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ABSTRACT
Weakly-supervised semantic image segmentation suffers from lack-
ing accurate pixel-level annotations. In this paper, we propose a
novel graph convolutional network-based method, called Graph-
Net, to learn pixel-wise labels from weak annotations. Firstly, we
construct a graph on the superpixels of a training image by combin-
ing the low-level spatial relation and high-level semantic content.
Meanwhile, scribble or bounding box annotations are embedded
into the graph, respectively. Then, GraphNet takes the graph as
input and learns to predict high-confidence pseudo image masks
by a convolutional network operating directly on graphs. At last, a
segmentation network is trained supervised by these pseudo image
masks. We comprehensively conduct experiments on the PASCAL
VOC 2012 and PASCAL-CONTEXT segmentation benchmarks. Ex-
perimental results demonstrate that GraphNet is effective to predict
the pixel labels with scribble or bounding box annotations. The pro-
posed framework yields state-of-the-art results in the community.
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1 INTRODUCTION
Image semantic segmentation aims to assign each pixel a visual
category label in one image. Benefiting from the deep convolu-
tional neural networks (DCNNs) and large-scale pixel-level an-
notated training data, fully supervised image semantic segmenta-
tion has been developed and achieved relatively high performance
[3, 4, 7, 8, 18, 29, 46, 47]. However, large-scale pixel-level annotation
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data is still needed to train a deep model [7, 31]. It is expensive and
time-consuming to annotate pixel-level labels on large-scale image
datasets, which greatly limits the application and development of
semantic segmentation in practice. In contrast, weakly-supervised
image semantic segmentation learns the masks with weak annota-
tions, and thus has attracted more attention.

Recently, image semantic segmentation in a weakly-supervised
manner has been widely developed [13, 20, 22, 24, 28, 31, 34, 35, 38,
40, 42–45]. The critical issue is to predict pixel-wise labels from
image-level annotations or partially pixel-level annotations. Lin et
al. [28] employ another form of the weak labels, i.e.scribble. Scribble
can be obtained by users interacting with ordinary touch screen
devices and machines in a friendly manner and is therefore widely
used in practice. Though such scribble-supervised methods deliver
more impressive results, compared with the corresponding fully-
supervised counterparts, its optimization process is totally cumber-
some. Other bounding box-based weakly-supervised method, such
as [10], also suffers from optimizing the model with several dozens
of iterations.

It is worthy to note that some graph-based image segmenta-
tion proceeds appreciable performance by dividing an image into
“regions” or “blobs” with only generic cues of coherence or sim-
ilarity among pixels [5]. Some supervised graph-based methods
are also proposed to preserve the necessary structure for accurate
segmentation. For example, based on the region boundaries, [15]
performs a graph-based image representation to preserve details in
low-variability region and ignore details in high-variability regions.
Graph-based methods propagate the labeled information and cap-
ture the intrinsic relation in both local neighborhood and global
image. Due to the excellent performs of DCNNs in feature learning,
researchers attempt to construct a similar convolutional neural net-
work on graph-structured data [6, 11, 16, 19, 23]. Although graph
convolution networks surpass the traditional methods on some
existing relational datasets, such as text citation dataset, it is still a
challenging task to directly apply it on the images or video data in
the field of computer vision.

In this paper, we consider employing graph convolutional net-
works to deal with weakly-supervised semantic segmentation. Mo-
tivated by the advantages of graph-structured data and efficient
graph convolutional operations, we propose a novel graph convo-
lutional network-based method, called GraphNet, to learn image
pseudo annotations for weakly-supervised semantic segmentation.
More specifically, we construct a graph on an image by consider-
ing a dual constraint between the image CNN features and image
spatial partition. Such a graph not only combines image low-level
local correlated cues and the high-level semantic contents but also
characterizes a naturally structured representation of the original
image. Then we establish a graphical neural network model, which
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allows us to perform the necessary operations of convolutional
networks, such as convolution, pooling or non-linear transforma-
tion, directly on the graph. Consequently, in order to estimate a
reliable segmentation mask for each training image, we propagate
the category information from labeled pixels to unlabeled pixels by
our proposed GraphNet.

