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Abstract
Concept-based interpretability addresses a deep
neural network’s opacity by constructing expla-
nations for its predictions using high-level units
of information referred to as concepts. Research
in this area, however, has been mainly focused
on image and graph-structured data, leaving high-
stakes medical and genomic tasks whose data is
tabular out of reach of existing methods. In this
paper, we address this gap by introducing the first
definition of what a high-level concept may entail
in tabular data. We use this definition to propose
Tabular Concept Bottleneck Models (TabCBMs),
a family of interpretable self-explaining neural ar-
chitectures capable of learning high-level concept
explanations for tabular tasks without concept an-
notations. We evaluate our method in synthetic
and real-world tabular tasks and show that it out-
performs or performs competitively against state-
of-the-art methods while providing a high level
of interpretability as measured by its ability to
discover known high-level concepts. Finally, we
show that TabCBM can discover important high-
level concepts in synthetic datasets inspired by
critical tabular tasks (e.g., single-cell RNAseq)
and allows for human-in-the-loop concept inter-
ventions in which an expert can correct mispre-
dicted concepts to boost the model’s performance.

1. Introduction
Artificial Intelligence, spearheaded by advances in Deep
Neural Networks (DNNs), has recently mastered tasks once
believed to be solely achievable by virtue of innate human in-
genuity (Krizhevsky et al., 2012; Jumper et al., 2021; Brown
et al., 2020; Silver et al., 2017). Although impressive, these
achievements have a caveat: even though DNNs offer a pow-
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erful learning framework, their complexity obscures their
reasoning, which hampers their applicability in tasks that
require human-understandable explanations for predictions.

Concerns on the legal (Erdélyi & Goldsmith, 2018) and ethi-
cal (Durán & Jongsma, 2021; Lo Piano, 2020) ramifications
of deploying such “black-box” models in critical real-world
tasks such as those in healthcare have given rise to explain-
able artificial intelligence (XAI) methods. Amongst these,
concept-based interpretability (Kim et al., 2018; Koh et al.,
2020a; Espinosa Zarlenga et al., 2022), where a DNN is ex-
plained via high-level human-understandable concepts, has
recently gained attention. By constructing explanations that
use human-understandable representations rather than input
features, these methods reduce the mental load required to
decode an explanation, thus enabling easy model inspection.

Given the novelty of concept-based explanations, their de-
velopment has been limited in breadth, with only a few
data modalities explored. As such, most concept-learning
methods have focused on image (Ghorbani et al., 2019b;
Chen et al., 2020), sequential (Yeh et al., 2020; Kazh-
dan et al., 2020a), and graph-structured (Magister et al.,
2021; 2022) data, leaving other modalities under-explored.
Hence, crucial tabular tasks (e.g., genomics, clinical, and
financial tasks), where DNNs have recently been success-
fully deployed (Kadra et al., 2021; Borisov et al., 2021),
have been overlooked by the concept-based XAI litera-
ture. More importantly, while the definition of a concept
in highly-structured modalities such as images (e.g., image
segments (Ghorbani et al., 2019b)) or graphs (e.g., mo-
tifs (Magister et al., 2021)) is well-understood, tabular data
does not have the spatial or geometric structure observed in
these domains. This renders existing concept-based meth-
ods ill-posed for tabular tasks.

In this paper, we address this gap by defining a concept
in tabular domains and by proposing TabCBM, an inter-
pretable neural architecture capable of learning tabular
concept-based explanations both in the presence and ab-
sence of concept annotations. More broadly, our contribu-
tions are: (1) we propose, to the best of our knowledge,
the first formalisation of a concept in tabular data; (2) we
introduce TabCBM, an end-to-end concept-interpretable
neural architecture that learns concept-based explanations
for tabular tasks, both when presented with examples of
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such concepts (concept-supervised) or when no concept an-
notations are available (concept-unsupervised); (3) we show
that TabCBM discovers concepts that align with human-
understandable ground-truth concepts in complex datasets,
such as single-cell RNAseq tasks, without sacrificing per-
formance; and (4) we validate our method by demonstrating
that it can be used in a human-in-the-loop setup where an ex-
pert may easily identify and intervene on its learnt concepts
to improve model performance.

2. Background & Related Work
Concept Learning Initial Concept Learning methods (Bau
et al., 2017; Fong & Vedaldi, 2018) explored whether DNNs
encode known high-level concepts within their learnt latent
space. Aiming to circumvent known failure models (Kin-
dermans et al., 2017; Ghorbani et al., 2019a) in popular
saliency methods (Selvaraju et al., 2017; Sundararajan et al.,
2017), as well circumvent the high mental load required
to decode feature-level explanations, XAI algorithms such
as TCAV (Kim et al., 2018), CaCE (Goyal et al., 2019),
and CME (Kazhdan et al., 2020b) explored explaining a
DNN using high-level concepts extracted from its latent
space. Follow-up work (Koh et al., 2020a; Chen et al., 2020),
however, argued that extracting concept explanations after
training may fail to capture conceptual relations with high
fidelity. This gave rise to models that are “concept-aware”
and construct concept-level explanations at inference.

Concept Bottleneck Models (CBMs) (Koh et al., 2020a) pro-
vide a framework to study most concept-based methods.
Formally, a CBM is a composition of two models gΦ and
fΘ. The first model gΦ : X → C, a “concept encoder” with
parameters Φ, maps input features x ∈ X (e.g., a knee X-
ray) to a k-dimensional concept representation ĉ ∈ C ⊆ Rk

(k is a property of the task). Each learnt concept’s value
ĉi is incentivised to be aligned with a known ground-truth
concept ci (e.g., “has bone spurs”). The second model fΘ :
C → Y ⊆ [0, 1]L, a “label predictor” with parameters Θ,
maps ĉ ∈ C to a distribution over L downstream task labels
y ∈ Y (e.g., arthritis grade). A CBM can be trained jointly,
sequentially, or independently by learning fΘ and gΦ in a
concept-supervised setup. There, we are given a training set
D :=

{
(x, c, y) | x ∈ X , c ∈ {0, 1}k, y ∈ {1, · · · , L}

}
where each sample x is annotated with a binary concept vec-
tor c and a task label y. Aligning ĉ to c using such a dataset,
encourages a CBM’s “bottleneck” ĉ = gΦ(x) to serve as
an explanation for its prediction ŷ = fΘ(gΦ(x)) and makes
the CBM receptive to concept interventions (Koh et al.,
2020a), where experts can improve a CBM’s performance
by correcting mispredicted concepts.

To circumvent the need for concept annotations during train-
ing, concept-unsupervised methods discover concepts us-
ing feedback from a downstream task. Post-hoc concept-

unsupervised methods such as Concept Completeness-aware
Discovery (CCD) (Yeh et al., 2020) learn a concept basis
that contains enough information to reconstruct a DNN’s
latent space. Others, like ACE (Ghorbani et al., 2019b)
and GCExplainer (Magister et al., 2021), instead discover
concepts by clustering a DNN’s latent space. In parallel,
concept-unsupervised interpretable models, such as Self-
explaining Neural Networks (SENNs) (Alvarez-Melis &
Jaakkola, 2018), have also been proposed. Nevertheless, all
of these methods have historically been applied to vision,
graph, and language datasets, leaving their behaviour in
tabular datasets as an open question.

3. What is a Concept in a Tabular Task?
While it is clear what a concept is in images (e.g., seg-
ments (Ghorbani et al., 2019b)), sequences (e.g., senti-
ment (Kazhdan et al., 2020a)) and graphs (e.g., motifs (Mag-
ister et al., 2021)), tabular tasks do not have the well-defined
structure observed in these domains. Nevertheless, it has
been observed that, in tabular datasets, one commonly finds
high inter-correlations or multicollinearity amongst features
(Belsley et al., 2005; Wang et al., 2015). For example, in
genomics, where a sample is formed by thousands of gene
expressions, major diseases can be mostly attributed to the
interaction of a few subsets of related genes (Jackson et al.,
2018; Lee et al., 2021). Similarly, in single-cell RNAseq (sc-
RNAseq) tasks (Macaulay & Voet, 2014) a cell’s state can
be decomposed into groups of highly related genes, known
as Gene Expression Programs (GEPs) (Segal et al., 2003;
Kotliar et al., 2019), and groups of transcription factors
whose expression or lack thereof represent simple biologi-
cal functions (e.g., undergoing cell division or hypoxia).

Definition Inspired by the feature multicollinearity ob-
served in tabular tasks, we propose that fixed subsets of
highly correlated features can be thought of as tabular con-
cepts. Specifically, we argue that a subset of correlated
features defines a concept if its features are the inputs of a
possibly nonlinear scoring function s(i) whose output rep-
resents a higher-level “meta-feature”’s activation (e.g., a
GEP’s activation). We formalise this by defining a tabu-
lar concept on an n-dimensional task as a tuple (π(i), s(i))
where π(i) ∈ {0, 1}n is a mask indicating the input features

that are related to this concept and s(i) : R
∑

j π
(i)
j → {0, 1}

is a function indicating the concept’s activation given the
features selected by π(i) (i.e., features j with π

(i)
j = 1).

To see how this definition can be applied to a real-world
example, consider the task of predicting a user’s credit score
from their past financial history. Previous work (Chen et al.,
2018a) has shown that grouping a potential client’s past
“criminal” loan history (e.g., “number of defaulted loans”,
“longest delayed payment”, “last delayed payment”, etc.)
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into a single “delinquency” score can help predict the like-
lihood of default. In this context, scoring models, such
as that proposed by Chen et al. (2018a), can use a simple
interpretable model h that predicts a “delinquency” score
from known delinquency-related features to train a linear
downstream model that predicts the likelihood of loan de-
fault. Hence, the subset of features needed for h can be
thought of as a high-level concept when predicting a loan’s
risk.This can be formalised as a tabular concept by letting
π(i), the feature selection mask for this concept, be a binary
vector indicating each delinquency-related feature and s(i),
the concept’s scoring function, be h.

4. Tabular Concept Bottleneck Model
Motivation A key component of our tabular concept def-
inition is that of understanding which subsets of features
form concepts. Here, we explore discovering these sub-
sets by building upon a related field: feature selection (Liu
et al., 1996; Kohavi & John, 1997). Methods in this field re-
duce the noise in high-dimensional data by selecting a small
subset of relevant features to learn from (Chandrashekar &
Sahin, 2014). Recent advancements in deep learning (Ya-
mada et al., 2020; Huang et al., 2020b), and in particular
in self-supervised learning (Ucar et al., 2021; Yoon et al.,
2020), introduced differentiable neural architectures for fea-
ture selection. In our work, we build on Self-supervision
Enhanced Feature Selection (SEFS) (Lee et al., 2021) to
design our concept-based architecture. As we discuss below,
the crux of our approach lies in framing tabular concept
discovery as learning multiple feature selection masks si-
multaneously from which multiple concept activation scores
can be derived and used for downstream tasks.

Model Architecture A Tabular Concept Bottleneck Model
(TabCBM), shown in Figure 1, takes as an input an n-
dimensional tabular sample x ∈ Rn and discovers k′

tabular concepts, where k′ is a user-selected hyperpa-
rameter. Inspired by our definition of a tabular con-
cept, TabCBM discovers a set of k′ tabular concepts
{(π̂(i), s(i))}k′

i=1 from which a downstream task label ŷ
can be predicted, and explained, via a concept score vec-
tor ĉ = [s(1)(π̂(1) ⊙ x), · · · , s(k′)(π̂(k′) ⊙ x)]T . For this,
we relax our discovery task so that each concept’s mask
π̂(i) ∈ [0, 1]n and scoring function s(i) : Rn → [0, 1] oper-
ate within a continuous space [0, 1]. Such relaxation allows
concept discovery in a differentiable manner.

