought reasoning could not guarantee improvement. To
address this, we proposed Verbalized Rejection Sampling (VRS), a lightweight adaptation of classical
rejection sampling expressed entirely in natural language. VRS improves calibration across models
without accessing logits or tuning decoding parameters, and our analysis shows that the algorithm, not
just prompt design, is key to its success. Although our main analysis is for Bernoulli (which has been
widely recognized as a foundational testbed for assessing LLM sampling behavior [6, 14, 7]), we
observed the effectiveness of VRS also in Binomial distributions (see Appendix C), demonstrating the
potential that the framework can be adapted to more complex families. Beyond correcting this specific
failure mode, our work points to a broader path: integrating principled randomness into LLM-based
systems. VRS illustrates how classical probabilistic tools can be verbalized and embedded into LLM
workflows to improve reliability without relying on opaque prompt engineering.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to aid and polish writing, but they did not contribute significantly at the level of
a contributing author. Our research question is also about LLMs, therefore, they are used in our
experiments as the subject of investigation.
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A THEORETICAL ANALYSIS FOR BIASED (REJECTION) SAMPLING FROM
BERNOULLI DISTRIBUTIONS

This section is structured as follows. We introduce the total variation distance in Appendix A.1 and
state the general rejection sampling problem in Appendix A.2. In Appendix A.3 we bound the worst
case error assuming that the acceptance probability of the rejection sampling algorithm is biased.
Appendix A.4 bounds the worst case error assuming that the model can draw exact samples if the
acceptance probability is 1 and is biased in the other case. In Appendix A.5 we compare the previous
bound to the error of a biased Bernoulli distribution.

A.1 TOTAL VARIATION DISTANCE
The total variation (TV) distance measures the statistical distance between two probability distribu-
tions. We will state it below for the case where both distributions are Bernoulli.

Let P, and P, denote the probability mass functions of Bernoulli distributions with parameters p;
and po, respectively. We can write the TV distance between P; and P; as

1
Dyy(PyPy) =5 Y [Pi(x) = Pa(a)| = Ip1 — pal- (TV)

z€{0,1}

A.2 REJECTION SAMPLING

Rejection sampling (RS) is a sampling technique to generate samples from a distribution P while
only having access to samples from a distribution () but assuming that both P and () can be evaluated.
The general idea is that we can generate a sample from P by instead sampling from () and accepting
the sample with probability P(x)/(MQ(x)) where M < oo is a bound on the ratio P(z)/Q(z).

Assume both P and @ are Bernoulli distributions with parameters p and q. We can compute M

analytically as
1—
M = rnax{p7 p} .
g l—-¢q

Let A(z) denote the acceptance probability

=12 _ fp=0"

el e ifz=1
Az) = {”%3“ b
MQ(z) — M(1-q)

Let A denote the acceptance event. The unconditional acceptance probability P(A)—called the
acceptance rate a—is the proportion of proposed samples that are accepted. It is given by

w=r (05005 ) =B (arg0y) = 2 @waw =t = g

z€{0,1}

where U ~ Unif(0, 1). The law of the accepted samples is

P(X = x| A) = - —

P(X =2,4) Qz)A(z) Q(m)i&% _ P(x)/M
P(A) e !

A.3 BIASED ACCEPTANCE PROBABILITY
We will establish a worst-case bound in terms of the TV distance for the case that the acceptance
probability is biased.

Proposition 1. Let P(x),Q(x) be Bernoulli distributions with parameters p and q, respectively,
where P is the target distribution that we want to sample from with rejection sampling and Q(x)

is the proposal distribution. Further, let 15(3“) denote the Bernoulli distribution resulting from

13
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a biased accept/reject step where we assume that the acceptance probability A(x) is biased as
A(x) = A(z) + e(x) where |e(z)| < ¢ € R. Then,

Dry(P,P) < (L1)

1—Mc’
where M = max{p/q,(1 —p)/(1 —q)}.

Proof. Assuming a biased acceptance probability fl(x), we can split the resulting acceptance rate
into

a= Y Q@A@) +e@)= Y Q@A)+ Y Q)e(x),

z€{0,1} z€{0,1} z€{0,1}

= =4
where « corresponds to the unbiased acceptance rate and § denotes the deviation from it. We assume
that 0 < A(z) < 1. Note that |§] < c and, therefore, @ = a + § > a — ¢ > 0. Let A denote the
acceptance event. We denote the resulting law of the accepted samples by P.

P(X — | A) _ P(X :~$7A) _ Q(l‘):‘l(l‘) — p(.ﬁ)

P(A) Q

We can now upper-bound a term in the TV distance as follows.
Q@)A(x)  Qx)A(z)| _|Q(x)
a « | aa
Q(z)

fe%e"

=Q(x)

|P(z) — P(a)| = (A(x)a — A(2)a)

Q@) (e(z)ar — A@;)&))’

ax

(A(z) + e(x))a — A(z)(a+ 5))‘ _

le(z)|a + A(x)[d]
ala—c)

< Q(w)CZ(ZA%)C

= Q)= = - (1+ A(x))

(07

&)

< Q(x) ©)

(N

In Equation (6) we used the triangle inequality, in Equation (7) we used |e(z)| < ¢. For the full TV
distance, we get

Dy (P, P) _1 Z i@(x) <1+ A@)) __c Me

2 a—c o a—c¢ 1-Mc
z€{0,1}

A.4 HALF-BIASED ACCEPTANCE PROBABILITY

In the following argument we assume that if A(z) = 1 there is no bias, i.e., no error (A(z) = 1 =
e(z) = 0).