Furthermore, GraphNet is apt to generalize to different kinds
of annotated data. Accordingly, we integrate the GraphNet into a
weakly-supervised semantic segmentation framework. We perform
experiments on both scribble and bounding box annotations. Scrib-
ble can provide the category information of partial pixels directly,
but bounding box annotations need to be processed so as to gen-
erate high-confidence labels within the box. The proposed pseudo
annotations methods improve the performance of image semantic
segmentation supervised by both scribble and bounding box an-
notations. Specifically, with one initial round of training, we can
achieve 68.2% and 65.0% for the scribble and bounding box annota-
tions, respectively. Moreover, our framework yields 68.9%(scribble)
and 65.6%(bounding box) with an additional round of optimization.

Our main contribution is summarized as follows:
• We address the challenges of weakly-supervised semantic
segmentation by proposing a graph-based GraphNet to gen-
erate accurate pseudo annotations.

• GraphNet applies convolutional neural networks to the graph-
structured data, which allows the graphical model can be
efficiently optimized for label propagation. Therefore, our
method can achieve comparable segmentation results with
a single round training, and its performance can be further
improved by additional rounds.

• We conduct comprehensive experiments on the PASCAL
VOC 2012 and PASCAL-CONTEXT dataset with scribble or
bounding box annotations. Our proposed framework achieves
superior performance compared with the state-of-the-art
methods.

The rest of the paper is organized as follows. We briefly review
the related work in Section 2. Section 3 describes the details of
GraphNet and the pre-processing of different annotations. The de-
tails of segmentation and optimization strategies are introduced in
Section 4. The configuration of the proposed method and experi-
mental results are described in Section 5. We conclude our work in
Section 6.

2 RELATEDWORK
Weakly-Supervised semantic segmentation. The recently pro-
posed weakly-supervised methods mainly use weak labels like
image-level labels [24, 31–33], scribble [28, 38], and bounding box
[10, 31]. For the given image-level or box-level annotations, most ex-
isting approaches commonly use models such as Multiple Instance
Learning (MIL) [32, 33], Expectation Maximization (EM) [31], or de-
coupled network [24], which can locate the most distinctive object
parts. However, it is still hard to capture the whole object regions.

Image-level annotations are the easiest to obtain, but accuracy
is still far behind supervised segmentation. Instead, the results
of bounding box annotations are closer to supervised ones. Dai
et al. [10] propose segmentation with BoxSup which performs
iterative optimization between generating segmentation masks

and training network. Though the performance is more advanced
than other methods, it also suffers from optimizing the model with
dozens of iterations. Additionally, pixel-level annotations are also
extra needed in the step of Multiscale Combinatorial Grouping
(MCG) [2] in BoxSup. Papandreou et al. [31] solve the optimization
problem by adopting an automatic foreground/background segmen-
tation strategy. Specifically, a fully connected CRF is leveraged to
filter out the background pixels. However, the CRF parameters are
learned from a small held-out set of fully-annotated images.

Scribble is proposed for image semantic segmentation as another
form of weak supervision[28]. Lin et al. [28] solve the problem that
assigns a category label for each superpixel by multi-label graph
cuts. The label information is effectively propagated to all unla-
beled pixels. Based on the estimated labels, the gap between trained
segmentation model and fully supervised methods is reduced. How-
ever, the energy function of the graphical model is optimized with
an alternating algorithm, and multiple rounds of optimization are
also necessary to obtain good performance.

Graph Convolutional Network in Computer Vision. As a
powerful data structure, graphs can express not only the intrinsic
entities with nodes but also the complicated relationships between
entities with edges, which is commonly adopted in social networks,
knowledge graphs, protein-interaction networks etc.. Inspired by
the advanced development of convolutional neural networks in the
image (video)-based tasks, a number of researchers rise to study
the problem of employing neural networks to arbitrarily struc-
tured graph [6, 11, 19, 21, 23, 25]. It is a challenging task to apply
well-established neural models to structured graphs in the field of
computer vision. Jain et al. [21] construct a graph by combining
the temporal and spatial relationships between entities (objects,
human etc.) and extend Recurrent Neural Networks to graphs for
detecting human activity. In addition, many fully-supervised seman-
tic segmentation problems are solved by utilizing neural network
optimization graphical models. Liang et al. [27] propose a deep
Local-Global Long Short-Term Memory (LG-LSTM) architecture,
which is applied to a grid structure and incorporate short-distance
and long-distance spatial dependencies into the feature learning
over all pixel positions. In [26], a Graph Long Short-Term Memory
(Graph LSTM) network is proposed, which is the generalization of
LSTM from sequential or multidimensional data to general graph-
structured data. Although the adaptive graph structure improves
the consequence of the semantic segmentation models, training
these models still requires pixel-level annotation data.