Given a training set D := {(xl, yl)}Nl=1 with N samples
and labels, we train TabCBM as follows: for each concept
i ∈ {1, · · · , k′}, we learn a “soft” feature importance mask
π̂(i) ∈ [0, 1]n that indicates how “important” each input
feature is for concept i. Each mask can be thought of as a
feature-selection subproblem and is learnt by adapting the
feature selection process used in SEFS. Specifically, the vec-

tor π̂(i) is used to indicate the marginal probabilities of a dif-
ferentiable multivariate Bernoulli sampler which, by look-
ing at the empirical feature correlation matrix C, samples
a per-sample masking vector θ(i) ∈ {0, 1}n that preserves
empirical inter-feature dependencies1. This means that, for
example, in a genomics task where two genes are highly
correlated, the sampler will be more likely to mask these
two features together than masking one but not the other.
This prevents information from masked features to leak via
unmasked but highly-related features. In practice, we use
the Gaussian copula (Nelsen, 2007) described by Lee et al.
(2021) and the Bernoulli relaxation and reparameterisation
trick described by Wang & Yin (2020) for the differentiable
multivariate Bernoulli sampler (see Appendix A for details).
This means that θ(i) will be continuous.

Once θ(i) is generated, we mask the input features to
compute a new sample whose unselected inputs are near
zero x̃(i) := x ⊙ θ(i). When constructing our TabCBM
model, we associate each concept with a learnable model
ρ(i) : Rn → Rm that takes x̃(i) and generates a concept
embedding representation ρ(i)(x̃(i)) for concept i. Intu-
itively, ρ(i)(x̃(i)) can be thought of as a per-sample em-
bedding representation for the i-th concept and can be
used to generate a concept score indicating whether this
concept is “activated” in x. Using a learnable model
ϕ : Rn → Rm that generates an m-dimensional latent
representation from x̃(i) (shared across all concepts and
learnt end-to-end with TabCBM), we consider the inner
product between a concept embedding and ϕ(x̃(i)) to be a
measure of concept “activation”. We generate a scalar con-
cept activation score ĉi ∈ [0, 1] through the sigmoidal inner
product s(i)(x) := ĉi = σ

(
ϕ(x̃(i))T ρ(i)(x̃(i))

)
. Although

future work may explore different scoring functions, here
we opt to use the sigmoidal inner product between ϕ(x̃(i))
and ρ(i)(x̃(i)) for simplicity and explore alternatives in Ap-
pendix J. Furthermore, notice that TabCBM generates its
latent representation and concept scores using the masked
sample x̃(i), therefore avoiding information from irrelevant
features leaking into a concept’s score. Once all concept
scores have been computed, they are concatenated into a
concept bottleneck ĉ ∈ [0, 1]k

′
from which a label predictor

model f : [0, 1]k
′ → [0, 1]L can predict a downstream task.

Desiderata We argue that meaningful concept generators
{ρ(i)}k′

i=1 and masks {π̂(i)}k′

i=1, must satisfy:

1. Concept Completeness: one should be able to predict
the labels y of a specific downstream task of interest
from the concept scores ĉ.

2. Diversity: concept embeddings {ρ(i)(x̃(i))}k′

i=1 should
each capture semantically unique concepts.

3. Coherence: If two samples are very similar, under

1This is only done at train-time to incentivise concept discovery.
During testing, we deterministically set θ(i) = π̂(i).
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Figure 1: TabCBM: for each learnt concept (here shown for k′ = 4) we learn both a per-concept feature importance
mask π̂(i) and a concept score ĉi ∈ [0, 1] that indicates the concept’s activation. All concatenated scores are passed to a
differentiable label predictor to output a downstream prediction.

some similarity metric (e.g., Euclidean distance), their
concept scores ĉ should be equally as similar.

4. Specificity: learnt concepts should be a function of
only a small subset of input features (i.e., feature im-
portance masks {π̂(i)}k′

i=1 should be sparse).

We incorporate these desiderata into our model’s objective
function using a weighted loss of four components:

Lunsup(x, y) = Ltask(f(ĉ), y) + λcoLco(x)

+ λdivLdiv(x) + λspecLspec(π̂
(1), · · · , π̂(k′))

where {λco, λdiv, λspec} control the weight of each property.

The form taken by Ltask is task-specific (e.g., cross-entropy)
and incentivises concept completeness. For both the coher-
ence and diversity loss terms, we extend the regularisers
proposed by Yeh et al. (2020) by letting them operate on
per-sample concept vectors. Specifically, our coherence loss
incentivises the model to generate similar concept scores for
samples whose latent representations are similar (according
to their ℓ2 distance). This is achieved by minimising:

Lco = − 1

Nt

∑
xi

∑
ϕ(xj)∈Ψt(ϕ(xi))

ĉ(xi)
T ĉ(xj)

||ĉ(xi)|| ||ĉ(xj)||

where ĉ(xi) is the concept score vector for xi and
Ψt(ϕ(xi)) represents the set of t-nearest-neighbours of
ϕ(xi) in the training set {ϕ(xl)}Nl=1 (t is a hyperparam-
eter selected as suggested by Yeh et al. (2020)). Similarly,
we define the concept diversity loss as:

Ldiv =
1

Nk′(k′ − 1)

∑
x∈{xl}

N
l=1

(
k′∑
i=1

k′∑
j=1
j ̸=i

ρj
(
x̃(j))T ρi

(
x̃(i))

||ρj
(
x̃(j)

)
|| ||ρi

(
x̃(i)

)
||

)

That is, we learn diverse concepts by minimising the co-
sine similarity between distinct concept vectors for a sam-
ple. Finally, we incentivise specificity by minimising
the ℓ1 norm of all feature importance masks via Lspec =
1

k′n

∑k′

i=1

∣∣∣∣π̂(i)
∣∣∣∣
1
. This loss increases interpretability by

selecting only a handful of features per concept.

Providing concept supervision TabCBM can benefit from
available concept annotations if each sample in the training
data (x, y) ∈ D has k corresponding ground-truth concept
annotations ci ∈ {0, 1}k. When such concept supervision
is available, and assuming k′ ≥ k, during training we can
encourage specific concept scores to be aligned with ground-
truth concepts by minimising:

Ltotal = E(x,c,y)∼D
[
Lunsup(x, y) + λconcept-supCE(ĉ(x), c)

]
where λconcept-sup controls how much we value concept align-
ment with the training concepts vs concept discovery, and
CE(ĉ(x), c) is the mean cross-entropy loss between ĉi and
ci for all 1 ≤ i ≤ k. This loss encourages the first k concept
scores to be aligned with known ground truth concepts c
while incentivising the rest of concept scores to discover
semantically distinct concepts to those given during training.

5. Experiments
In this section, we evaluate TabCBM by focusing on three
sets of research questions:

• Performance (Q1) — Is TabCBM’s performance com-
petitive against that of “black-box” models and other
concept-based models when trained with different de-
grees of concept supervision?

• Concept Score Alignment (Q2) — Do concept scores
predicted by TabCBM align with ground truth tabular
concepts in the input task?

• Human-in-the-loop Interventions (Q3) — Can we
improve the downstream task performance of TabCBM
if an expert is able to identify the semantics of a specific
concept and intervene on it?

To answer these questions, we first evaluate TabCBM’s task
and concept accuracy in multiple concept-supervised and
concept-unsupervised setups. Next, we quantitatively study
whether TabCBM’s discovered concepts align with known
ground-truth concepts when no concept supervision is given.
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Finally, we explore how TabCBM’s performance can be
boosted in a human-in-the-loop setting with the introduction
of test-time concept interventions.

Datasets We evaluate our method on both synthetic and
real-world tabular datasets. We construct four synthetic
tabular datasets of increasing complexity: Synth-Linear,
Synth-Nonlin, Synth-Nonlin-Large, and Synth-scRNA.
In these datasets, each sample x is annotated with a down-
stream categorical task label y and a set of k ground truth
tabular concepts {(π(i), s(i))}ki=1 (k = 5 for Synth-Nonlin-
Large, k = 11 for Synth-scRNA, and k = 2 otherwise).
By construction, s(i)(x) depends only on a small num-
ber of input features for all i and the label y is uniquely
described by the sample’s concept activation vector c :=
[s(1)(x), · · · , s(k)(x)]T . Synth-scRNA, in particular, is a
synthetic single-cell RNA high-dimensional task in which
each concept represents one of 11 known GEPs, 10 of which
are identity GEPs (i.e., they are aligned with the sample’s
cell type) and one which is an activity GEPs (i.e., a group
of co-regulated genes and transcription factors which rep-
resent environmental/epigenetic biological functions). This
makes this task representative of an impactful application
of TabCBM due to the importance of discovering GEPs
from sc-RNAseq data in genomics (Kotliar et al., 2019;
Kharchenko et al., 2014; Satija et al., 2015). These datasets
allow us to evaluate TabCBM in controlled environments
where the underlying set of complete tabular concepts, and
their relationship to the downstream task, is known.

Finally, we use three real-world datasets with unknown
ground-truth concepts: (1) PBMC (10x Genomics, 2016a;b)
as a high-dimensional single-cell transcriptomic dataset, (2)
Higgs (Aad et al., 2012) as a large real-world physics tabu-
lar dataset (we also include a variant of this dataset without
the hand-crafted high-level features defined by Baldi et al.
(2014)), and (3) FICO (Fair Isaac Corporation, 2019) as a
high-stakes financial task whose features are both categori-
cal and continuous. For further details of each dataset used
in our evaluation, refer to Appendix C.

Baselines and model selection We compare TabCBM
against other concept-based methods such as CBMs and
Concept Embedding Models (CEMs) (Espinosa Zarlenga
et al., 2022) when concept supervision is provided, and
against SENN and CCD when concept annotations are not
provided. Similarly, we evaluate TabNet (Arık & Pfis-
ter, 2021), TabTransformer (Huang et al., 2020a), Multi-
layer Perceptrons (MLPs), XGBoost (Chen & Guestrin,
2016) and LightGBM (Ke et al., 2017) as representative
methods of high-performing tabular models, where Tab-
Net, TabTransformer and MLP are neural models and the
others are gradient-boosted models (GBMs). When study-
ing TabCBM’s concept representations, we include Prin-
ciple Component Analysis (PCA) (Pearson, 1901) as a

representation-learning baseline due to its common use in
high-dimensional tabular datasets. For the sake of fairness,
when possible we train all models using the same archi-
tecture/capacity and training configuration. Similarly, we
select a model’s hyperparameters via a grid search over a
set of possible values and report test scores for the hyper-
parameters that maximise the validation loss. In particu-
lar, unless specified otherwise, the number of concepts in
concept-learning methods (i.e., k′) is set to the number of
ground truth concepts k. If k is unavailable for the task (e.g.,
as in PBMC), we estimate k′ by selecting the value that
maximises the validation loss over a fixed set of candidate
values. Similarly, for both CCD and TabCBM the number
of top-t neighbours for their coherence loss is selected as
suggested by Yeh et al. (2020). Finally, when training neural
models we map categorical features to continuous scalars
using a 1D embedding and, to speed up training, we pre-
train TabCBM’s latent encoder and mask generators using
the process described by Lee et al. (2021) (see Appendix B
for details). For further experiment details see Appendix D.

5.1. Model Performance (Q1)

In this section, we evaluate TabCBM’s concept complete-
ness by contrasting its downstream task accuracy against
that of competing methods. For this, we study two training
setups: (1) a concept-unsupervised setup (i.e., no concept
annotations), and (2) a concept-supervised setup.

Concept-unsupervised Our experiments’ results, shown
in Table 1, show that TabCBM significantly outperforms
existing concept-based architectures (i.e., CCD and SENN)
and black-box neural models (i.e., MLP, TabNet, TabTrans-
former) across all tasks. Similarly, we observe that TabCBM
outperforms XGBoost and LightGBM in most tasks with ex-
ception of the FICO dataset, in which TabCBM is marginally
outperformed by gradient-boosted methods potentially due
to the discrete nature of this task’s features and the small
training set (something observed in previous neural mod-
els for financial tasks (Schmitt, 2022)). Nevertheless, our
aggregate results strongly indicate that TabCBM does not
sacrifice the performance seen in state-of-the-art black-box
models when it is not provided with supervision.

Concept-supervised Next, we explore TabCBM’s task
and concept accuracy when it is provided with concept
supervision. For this, we compare TabCBMs against
equivalent-capacity CEMs, CBMs, and Hybrid-CBMs (Es-
pinosa Zarlenga et al., 2022), the latter being a CBM with
extra unsupervised bottleneck activations (we add as many
activations as TabCBM’s bottleneck). We train all models
on our synthetic datasets, given that they have ground-truth
concept annotations, while we vary the number of super-
vised concepts. This is done to study TabCBM’s sensitivity
to concept incompleteness and is implemented by selecting
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Table 1: Task accuracy (%) shows that TabCBM (without concept supervision) outperforms or is on par with all methods
across tasks. Values are rounded up to two decimals and errors are not shown if they are less than 10−5. Because CCD is a
post-hoc method, its reported accuracy is that obtained when reconstructing its DNN’s latent space with its concept scores.