Proposition 2. Let P(x),Q(x) be Bernoulli distributions with parameters p and q, respectively,
where P(x) is the target distribution that we want to sample from with rejection sampling and Q(x)
is the proposal distribution. Further, let P(x) denote the Bernoulli distribution resulting from a

biased accept/reject step where we assume that the acceptance probability 121(33) is biased with an
additive error e(x) where |e(x)| < c € Ras

= JA(@) +e(x) ifAx) <1
io={am " Fam M
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where |e(z)| < ¢ € R. Then,

Q(&)Mc
(1-Q(2)Mc)’
where M = max{p/q, (1 — p)/(1 — q)} and & is chosen such that A(%) < 1.

Dry(P,P) < (M2)

Proof. Let z* be chosen such that A(z*) = 1 = e(z*) = 0. Let & be chosen such that A(Z) < 1.
The resulting acceptance rate & can be states as follows.

a= Y QE@A@) +e@)= Y Q@)Alx)+Q(#)e(#)

x€{0,1} z€{0,1}

——

=« =4

We use the law P resulting from the acceptance rate & to compute both terms, for z* and Z, of the
TV distance. Starting form Equation (5), we get

Pla) - Pa")| = Q) | ISR gy | 2] - QA

Q@)

= ala—Q(z)c)

and
1P(@) - Pla)] = Q(a) AR — gayfe(a) =LA

_ Q@0 - Q@)@ _ Q)QE")le(z)
Q)Q)e

= a0 Q@)

where we used the triangle-inequality in both cases. Since
a=Q(z")A(r") + Q(2)A(2) = Q(z7) + Q(2)A(2) > Q(z7) =1 - Q(%),
computing the TV distance we get

Q")Q(@)e _ (1-Q%)QE)e

Dol P) < Ca= Q@ ~ ale - Q@)e)
aQ(#)e Q(#)e
S - Q@9 ([a- Q@9
QUM
- Q)Mo

A.5 COMPARISON OF HALF-BIASED SAMPLING TO DIRECT SAMPLING

In the following corollary we are comparing the distributions introduced in Appendix A.4 and biased
direct sampling.

Corollary 1. Ler P(z), Q(x) be Bernoulli distributions with parameters p and q, respectively, where
P(x) is the target distribution that we want to sample from with rejection sampling and Q(x) is the
proposal distribution. Further, let P (x) denote the Bernoulli distribution resulting from a biased

accept/reject step where we assume that the acceptance probability fl(:r) is biased with an additive
error e(x), where le(z)| < c € R, if A(z) < 1, see Proposition 2, Equation (M1). Further, let P(x)
be the Bernoulli distribution wich parameter p biased by the same additive error as
p=ptelel<c (LD
Then, the worst-case total variation error of half-biased rejection sampling is smaller than that of
direct sampling if and only if
5 5 Q) 1
Drv(P,P) < Dry(P,P) <~— —=(1 <l<=c< ———1, L2

v (P, P) v (P, P) o (140 < ¢ Q)M L2)

where M = max{p/q, (1 —p)/(1 — q)}, a = 1/M, and & is chosen such that A() < 1.
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Proof. We assume that there is an additive error e when sampling with P as in Equation (L1). We
can calculate the TV distance for P as

Dyy(P,P)=le|]<c (8)
Further, from Proposition 2, Equation (M2) we know that
- Q(@)Mc
Drv(P,P) < —— - 9

Therefore, the TV of half-biased rejection sampling (Equation (9)) to the ground truth P is smaller
than the TV of direct sampling (Equation (8)) if

Q(E)Me Q(2)

m<c<:>7(l+c)gl<:>c<

1
Q@M
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B ADDITIONAL RESULTS FOR BERNOULLI DISTRIBUTIONS

We present additional results and plots that were left out of the main text due to the page limit. The
additional results are consistent with the story discussed in the main text.

B.1 DIRECT SAMPLING CALIBRATION PLOTS FOR OTHER LLMSs

Figure 11 presents the calibration plots with various reasoning length constraints for P, for GPT-4.1-
nano (left) and Qwen-2.5 72B (right). Overall, the models seem to be better calibrated for p € [0, 0.5]
while showing a similar bias as Llama-3.1 70B (compare to Figure 5) across different reasoning

lengths.
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Figure 11: Calibration for various reasoning length constraints in direct sampling: GPT-4.1-nano
(left) and Qwen-2.5 72B (right) for P;.

Figure 12 shows the calibration plots of direct sampling for GPT-4.1-nano, Qwen-2.5 72B, and
DeepSeekV3. The corresponding STVD scores are shown in Table 1. The corresponding VRS

calibration plots are shown in Figure 13.
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Figure 12: Calibration of direct sampling for GPT-4.1-nano (top left), Qwen-2.5 72B (top right), and
DeepSeek V3 (bottom).
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B.2 VRS CALIBRATION PLOTS FOR OTHER LLMS

In Figure 13 we provide calibration plots of VRS for GPT-4.1-nano (top left), Qwen-2.5 72B (top
right), and DeepSeekV3 (bottom). In Table 1 we provide the corresponding STVD. We find that the
smaller GPT-4.1-nano performs worse than the other two larger models. However, the plots tell the

same story as the ones in the main text.