3 THE PROPOSED METHOD
This section describes how to generate pseudo labels by GraphNet
from weak labels such as scribble and bounding box annotations.
The overall framework is shown in Figure 1. Firstly, we convert an
image with a regular grid structure into a structured graph with
initial outline cues. Subsequently, we elaborate on the significant
work in this paper that includes the theoretical definition and net-
work architecture of GraphNet. Furthermore, we also illustrate
the detailed process of generating the initially labeled nodes from
scribble or bounding box annotations.
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Figure 1: Overview of the proposed framework for weakly-supervised semantic segmentation. First, the CNN features are
extracted from a VGG-16[36] pre-trained on ImageNet[12], and graph is constructed by combining feature similarity and the
spatial location given by superpixel map and the scribble or bounding box annotations. Then, pseudo imagemasks are learned
by the proposed GraphNet. At last, a segmentation network is trained supervised by the generated pseudo annotations. The
process of generating labeled nodes by scribble and bounding box annotations is described in Figure 2 and 3, respectively.

3.1 Graph Construction
Learning pseudo labels can be regarded as a label propagation
problem. Traditional DCNNs operate on images with regular grid
structure. However, it is hard to work for label propagation problem.
We consider transforming an image to a graph-structured data
for label propagation. The graph representation is constructed by
considering low-level cues (e.g.outline, shape) of individual images
and the dual constraints of spatial location and semantic content.

Superpixels with object outline cues are extremely suitable as
nodes of the graph structure which represents one image. As dis-
cussed in [39], superpixel provides a larger, locally homogeneous
and coherent region that preserve most of the structure necessary
for accurate segmentation. Therefore, we utilize the Simple Linear
Iterative Clustering (SLIC) algorithm [1] to over-segment each im-
age I and divide it into a superpixel set, denoted as {spi }Ni=1, which
contains N superpixels. Following, we describe how to extract fea-
tures on each superpixel and construct a graph by dual constraints
of spatial location and semantic content.

Feature Extraction on superpixels. Above all, we extract the
features from the whole image. Earlier layers in convolutional neu-
ral networks are prone to learn low-level features (e.g.edges), while
later layers capture more semantic information (e.g.class labels).
We require assigning a semantic label to each pixel, so semantic
features are extracted from a deep, coarse layer. Specifically, we
employ the VGG-16 [36] model which is pre-trained on the Ima-
geNet Visual Recognition Challenge [12] to extract the high-level
semantic representations.

The VGG-16 model is designed for image classification tasks
and limits the size of the input image. In our work, we require
extracting feature maps from the ReLU-5 layer, instead of the final

result of the classification. Therefore, we input the original image
without cropping into the pre-trained VGG-16model to extract high-
resolution feature maps. Note that, the feature maps of each image
are downsampled by the operation of several convolutional layers.
In order to obtain dense feature maps with high-resolution, we
resize the feature activations to the same size with original images
by a bilinear interpolation. Finally, an average pooling is performed
on a superpixel along the channels, and a 512-dimensional CNN
feature vector xi for each superpixel spi is obtained.

The dual constraints. Two spatially adjacent nodes with simi-
lar characteristics commonly tend to belong to the same category.
However, only relying on the spatial constraints may ignore the
contextual semantic interaction. Here, we consider the dual con-
straints of spatial information and semantic content to construct a
graph for each image.

First, we consider the spatial adjacency constraint. The superpixel-
based graph focuses on constructing a structured representation of
image, defined as G = (V, E,A). Each node vi in V corresponds
to a superpixel and the edge εi j in E only connects two spatially
neighboring superpixel nodes. A is the graph adjacency matrix.

We denote the initial weight matrix asWl = [wi j
l ]n×n ∈ RN×N

which measures the spatial relationship among all superpixel nodes.
If two nodes vi and vj are spatially adjacent, then the weightwi j

l
between them is defined as:

w
i j
l =

{
1, if vj ∈ NG(i)
0, otherwise , (1)

where NG(i) represents a neighboring nodes set of node vi .
Then, we use a semantic weight matrixWs = [wi j

s ] to measure
the semantic similarity between all spatially neighboring nodes.