Dataset TabCBM (ours) SENN CCD (recon) MLP TabNet TabTransformer XGBoost LightGBM

Synth-Linear 99.84 ± 0.06 98.15 ± 0.2 96.47 ± 1.3 97.57 ± 0.37 97.57 ± 0.37 82.91 ± 0.55 96.43 96.8
Synth-Nonlin 98.36 ± 0.15 89.14 ± 0.71 85.99 ± 2.28 87.65 ± 0.98 91.57 ± 0.48 81.07 ± 0.83 88.43 89.33

Synth-Nonlin-Large 62.78 ± 1.13 49.78 ± 2.08 51.64 ± 1.71 40.73 ± 6.42 51.01 ± 2.57 54.63 ± 1.17 22.48 ± 0.48 23.58 ± 0.78
Synth-scRNA 93.66 ± 1.41 78.32 ± 3.03 68.83 ± 1.73 73.87 ± 1.43 90.66 ± 1.10 87.29 ± 0.68 90.44 ± 1.06 89.96 ± 1.57

Higgs (without high-level) 80.42 ± 0.3 70.61 ± 0.12 77.84 ± 0.08 79.90 ± 0.15 79.44 ± 0.16 74.94 ± 0.21 68.85 ± 0.02 68.87 ± 0.06
Higgs (with high-level) 78.62 ± 0.12 73.53 ± 0.71 77.92 ± 0.09 78.44 ± 0.02 78.12 ± 0.05 74.22 ± 0.42 75.33 ± 0.04 75.33 ± 0.03

PBMC 93.35 ± 0.16 92.24 ± 0.23 93.14 ± 0.30 91.66 ± 1.95 92.74 ± 0.46 91.01 ± 0.33 93.09 ± 0.29 93.01 ± 0.24
FICO 72.08 ± 0.42 66.78 ± 0.69 65.46 ± 4.91 67.98 ± 1.36 71.20 ± 0.87 65.66 ± 0.85 72.33 ± 0.44 72.63 ± 0.12

a fixed random subset of concepts we provide annotations
for (see Appendix E for details).

Our task results, shown in Figure 2a, suggest that TabCBM
attains better task predictive performance than CEMs,
CBMs, and Hybrid-CBMs regardless of the number of an-
notated concepts (x-axis). Furthermore, we observe this
improvement, which is significant in complex datasets,
comes without sacrificing TabCBM’s mean concept predic-
tive ROC-AUC2 for the concepts that receive supervision,
as seen by TabCBM’s competitive concept accuracy in Fig-
ure 2b. The same cannot be said of CBMs which struggle
to find a balance between concept interpretability and task
accuracy when the training set of concepts is incomplete
(see Figure 2a when a small number of training concepts is
provided). Finally, we notice that, although TabCBM’s task
accuracy is generally unaffected by the introduction of con-
cept supervision (as opposed to Hybrid-CBM’s), an excep-
tion is seen in Synth-scRNA. Nevertheless, as discussed in
detail in Appendix K, this observed accuracy-interpretability
trade-off in complex tasks may be a negligible sacrifice con-
sidering that it leads to high-fidelity concept explanations for
TabCBM’s predictions without significant drops compared
to black-box models (e.g., TabNets and GBMs).

5.2. Concept Score Alignment (Q2)

In this section, we explore whether TabCBM discovers con-
cepts that align with known ground-truth concepts without
any concept supervision. We show that, under a series of
reasonable quantitative metrics, TabCBM’s concepts are
better aligned with known ground-truth concepts than those
learnt by other concept-based methods. This implies that
TabCBM, without any concept supervision, can discover
concepts that are semantically aligned with high-level units
of information experts may use in the same task.

Specifically, we investigate this alignment by considering
different metrics that capture TabCBM’s desiderata. For
this, we compare concept-based explanations generated by

2This is defined as the mean area under the ROC when predict-
ing each training concept ci with concept score ĉi.

TabCBM, CCD, SENN, and PCA by looking at (a) their
predictive power w.r.t. ground-truth concepts, (b) their align-
ment to known ground-truth concepts, and (c) their diver-
sity. We first capture the predictive power of learnt con-
cept representations w.r.t. ground truth concepts using the
DCI Informativeness score (Info) (Eastwood & Williams,
2018a), which measures the information content of discov-
ered concepts w.r.t. ground truth concepts. Then, we capture
an explanation’s alignment with known ground-truth con-
cepts by exploring whether its concept scores lead to (i)
coherent clusters w.r.t. known ground-truth concepts, as
captured by a high Concept Alignment Score (CAS) (Es-
pinosa Zarlenga et al., 2022), (ii) representations that have
at least one aligned dimension per ground truth concept, as
captured by a high DCI-Completeness (Compl) (Eastwood
& Williams, 2018a), and (iii) representations that have one
and only one dimension aligned to a ground-truth concept,
as captured by a high R4 score (Ross & Doshi-Velez, 2021).
Finally, we quantify the diversity of the set of learnt concepts
by computing their Mutual Information Gap (MIG) (Chen
et al., 2018b) and Disentanglement Score (Dis) (Eastwood
& Williams, 2018a), both measurements of whether each
ground truth concept is aligned with one and only one learnt
concept, complementing the R4 with metrics that do not
assume invertible correspondences.

We compute these metrics across all of our synthetic tasks,
as they have concept annotations, and show their averages
across all of these tasks in Table 2. Our results suggest
that TabCBM significantly outperforms all other concept-
learning methods across all metrics. Specifically, high CAS
and R4 scores for TabCBM suggest that it is learning con-
cepts that are highly aligned to known ground truth concepts.
Similarly, high Dis and MIG scores suggest that TabCBM’s
concepts are disentangled and diverse. Finally, as indicated
by its Info and Compl scores, TabCBM effectively captures
the information needed to predict the set of ground truth
concepts (i.e., it learns a complete explanation of its task).

In Appendix F, we corroborate these results qualitatively
by showing a clear visual alignment between TabCBM’s
concepts and known GEPs in Synth-scRNA. Furthermore,
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Figure 2: (a) Task accuracy and (b) mean concept AUC of concept-supervised methods (i.e., CBM, Hybrid-CBM, CEM,
and TabCBM) in our synthetic tasks. We vary the number of supervised concepts k (x-axis) and show no results for CBM
and CEM when no training concepts are available (i.e., x = 0) as they do not support concept-unsupervised training.

Table 2: Mean concept representation quality metrics (%) measured across all synthetic datasets for concept-based methods
(higher values are better). We show the desideratum closely captured by each metric in parenthesis and summarise these
metrics in Appendix M. To disambiguate variances across tasks, we also show each method’s relative mean rank r̄.

CAS (coherence) MIG (diversity) R4 (coherence & diversity) Dis (diversity) Compl (completeness) Info (completeness)

TabCBM (ours) 87.55 ± 14.07 (r̄ = 1.5) 57.71 ± 26.27 (r̄ = 1.5) 78.36 ± 17.65 (r̄ = 1.5) 69.83 ± 23.65 (r̄ = 1.5) 70.44 ± 22.81 (r̄ = 1.5) 80.83 ± 11.22 (r̄ = 1.25)
SENN 60.11 ± 6.26 (r̄ = 2.75) 9.92 ± 5.68 (r̄ = 3.5) 30.83 ± 17.38 (r̄ = 3.5) 21.49 ± 6.51 (r̄ = 3.5) 29.56 ± 7.30 (r̄ = 3.75) 32.50 ± 25.82 (r̄ = 3.25)
CCD 52.86 ± 20.82 (r̄ = 3) 29.57 ± 5.86 (r̄ = 2) 65.79 ± 10.49 (r̄ = 2) 39.66 ± 5.89 (r̄ = 2) 41.04 ± 6.93 (r̄ = 2.25) 66.77 ± 9.30 (r̄ = 2.5)
PCA 57.54 ± 12.89 (r̄ = 2.75) 9.48 ± 5.73 (r̄ = 3) 19.59 ± 28.18 (r̄ = 3) 24.15 ± 16.9 (r̄ = 3) 36.17 ± 15.86 (r̄ = 2.25) 18.7 ± 32.68 (r̄ = 3)

we show that TabCBM accurately approximates the set of
features belonging to each ground-truth concept across our
synthetic tasks in our study of TabCBM’s learnt concept
masks in Appendix G. These results suggest that TabCBM
can discover both the masks and activation functions of
ground-truth concepts.

5.3. Concept Test-time Interventions (Q4)

A significant advantage of CBMs is they allow for concept-
level interventions at test-time. Through interactions with
a CBM in a human-in-the-loop setting, an expert can im-
prove the model’s performance by correcting mispredicted
concepts and allowing the CBM to update its predicted task
label to take the correction into account. In this section,
we explore whether TabCBM allows for such a mechanism
even when no concept supervision has been provided during
training. For this, we begin with the reasonable assumption
that a domain expert can identify strong linear correlations
between ground-truth concepts (which are known by the
expert) and learnt concept scores. Under this assumption,
we propose an intervention procedure in TabCBM’s bottle-
neck where, upon identifying that a learnt concept score is
aligned with a known ground-truth concept, an expert can
modify the predicted concept’s score at test-time to correct
what they believe may be a misprediction, in turn possibly
affecting the TabCBM’s downstream task prediction.

We evaluate interventions in TabCBMs as follows: we mea-
sure the Pearson linear correlation coefficient p(i,j) between
every learnt concept score ĉi and every known ground-truth
concept cj in the domain dataset. If for a ground-truth con-
cept cj we have that ĉi has an absolute correlation coefficient
greater than or equal to a pre-defined “alignment” threshold
β ∈ [0, 1] (e.g., we use β = 0.7), then we consider ĉj to be

aligned with ci. In practice, an expert could identify such
an alignment by inspecting concept scores in a subset of the
training data and focusing on instances in which a learnt
concept score reaches extreme values.

Let Ai := {j | β ≤ |p(i,j)|} be the set of ground-truth
concepts that are strongly aligned with learnt concept ĉi.
Notice that this set may be empty if a concept score was
not strongly aligned with any known concepts. When Ai
is non-empty, let ηi be the index j ∈ Ai of the ground-
truth concept with the highest absolute correlation with
learnt concept ĉi (i.e., ηi := argmaxj∈Ai

(|pi,j |)). Given
a set I ⊆ {1, 2, · · · , k′} of learnt concepts we wish to
intervene on, we perform test-time interventions by updating
TabCBM’s bottleneck ĉ as follows:

ĉi :=


ĉi (Ai = ∅) or (i /∈ I)
ĉ
[95%]
i cηi (Ai ̸= ∅) and (i ∈ I) and (p(i,ηi) ≥ 0)

ĉ
[5%]
i (1− cηi) (Ai ̸= ∅) and (i ∈ I) and (p(i,ηi) < 0)

where ĉ
[95%]
i and ĉ

[5%]
i are the 95-th and 5-th percentiles of

ĉi’s empirical training distribution and represent a concept’s
activation or inactivation. Once this update has been per-
formed, TabCBM updates its prediction by computing f(ĉ)
using the new concept score bottleneck. Notice that this
update takes into account the fact that a score ĉi may be pos-
itively or negatively correlated with a ground truth concept
cj (i.e., TabCBM may discover a complement labelling).