5\ 1.0 5\ 1.0
= S— P] — P]O == Ideal = S— P] — P]() == Ideal
3] 5]
— P— PR — Ph— PR
g (] 01 g 0 o1
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g g .
= 0.0 M 0.0 4 -
T T T T T T T T T T
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True Probability (p) True Probability (p)
> 1.0 >
% S— P1 — P]() == ]deal
— Py= R
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=
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Figure 13: Calibration of VRS for GPT-4.1-nano (top left), Qwen-2.5 72B (top right), and
DeepSeekV3 (bottom).

B.3 VRS WITH CONSTANT M INSTRUCTION

Figure 14 shows the calibration plot for VRS-M, which is a ablation of VRS by providing the model
with the description on how M is computed. The corresponding STVD scores can be found in

Table 2.
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Figure 14: Calibration of VRS-M (Llama-3.1)
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B.4 FULL RESULTS FOR PROMPT ABLATIONS

We provide the full table corresponding to Table 2 that includes standard deviation over 5 independent
trails for each method. The overall observation is the same as in Section 6.1. The low standard
deviations indicate the observed effects are stable across runs.

Table 3: Ablation STVD with Standard Deviation(l.)

Method ‘ P Py Pio Po1 mean

Direct 25.36 + 0.13 24.79 + 0.49 12.50 £+ 0.35 16.59 £ 0.45 19.81 4+ 0.15
VRS 5.73+0.29 7.64£0.23 5.36+0.10 5.60+0.10 6.08 £0.12
VRS-simple 15.53 £0.30 6.97 £0.34 13.99 £0.16 10.95 4+ 0.32 11.86 £+ 0.13
VRS-simple-M | 11.19 £ 0.36 29.02 £ 0.46 14.08 + 0.68 19.49 £ 0.74 18.45 4+ 0.35
VRS-M 5.17£0.28 11.40+0.42 5.59+£0.23 7.284+0.22 7.36+0.14

B.5 ABLATIONS FOR OTHER LLMs

We provide the full table corresponding to Table 2 that includes all four LLMs. The overall observation
is the same as in Section 6.1. Adding the M -instruction leads to degradations of the sampling
performance for both VRS-simple and VRS. Additionally, except for GPT-4.1-nano, for the three
other LLMs, VRS-simple improve the performance on average, indicating that the VRS prompt can
explain some of the improvement, but the effectiveness of the same prompt varies across LLMs.
Therefore, the general improvement of VRS is likely to come from the algorithm itself, rather then
prompt phrasing alone.

Table 4: Ablation STVD for all models({)

Method Llama-3.1 70B GPT-4.1-nano DeepSeekV3 Qwen-2.5 72B

P1 Pg P10 P()l mean P1 P(] Pl() Pgl mean Pl Po PlO P(]1 mean P1 P[) Pl() P01 mean
Direct 25.36 24.79 12.50 16.59 19.81| 17.87 30.23 16.63 19.24 21.00| 17.76 19.39 20.78 23.26 20.30 20.73 18.72 19.00 22.64 20.27
VRS 573 7.64 536 5.60 6.08]12.96 13.06 9.50 8.46 11.00| 5.34 9.06 5.29 6.94 6.66| 593 635 4.49 5.12 547
VRS-simple 15.53 6.97 13.99 10.95 11.86| 36.83 22.05 25.56 22.29 26.68| 8.23 20.25 11.19 15.59 13.82| 13.55 8.21 10.69 8.69 10.28
VRS-simple-M | 11.19 29.02 14.08 19.49 18.45]29.08 20.68 29.97 28.23 26.99| 18.25 30.43 20.82 28.49 24.50| 14.43 9.48 12.41 10.13 11.61
VRS-M 5.17 11.40 559 7.28 7.36| 10.3 12.29 12.39 12.77 11.94| 8.79 14.33 8.73 11.26 10.78| 8.92 9.66 8.78 9.55 9.23
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C ADDITIONAL RESULTS FOR BINOMIAL DISTRIBUTIONS

In this section, we extend our results in to Binomial distributions. The binomial distribution P has
parameters p, n and the probability mass function is given by

P(k) = (’;)pku —pE

For two Binomial distributions P and ) with parameters n, p and n, g, respectively, we have

D k 1*]9 n—k
" ?1}{@ = } "

In the following Appendix C.1, we show that both Proposition 1 and Proposition 2 generalize to
Binomial distributions (as well as other distributions with discrete state spaces, same distributional
form of P and (@, and a single outcome that maximizes the acceptance ratio) under the assumption
that the LLM arrives at the right decision if the acceptance ratio is 1 (which we observe to be true
for the Bernoulli case). Additionally, the bound presented in Corollary 1 also generalizes under
the assumption that direct sampling yields a distribution within TV distance c of the target. In
Appendix C.2, we verify the theoretical statements empirically and we observe that VRS can generate
samples with smaller TV error than direct sampling under several settings.