Given the superpixel features {xi }Ni=1, the valuew
i j
s is calculated

as:

w
i j
s =

{
exp(− ∥xi−x j ∥

2h ), ifwi j
l = 1

0, otherwise
, (2)

where h is the dimension of the feature vector.
Subsequently, according to the semantic weight matrixWs , we

remove the edges with low similarity from the edge set E to cal-
culate the final adjacency matrix A. We observe that the above
operation may produce isolated nodes in a graph. Therefore, we
utilize the following strategies to remove edges with low semantic
similarity while ensuring connectivity of the graph. At first, we set
a threshold γ = u(Ws ) − σ (Ws ) to filter out the edges with low se-
mantic similarity, where u(·) is the mean value, σ (·) is the standard
deviation, andWs is the semantic weight matrix. For a node vi , we
calculate its maximum similarity value w̃i

s,max between node vi
and its adjacent nodes, denoted as w̃i

s,max =max (wi j
s ,vj ∈ NG(i)).

Then we specify that if the semantic similaritywi j
s between vi and

vj ∈ NG(i) is below the threshold γ , at the same time,wi j
s is lower

than w̃i
s,max , then the edge εi j will be removed. The element ai j

in adjacency matrix A is calculated as follows:

ai j =

{
0, ifwi j

s < γ andwi j
s < w̃i

s,max
1, otherwise

. (3)

3.2 GraphNet
GraphNet propagates the labels of a small number of nodes to the
unlabeled nodes in a graph. It is directly achieved by graph con-
volutional networks. For the dense annotation generation of an
image, the image represented by a graph is particularly effective
for modeling both local appearance and global spatial interaction.
Moreover, powerful features can be further obtained from con-
volutional operations. The GraphNet is based on spectral graph
convolutional neural networks, introduced in [6, 23]. To perform
the convolution directly on the constructed graph, we introduce an
essential operator for spectral graph analysis [9], graph Laplacian,
whose combinatorial definition is given by

L = D −A ∈ RN×N , (4)

where D ∈ RN×N is the diagonal degree matrix with Dii =
∑
j ai j ,

and the normalized definition is

L = IN + D
− 1

2AD− 1
2 = UΛUT , (5)

where IN is the identity matrix, andU is the matrix of eigenvectors
of the normalized graph Laplacian L with a diagonal matrix of its
eigenvalues Λ.

GraphNet Architecture. Let P andQ be the number of labeled
and unlabeled nodes, where P + Q = N . The corresponding fea-
ture vector is denoted as X1:P and XP+1:P+Q , respectively. Given
the labels Y1:P , we train a neural network model f (X ,A) with a
supervised loss for all labeled nodes. Training the parameters of
f (·) will allow the model to distribute gradient information from
the supervised loss. Meanwhile, It will also enable nodes without
labels to learn representations. According to the propagation rules
of classical neural networks, each layer can be written as a nonlin-
ear function. We adopt the following simple form of a layer-wise

(a) (d)(c)(b)

Figure 2: Labeled nodes from scribble annotations. (a) Scrib-
ble annotations. (b) The superpixel map with scribble. (c) La-
beled nodes. (d) Pseudo annotations.

propagation rule [23]:

H (l+1) = σ (AH (l )W (l )), (6)

where A is the graph adjacency matrix,W (l ) is a parameter matrix
for the l-th neural network layer and σ (·) is a non-linear activation
function like ReLU.

In addition, to alleviate the problem of numerical instabilities and
exploding or vanishing gradients in the deep neural network model,
we introduce the following renormalization trick: IN +D− 1

2AD− 1
2 →

D̃− 1
2 ÃD̃− 1

2 , with Ã = A+ IN and D̃ii =
∑
j Ãi j . What is more, layer-

wise propagation rules can be defined as:

H (l+1) = ReLU(D̃− 1
2 ÃD̃− 1

2H (l )W (l )). (7)

In our scenario, a two-layer graphical convolution model f (X ,A)
is introduced for the label propagation. We define the rule of model
forwarding:

Z = f (X ,A) = softmax (Â ReLU (ÂXW (0))W (1)), (8)

where Â = D̃− 1
2 ÃD̃− 1

2 , and X is a matrix of node feature vector xi .
W (0) andW (1) are the model parameters from input layer to hidden
layer and hidden layer to output layer, respectively.

Loss Function.We optimize the GraphNet by minimizing the
cross-entropy loss over all labeled nodes:

L = −
∑
i ∈YP

C∑
c=1

yci ln z
c
i , (9)

where C is the number of category label, and zci means that the
prediction result of the i-th node belongs to category c .