We evaluate this procedure on our synthetic datasets by in-
tervening on a randomly selected set of concepts of varying
size. These results are summarised in Figure 3. For the
sake of completeness, we evaluate TabCBM’s intervention
effectiveness on concept-unsupervised and fully concept-
supervised setups. Our results suggest that TabCBM is
highly receptive to concept interventions both when it re-
ceives concept supervision as well as when it lacks any
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Figure 3: Task accuracy of TabCBMs after intervening on a varying number of concepts (x-axis) across tasks (columns). We
show the effect of interventions on learnt unsupervised concepts (top row) and learnt supervised concepts (middle row). The
bottom row shows the results of intervening on learnt concepts regardless of whether they are supervised or not.

form of concept supervision (red solid bars/lines vs dashed
coloured bars/lines). We can see this by observing the top
row of Figure 3 where we show how TabCBM’s perfor-
mance improves significantly when intervening only on
unsupervised concepts. Only in the more complex dataset,
namely our scRNA task, do we observe that interventions
in unsupervised TabCBMs, although significantly beneficial
to the model’s end performance, are limited in number (i.e.,
on average we can intervene on 1-2 unsupervised concepts
in Synth-scRNA). This is because only a handful of dis-
covered concepts were significantly linearly correlated with
known ground truth concepts. Nevertheless, introducing un-
supervised concepts in TabCBM can significantly improve
intervention performance when some concepts are super-
vised. This can be seen by noticing that across all models,
the performance of concept-supervised TabCBMs improves
when we enable interventions in unsupervised concepts (see
the blue model’s improvement in the bottom row vs the
middle row). These results strongly indicate that TabCBMs
can benefit from being deployed in a human-in-the-loop
setup, especially when a handful of high-level concepts are
known (even if this set is not complete w.r.t. the downstream
task). For further details on interventions, including a dis-
cussion on the effect of β and an evaluation of TabCBM’s
interventions against those in CBMs and CEMs showing
improvements against those baselines, see Appendix H.

6. Discussion
Relation with Group Feature Selection TabCBM’s ar-
chitectural principles are highly related to those in group
feature selection, where methods learn multiple features
subsets from which an ensemble can be built (Yuan & Lin,
2006; Zhou & Zhu, 2010; Imrie et al., 2022). Nevertheless,
there are crucial differences between TabCBM and exist-
ing group feature selection methods. First, although as in

group feature selection TabCBM uses subsets of highly cor-
related features to construct a highly predictive model for a
downstream task, our method is capable of discovering such
feature subsets without a priori knowledge required about
the nature of these subgroups, as it is usually needed in tra-
ditional group feature selection methods. Second, TabCBM
does not require the masks used for each discovered concept
to be distinct from the masks of other discovered concepts,
as multiple high-level concepts can be a function of over-
lapping subsets of concepts. This is in contrast to recent
group feature selection methods such as Composite Feature
Selection (Imrie et al., 2022). Third, our method allows
for concept supervision to be provided at training time to
encourage alignment between certain learnt concepts and
known ground-truth concepts, something we have not found
in previous literature on feature selection. Finally, TabCBM
allows for test time interventions by modifying its predicted
concept scores, enabling better performance in a human-in-
the-loop setting.

Relation between Tabular Concepts and Subscale Scor-
ing Models We notice that our definition of a tabular con-
cept is similar to the core idea behind interpretable subscale
or additive scoring models (Chen et al., 2022; 2018a; Ustun
& Rudin, 2016; 2017). The main differences between the
two are that (1) we interpret each subscale as a high-level
concept in that domain (whereas subscale models do not
necessarily assign semantics to subcales), (2) we learn these
subsets, and their corresponding functions, via supervision
from a downstream task rather than using hand-crafted scor-
ing scales, and (3) the function mapping each concept’s
features to its corresponding score can be highly non-linear
(subscale models tend to assume linear functions between
feature subsets and their scores).

Limitations and Future Work Although we have shown
that TabCBM achieves high accuracy in a variety of tasks
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while learning useful concept-based explanations, this
comes with a set of limitations. First, as in topic mod-
els (Mcauliffe & Blei, 2007) and concept discovery meth-
ods (Yeh et al., 2020), TabCBM requires k′, the number of
discovered concepts, to be a priori defined by a user. While
selecting a reasonable value for k′ can be aided by domain
knowledge or through a linear search over multiple values
of k′, one is still required to fine-tune k′ to deploy TabCBM
successfully. Luckily, as seen in our k′-ablation discussed
in Appendix I.1, we empirically observe that TabCBM is
relatively robust to changes in k′ as long as TabCBM is
not under-parameterised. Nevertheless, future work can
explore ways of automatically learning an optimal k′. Sec-
ond, TabCBM can suffer from parameter and computational
growth if the number of concepts or the size of each concept
embedding is large. Future work can explore alleviating this
practical limitation through the use of parameter sharing be-
tween concept embedding generators and/or better transfer
learning protocols which enable learning these generators
independently (i.e., separately from the rest of the model).
Third, given the lack of previous work on concept-based
learning for tabular data, our interpretability evaluation was
constrained to mostly synthetic datasets. This is because we
found it difficult to find public tabular datasets with both
concept and label annotations. Nevertheless, we hope that
this work will encourage the application of TabCBM to tab-
ular tasks where, when used with domain-specific experts,
one may be able to discover novel properties which one may
later use as annotations for training future concept-based
models. Finally, our method requires several hyperparame-
ters to be selected before training as it has several regularis-
ers and architectural choices that need to be made a priori.
This can lead to intensive hyperparameter searches and the
requirement of access to certain hardware capabilities. To
better understand TabCBM’s sensitivity to its hyperparame-
ters, we perform an ablation search over all our hyperparam-
eters in Appendix I.2 and see that our method can perform
well within a large range of hyperparameters. To further
help future research, we include a set of recommendations
for each hyperparameter in that appendix.

7. Conclusion
In this paper, we address the lack of concept-based inter-
pretable methods for tabular tasks. We approach this by
first arguing that non-linear functions of highly correlated
subsets of input features can be thought of as a sensible
definition of what a concept may entail in a tabular domain.
Spanning from this definition, we propose TabCBM as the
first concept-based interpretable neural architecture for tab-
ular tasks. Our extensive evaluation of TabCBM, both in
synthetic and real-world datasets, suggests that our model
achieves competitive state-of-the-art predictive performance
in various tabular tasks whilst discovering concepts that

align with known ground-truth concepts. We show that the
concept representations learnt by TabCBM are disentangled,
highly informative, and complete w.r.t. the downstream task.
Furthermore, we show, both quantitatively and qualitatively,
that TabCBM is capable of discovering meaningful concepts
both when it is provided with concept supervision and when
it is provided with no concept supervision. This enables our
model to be deployed in a human-in-the-loop setup in which
experts can easily identify and correct semantically meaning-
ful concepts, leading to significant improvements in down-
stream task performance. Therefore, this work serves as
an important stepping stone for designing high-performing
interpretable tabular architectures, enabling deep learning in
high-stakes tabular tasks such as medical diagnosis, where
understanding a model’s prediction is of utmost importance.
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A. Multivariate Bernoulli Sampler Details
As indicated in Section 4, during training, we use TabCBM’s learnt concept feature importance vectors {π̂(i)}k′

i=1 to
generate per-sample binary masks {θ(i)}k′

i=1 where each feature’s probability of being selected by θ(i) is proportional to
their corresponding feature importance in π̂(i). This is done to encourage TabCBM to discover different concept masks
at train-time without being too highly influenced by how its importance masks were initialised. Furthermore, we avoid
assuming full independence between features when generating θ(i) from π̂(i) by considering π̂(i) only as the marginal
probability distributions of selecting each feature and introducing a non-trivial covariance matrix in the sampling process that
considers inter-feature correlations. As argued by Lee et al. (2021), this has two advantages: (i) during the pre-training stage
of the feature importance masks (see Appendix B), this process encourages our latent code generator to avoid relying on
information leaked from highly correlated unmasked features to solve the self-supervised pretext tasks, therefore improving
the quality of pre-trained learnt representations, and (ii) using a non-trivial covariate matrix to sample θ(i) encourages
TabCBM’s concepts to select features that are highly correlated together, aligning with our definition of tabular concepts.

In practice, this is achieved by sampling θ(i) from a multivariate Bernoulli distribution we construct using a Gaussian
copula (Nelsen, 2007). A Gaussian copula is a multivariate cumulative distribution function (CDF) for random variables
{X(l)}nl=1 in [0, 1]n whose marginals are uniformly distributed (i.e., X(l) ∼ Unif(0, 1)). Given a matrix C ∈ [−1, 1]n×n

capturing the correlations of random variables {X(l)}nl=1, we define the Gaussian Copula as:

CopulaC(X
(1), · · · , X(n)) := ΦC(Φ

−1(X(1)), · · · ,Φ−1(X(n)))

where we use Φ−1 to indicate the inverse CDF of a standard univariate normal distribution and ΦC to indicate the joint
CDF of a multivariate zero-mean normal distribution with correlation matrix C. This construction is extremely powerful as
it allows us to sample a binary mask vector θ(i) from the multivariate Bernoulli distribution MultiBern(π̂(i); C) using the
copula’s correlated random variables {X(l)}nl=1 by letting

θ
(i)
l :=

{
1, if X(l) ≤ π̂

(i)
l

0, otherwise

In TabCBM we construct this copula by building C ∈ [−1, 1]n×n via the empirical feature Pearson correlation coefficients
computed in the task’s training set.

Finally, as in (Lee et al., 2021), we make this sampling process differentiable by working with a relaxation of the multivariate
Bernoulli distribution proposed by Wang & Yin (2020) and using the reparameterisation trick on the copula’s uniform
random variables {X(l)}nl=1. Specifically, given CopulaC’s uniform random variables {X(l)}nl=1 and the marginal selection
probabilities as dictated by a concept’s feature importance mask π̂(i), we can generate relaxed masking vector θ(i) by setting
it to

θ
(i)
l := σ

(1
τ

(
log π̂

(i)
l − log (1− π̂

(i)
l ) + logX(l) − log (1−X(l))

)
where σ is the sigmoid function and τ ∈ (0,∞) is a temperature hyperparameter which we fix to 1 in our experiments.
This allows the output relaxed mask θ(i) to be differentiable with respect to π̂(i), therefore enabling us to learn each
concept’s feature importance vectors via gradient descent. In practice, we implement this relaxation using a deterministic
transformation of a standard Gaussian noise vector whose entries encode the correlation structure in the features after being
projected into the subspace L of the lower-triangular Cholesky decomposition LLT of C. For further details, see Section 4.3
of (Lee et al., 2021).

B. TabCBM pre-training
In practice, we speed up TabCBM’s learning via two pre-training steps: In the first step, we encourage the la-
tent code generator ϕ(x) to learn meaningful representations by training it to minimise the expected task loss
E(x,y)∼D[Ltask(gdownstream(ϕ(x)), y)], where gdownstream : Rm → [0, 1]L is a learnable auxiliary linear layer used to predict a
class ŷ from ϕ(x). This encourages ϕ to learn representations that are meaningful for the downstream task.

In a second pre-training step, we use self-supervision to learn meaningful latent code generators using the pre-text task
proposed by Yoon et al. (2020) and also used in (Lee et al., 2021). Specifically, we first randomly initialise each concept
feature importance mask π̂(i) by sampling it from Unif(0.4, 0.6). We chose to sample each initial mask from Unif(0.4, 0.6)
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rather than from Unif(0, 1), as we found that conditioning their values to be closer to 0.5 at the start of training helped with
the training dynamics. For each training sample x and each learnt concept i, we then sample a binary mask θ(i) ∈ {0, 1}n
from a multivariate Bernoulli distribution whose marginal probabilities are fixed to π̂ and covariance matrix is captured via
CopulaC . As opposed to how we proceed in our training stages for TabCBM, in this pre-training stage we do not apply any
relaxations when generating θ(i), meaning that it will be binary rather than continuous as in our training stages and that we
will not update any feature importance vectors π̂(i). This is done for us to be able zero out elements of input x and produce
a masked vector x̃ from which we train ϕ(x̃) so that the latent code obtained from masked input x̃ is informative enough for
an auxiliary model gmask : Rm → [0, 1]n to be able to predict mask θ̂. Simultaneously, we also condition our learnt latent
code to be a meaningful representation by using it as the input of a separate simple auxiliary model gentries : R

m → Rn from
which we aim to closely reconstruct the original sample x from ϕ(x̃). Both of these objectives can be achieved by finding
the parameters for ϕ, gmask, and gentries that minimize the weighted loss independently for each concept

1

k′

k′∑
i=1

Ex∼D,θ(i)∼MultiBern(π̂(i);C)
[
Lcross-entropy(gmask(ϕ(x⊙ θ(i))), θ) + λrec||gentries(ϕ(x⊙ θ(i)))− x||22

]
where λrec ∈ R+ is a hyperparameter controlling how much we value perfect reconstruction over mask identification (we fix
it to λrec = 10 throughout evaluation). The purpose of this pre-training step is to precondition the latent code generator
ϕ(·) to capture meaningful semantics of the input features when some of its features are masked, as this will be done when
learning different concepts for TabCBM.

