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1 INTRODUCTION

Image analysis relying on imaging biological details is integral for disease diagnosis (Caicedo et al.,
2017). For example, images collected using fluorescent microscopy require immediate cell profiling
and phenotyping, and the segmentation of polyps in organismal scale imaging is also essential.
Such objects may hide in the surroundings (Dong et al., 2021) or behave as camouflage (Fan et al.,
2020). Although, deep learning (DL) models revolutionized the segmentation of microscopy and
medical images (Moen et al., 2019), they have a substantial computational cost. Also, DL models
need extensive training data for the available SOTA accuracy, making in-clinic deployment tough.
The proposed model identifies the region of interest (ROI) as a bounding circle around the target
object, which may facilitate faster training and higher accuracy (Minaee et al., 2021). The object
localization scheme localizes the objects of interest in the images, where they are immersed in the
background, making the method relevant for various biological and diagnostic goals.
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Figure 1: Proposed method for image area reduction and optional bounding circle drawing.

2 MODELS AND METHODS

The proposed method relies on an off-the-shelf approach for image area reduction of microscopy
images, localization of camouflage like objects (polyps, tumors, etc.) and draws a bounding circle
around the ROI (Fig. 1). Although, localization tasks could be difficult due to the similarity between
the object and its surroundings, the proposed method uses common base steps for bounding circle
drawing, assuming the background has some regularity as well as variation in intensity with the
objects. The method filters the 2-D Fourier transform of the (Oppenheim, 1999)(Smith, 1997) image
using Gaussian high pass, followed by a root cubic attention (Pratt, 2013) to enhance the edges of
objects. Moreover, the image phase spectrum is normalized to remove the regular regions, that
generally make up the background (Aiger & Talbot, 2010). With 2-D IDFT producing the modified
image, a normalized version of it is given as the input for the subsequent local entropy analysis.
Later, we apply Otsu thresholding (Otsu et al., 1975) to obtain the binary version, which is then used
for image area reduction through a pixel wise multiplication with original image. In addition to these
base steps, FREAK (Alahi et al., 2012) method generates the keypoints in the reduced image, that
we use to draw the bounding circle around the target object. Among the alternative methods tried
for keypoints selection, convex hull (Fig. 2e) approach demonstrated the lowest standard deviation.
Finally, the center of the convex hull (formed taking 30 lowest keypoints) serves as the center of the
bounding circle, drawn by taking the distance of the furthest point as its radius.
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Figure 2: Original image, ground truth (red) superimposed on our method (white) for cell image
datasets: (a) PhC-C2DH-U373, (b) PhC-C2DL-PSC, (c) Skbr3. (d) Our method applied on breast
cancer images. (e) Mean area vs mean GT retention for 100 randomly taken images on datasets as
in part a (α), b (β), c (∆), Kvasir (κ), CVC-colon (γ), ISIC2016 (ψ), Dermquest (φ), BUSI (ϵ). (f)
Area reduced by Convex Hull (C) or K-means (K), using different number of keypoints. (g) ’Yes/No’
metric with different amount of GT retained. (h-i) Polyp and skin lesion region localization.

Dataset PhC-1 PhC-2 SkBr3 Kvasir CVC-colon ISIC2016 Dermquest BUSI
Mean GT 81.8% 93.3% 68.3% 89.8% 85.5% 73.0% 70.2% 80.0%
Area Retained 9.6% 20.9% 33.0% 72.9% 59.2% 46.2% 46.0% 60.5%
Bounding box Yes No No Yes Yes Yes Yes Yes

Table 1: Results of our method used on different datasets.

Algorithm 1 Image area reduction Algorithm
Require: N color images

1: while i ≤ N do
2: F(p, q) =

∑M−1
x=0

∑N−1
y=0 Ii(x, y)e

−j2πux/Me−j2πvy/N

3: Mmodified = 3
√
|F(p, q)|GHP

4: Pmodified = F(p, q)/|F(p, q)|
5: Ii(x, y)Modified = Normalize(F−1(Mmodified ⊙ Pmodified))
6: Ii(x, y)Modified = LocalEntropy(Ii(x, y)Modified,MorphologicalOperatordisk(11))
7: Ii(x, y)Binary = Otsu(Normalize(Ii(x, y)Modified))
8: end while

3 RESULTS AND DISCUSSION

The efficacy study of the proposed method uses 100 randomly selected images from different
datasets (Zargari et al., 2024). As in Fig. 2a-c, the binary mask generated by our method con-
siderably retains the ground truth (GT). In a few datasets, the method retains around 90% of the GT
(Table. 1). We also found that a substantial image area reduction is possible maintaining significant
overlap with the GT. Together, these suggest that a search of possible tradeoffs between GT overlap
and area reduction using the Pareto optimization can further improve the model. Fig. 2d,h,i show a
substantial area reduction; however, not in all, as the bounding circle gets large in a few instances.
Besides, for over 200 polyp images selected randomly from two datasets, CVC-colon (Silva et al.,
2014) and Kvasir-seg (Pogorelov et al., 2017), the drawn bounding circle incorporates 95% of the
GT of the polyp in about 73% (Kvasir-seg), indicating the potential of the proposed method in lo-
calizing the polyp segmentation task (Fig.2g). We repeated the same experiment for skin lesion and
breast cancer dataset (Gutman et al., 2016; Rahman et al., 2024)(see Table 1). Overall, our anal-
ysis suggests that off-the-shelf modules in cascade along with local entropy and phase regularity
removal, localize objects in diversified datasets, indicating the proposed method’s potential to re-
duce training cost in deep learning models used frequently in the segmentation of cell-based images
and images made for medical diagnosis.
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MEANINGFULNESS STATEMENT

Imaging-based diagnosis, for example, phenotypical differences between cell populations and
colonoscopy, may suffer due to varying shapes, sizes, and the striking similarities between the targets
and the image background. In many such applications, deep learning methods are used to segment,
profile, and classify microscopy images, but they require extensive training data and computational
costs. Our work acquires cell phenotyping data and localizes the targets immersed in an image back-
ground. As in the proposed mechanism, a reduced searchable image area can minimize the training
cost of deep learning methods, thereby facilitating meaningful and cost-efficient representation of
biological phenomena.
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