The above lossL is continuously reduced by the gradient descent.
The weight parameters of the neural network, W0 and W1, are
optimized, thereby assigning a category label to unlabeled nodes
and generating a dense predicted mask for each training image.
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Figure 3: Overview of generating labeled nodes from bound-
ing box annotations.

3.3 Scribble Annotations
As shown in Figure 2 (a), scribble annotations provide a set of sparse
pixels with category labels. Firstly, we take the superpixels covered
by scribbles as the labeled data. Specifically, following the work of
Lin et al. [28], we denote the scribble annotations of an image as
S = {sj , c j }, where sj is the pixel set of the j-th scribble and c j is
the category label of this scribble. If a superpixel spi overlaps with
a scribble sj , then we assign the category label c j to this superpixel
spi , as:

yi =

{
c j , if spi

⋂
sj , ∅

ø, otherwise . (10)

We show some examples of the labeled nodes with scribble in Figure
2 (c). GraphNet assigns a category label to each superpixel after
training on a supervised loss L for all nodes with labels. Some
estimated masks are shown in the figure 2 (d).

3.4 Bounding Box Annotations
Obviously, scribbles can provide accurate labels for specific pixels in
the image so that we can obtain nodes with labels directly. However,
the bounding box provides only the location of the object in the
image. Therefore, it is a crucial step to accurately locate the pixels
on the object within bounding boxes to generate labeled nodes.
As discussed in [41], classification-based networks, such as CAM
model[48], can only produce small and sparse object regions. Here,
we can utilize the propagation performance of GraphNet to further
locate dense and complete object regions.

The process of generating initially labeled nodes from bound-
ing box annotations is described in Figure 3. The bounding box
annotations provide category labels for single or multiple objects
per image, so we first fine-tune the original CAM model [48] on
the dataset. Then, the cropped bounding box image patch is input
into the fine-tuned model in turn, and the corresponding category
heatmap is extracted. We set a threshold β to select the highlight
regions in the heatmap. These selected regions are discriminative
for image classification and they can accurately locate the local
regions of the object in the bounding box. For images with mul-
tiple objects, we require paying special attention to the overlap
between boxes. This problem can cause overlapping of the selected

discriminating regions, then the label of the pixel on the overlap
regions would be confused. We solve this problem by assigning
the label of ambiguities pixels (that belong to multiple bounding
boxes) to the one with the highest prediction values in the heatmap.
Subsequently, we merge the extracted regions with the range box of
center prior, then we assign labels to the superpixel nodes covered
by the merged regions. Note that the range box of center prior is
controlled by a threshold α . That is, the height and width of the
range box is α% of the bounding box. Ultimately, we employ those
labeled nodes as training data and utilize GraphNet (Section 3.2) to
predict a final dense pseudo annotation for each image.

4 SEGMENTATION AND OPTIMIZATION
4.1 Segmentation with Weak Annotations
We train a DeepLabv2-VGG16 [7] based segmentation network with
the pseudo masks generated by the proposed GraphNet. VGG-16 is
utilized as our backbone. In our framework, there is a weak cou-
pling between generating pseudo labels and training segmentation
models. Therefore, we can replace the segmentation model with
any state-of-the-art models.

4.2 Further Optimization
With the pseudo image masks generated by GraphNet, the segmen-
tation model with initial round can achieve satisfying performance.
In order to further improve the segmentation performance of the
model, we provide two following optimization strategies.

In the beginning, we replace the VGG-16 model with the ini-
tial segmentation model to extract the features. Subsequently, we
utilize the output results of GraphNet and segmentation model to
extend the new labeled nodes. Obviously, the initial segmentation
model can output a dense label for each training image and predict
confidence maps with regard to each semantic label. GraphNet,
on the other hand, assigns a category label and a corresponding
prediction score for each superpixel. We select the regions with
high-confidence value and same category labels from the predic-
tions of two networks. Some initially labeled nodes generated by
Section 3.3 or Section 3.4 may already exist in the selected regions.
Departing from these nodes, we regard the others as the extended
labeled nodes. Let P , EP and Q ′ be the number of initially labeled
nodes and extended labeled nodes and unlabeled nodes, where
P + EP + Q ′ = N . Let X1:P , XP+1:P+EP , and XP+EP+1:N denote
the feature vectors of the above three types of nodes, respectively.
Certainly, the labels Y1:P and YP+1:P+EP are known.