For all of our experiments, we pre-train TabCBM by running the first pre-training stage for Tpre-train epochs and then running
the second pre-training stage for Tself-supervised epochs (specific parameters are described in Section D.2). Furthermore, we
use a linear layer for the helper model gdownstream and a ReLU MLP with a single hidden layer size of 64 for the gmask and
gentries helper models. Finally, for the sake of fairness, we pre-train the backbones of all other competing models using
the first stage of this procedure for Tpre-train + Tself-supervised epochs to allocate equivalent computational budgets across all
methods.

C. Datasets
In this section, we give a detailed description of the datasets we use for our evaluation of TabCBM. A summary of each
dataset’s core characteristics can be found in Table 3.

Table 3: Characteristics of all tasks used in this paper. Notice that we worked exclusively with classification tasks, so all
downstream labels are categorical. The class imbalance ratio is defined as the ratio between the number of samples of the
most represented class and the number of samples of the least represented class.

Dataset # of Samples # of Features # of Concepts # of Classes Class Imbalance Ratio

Synth-Linear 15,000 100 2 4 1.05
Synth-Nonlin 15,000 100 2 4 1.05

Synth-Nonlin-Large 15,000 500 5 32 7.4
Synth-scRNA 7,500 5,000 11 20 2.6

Higgs (without high-level) 11,000,000 21 n/a 2 1.13
Higgs (with high-level) 11,000,000 28 n/a 2 1.13

PBMC 20,738 6,212 n/a 2 1.01
FICO 10,459 23 n/a 2 1.09

Synthetic Tabular Datasets To evaluate our methods in a controlled environment, we propose three synthetic tabular
tasks with increasing difficulty. The first two tasks, namely Synth-Linear and Synth-Nonlin, consist of N = 15, 000,
100-dimensional samples {x ∈ R100}Ni=1 generated from a corresponding latent vector h ∈ R100 ∼ N (0, I), where I is
the identity matrix (each sample x has its own corresponding latent vector h). Then, we generate each sample x from its
corresponding latent vector h by applying a transformation f : R → R to h. In the case of Synth-Linear, we let f(h) = h
be the identity function while in Synth-Nonlin, we let f(h) = sin(h) + h be a non-linear function of h. To assign a label y
to each sample, we first annotate each sample with a binary concept vector c ∈ {0, 1}k, with k = 2 for these two datasets,
such that its j-th dimension cj := 1

(
∑(j+1)s+1

l=js+1 hl)≥0
indicates the sign of adding a subset of s consecutive features in the
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latent vector h (we set the spacing s to be 5 for these two datasets). This binary vector is then used to produce a label
y ∈ {0, 1, · · · , 2k − 1} by generating y from the decimal representation of vector c i.e., y =

(
c1c2 · · · ck

)
10

. Notice then
that the label assigned to each sample can be uniquely determined from its corresponding concept vector c, which, in turn, is
a function of only the first sk dimensions of sample x. Therefore, to properly learn the generative process for these datasets,
a method must be able to capture the importance of the first sk dimensions and discover, either implicitly or explicitly, the
concept vector c.

We further extend the generative process of Synth-Nonlin and generate a more complex dataset, which we refer to as
Synth-Nonlin-Large, in which features have 500 dimensions rather than 100 and k = 5 binary concepts c ∈ {0, 1}5 are
constructed to determine label y ∈ {0, 1, · · · , 25 − 1} instead of only two concepts. As in Synth-Nonlin, each dimension
cj of c is computed using an indicator variable of a subset of features in h. In contrast with Synth-Nonlin, however, we
allow different dimensions of c to depend on overlapping sets of features in h. We do this by letting cj be defined as
cj := 1

(
∑(j+1)s+s/2+1

l=max(js−s/2−1,1)
hl)≥0

and setting y =
(
c1 · · · c5

)
10

as we did for Synth-Nonlin. For this dataset, we use a spacing

factor of s = 20 to construct our concepts, given that we also have more features than in the previous two datasets. This
means that only the first 100 features of the dataset will be useful for learning the downstream task.

Synth-scRNA As an exploration of applying TabCBM to meaningful bioinformatics tasks, we explore a synthetic
RNAseq (Macaulay & Voet, 2014) task where each sample contains gene expression counts for a total of 5, 000 genes at
a single-cell resolution. To generate such a dataset, we follow the approach suggested by Kotliar et al. (2019) and adapt
Splatter (Zappia et al., 2017) to generate a sc-RNAseq dataset where we can control the number of identity and activity
gene expression programs (GEPs) (Segal et al., 2003) in the cell population. In this context, identity GEPs are aligned in
a one-to-one fashion with different cell types and represent groups of signature genes that are co-regulated for each cell
type differentiation. In contrast, activity GEPs represent groups of co-regulated genes which are not necessarily related
to a cell’s type and instead represent biological functions related to environmental/epigenetic effects (e.g., genes related
to different stages of a cell’s cycle). For our experiments, we generate a synthetic RNAseq dataset with 7,500 samples in
it, with ten different cell types (i.e., ten identity GEPs) and one activity GEP which can be expressed across all cell types.
Given that being able to disentangle and learn identity and activity GEPs from sc-RNAseq data is an important task in
genomics (Macaulay & Voet, 2014; Kotliar et al., 2019; Kharchenko et al., 2014; Satija et al., 2015), this synthetic task is
representative of a potentially impactful application of our algorithm.

In practice, we generate this dataset using Splatter’s Python implementation by Kotliar et al. (2019). In this framework, we
call Splatter by setting the number of genes to 5, 000, the number of cells to 7, 500, and the number of genes differentiating
in the task’s activity GEP to be 250 (we extended Splatter’s implementation by Kotliar et al. (2019) to allow for a specific
number of genes used for each GEP). All other Splatter parameters (e.g., lib.loc, lib.scale, etc), except for the
number of doublets which we set to 0 (i.e., we do not simulate doublets), are set to the same values as those used for the
synthetic scRNA-seq dataset in (Kotliar et al., 2019). These values were estimated using Splatter on a subset of the organoid
dataset proposed by Quadrato et al. (2017).

Before training, we preprocess the generated dataset by (1) removing all cells with less than 200 gene expression counts,
(2) removing all cells with less than 200 genes with non-zero counts in total, (3) removing all genes expressed in less
than 50 cells, and (4) normalising all counts for all cells (normalisation is done on a per-cell basis) and transforming these
normalised counts to a log space using a log(x+ 1) transformation (as commonly done for scRNA-seq data (Kotliar et al.,
2019)).

To produce a task in which GEPs are relevant for the class, we assign each cell a label representing its cell type (which is
in one-to-one correspondence with an identity GEP) and whether or not the dataset’s activity GEP is on. This yields an
annotated dataset where each sample has one of 10× 2 = 20 labels and each label can be uniquely determined by knowing
the cell’s identity and activity GEPs (see Figure 4 for a visualisation of this dataset). Therefore, in this task both identity
and activity GEPs can be thought of as ground-truth high-level concepts which can fully describe the label in our task of
interest. Furthermore, as we know the genes that are differentially expressed for each GEP, we can evaluate how accurately
our method can discover the set of differentiating genes for each GEP using these masks as ground-truth concept masks.

PBMC We further explore an application of our method in a real-world single-cell transcriptomics dataset. With this
aim, and inspired by the work by Lee et al. (2021), we construct a binary transcriptomics task from two subpopulations
of peripheral blood monocytes obtained from the PBCM database (10x Genomics, 2016a;b). Specifically, we construct
a dataset with approximately 20,000 samples where each sample contains transcriptomics measurements of nearly 6,000
genes of a T-cell (i.e., RNA expression patterns). We preprocess and normalised all counts as done for our Synth-scRNA
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Figure 4: UMAP visualisations of the Synth-scRNA dataset with each identity GEP (i.e., cell type) and activity GEP
highlighted.

gene counts and annotate each cell with a binary task label describing whether the cell corresponds to a regulatory or a naive
T-cell.

Higgs As a real-world example of a large tabular dataset in the physical sciences, we make use of the Higgs dataset (Baldi
et al., 2014). In this dataset, we aim to classify a signal process as being one from which a Higgs boson is produced
or as being a background signal. All 11 million samples in this dataset were produced via a Monte Carlo simulation
and each sample signal is formed by 28 continuous features. Of these features, the first 21 features represent kinematics
properties whereas the latter 7 features are higher-level features hand-crafted by experts which allow easier discrimination
between background and Higgs-producing signals. To explore whether hierarchical models such as TabCBM can learn the
information encoded into the hand-crafted features without extra supervision, we evaluate all models both when using the 7
hand-crafted high-level features (Higgs (with high-level)) and when none of the hand-crafted high-level features are used
(Higgs (without high-level)).

FICO Given that a large proportion of tabular data is seen within financial tasks, and the fact that these tasks include both
numerical and categorical features, we include the Fair Isaac Corporation (FICO) loan default risk challenge dataset (Fair
Isaac Corporation, 2019) as part of our evaluation. We choose this specific dataset as it has been shown that simple
handcrafted subscale models, whose relationship with high-level concepts was not made until this work, can be used to
construct interpretable classifiers for this dataset (Chen et al., 2018a). Each of the approximately 10,000 samples in this
dataset is composed of 23 features, a mixture of numerical and categorical features representing several properties of a
client’s past loan and financial history, and is annotated with a label indicating whether this client defaulted on their loan.
The task is to predict the likelihood of a new client defaulting on a new loan.

D. Experimental Details
In this section, we provide details on each method’s configuration and hyperparameters for each task evaluated in this paper.
All of our numerical results are produced by averaging a given metric across 5 different random initialisations of each
model and showing the standard error found across those runs.

D.1. Training and Optimisation Hyperparameters

For each method, and across all tasks, we split each task’s dataset into 80% training data and 20% test data and generate a
validation set by randomly sampling without substitution 20% of the training data. When sensible, this validation set is used
to search over a subset of possible hyperparameters for each method by running a simple grid search over a set of predefined
hyperparameters (described when appropriate below). Once the best hyperparameters are selected, we report only on the test
results obtained for the model with the best validation error.

As is commonly done for training DNNs, we train all neural models via stochastic gradient descent with the same batch size
B for all methods across a given task. We choose a specific batch size so that we maximise GPU utilisation while remaining
within our hardware’s memory capabilities. We used an Adam optimiser (Kingma & Ba, 2014) with learning rate 10−3,
momentum 0.99, and standard hyperparameters β1 = 0.9 and β2 = 0.999, across all methods and tasks. The exception for
this is TabNet where the learning rate starts at 0.02 and decays with a factor of 0.9 every 10 steps as suggested by Arık &
Pfister (2021). All methods are trained for T epochs, stopping early (Prechelt, 1998) if no improvements have been observed
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in the validation loss for P epochs. Hyperparameter values used for each dataset are reported in Table 4.

D.2. Model Selection

For the sake of fairness, we provide each method with the same capacity and training times when possible. With this aim in
mind, we fix the architecture used across methods to be the same for a given dataset. We select architectures that are simple
to train, yet large and expressive enough to perform well in each task of interest; with the constraint that they should train in
our GPU cluster within reasonable times. In this subsection, we list the architectures used for all methods across a given
dataset and summarise their exact values used for all datasets in Table 4.

TabCBM Model Selection Across all datasets, we construct TabCBM’s latent representation generator using a simple
ReLU MLP whose hidden layers have sizes ϕhidden-sizes and whose output layer has size m (with m being the size of the
learnt concept embeddings). To help out reducing train-time covariance shifts, we also introduce a batch normalisation (Ioffe
& Szegedy, 2015) layer before each linear layer of this MLP, including the first layer. We then construct TabCBM’s
label predictor f using a ReLU MLP with hidden layers whose sizes are determined by fhidden-sizes. The number of output
activations of f will correspond to the number of output classes for the task of interest. Across all tasks, we fix the
architectures of TabCBM’s ρ(i) models to be ReLU MLPs with a single hidden layer with size 64 for all i ∈ {1, · · · , k′}
(the only exception for this are the FICO dataset where, due to hardware constraints, we reduce this to 32 and the PBMC task
where we use an MLP with units {32, 16} to avoid parameter growth). Moreover, when the number of ground truth concepts
is unknown, we train TabCBMs with k′ ∈ K and select the model with the lowest validation loss. Otherwise, we use k′ = k,
where k is the number of known ground truth concepts in the dataset. As for the loss term weights, we select the values for λco,
λdiv, and λspec via a grid search (by training for a few epochs only) as we vary each parameter, independently of each other,
over {0.1, 1, 5, 10}. Finally, we set t, the hyperparameter of our coherence loss, to t = (batch size · average class ratio)/2
as suggested by Yeh et al. (2020). We report the best-performing parameters for each task in Table 4.