C.1 EXTENDING THE THEORETICAL ANALYSIS

We will establish a worst-case bound in terms of the TV distance between two Binomial distributions
P and @ for the case that the acceptance probability is biased for every k.

Proposition 3. Let P(k), Q(k) be Binomial distributions with parameters n, p and n, q, respectively,
where P is the target distribution that we want to sample from with rejection sampling and Q(k)
is the proposal distribution. Further, let 15(145) denote the Binomial distribution resulting from
a biased accept/reject step where we assume that the acceptance probability fl(k) is biased as

A(k) = A(k) + e(k) where |e(k)| < ¢ € R. Then,

Dyy (P, P) <
TV(a)_l_MC7

where M is defined as in Equation (10).

Proof. Let B :={0,...,n}. Note that o = 3, _ 5 Q(k)A(k) = ;. Assuming a biased acceptance
probability fl(:r), we can split the resulting acceptance rate into

a=Y QR)AR) +elk) =D QR)AK) + Y Qk)e(k),

keB keB keB

=a =5
where « corresponds to the unbiased acceptance rate and § denotes the deviation from it. Note that

6l =" Q)le(k) < Y Qk)e=c,

keB keB
and, therefore, @ = v+ > oo — ¢ > 0. We assume that 0 < fl(k;) < 1. Let A denote the acceptance

event. We denote the resulting law of the accepted samples by P.

P(K =k|A) = P(KP(AI;’A) = Q(k)dA(k) = P(k).

‘We can now upper-bound a term in the TV distance as
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which follows as in Proposition 1. For the full TV distance, we get

Drv(P,P) = 3 30 o) (1+ 21

ke & €
- (Z COREDY @(k)A(k))
keB keB
- C
B o —C
_ Mc
11— Mc

Note that we can extend Proposition 3 to an arbitrary distribution with finite state space.

In the following, we will assume that if A(k*) = 1 there is no bias, i.e., no error (A(k*) = 1 =
e(k*) = 0). Additionally, we assume that there exists only one k* which achieves A(k*) = 1. For
all other k € B\{k*}, we have |e(k)| < c.

Proposition 4. Let P(k), Q(k) be Binomial distributions with parameters n, p and n, q, respectively,
where P(k) is the target distribution that we want to sample from with rejection sampling and Q(k)
is the proposal distribution. Further, let P(k) denote the Bernoulli distribution resulting from a

biased accept/reject step where we assume that the acceptance probability fl(k) is biased with an
additive error e(k) where le(k)| < c € Ras

A(k) = A(k) +e(k) ifA(k) <1
O Ak) if A(k)=1"
where |e(x)| < ¢ € R. Further, we assume that there exists only one k*, such that A(k*) = 1. Then,
~ Mch*
Dry(P,P) < —————
TV( ’ )71—Mctjk*
where M is defined as in Equation (10) and g~ = 1 — Q(k*).

Proof. Let k* be chosen such that A(k*) = 1 = e(k*) = 0. The resulting acceptance rate & can be
states as follows

a=Y QAR +ek) =D QAR+ DY Qk)e(k).

keB keB keB\{k*}

For any k, we have

For k*, we have e(k*) = 0, A(k*) = 1 and, therefore,

e 400 _ g

ax

P(K) — P(K)| = Q(k") ol

ax

For k € B\{k*} we get

S PkR)-PHR) = > Q)

(876
keB\{k*} keB\{k*}
le(k)|o + A(k)|S]
<
< Y owet
keB\{k*}
N

=—la X Qmle®I+] > Qk)AK)

YN kenv(r) keB\(k*}
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Summing over all £k € B, we get

2Dry(P, P) =Y |P(k) — P(k)|

keB
1P - PR+ S 1P(R) - P(R)
ke B\{k*}
1)
<o)L L0 S Qi+l Y QAR
aa o ke B\{k*} ke B\{k*}
1
~Lla S ewlemi+p Qi+ Y @A)
R keB\{k*}
1
~ Lo X QW) +1ola
ke B\{k*}
:ia\(ﬂ
o
2¢qy-

using
> QR)AK) = a - Qk"),
ke B\{k*}
and the upper-bound on |J]
b= > Qkek)|<c Y Qk)=c(l—QK)) = cGy
keB\{k*} keB\{k*}
We have
a>a— |0 > a—cqp.
‘We can rewrite this bound in terms of M as follows.

cqr-  Megys

5 Cqk~
Drv(P,P) < = =
v (P, P) < o o —cqp- 1 — Mcgy-

O

Comparing the bounds in this section to the bounds in the main text, we note that they are similar.

Remark 1 (Comparing the bounds to the main result.). While the bound in Proposition 3 is the same
as Proposition 1, the bound in Proposition 4 is a generalization of the bound in Proposition 2 by
replacing Q(2) = 1 — Q(z*) by 1 — Q(k™) (note that there are generally more than two k).

With the derivations in this section, we can also generalize the bounds to other distributions.

Remark 2. (Generalizing the bounds.) Note that we can extend Proposition 3 to other distributions
with discrete state-space. Also, we can extend Proposition 4 to other distributions with discrete state
space, under the assumption that P and () are the same distribution and that there is only a single k*
that achieves the condition A(k*) = 1. The latter condition is a worst case condition, i.e., if there is
more than one k* with A(k*) = 1, the bound presented in Corollary 2 is looser.