In the first strategy, Joint Training, initial and expanded nodes
are collectively referred to as labeled nodes. We optimize the joint
loss with labels Y1:P and YP+1:P+EP as described with Equation 9.
The labels of the extended nodes are decided by both the initial
segmentation model and GraphNet, however, which could lead to
ambiguous label assignment. Therefore, in the Joint Training, a
small number of nodes propagate the false labels to nearby nodes
with higher probability. To reduce the influence of the nodes with
the false labels on the overall label propagation, we propose another
optimization strategy: Alternate Training. Training GraphNet is
divided into two stages: 1) optimizing the supervised loss on initial
nodes with labelsY1:P , and 2) fine-tune the parameters of GraphNet
on initial and extended nodes.
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Figure 4: The estimated mask from box annotation. (a) Im-
age with bounding box. (b) Ground-Truth. (c) Boundingbox
Rectangles. (d) The estimated mask of BboxCAM-S1. (e) The
estimated mask of BboxCAM-S2. (f) The estimated mask of
BboxGraphNet.

5 EXPERIMENT
Dataset.We evaluate our method on the PASCAL VOC 2012 [14]
and PASCAL-CONTEXT [30] dataset.PASCALVOC2012 involves
20 object categories and one background category. The original
dataset for segmentation contains 1,464 training images, 1,449 vali-
dation images, and 1,456 test images. The dataset is augmented by
the extra annotations provided by [17], resulting in 10,582 (train-
aug) training images. Each image pixel is elaborately labeled as
one of the 21 categories. However, instead of using precise pixel-
level annotations, we use scribble annotations provided by [28], and
bounding box annotations for object detection tasks [14]. PASCAL-
CONTEXT involves 59 categories of objects and stuff. The dataset
has 4,998 training images and 5,105 images for validation and is
annotated with scribble annotations.

Implementation Details. We adopt the DeepLabv2-VGG16[7]
to evaluate the accuracy of the generated pseudo masks. We train
themodel on the 10,582 training imageswith pixel-level annotations
and take it as our strongly-supervised baseline. In addition, the
mean Intersection-over-Union (mIoU) is evaluated. For all networks,
we report results before CRF (w/o CRF) and after CRF (w/ CRF). The
parameters in CRF is the same as the DeepLabv2-VGG16 code. The
strongly-supervised baseline result we implemented is 68.8% (w/o
CRF) and 71.5% (w/ CRF) respectively. The network architecture of
DeepLabv2-VGG16 serves as our network architecture of scribble
and bounding box annotations experiments.

5.1 Scribble Annotations
We perform experiments with scribble annotations on the PASCAL
VOC 2012 dataset and PASCAL-CONTEXT dataset. The GraphNet
is evaluated by training the DeepLabv2-VGG16 with the estimated
pseudo masks from scribble annotations.

5.1.1 Experiments on PASCAL VOC 2012. Our method is marked
as ScrGraphNet. We report the quantitative results in Table 1. More
specifically, in Table 1, we present the mIoU of ScrGraphNet with
the initialized masks generated by GraphNet (Initial) and masks
which are further optimized with an additional round training (1-
Round). ScribbleSup [28] and RAWKS [38] have mIoU of 63.1% and

Table 1: PASCAL VOC 2012 val performance for scribble an-
notations.

method strong w/o CRF w/ CRF
ScribbleSup [28] (1) - 63.1
RAWKS [38] (1) - 61.4
NormalizedCutLoss [37] (1) 60.5 65.1
NormalizedCutLoss [37] (2) 62.4 65.2
Ours: ScrGraphNet, Initial
w/o semantic (2) 62.8 68.0
w/ semantic (2) 63.3 68.2
w/ semantic (max pooling) (2) 62.7 67.9
Ours: ScrGraphNet, 1-Round
Replaced Features (2) 63.7 68.3
Joint Training (2) 64.1 68.7
Alternate Training (2) 64.5 68.9
strong
(1) DeepLab-MSc-largeFOV 64.1 68.7
(2) DeepLabv2-VGG16 68.8 71.5

61.4%, with 5.6% and 7.3% lower than its corresponding strongly-
supervised results, respectively. In the most recent results, Nor-
malizedCutLoss [37] achieves state-of-the-art performance. With
DeepLabv2-VGG16, our proposed ScrGraphNet obtains mIoU of
68.2% with only initial training which is higher 3% than Normal-
izedCutLoss [37]. Through another 1-Round training, ScrGraphNet
leads to 68.9% and reduces the gap to 2.6% compared with the strong
supervised result (71.5%).

In summary, GraphNet can sufficiently employ the represen-
tation of the graph structure, and it can achieve more effective
optimization results by simple propagation rules.