MLP Model Selection For simplicity, we construct our MLP baseline by constructing a ReLU MLP whose hidden layers
have size ϕhidden-sizes ∪ {m} ∪ fhidden-sizes and where a batch normalisation layer is introduced before the first ϕhidden-sizes
hidden layers, as in TabCBM. To ensure a fair comparison against TabCBM, which has more parameters than this MLP
due to its concept-generating models, we also consider a larger-capacity MLP which has twice as many activations in each
layer as those defined by ϕhidden-sizes ∪ {m} ∪ fhidden-sizes. However, in practice, we observe that this did not bring noticeable
performance benefits (in fact, it sometimes even decreases performance possibly due to overfitting) and therefore we opted
for the smaller MLPs across all datasets.

CCD Model Selection For CCD, we construct concept-based explanations for the MLP model defined above using the
latent representation at layer |ϕhidden-sizes ∪ {m}| as the representation we will aim to reconstruct using CCD’s learnt concept
scores. Its K hyper-parameter (representing how many top-K neighbours we use to compute its coherency regulariser) is set
to K = (batch size · average class ratio)/2, as suggested by the authors, and the thresholding hyperparameter β, indicating
the activation of a given concept, is fixed to 0. Similarly, we fix CCD’s hyperparameters λ1 and λ2 to λ1 = λ2 = 0.1 after
experimenting with values in [0.01, 1] and finding these values to work well across the validation sets. Finally, for the
reconstructing model g of CCD’s topic model (this is the model that will take the concept scores as input and attempt to
reconstruct the latent representation of the DNN), we use a ReLU MLP with a single hidden layer with 500 activations in it
and whose output layer has m activations.

SENN Model Selection For our evaluation of SENN, we begin by constructing an autoencoder ϕSENN whose encoder uses
the same architecture as TabCBM’s ϕ function with the exception that its output layer generates k′ activations (selected in
the same way as in TabCBM). The decoder of this autoencoder is selected to be a ReLU MLP whose hidden layers have
size fhidden-sizes and whose output is the same size as the number of input features in the task. This autoencoder is trained
by minimising its reconstruction loss for Tpre-train + Tself-supervised epochs. We then train a SENN using ϕSENN as its concept
encoder and a ReLU MLP with hidden layer sizes θhidden-units and L× k′ outputs (one vector of size k′ for each output class
{1, · · · , L}) as the relevance parameteriser. Throughout training, we follow the suggestions by Alvarez-Melis & Jaakkola
(2018) and fix SENNs regularisation strength to λ = 0.1 and its sparsity regularisation strength to ζ = 2× 10−5.

TabNet Model Selection For TabNet we explore different architectures with different capacities. We do this by exploring
setting hyperparameters Nd, Na, Nsteps by iterating their values from a set of options in sets Nd = Na = {8, 16, 32, 64, 96}
and Nsteps = {3, 5, 8}, respectively. Nevertheless, as with MLPs, we observe that over-parameterising TabNet led to worse-
performing models, therefore in Table 4, we only report the values of these hyperparameters that resulted in the best validation
error. The virtual batch size of all TabNet models is set to half of the batch size for our dataset (i.e., B/2). Furthermore, we
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pre-train TabNet, using the self-supervised task described by Arık & Pfister (2021), for Tpre-train + Tself-supervised epochs.

TabTransformer Model Selection When constructing a TabTransformer model, we use the default parameters defined
by Huang et al. (2020a) while setting the number of hidden layers to Thidden-layers.

XGBoost and LightGBM Model Selection For both of our gradient boosting baselines, namely XGBoost and LightGBM,
we train them for T epochs, with the same early stopping patience as our neural baselines, while we vary the max depth of
each tree between {5, 10}. All other hyperparameters are left to the default values suggested by their respective official
implementations. In Table 4, we show the depth d of the model achieving the best validation accuracy.

Table 4: Parameters used to generate the different baseline architectures for different datasets.

Param Synth-Linear Synth-Nonlin Synth-Nonlin-Large Synth-scRNA Higgs (with high) Higgs (no high) PBMC FICO

B 1024 1024 1024 1024 2048 2048 1024 2024
T 1,500 1,500 1,500 3,000 1,500 1,500 1,500 1,500
P 250 250 250 750 50 50 250 300

Tpre-train 50 50 50 50 25 25 25 50
Tself-supervised 50 50 50 50 25 25 25 50
ϕhidden-sizes {16, 16} {16, 16} {16, 16} {128, 64, 64} {1024, 512, 256, 128} {1024, 512, 256, 128} {128, 64, 32} {256, 128, 64, 64}

m 16 16 16 16 64 64 64 64
fhidden-sizes {16} {16} {16} {64, 32} {32, 16} {32, 16} {16, 16} {16}

K {2} {2} {5} {11} {4, 6, 8} {4, 6, 8} {3, 4, 5, 6} {4, 6, 8}
k′ 2 2 5 11 8 8 6 4
λco 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1
λdiv 5 5 5 10 0.1 0.1 0.1 10
λspec 5 5 5 10 0.1 0.1 0.1 10

θhidden-units {16, 16} {16, 16} {16, 16} {64, 64} {300, 300} {300, 300} {300, 300} {300, 300}
Nd 8 8 64 64 32 96 16 32
Na 8 8 64 64 32 32 16 32
Nsteps 3 3 5 5 5 8 3 5

Thidden-layers {16, 16, 16} {16, 16, 16} {16, 16, 16} {64, 32} {1024, 512 · · · , 16} {1024, 512 · · · , 16} {16, 16, 16, 16, 16} {32, 32, 32, 16, 16}
dXGBoost 5 5 5 5 10 10 5 5
dLightGBM 5 5 10 5 10 10 5 5

E. Predictive Performance Experiment Details
When evaluating the concept-supervised baselines (i.e., TabCBM, CBM, Hybrid-CBM, and CEM), we vary the number
of concepts provided during training. When subsampling only kselected concepts out of a total of k available concepts in
a dataset (e.g., k = 2 for Synth-Linear and Synth-Nonlin while it is 5 and 11 for Synth-Nonlin-Large and Synth-scRNA,
respectively), we select a subset of concepts C ′ ⊂ {1, 2, · · · , k} of size |C ′| = kselected, chosen uniformly at random from
all subsets of size kselected, before training begins. We then provide all concept-supervised methods with concepts annotations
c ∈ {0, 1}kselected for all training samples, where the entries in c correspond to the concepts selected in C ′.

In terms of models used, for CBMs, Hybrid-CBMs, and CEMs we use the same architecture as TabCBM’s ϕ model for
their concept encoders (or latent code generator in case of CEM). Similarly, we use the same architecture as TabCBM’s f
model as the label predictor for all of these models, with the exception that its input layer’s size may be altered for CBMs if
they are provided with fewer concepts than k. Similarly, ϕ’s output layer’s size is extended for CEMs so that it matches
CEM’s bottleneck size given by k ×mCEM (with mCEM being the embedding size of CEM’s embeddings). Throughout all
of these experiments, we keep the number of concepts discovered by TabCBM to k′ = k regardless of how many concepts
0 ≤ kselected ≤ k were given at train-time. Notice, however, that this implies that CBM’s bottleneck size will always be
kselected, which can be highly constrained when kselected is small (a key limitation of CBMs). Nevertheless, for the sake of
providing a fair evaluation against a CBM-like model and TabCBM, we compare against Hybrid-CBMs whose bottleneck
sizes will always be fixed to k′, where k′ − kselected of its activations will be unsupervised. This enables Hybrid-CBMs to
have as much capacity in their bottlenecks as TabCBMs. Finally, we use a sigmoidal activation for both the bottleneck of
CBMs and Hybrid-CBMs, as done in (Koh et al., 2020b) and (Espinosa Zarlenga et al., 2022), and we set CEM’s embedding
size to 8 and its RandInt parameter to pint = 0.25 as suggested by Espinosa Zarlenga et al. (2022). For all of these models,
including TabCBM, we fix the weight of the concept loss to be λconcept-sup = 5 after trying values in {0.1, 1, 5, 10} and
finding that the best validation results were obtained with λconcept-sup in the range (1, 10).
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F. Qualitative Alignment Results in Synth-scRNA
We qualitatively corroborate our quantitative alignment results in Section 5.2 by visualising TabCBM’s discovered concepts
in Synth-scRNA using UMAP (McInnes et al., 2018), a commonly-used dimensionality reduction method for scRNA
data. For each ground truth concept ci, we visualise the Synth-scRNA dataset (both train and test data) via its UMAP
projection while colouring each cell’s representation according to ci. Then, we select the discovered TabCBM concept
whose score ĉj has the highest absolute Pearson correlation coefficient with ci and recreate the plot by colouring each
cell using ĉj . This allows us to visually inspect ci’s alignment with a (linearly) strongly correlated learnt concept score in
TabCBM. Notice that although other proxies for mutual information could be used (e.g., Gini impurity), we opt for Pearson
correlation due to its efficiency. Similarly, because we only study a cell’s cluster membership, our analysis avoids known
issues with hypothesising from low-dimensional data visualisations (Wattenberg et al., 2016). Our results in Figure 5 show
that TabCBM’s concepts are closely aligned with ground truth concepts. In particular, we see that TabCBM discovers cell
types/identity GEPs (e.g., ĉ4 and ĉ9) and the task’s only activity GEP (i.e., ĉ11).

Figure 5: UMAP of Synth-scRNA showing five randomly selected ground truth GEPs (top row with the right-most plot
showing the only activity GEP) and TabCBM’s discovered concept with the highest mutual information (captured by the
absolute Pearson correlation ρ) with each GEP (bottom row). Because TabCBM may discover a ground-truth concept’s
complement labelling, we use the absolute correlation to capture both negative (e.g., ĉ9) and positive (e.g., ĉ11) correlations..
The TabCBM model whose scores are shown in this figure did not receive any concept supervision.

Next, we plot the same randomly selected GPEs in Synth-scRNA as in Figure 5 and show the scores of concepts learnt by
CCD and SENN that are most linearly correlated with those GEPs. Our results, shown in Figures 6a and 6b, highlight that
the alignment we observe in Figure 5 between TabCBM’s discovered concept scores and ground-truth GEPs is not found for
concepts learnt by SENN and CCD. We reiterate that TabCBM was able to attain the alignment shown in Figure 5 without
any concept supervision. This indicates that, in contrast with SENN and CCD whose concepts do not seem to align to what
one would expect in the Synth-scRNA task, TabCBM can discover concepts that align with human-interpretable high-level
concepts for the downstream task of interest.

G. Concept Mask Alignment in Synthetic Tasks
An advantage of TabCBM over existing concept-based methods is that its concepts allow for easy identification of the
input features that compose them. In this section, we study TabCBM’s learnt concept masks to explore whether they can
(1) identify features that are known to be important for ground-truth concepts, and (2) provide a sense of global feature
importance through mask aggregation. Our experiments show that both properties hold and, therefore, experts analysing
data with TabCBM may use its learnt concept masks to discover novel interactions between groups of input features that are
important for their task of interest.

Ground-truth concept mask alignment First, we explore whether TabCBM’s feature importance masks align with sets
of features known to compose each ground truth concept. For this, we study TabCBM in our concept-annotated synthetic
datasets, as they have ground truth binary concept annotations c and known ground truth concept feature masks {π(i)}ki=1.
We evaluate the alignment between TabCBM’s learnt concept masks {π̂(i)}k′

i=1 and those in {π(i)}ki=1 by first computing
an alignment α : {1, 2, · · · , k′} → {1, 2, · · · , k} between discovered concepts and ground truth concepts. For the sake of
efficiency, we compute this alignment by matching each learnt concept ĉi with the ground truth concept cj whose training
labels have the highest absolute Pearson linear correlation |p(ĉi,cj)| with the training concept scores for ĉi. We then capture
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(a) CCD best aligned learnt concept scores.