In the following corollary we compare the worst case bounds derived in Proposition 4 to a general
error in TV distance of ¢ € R.

Corollary 2. Ler P(k), Q(k) be Binomial distributions with parameters n, p and n, g, respectively,
where P(k) is the target distribution that we want to sample from with rejection sampling and Q (k)

is the proposal distribution. Further, let P(kz) denote the Binomial distribution resulting from a
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biased accept/reject step where we assume that the acceptance probability fl(k) is biased with an
additive error e(k), where |e(k)| < ¢ € R, if A(k) < 1, see Proposition 4. Additionally, let P(k) be
the Binomial distribution for which we assume

DTv(P, P) S C.

Then, the worst-case total variation error of half-biased rejection sampling is smaller than that of
direct sampling if and only if

Drv(P, P) < Dyy(P, P) <= ‘%(Hc) Slese<—0-1
k*
where M is defined as in Equation (10) and g~ = 1 — Q(k*).
Proof. Let
Dry(P,P) = le(z)| < ¢, (1D
and
~ Mch*
Dtv(P,P) < —— 2 12
v (P, ),I_Mch*a (12)
following the bound in Proposition 4. Then,
M cgp- Qe
_— — —(1 <1< — 1.
1—Mc(jk* ¢ OZ( +C)_ C<Qk*M
O

In Corollary 2, we assume DTV(P, P) < cinstead of an additive error on the parameter of the
Bernoulli distribution as in Corollary 1.

Remark 3. (Assumptions in Corollary 2.) In Corollary 2 we assume that the distribution P (eventu-
ally sampled from the LLM) is biased by Drv (P, P) < ¢ which is in contrast to Corollary 1 where
we assume an additive error on the parameter p, i.e., D = p + e, |e| < c. This is due fo the fact that
in the Bernoulli case (Corollary 1), we have a clear picture on the functional form of the error (an
additive shift on the parameter). However, in the Binomial case (and in the case of other discrete
distributions), we do not have an idea on how the error comes about, instead we assume an error
budget of ¢ € Rt measured in TV distance. For more informed bounds, future work might investigate
the structure of samples, given by LLMs, for other distributions.

C.2 EMPIRICAL EVALUATION OF VRS ON BINOMIAL DISTRIBUTIONS

We evaluated VRS v.s. direct sampling on @) being Binomial(n, 0.5) and P being Binomial(n, p)
forn € {1,2,3,4,5}, across 11 values of p € {0.0,0.1, ..., 1.0} (unlike in the main text which is
across 101 values of p). Resulting STVD | (summed over all p values) for Llama-3.1 70B is showed
in Table 5. We can see that with larger n, i.e., the distribution being more complex, the STVD for
both direct sampling and VRS is getting larger. Nevertheless, the VRS still results in much smaller
STVD than direct sampling.

Table 5: STVD ({) for Binomial distributions.

Methodn =1 n=2n=3n=4n=>5

Direct | 1.32 2.50 3.89 3.78 4.08
VRS 0.52 1.19 2.23 2.46 2.74
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D EXPERIMENT SETUP DETAILS

In this section, we provide the pseudocode algorithms for VRS in the setting of Bernoulli, and the
details for the computational resources used for our experiments.

D.1 PSEUDOCODE FOR VRS WITH BERNOULLI

Algorithm 1 VRS for Bernoulli

Given: language descriptions for the target P(x; p), language descriptions for the proposal Q(x;0.5),
number of samples V;

samples = [];
forn=1,--- ,Ndo

repeat
s ~ Bern(0.5); // Python Sampler
resp = LLM(P, Q, s, template); // LLM API call
until resp =T /T for ‘Accept’, F for ‘Reject’;
samples.append(s);
end

return samples

D.2 COMPUTATIONAL RESOURCES

‘We host open-source models (e.g., Llama-3.1 70B and Qwen-2.5 72B) using the vLLM [9] framework
on 4 Nvidia A100 GPUs or 4 Nvidia H100 GPUs. Generating 100 samples from the LLMs takes
approximately 25 seconds in our setup.

Licenses For the open-source models, we use Llama-3.1 (LLAMA 3.1 COMMUNITY LICENSE

AGREEMENT), DeepSeekV3 (DEEPSEEK LICENSE AGREEMENT), and Qwen-2.5 (Qwen
LICENSE AGREEMENT). We buy the service from OpenAl to use GPT-4.1-nano.
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E BROADER DISCUSSIONS

We do recognize the idea of using natural language to define distributions and using LLMs as samplers
for such distributions is very much at its early stage, and it is not fully recognized by many at the
moment. However, as LLMs are playing an increasingly larger role in computing, their ability to
generate faithful samples has to be studied and improved, which is closely tied to topics like fairness
and safety. We are not hoping to solve this problem entirely in a single work, instead, we want to
use the simplest distribution, i.e., the Bernoulli, to raise the awareness and thoroughly study this
overlooked problem, and to investigate possible fixes.

During the project, we came across many interesting discussions, which we believe are worth sharing
with the reader in this section. Some discussions are formatted in Q&A below.

E.1 WHY NOT ASK THE LLM TO CALL AN EXTERNAL SAMPLER?