Comparisons of Graph Structure Construction. We evalu-
ate the impact of high-level semantic cues in graph construction
for segmentation results. To prove the effectiveness of semantic in-
formation, we establish the following settings: w/ semantic refers
to combining semantic similarity and spatial relation constraints in
graph construction, while the w/o semantic represents that graph
is only constrained by spatial relationship. As shown in Table 1,
with high-level semantic cues, the mIoU (w/o CRF) improves from
62.8% to 63.3%. The comparison indicates that dual constraints of
spatial location and semantic content can lead to a better represen-
tation of the image. However, mIoU (w/ CRF) only increases from
68.0% to 68.2% after the segmentation results which are refined by
CRF. The reason may be that CRF considers semantic interaction on
w/o semantic and leads to similar segmentation results compared
with w/ semantic.

Comparisons of Superpixel Pooling Strategy. We investi-
gate the influence of pooling strategy when extracting features
on superpixels. Max pooling is used instead of average pooling,
denoted as w/ semantic (max pooling) and the other settings are
as same as the w/ semantic. ScrGraphNet under condition of w/
semantic (max pooling) has mIoU of 62.7% (w/o CRF) and 67.9%
(w/ CRF), which is inferior to it with average pooling.

Comparisons of Optimization Strategy for GraphNet. As
described in section 4.2, we propose two optimization strategies,
which are divided into the following two steps: 1) replacing the
classification model with the initial segmentation model to extract
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Figure 5: Our results on the PASCAL VOC 2012 val set.

Table 2: Training different networks with ScrGraphNet on
PASCAL VOC 2012 val.

strong weak
method w/o CRF w/ CRF w/o CRF w/ CRF
DeepLab-largeFOV 62.3 67.6 59.5 66.3
DeepLabv2-VGG16 68.8 71.5 64.5 68.9
DeepLabv2-ResNet101 75.6 76.5 70.3 73.0

features, and 2) training the model with extended labels nodes by
Joint Training and Alternate Training strategies, respectively. In
order to verify the impact of features on the optimization strategy,
we set a comparative experiment, Replaced Features. Specifically, Re-
placed Features means that we only replace the VGG-16 model with
the initial segmentation model and then learn new pseudo labels
without extended labels nodes. Through the CRF post-processing,
mIoU of Joint Training reaches to 68.7%. Especially, Alternate Train-
ing obtains the highest mIoU of 68.9%.

The experimental results with different settings show that Graph-
Net can obtain the relatively accurate masks and stably boost
weakly-supervised semantic segmentation performance. Moreover,
we provide the qualitative results of SrcGraphNet with an additional
round of alternate optimizations, as shown in the Figure 5(d).

Comparisons ofDifferent SegmentationNetworks.We test
the generated pseudo annotations on different segmentation net-
works on the PASCAL VOC 2012 dataset. The results are summa-
rized in Table 2. The generated pseudo annotations reduce the per-
formance gap between the strong-supervised and weak-supervised
methods. It also illustrates the effectiveness of ScrGraphNet.

Table 3: The result of ScrGraphNet on CONTEXT val.

method strong w/o CRF w/ CRF
ScribbleSup [28] (1) - 36.1
RAWKS [38] (1) - 37.4
Ours: ScrGraphNet
Initial (2) 33.1 39.7
1-Round, Joint Training (2) 34.2 40.1
1-Round, Alternate Training (2) 33.9 40.2
strong
(1) DeepLab-MSc-LargeFOV - 37.7
(2) DeepLabv2-VGG16 36.0 41.7

5.1.2 Experiments on PASCAL-CONTEXT. We further evaluate
the ScrGraphNet on the PASCAL-CONTEXT dataset. The quan-
titative and qualitative results are shown in Table 3 and Figure 6,
respectively. The mIOU of strongly-supervised is 36.0%(w/o CRF)
and 41.7%(w/ CRF). ScrGraphNet achieves the mIoU of 40.2% with
Alternate Training. The results show that our method also preserves
excellent performance on the dataset which contains more cate-
gories.

5.2 Bounding Box Annotations
In this experiment, we evaluate the proposed GraphNet by train-
ing the DeepLabv2-VGG16 and DeepLab-LargeFOV models with
bounding box annotations. DeepLab-LargeFOV and DeepLab are
served as network architecture in WSSL [31] and BoxSup [10], re-
spectively. We report results of corresponding strongly-supervised
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Figure 6: Our results on the PASCAL-CONTEXT val set.

results in Table 4. In our BoxGraphNet, the response value of each
pixel in heatmap is normalized to [0, 1]. To obtain regions with
high-confidence, we set the threshold β = 0.75. Also, we define
α = 10%. The comparative results are summarized in Table 4.