(b) SENN best aligned learnt concept scores.

Figure 6: UMAP visualisations of the Synth-scRNA dataset showing the activation of a randomly selected selection of
ground truth concepts (top row) and the activation of the learnt concept score by (a) CCD and (b) SENN with the highest
absolute correlation with the respective ground truth concept (bottom row).

how well π̂(i) is aligned with the feature mask of concept c(α(i)) using the Mask AUC (M-AUC) defined as

M-AUC :=
1

k′

k′∑
i=1

ROC-AUC
(
π(α(i)), π̂(i)

)
Here, ROC-AUC

(
π(α(i)), π̂(i)

)
is the area under the ROC curve when predicting ground truth π(α(i)) with the feature

importance mask π̂(i). This score is 1 if π̂(i) = π(α(i)) for all i and 0 if π̂(i) is the complement of π(α(i)) for all i.

Our results, summarised in Table 5, show that there is significant alignment between TabCBM’s concept feature importance
masks and ground truth concept feature masks. Nevertheless, we observe that in Synth-scRNA, TabCBM’s concept masks
are not as highly aligned as in other tasks. We believe that this is due to the high amount of noise found in this dataset,
leading to TabCBM focusing on capturing only the most salient differentiating genes of each GEP and ignoring genes that
have minimal contributions to a GEP’s activation.

Table 5: M-AUC scores and standard errors across synthetic datasets. We include only TabCBM as other concept-
interpretable methods do not provide features for learnt concepts.

Score Method Synth-Linear Synth-Nonlin Synth-Nonlin-Large Synth-scRNA

M-AUC TabCBM 100 ± 0.00 100 ± 0.00 85.71 ± 5.60 65.69 ± 1.66

G-AUC

TabCBM 100 100 100 69.01 ± 2.61
TabNet 85.33 ± 8.89 75.33 ± 4.42 50.37 ± 0.52 50.39 ± 0.15

XGBoost 100 100 100 56.10 ± 0.5
LightGBM 100 100 100 56.11 ± 0.52

Global feature selection Understanding which features are deemed redundant/unnecessary for a model is an important
problem (Chandrashekar & Sahin, 2014; Lee et al., 2021; Imrie et al., 2022). In this section, we explore whether TabCBM’s
concepts can provide a sense of global feature importance for the downstream task via their mean feature important mask
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i π̂

(i)/k′. We investigate this by designing a metric that, for any method that constructs a vector µ̂ ∈ Rn indicating
the relative importance of each input feature w.r.t. a downstream task, captures how well this vector predicts ground-truth
important features for the task. With this aim, assume we have a binary ground truth vector µ ∈ {0, 1}n indicating which
features are globally important (i.e., selected) w.r.t. a downstream task. We can compute how well µ̂ identifies these features
using the Global feature selection AUC (G-AUC) defined as:

G-AUC := max
δ∈S

ROC-AUC
(
µ, threshold

(
µ̂, δmax

j
µ̂j

))
(1)

where threshold(x, β) is a vector function whose i-th output is given by 1xi≥β . Similarly, we let S ⊂ [0, 1] be a finite set of
reals indicating the thresholds used for binarising µ̂ (as a function of its maximum element) and we let ROC-AUC(y, ŷ)
be the mean area under the ROC curve when predicting yi from ŷi for all i. Intuitively, if there is a fraction δ ∈ S of µ̂’s
maximum value that produces µ when thresholding µ̂, then the G-AUC is 100%. In contrast, a G-AUC of 0% indicates
that µ̂ attains its maximum value in all features which are not selected in µ. For efficiency purposes, in practice we use
S = {0, 0.025, 0.05, · · · , 1}.

For every synthetic dataset, we evaluate the G-AUC by computing µi :=
∨k

j=1 π
(j)
i as an aggregated logical OR over all

ground-truth masks. For fairness, we only compute the G-AUC for methods that provide feature importance by construction,
therefore not requiring post-hoc methods (e.g., LIME (Ribeiro et al., 2016)) to obtain this mask. Hence, we focus on
contrasting feature importance masks by XGBoost, LightGBM, TabNet, and TabCBM. For XGBoost and LightGBM we
calculate µ̂ as the total gains of splits using each feature across all decision trees. Similarly, for TabNet, as in (Arık & Pfister,
2021), we compute µ̂ by aggregating all attention masks. Our results, shown in Table 5, indicate that TabCBM perfectly
identifies all important features for our simpler synthetic tasks (as GBMs do too) while achieving significantly better
G-AUC scores than other methods in Synth-scRNA, our more complex synthetic task. These results suggest that TabCBM
can globally identify feature selection masks, allowing for global interpretability beyond that in current concept-learning
methods. For further results showing how the value selected for k′ affects both the M-AUC and G-AUC metrics (as well as
the task accuracy), see Appendix I.1.

H. Concept Intervention Experiments
In this section, we complement our results in Section 5.3 by providing some further explorations on interventions in TabCBM
as well as in other possible models. We first explore how the concept alignment threshold β affects TabCBM’s receptiveness
to interventions. Then, we include a comparison between interventions on TabCBMs, CBMs, CEMs, and Hybrid-CBMs
showing how each of these models’ performance varies as we intervene on more concepts.

H.1. Effect of Alignment Threshold

As discussed in Section 5.3, an important part of how we intervene on TabCBM’s unsupervised concept scores involves
building an alignment map α between these scores and known ground-truth concepts in the task of interest. We argued in the
same section that this map could be built by detecting strong linear correlations (which could be both negative or positive)
and aligning discovered concept ĉi with ground-truth concept cj if their empirical absolute linear correlation coefficients are
greater than a threshold β. This threshold indicates how strong of a correlation should we look for to declare a discovered
concept to be aligned with a ground-truth concept.

In our experiments reported in Figure 3, we fix β to β = 0.7, arguing that this indicates what we believe to be a strong
enough correlation between two variables. Here, we show in Figures 7a and 7b how these results change if we set β to
0.25 and 0.85, respectively. As one would expect, we observe that when β is very low (i.e., β = 0.25) interventions in
TabCBM can be damaging to TabCBM’s performance in complex datasets such as Synth-scRNA. We attribute this to the
fact that the constructed alignment map α may mark even slightly correlated concept scores and ground-truth concepts
as aligned whose correlation can be attributed to the complexity and noise inherent to the dataset, rather than to a true
semantic alignment. Nevertheless, we do not observe this in the case of the simpler synthetic datasets as TabCBM seems to
be learning correlation scores whose absolute values are close to binary in nature (i.e., discovered concepts seem to be very
strongly correlated to one and only one ground truth concept). In contrast, we observe that if β is too large (e.g., β = 0.85),
then we lose the ability to exploit slightly weaker correlations during intervention time (as we did when β = 0.7 in Figure 7),
resulting in almost no discovered concepts identified as being aligned with ground-truth concepts in Synth-scRNA. This
represents a cost as we know from Figure 3 that we could improve the model’s test performance through interventions that
arise from weaker correlations.
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(a) Intervening when the strength for identifying aligned concepts is set to β = 0.25%.
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(b) Intervening when the strength for identifying aligned concepts is set to β = 0.85%.

Figure 7: Task accuracy of TabCBMs when randomly intervening on a different number of concepts (x-axis) across multiple
datasets (columns). Each row in each subfigure has the same semantics as its corresponding one in Figure 3.

In summary, these experiments suggest that one can think of β as a parameter indicating how much risk we are willing to
take when intervening with TabCBM. If it is very high, then we will only intervene on concepts that we are highly confident
are aligned with ground-truth concepts, resulting in likely intervention gains as observed throughout our simpler synthetic
datasets. On the other hand, if β is very low, then we may incorrectly align a discovered concept with a ground truth concept
which, when intervened on, may decrease the end performance of TabCBM due to misaligned semantics. Hence, we select
β = 0.7 as a value that leverages this risk by taking advantage of possible strong correlations for improving test-time
interventions, while avoiding misidentifying alignments that can lead to detrimental interventions.

H.2. Intervention Comparison Across Concept-Supervised Methods

In Figure 8, we compare the effect that interventions have on the test accuracy across multiple concept-supervised methods
(CBM, Hybrid-CBM, and CEM) for Synth-Nonlin-Large and Synth-scRNA as we vary the number of concepts provided
during training between 50% of all concepts (top row) and 100% of all concepts (bottom row). We show our evaluation
only on these datasets as, from our pool of concept-annotated datasets, they have enough concepts (i.e., 5 and 11 concepts,
respectively) for us to study interesting behaviours emerging when we intervene on a varying number of concepts. As in
Figure 3, in this study we use β = 0.7 when intervening on unsupervised concepts with TabCBM. The training setups
for CEM, CBM, and Hybrid-CBM are the same as those used in Section 5.1. Notice that because TabCBM allows for
interventions in unsupervised concepts, we can intervene on more concepts for this model than for the rest of the baselines
(only applicable when the number of training concepts is less than the number of known ground-truth concepts in the
dataset). Furthermore, we point out that because Hybrid-CBM is the same as a CBM when using all available concepts
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Figure 8: Task accuracy of different concept-supervised baselines in the Synth-Nonlin-Large and Synth-scRNA tasks as
we increase the number of concepts intervened on a testing time. During training, we provide 50% of available concepts
(top row) and 100% of available concepts (bottom row). For TabCBM, we include interventions both on supervised and
unsupervised concepts.

(there is no need for extra capacity in this case), we do not include this baseline in the results when intervening in models
that were given training supervision for all concepts (bottom row figures).

Our results show that TabCBM can perform significantly better than the selected baselines in concept-incompleteness setup
(i.e., when the number of training concepts is less than the number of ground truth concepts), as seen by the results displayed
in Figure 8’s top row. These results suggest that TabCBM can be an effective model to be used in real-world scenarios
when it is likely that the set of concept annotations available at train-time is incomplete with respect to the downstream
task (Espinosa Zarlenga et al., 2022). When facing concept-complete setups, shown in Figure 8’s bottom row where all
required concepts for a task are given as training supervision, we see that TabCBM fares better or competitively against
baselines. An exception for this can be found only in Synth-scRNA, where TabCBM falls behind CBMs when the number of
interventions is small. We believe this to be the case because, given the mutual exclusiveness of Synth-scRNA’s identity
GEP concepts, CBM can properly capture this property better than TabCBM as it does not have any extra constraints such
as TabCBM’s mask discovery. Nevertheless, we observe that as soon as a few concepts are intervened on, TabCBM’s
performance becomes similar to that of CBM in this dataset.

I. Hyperparameter Ablations
In this section, we explore TabCBM’s sensitivity to its hyperparameters by studying how they affect different metrics and
properties of the resulting model. We first discuss how k′, the number of discovered concepts, affects TabCBM’s accuracy
and quality of learnt representations. Then, we explore how the different regularisation terms for TabCBM’s loss affect
its end performance. Finally, we conclude by giving some recommendations on what are some good values for these
regularisers that, from our experience, work well in practice without much fine-tuning.
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I.1. Effect of the Number of Discovered Concepts on TabCBM

Selecting the number of discovered concepts for TabCBM is one of the most important parts of constructing a model that
is high-performing while maintaining a high level of interpretability. While setting this value can be strongly aided by
domain-specific knowledge (e.g., setting k′ = k when we know the value of k a priori), it is often the case and expectation
that TabCBM will be trained on a task in which the true number of ground truth concepts is unknown. However, in Figure 9
we show that TabCBM’s performance, is relatively robust to changes in its k′ parameter. We observe that only when it
is severely capacity-constrained, as it is the case when k′ = 1 in both Synth-Linear and Synth-Nonlin, do we observe a
significant drop in its accuracy.
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Figure 9: Test accuracies for TabCBM as we vary the number of discovered concepts k′ for all our tasks.