We fully agree that when an external tool, e.g., Python-based sampler, is available and callable, it can
be used to generate unbiased samples efficiently. However, our work is not positioned as a replacement
for such tool-assisted approaches. Instead, we focus on a different and complementary question:

“Can large language models, operating solely in natural language, simulate stochastic processes
faithfully without access to external tools or code?”

This question arises from realistic and increasingly common LLLM deployment scenarios where:
LLMs act as autonomous agents expected to make decisions involving chance (e.g., tie-breaking,
randomized planning), interfaces are purely natural language, with no tool execution available or
permitted, even when tools are available, their invocation may compromise interpretability, modularity,
or security (e.g., sandboxed educational or fairness-sensitive settings).

In such settings, we are left with the LLM itself as the only accessible computational mechanism. The
goal of VRS is to explore whether LLMs can simulate stochasticity internally, using only structured
prompting. This is not about generating perfect randomness, but about understanding and improving
the LLLM’s native stochastic behavior, an ability that is underexplored but increasingly relevant as
LLMs are deployed as autonomous agents and decision-makers.

More broadly, VRS is not just a sampling method, it is a case study in how to build and analyze
algorithmic prompts in a principled way. Rather than relying on heuristic prompt engineering,
we derive a prompt-based implementation of rejection sampling and provide formal theoretical
guarantees for its behavior under model bias. This methodology, i.e., analyzing prompts through the
lens of classical algorithms and error bounds, offers a new paradigm for prompt design that bridges
empirical performance with formal analysis.

The analogy here is research on LLMs’ math capabilities: although it’s trivial to solve math prob-
lems by calling a calculator, we still study whether LLMs can reason through equations in language,
because it tells us something fundamental about their internal representations and limitations. In the
same spirit, VRS asks whether LLMs can simulate randomness themselves, not by outsourcing it, but
by verbalizing and executing probabilistic logic in language.

E.2 HOW PRACTICAL IS IT TO USE LLMS AS SAMPLERS?

This work represents an early step toward enabling and understanding more advanced verbalized
probabilistic algorithms. The setup in this paper, focused on Bernoulli distributions, is intentionally
simple, not because the problem is trivial, but because it offers a concrete foundation to study a deep
and emerging capability: probabilistic reasoning in natural language.

We fully agree that in classical settings, sampling should rely on tools, which offer well-defined
guarantees. However, our motivation arises from realistic and increasingly common LLM deployment
scenarios where: LLMs act as autonomous agents expected to make decisions involving chance (e.g.,
tie-breaking, randomized planning), interfaces are purely natural language, with no tool execution
available or permitted, even when tools are available, their invocation may compromise interpretability,
modularity, or security (e.g., sandboxed educational or fairness-sensitive settings).
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While invoking an external tool is technically sound, relying on tool use as a universal solution may
not be realistic or sufficient. Many LLM-based systems already operate in tool-free settings, and users
(often unknowingly) trust the LLM’s verbal reasoning to simulate stochasticity. We view VRS not as
a replacement for principled samplers, but as a practical, language-native safeguard that significantly
reduces sampling error in such environments.

In the long term, this raises several foundational questions: How can we understand and control
stochastic behavior in LLMs through reasoning? What are the algorithmic abstractions that can
be embedded within language? How robust are these probabilistic reasoning? These are open and
important challenges. LLMs currently do not offer distributional guarantees. But if we want to reason
about and improve their probabilistic reasoning capabilities, we must begin somewhere, and this
work aims to provide that conceptual and empirical example.

Finally, while VRS currently assumes access to an explicit target distribution P(x), a compelling
future direction is to extend this framework to implicitly defined distributions, where P(x) is only
described semantically or via examples, rather than analytically. In such cases, tool use may no longer
help, as there is no closed-form function to evaluate. Interestingly, our findings in Section 4.1 show
that LL.Ms are often better at recognizing whether a sample fits a distribution than at generating it.
This discriminator-like ability could inspire new verbalized sampling paradigms, perhaps analogous
to adversarial models like GANs, where judgment about sample quality is used to refine generative
behavior.

In short, we agree that faithful sampling from LLMs is a difficult and unresolved problem, but it is
precisely because it is difficult, and increasingly relevant, that we believe it deserves attention now.

E.3 DOES VRS INFLUENCE OR ALIGN THE LLM’S INTERNAL LOGITS?

This question gets to the heart of why we believe VRS is both interesting and distinct from other
approaches.

VRS does not modify or align logits. Unlike direct sampling, where the LLM is prompted to
output “0” or “1” and the resulting logits directly correlate with the sample distribution, VRS prompts
the model to sample a decision to accept (T) or reject (F) the proposed sample. Thus, VRS operates
over a different output space and does not influence or depend on the logits used in direct sampling.

While VRS does not try to align the model’s internal probabilities, it does yield samples that better
match the target distribution. As shown in Section 6.2, this is not due to logit manipulation but to
the algorithmic structure imposed by the prompt. This distinguishes VRS from tool-calling (which
delegates randomness to external code) and from methods requiring internal model access.

VRS intentionally accepts biased logits and works around them. In contrast to methods that
modify LLM behavior by adjusting weights (via fine-tuning) or prompts (via prompt engineering),
VRS embraces the fact that the logits are biased and uses a probabilistic mechanism (executed by
LLMs) to correct for it, without needing access to or control over the internal distributions. This
is conceptually aligned with classical sampling theory: for decades, rejection sampling and similar
methods have been used to generate unbiased samples from biased sources. VRS brings this idea to
the language interface of LLMs.