With DeepLab-LargeFOV network, our method improves over
WSSL [31] by 2.8%, and only 4.2%worse than the strongly-supervised
results. Additionally, with the DeepLabv2-VGG16 network, our im-
plementation with initial round (Ours: Initial) has mIoU of 65.0%.
The performance can be further improved to 65.6% with an addi-
tional round optimization (Ours:1-round), that is only 5.9% less than
the strongly-supervised result. Especially BoxSup [10] yields only
1.8% worse than the strong pixel-level supervision result. However,
BoxSup [10] uses MCG algorithm [2], which requires training with
pixels annotations.

Comparative Experiments. To prove the benefits of refining
object regions in bounding boxes, we attach three comparative
experiments. In the first BboxRectangle, we consider each bounding
box as an object region of the corresponding category, as shown
in Figure 4 (c). Then we train the segmentation model with these
masks. The score is 53.2%. However, in the remaining two compar-
ative experiments, we set the threshold β = 0.4 to directly select
the regions with high response value from heatmap as the object
regions. For the rest pixels in the box, we perform an interesting
setting. BboxCAM-S1 means that the rest pixels are regarded as the
background. On the contrary, we set the label of rest pixels to 255 in
the BboxCAM-S2, which means that these regions are ignored when
training the segmentation model. Examples of estimated masks
with BboxCAM-S1 and BboxCAM-S2 method as shown in Figure 4
(d) and (e), respectively.

As shown in Table 4, the results show that the Box-GraphNet
method are the most superior ones in our proposed methods, which
demonstrate the effectiveness of the refinement of the objects in
the bounding boxes. In addition, we find an attractive result: with-
out CRF, BboxCAM-S2 improves over BboxCAM-S1 by 9.7%, and

Table 4: PASCALVOC 2012 val performance for bounding
box annotations.

method strong w/o CRF w/ CRF
WSSL [31] (1) - 60.6
BoxSup∗ [10] (2) - 62.0
Ours: BboxRectangles (3) 49.6 53.2
Ours: BboxCAM-S1 (3) 47.5 48.6
Ours: BboxCAM-S2 (3) 57.2 60.7
Ours: BboxGraphNet
Initial (1) 56.3 62.7
1-Round, Joint Training (1) 56.9 63.2
1-Round, Alternate Training (1) 57.1 63.4
Initial (3) 60.5 65.0
1-Round, Joint Training (3) 60.8 65.2
1-Round, Alternate Training (3) 61.3 65.6
strong
(1) DeepLab-LargeFOV - 67.6
(2) DeepLab - 63.8
(3) DeepLabv2-VGG16 68.8 71.5
∗ BoxSup[10] uses MCG[2], which requires training from pixel-level annota-
tions.

especially BboxCAM-S2 can yields mIoU of 57.2%. The analysis
results show that compared with the BboxRectangles and BboxCAM-
S1 methods, the labeled regions in Bbox-CAM-S2 become much
smaller, while the labeling accuracy of these regions is higher, so
the segmentation result of Bbox-CAM-S2 is more accurate.

We also verify the effect of optimization strategies for GraphNet
with bounding box annotations. As shown in Table 4, Alternate
Training is slightly more effective than Joint Training (65.6% vs.
65.2%), which is consistent with the results of ScrGraphNet. Fur-
thermore, in Figure 5, we qualitatively compare the visual results
of proposed training methods. Note that, Figure 5(e) refers to the
qualitative results of BboxGraphNet with an additional round of
alternate optimizations.

6 CONCLUSIONS
In this paper, we propose GraphNet, a graph convolutional neu-
ral network-based method, for learning pseudo labels from weak
annotations. We explore GraphNet for different kinds of weak an-
notations, such as scribble and bounding box annotations. The
experimental results show that GraphNet can achieve superior per-
formance compared to other weakly-supervised methods. Although
in this paper we only implement GraphNet to generate pseudo la-
bels from scribble and bounding box annotations, GraphNet can
also be applied to image-level annotations with appropriate trans-
formations on image data. Additionally, we believe that GraphNet
can be improved in network architecture or graph construction.
We intend to investigate these issues in future works.
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