Although a similar behaviour as that observed with the task accuracy when we vary the value of k′ can be seen for the
G-AUC metric, the same cannot be said of the M-AUC metric. We see this in Figure 10 where we observe that TabCBM
can correctly identify all globally important features regardless of k′, provided it is not under-parameterised, resulting in a
high G-AUC value for all variants evaluated. In contrast, we observe that the M-AUC metric seems to decrease as the value
of k′ increases (particularly in the more complex synthetic datasets). We hypothesise that this is the case because in both
Synth-Nonlin-Large and Synth-scRNAthe ground-truth concept masks of some concepts are overlapping (e.g., a GEP’s set of
differentiated genes can overlap with the set of differentiated genes for another GEP). Therefore, when using a smaller k′,
TabCBM’s objective function can be minimised by fusing some of these concepts’ masks and scores into a single concept.
This leads to a higher M-AUC score than when k′ is larger because TabCBM does not need to correctly disentangle such
fused concepts as it has to do when k′ is larger.
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Figure 10: Test G-AUC and M-AUC scores for TabCBM as we vary the number of discovered concepts k′ for all our tasks
that have concept annotations.
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I.2. Effect of TabCBM’s Regularisers and General Recommendations

Besides k′, the next set of hyperparameters of importance for TabCBM is its different regulariser strengths {λco, λdiv, λspec}.
These control how much we value concept coherence, concept diversity, and concept specificity, respectively, with
respect to downstream task accuracy. In practice, when evaluating TabCBM we explored different combinations of these
hyperparameters by varying them in the set {0.1, 1, 5, 10}. We observe that, although TabCBM’s performance seems to
be relatively robust to fluctuations in these parameters, the specificity strength is particularly important to fine-tune for
TabCBM to correctly identify and discover concepts it was not given supervision for. To see this, in Figure 11 we show how
the test task accuracy of TabCBM in the Synth-Nonlin-Large dataset changes as we modify all three regularisers while fixing
the others to the parameters defined in Table 4 for this dataset. These results show that test accuracy fluctuates little for
changes in both λco and λdiv, but it is sensitive to changes in λspec. This is because there seems to be a threshold for λspec at
which TabCBM puts more of its attention into discovering masks first, and then uses these masks to simplify the problem of
learning the downstream tasks. This helps in this particular example as by first finding meaningful concept masks, TabCBM
eliminates a lot of noise and redundancy in the data in the same way that feature selection methods do; hence improving the
learning dynamics after these masks have been discovered.
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Figure 11: Test task accuracy of TabCBM in the Synth-Nonlin-Large dataset as we vary its loss regularisers {λco, λdiv, λspec}
during training.

Recommendations for loss hyperparameters Our results above, together with our experience with TabCBM during
evaluation, seem to suggest that the parameter that requires the most fine-tuning during training is λspec. In practice, we
observed that setting λco = 0.1 while searching for values of λdiv and λspec in the set {0.1, 1, 5, 10} under the constraint
λdiv = λspec yielded good results. If such a search is too expensive, then we found that setting λdiv = λspec = 5 resulted in
good performance across all of our tasks without much fine-tuning.

J. Differences Between Scoring Functions
As discussed in Section 4, in this work we opt to use as our concept scoring function s(i) the sigmoidal unnormalised inner
product between ϕ(x̃(i)) and ρ(i)(x̃(i)). We chose this scoring function rather than other commonly used alternatives such as
the cosine similarity (used in CCD (Yeh et al., 2020)) for two main reasons. First, using the cosine similarity for generating
a concept score between 0 and 1 requires one to threshold the similarity so that its domain (i.e., [-1,1]) is clamped between 0
and 1 (as these vectors are not guaranteed to be non-negative). This is done in CCD by selecting all similarity scores below
some hyperparameter β to be clamped at 0. While this enables one to have magnitude-independent scores, it introduces
the need for an extra hyperparameter and leads to a gradient-blocking operation, forbidding gradients to backpropagate
to the vector-generating models ϕ and ρ when their concept scores are clamped to zero. Second, as shown in Table 6 for
Synth-Nonlin-Large, in practice we observe that using thresholded cosine similarities rather than our proposed activation
function in TabCBMs can lead to drops in downstream performance. We hypothesise that this is the case as our model
can utilise the magnitude of these vectors to help it more easily express a concept’s activation or deactivation after using
a sigmoidal activation, something that normalised vectors may not be able to do. Because of these reasons, we leave the
exploration of further scoring functions for future work and use the sigmoidal inner product in this paper.

K. Interpretability-accuracy Trade-off in TabCBMs
In our experiments exploring the task accuracy of concept-supervised TabCBMs, shown in Figure 2, we observe that
TabCBM’s task accuracy generally does not significantly vary when concept supervision is introduced. Nevertheless, we
an exception is seen only in the Synth-scRNA task where a noticeable decrease in task accuracy is introduced as soon
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Table 6: Differences in task accuracy and concept alignment scores (CAS) when using for TabCBM’s concept scoring
function s(i) (1) a β-thresholded cosine similarity, and (2) a sigmoidal dot product function. For simplicity, we show only
results on the Synth-Nonlin-Large dataset and all TabCBMs are trained without any concept supervision by setting k′ = k
and using the same hyperpameters as those described in Table 4.

Method Task Accuracy (%) CAS (%)

TabCBM (sigmoidal inner product) 62.78 ± 1.13 88.54 ± 4.49
TabCBM (thresholded cosine similarity with β = −0.5) 53.38 ± 2.01 74.73 ± 2.15

TabCBM (thresholded cosine similarity with β = 0) 53.48 ± 1.87 75.19 ± 1.96
TabCBM (thresholded cosine similarity with β = 0.5) 53.53 ± 1.47 74.87 ± 1.57

as concept supervision is provided to TabCBM. This suggests that an interpretability-accuracy trade-off may exist when
concept supervision is introduced in complex tasks. In this section, we take a deeper look at this trade-off and show that,
although it does indeed affect TabCBM in complex tasks, our models are still able to obtain competitive performance with
respect to black-box baselines.

In Table 7 we summarise the performance of TabCBM across all synthetic tasks before and after receiving concept
intervention. Our results suggest that at its worst, TabCBM drops around ∼7% in mean average performance in Synth-scRNA
compared to an equivalent unsupervised version (i.e., a TabCBM trained without any concept supervision). Nevertheless,
these differences are not necessarily significant as the variances are relatively large because of their high sensitivity to which
concepts are provided with supervision. More importantly, when all concepts are provided supervision, we see a drop of
only ∼3% in task accuracy. Such a drop is not significant when one considers that even with ∼3% less accuracy than its
unsupervised version, TabCBM outperforms black-box models such as MLPs and falls behind other black-box models such
as TabNet and XGboost by ∼0.5%. These negligible drops in performance, however, come with the increased benefit of
TabCBM being able to generate faithful concept explanations for its predictions and being significantly more receptive to
test-time interventions that can boost their performance way above that of black-box models (as seen in Figure 3). Finally,
this trade-off may be corrected in practice by decreasing λconcept-sup during training, although this may lead to less accurate
concept explanations.

Table 7: Accuracy-interpretability trade-off: effect of adding concept supervision to TabCBM across all synthetic datasets.
We show the task accuracy (%) obtained as we change the number of supervised concepts given to the TabCBM during
training. For reference, we include MLPs and TabNets as baselines to compare our model against.

Method TabCBM (0 Sup Concepts) TabCBM (1 Sup Concepts) TabCBM (50% Sup Concepts) TabCBM (100% sup concepts) MLP TabNet

Linear 99.6 ± 0.07 99.51 ± 0.37 99.51 ± 0.37 99.67 ± 0.07 97.57 ± 0.37 97.57 ± 0.37
Synth-Nonlin 96.58 ± 0.23 94.71 ± 0.52 94.71 ± 0.52 94.62 ± 1.01 87.65 ± 0.98 91.57 ± 0.48

Synth-Nonlin-Large 65.37 ± 1.41 65.35 ± 1.24 65.27 ± 0.79 65.81 ± 0.78 40.74 ± 6.42 51.01 ± 2.57
scRNA 93.66 ± 1.41 86.10 ± 2.53 87.40 ± 2.91 90.04 ± 1.78 73.87 ± 1.43 90.66 ± 1.10

L. Code Used and Hardware Infrastructure
For the experiments reported in this paper, we built a code base on top of the code made available by Espinosa Zarlenga et al.
(2023) and by Kazhdan et al. (2021) (under an MIT and Apache 2.0 licenses, respectively) to train the CCD, SENN, and
CBM baselines. For both the CEM and Hybrid-CEM baselines, we used the official implementation by Espinosa Zarlenga
et al. (2022). For both XGBoost and LightGBM, we made use of the official implementations of both frameworks. For
TabNet we extended the open-sourced MIT-licensed implementation by DreamQuark AI3. Similarly, for TabTransformer we
extended the open sourced MIT-licensed implementation by Phil Wang4.

We built our code base using a combination of TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) and
implemented TabCBM in TensorFlow. All of the code needed to reproduce our results, and use our model through a simple
API, has been made public at https://github.com/mateoespinosa/tabcbm via an MIT license.

3https://github.com/dreamquark-ai/tabnet
4https://github.com/lucidrains
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M. Details on representation learning metrics
In Table 8 we provide a brief summary of the metrics used in our experiments in Section 5.2.

Table 8: Summary of the metrics used as part of our evaluation in Section 5.2.

Metric Definition
Concept Alignment Score (CAS)
(Espinosa Zarlenga et al., 2022) This metric measures how strongly a learnt concept score ĉi is aligned with a corresponding

ground-truth concept cj . It does this by clustering test samples based on ĉi and measuring
the homogeneity (Rosenberg & Hirschberg, 2007) (i.e., the coherence) of these clusters with
respect to the ground-truth labels of cj . To compute this metric for a set of learnt concepts, we
first match each learnt concept score with the ground truth concept with the highest absolute
Pearson correlation and then average the homogeneity scores produced for each matching. A
high CAS score of 1 represents a perfect alignment between learnt concepts and ground-truth
concepts. A low CAS score of 0 indicates perfect misalignment.

Mutual Information Gap (MIG)
(Chen et al., 2018b) This metric provides a quantitative measurement of how disentangled, or diverse, a set of

learnt concepts is. It is computed by measuring how much more information about a ground-
truth concept ci is encoded in the learnt concept ĉa with the highest mutual information
I(ĉa; ci) than in the learnt concept ĉb with the second highest mutual information I(ĉb; ci). If
the mean gap across all ground-truth concepts is large, then it implies that each ground-truth
concept is being encoded by a single learnt concept. Otherwise, it implies that multiple learnt
concepts are encoding redundant information about a ground truth concept.

R4

(Ross & Doshi-Velez, 2021) The R4 metric measures whether there exists a bijective alignment function between learnt
concept scores and ground-truth concept labels. Therefore, it attempts to capture whether
learnt concepts are coherent and diverse enough to completely capture all ground-truth
concepts. This metric operates by training two nonlinear univariate models for each (learnt-
concept, ground-truth concept)-pair, one model for each direction, and using their coefficients
of determination R2 to quantify how closely can these two variables be represented using
a bijective mapping. A final score is then produced by averaging the maximum R2 values
obtained for all ground-truth concepts. A high R4 score indicates the existence of a bijection
between learnt concept scores and ground-truth concepts.

DCI Disentanglement
(Eastwood & Williams, 2018b) This metric captures concept diversity by measuring whether each learnt concept is aligned

with at most one ground truth concept. It is computed by averaging the complement entropies
of the probabilities that a learnt concept ĉi is rendered “important” when predicting ground-
truth concept cj . The importance scores used to construct such a probability distribution are
computed using a simple linear regression model between every learnt concept and every
ground-truth concept. A high DCI disentanglement indicates that all learnt concepts capture
one and only one ground-truth concept.

DCI Completeness
(Eastwood & Williams, 2018b) When the set of ground-truth concepts is fully descriptive of the downstream task, this metric

captures concept completeness by measuring the degree to which each ground-truth concept is
captured by at least one learnt concept. It estimates this by computing the complement entropy
of the probability of learnt concept ĉi being the only “important” learnt concept to predict
ground-truth concept ĉi (with importance computed as above). A high DCI completeness
indicates that all ground-truth concepts are captured by one and only one learnt concept.

DCI Informativeness
(Eastwood & Williams, 2018b) This metric captures another aspect of concept completeness by looking at how predictive the

overall set of learnt concept scores is of each known ground-truth concept. This is measured
using the average prediction error obtained when training a simple classifier to predict each
ground-truth concept from ĉ. A high DCI informativeness indicates that all ground-truth
concepts can be accurately predicted using the set of learnt concept scores.
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