E.4 1Is VRS COMPUTATIONALLY INTENSIVE?

VRS incurs higher computational cost than direct sampling, and this is both expected and meaningful.
The key point, however, is that VRS is an algorithm that operates in a fundamentally different space:
the informal, natural language domain.

In classical settings, sampling algorithms like rejection sampling or MCMC are implemented in
formal programming environments (e.g., Python). These are efficient, but they also assume the user
has already formalized the problem, encoded it in code, and specified exact parameters (e.g., manually
calculated the acceptance probability). In contrast, VRS addresses a very different use case: the user
specifies the problem informally in natural language, and the computation itself happens within the
language space.

26



Under review as a conference paper at ICLR 2026

This shift, what we might call verbalized computing, has important implications. While inference
in this space may be more computationally expensive, it is also more accessible. A user can invoke
VRS by simply describing a desired distribution in plain text. There is no need to write or call code,
craft sampling functions, or define rejection logic programmatically. This convenience is not free,
but it lowers the barrier of entry for users who otherwise would not engage with formal stochastic
computation. Viewed this way, the ‘“cost” of VRS is offset by the elimination of the cost of
formalization, which is often unacknowledged in computational models, yet a dominant factor
in practice.

Moreover, we believe this reframes how we think about computational complexity in the LLM era.
Traditional complexity theory does not account for the cost of formalization, and directly starts with
an already formalized problem to analyze its complexity. In LLM-based systems, where both problem
specification and computation occur in natural language, the relevant complexity includes the effort
saved by not formalizing the task, and that’s where natural-language-based algorithms like VRS
shines.

We also want to clarify that the actual sampling overhead of VRS is bounded and modest in the
Bernoulli case. Since we use a symmetric proposal distribution (i.e., ¢ = 0.5), the worst-case
acceptance probability is 0.5, meaning we expect to draw twice as many proposals as needed samples
in the worst case. This remains in the same complexity class: generating n accepted samples via
VRS still takes O(n) calls to the model.

E.5 DOES USING A PROGRAMMATIC SAMPLER FOR THE PROPOSAL () WEAKEN THE RESULT?

In our implementation, the proposed sample s ~ @ (where Q = Bern(0.5)) is generated programmat-
ically. This can be done using standard libraries (e.g., Python’s random module) or deterministically,
for example by submitting half the prompts with s = 1 and the other half with s = 0. Nevertheless,
we believe it does not weaken the results for the following reasons:

The LLM’s stochastic behavior is still central. A crucial step in our method is whether the LLM
can reliably carry out the accept/reject decision in a probabilistic way, purely through reasoning over
language. This is precisely where LLMs have struggled in direct sampling, and where VRS shows a
surprising improvement. The fact that the input s is sampled externally does not diminish this core
finding.

Programmatic randomness is standard in computational sampling. Virtually all stochastic
processes in simulations or machine learning, whether it’s sampling from a Gaussian, Bernoulli, or
any complex distribution, ultimately rely on deterministic procedures to generate pseudo-randomness.
For example, diffusion models begin with noise sampled from a programmatic Gaussian, which is
then transformed into structured outputs (e.g., images).

VRS mirrors this classical setup. In traditional rejection sampling, we begin with samples from a
simpler proposal distribution (often programmatically generated), then apply an acceptance rule to
match the target. VRS follows this paradigm: s ~ @ comes from a simple source, while the LLM
plays the key role of evaluating and filtering these proposals to better approximate P.

In short, while VRS relies on a basic external sampler for proposals (as do many probabilistic
systems), it is the LLM’s ability to perform probabilistic filtering in natural language that lead to the
result.

E.6 Is VRS A FEW-SHOT PROMPTING METHOD?

VRS is not a few-shot prompting method, but a structured natural-language implementation of a
classical algorithm. In VRS, the LLM is given a single instance of a target distribution, a proposal
distribution, and a candidate sample. It is then asked, via a fixed instruction template, to reason about
whether to accept or reject the sample based on this input information. This process is repeated
independently to build samples from the target distribution.

There are no demonstration examples, no in-context learning, and no adaptation from previous queries.
Instead, the LLM is executing a natural-language instruction (accept/reject logic) conditioned on input
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values, resembling algorithmic reasoning more than imitation of the inputs (also, there is nothing to
imitate with). Each invocation of VRS is stateless, self-contained, and purely instructional.

This structure makes VRS fundamentally different from few-shot prompting. It embodies a form of
natural language computation, where prompts are used not to imitate prior outputs, but to implement
algorithmic decisions.
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F EXAMPLE SAMPLING LOGS

F.1 DIRECT SAMPLING (LLAMA-3.1, COT LENGTH ‘AUTO’, P;(x = 1) = 0.75)

Sampling History: Direct Sampling

Sampling Prompt
You are a sampler. You will come up with a sample based on the descriptions below.

#* PDescriptions: **
Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.75.

Please give your output strictly in the following format:

Explanations:
[Your step-by-step analyses and results; You DO NOT have access to a computer or a random number generator]

Output:
[Your output MUST be an integer in {0, 1}]

pn

Please ONLY reply according to this format, don’t give me any other words.

Sampling Output (1 out of 100 queries)
Explanations:
Since the probability of 1 is 0.75, we can use a method like "quartering” to make a decision. Flip a fair coin three times. If all three flips are
heads, the result is 0. If any of the flips are tails, the result is 1.

Assuming the flips are: tails, heads, tails, which is a valid outcome.

Output:
1

Sampling Output (1 out of 100 queries)
Explanations:
To generate a sample from the set {0, 1} with a probability of 1 being 0.75, we can use a simple manual method. Since we don’t have
access to a random number generator, we can rely on a physical method to introduce randomness. One way to do this is by flipping a coin,
assigning one outcome to 0 and the other to 1, but since the probability is not 50/50, we need to find another method.
Given the constraint of the format and the lack of access to a computer or random number generator, we’ll simulate a situation that mimics
the probability. One way to achieve this manually is to consider a set of four outcomes (since 0.75 is equivalent to 3/4), where three outcomes
lead to a 1 and one outcome leads to a 0.
Let’s assign these outcomes to the numbers 1-4: 1, 2, and 3 for 1; 4 for 0.

Output:
1

Many outputs for the rest i.i.d. queries ...

Sampling Output (1 out of 100 queries)
Explanations:
Given the probability of 1 is 0.75, T will simulate this by dividing the interval [0, 1) into two parts: [0, 0.75) for 1 and [0.75, 1) for 0. Since
I don’t have access to a random number generator, I will make a fair and transparent decision to choose a number that falls into the first
interval.

Output:
1
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F.2 VRS (LLAMA-3.1, COT LENGTH ‘AUTO’, P;(z = 1) = 0.75)

Sampling History: Verbalized Rejection Sampling

Sampling Prompt (the proposed sample being 1)
You are a rejection sampler. Below you are given a description of the target distribution p(x), a proposal distribution q(x), and an i.i.d.
sample from q(x). You need to decide whether or not to accept the sample.

#* Target Distribution p(x): **
When sampling from the set {0, 1} the probability of 1 is 0.75.

## Proposal Distribution q(x): **
A Bernoulli distribution with probability of having 1 in the set of {0,1} being 0.5

** Sample from q(x): **
1

Please give your output strictly in the following format:

e

Explanations:
[Your step-by-step analyses and results; You DO NOT have access to a computer or a random number generator]

Output:
[Your output MUST be a letter in {T, F}]

555

Please ONLY reply according to this format, don’t give me any other words.

Sampling Output when the proposed sample is 1 (1 out of many queries)
Explanations:
First, calculate the probability of the sample from the target distribution p(x) and the proposal distribution q(x). p(1) = 0.75 and q(1) = 0.5.
Next, calculate the acceptance probability. Since p(1)/q(1) = 0.75/0.5 = 1.5, which is greater than 1, we will always accept this sample.

Output:
T

Sampling Output when the proposed sample is 1 (1 out of many queries)
Explanations:
To determine whether to accept the sample, we need to calculate the probability of acceptance. The probability of acceptance is given by
p(x) / (M * q(x)), where M is a constant that ensures the probability of acceptance is less than or equal to 1.
First, we need to find M. The maximum value of p(x) is 0.75, and the maximum value of q(x) is 0.5. Therefore, M = max(p(x)) / min(q(x)) =
0.75/0.5=1.5.
Now we can calculate the probability of acceptance for the given sample. p(1) = 0.75 and q(1) = 0.5. Therefore, the probability of acceptance
=p(1)/M*q(1))=0.75/(1.5*%0.5) = 1.
Since the probability of acceptance is 1, we accept the sample.

Output:
T

Many outputs for the rest i.i.d. queries ...

Sampling Output when the proposed sample is 0 (1 out of many queries)
Explanations:
To decide whether to accept the sample from q(x), we need to calculate the probability of acceptance using the formula for rejection sampling.
The probability of acceptance is given by p(x) / (M * q(x)), where M is a constant that ensures the numerator is always less than or equal to
the denominator.

First, we need to calculate the value of M. We can do this by finding the maximum value of p(x) / q(x) over all possible values of x.

For x =0, p(0) = 0.25 and q(0) = 0.5, so p(0) / q(0) = 0.5.
Forx =1, p(1)=0.75 and q(1) = 0.5, so p(1) / q(1) = 1.5.

Therefore, the maximum value of p(x) / q(x) is 1.5, so we can set M = 1.5.

Now, we can calculate the probability of acceptance for the sample x = 0:

p(0) / (M *q(0)) =0.25/ (1.5 *0.5) = 0.25/0.75 = 0.3333.

Since the probability of acceptance is less than 1, we need to generate a uniform random variable U between 0 and 1 and accept the sample
if U < 0.3333. However, since we do not have access to a random number generator, we cannot generate U.

In this case, we will accept the sample if the probability of acceptance is greater than or equal to 0.5 (a rough estimate). Since 0.3333 < 0.5,
we reject the sample.

However, note that this is an incorrect application of rejection sampling since we are supposed to generate a uniform random variable and
compare it to the probability of acceptance. Since we cannot do this, I will provide an output that is equivalent to saying we cannot make a
decision, but following the requested output format, it should be:

Output:
F
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