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ABSTRACT

There is increasing interest in “decision-focused” machine learning methods which train
models to account for how their predictions are used in downstream optimization problems.
Doing so can often improve performance on subsequent decision problems. However, current
methods for uncertainty quantification do not incorporate any information at all about down-
stream decisions. We develop a framework based on conformal prediction to produce predic-
tion sets that account for a downstream decision loss function, making them more appropriate
to inform high-stakes decision-making. Our approach harnesses the strengths of conformal
methods—modularity, model-agnosticism, and statistical coverage guarantees—while incor-
porating downstream decisions and user-specified utility functions. We prove that our meth-
ods retain standard coverage guarantees. Empirical evaluation across a range of datasets
and utility metrics demonstrates that our methods achieve significantly lower decision loss
compared to standard conformal methods. Additionally, we present a real-world use case
in healthcare diagnosis, where our method effectively incorporates the hierarchical structure
of dermatological diseases. It successfully generates sets with coherent diagnostic meaning,
aiding the triage process during dermatology diagnosis and illustrating how our method can
ground high-stakes decision-making on external domain knowledge.

1 INTRODUCTION

Uncertainty quantification in classification problems is increasingly addressed through a model-agnostic tech-
nique known as conformal prediction Vovk et al. (2005); Angelopoulos & Bates (2021). Instead of outputting
a single label and confidence, conformal prediction outputs a set of outcomes with guaranteed statistical cov-
erage, ensuring that the true outcome is included in the set with a pre-specified, target confidence level. This
procedure for quantifying uncertainty through inference about sets of outcomes, has been leveraged to enable
safer decision-making based on machine learning model outputs. As an example, in dermatology diagnosis, a
conformal analysis might predict that the patient’s illness is a member of a set of possible mutually exclusive
classes, such as [eczema or psoriasis]. That is, a guarantee is provided that the true condition is highly likely to
be included in the predicted set, making inference about the set a more robust estimate than a raw model output
about a singular outcome. Recent efforts have pursued uses of conformal prediction to develop AI systems that
can support decisions in high-stakes situations (Vemula et al., 2018; Dvijotham et al., 2023; Yin et al., 2022),
where the decisions restricted to actions within the prediction set are deemed as safe.

However, statistical coverage of the true label is not always a strong enough desiderata to guarantee informative
sets for decision making. In many applications, prediction sets should ideally be aligned with a utility function
that captures preferences about downstream decisions and outcomes. For instance, in medical diagnosis, a
predicted set of diseases may be more actionable if the different suggested diagnoses share the same treatment,
costs and benefits of treatments, or if it is straightforward to conduct additional tests for each diagnosis in the
set to differentiate among them.

Indeed, there has been a growing body of work that bridge machine learning predictions and decision prob-
lems modeled by optimization programs. Among this literature there is growing interest for the so called
“decision-focused” machine learning (Wilder et al., 2019; Mandi et al., 2020; Wang et al., 2021; Shah et al.,
2022; Elmachtoub & Grigas, 2022; Ren et al., 2024), where models are trained by maximizing a downstream
optimization problem in the loop. In contrast, conformal methods are designed to be agnostic to the model,
loss function, and downstream decision task; their flexibility is a key feature that allows this method to be used
as a post-processing step completely decoupled from the model.
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Inspired by the spirit of decision-focused learning, we introduce methods that bridge the strengths of conformal
approaches with the goal of incorporating information about downstream decision problems, retaining the
modularity and ease of use of conformal prediction, while enabling users to align prediction sets with task-
specific utility functions. We are not proposing an end to end approach to train a model to output predictions
that are going to yield higher utility on a downstream application, but rather we show how to generate prediction
sets that minimize a user-specified “decision loss” while maintaining a high-probability coverage guarantee. To
achieve this, we propose two families of algorithms. The first family, extending existing methods for conformal
prediction, incorporates a penalty based on the decision loss of a prediction set. This creates a collection of
conformal predictors indexed by a hyperparameter which weights decision loss (the penalty) against a standard
non-conformity score. The hyperparameter is then optimized on a validation set to find the value with minimum
decision loss. While this method often performs well, it can struggle to adapt to the combinatorial structure
of downstream decision loss (e.g., non-linear interactions between elements of the prediction set) and adds
complexity in the form of an hyperparameter to tune. Therefore, to address these limitations, we introduce a
second family of algorithms which instead solve an optimization formulation whose solution is the set with the
minimum loss subject to statistical coverage constraints, i.e, the sought after predicted set. Algorithmically,
this is instantiated by solving a lightweight optimization problem for each test instance, followed by post-
processing a function of the base classifier’s predictions to enforce the desired statistical coverage. We prove
that both approaches provide standard coverage guarantees and empirically find that they are often able to find
sets with significantly smaller decision loss than standard conformal methods.

Incorporating the decision loss into uncertainty quantification allow us to address the goal of producing more
informative prediction sets. For instance, in the aforementioned case study on dermatology diagnosis, we show
how specifying a natural decision loss (a coverage function) enables us to generate prediction sets with more
clinically coherent interpretation. Figure 1 provides an illustrative example of a prediction set output by a
standard conformal approach compared to that of our method. The standard conformal set, while satisfying
statistical coverage guarantees, is difficult to interpret in clinical terms: it contains labels which span multiple
different broad families of diseases, some of which are benign and some of which are malignant. This lacks
clinical interpretability as benign vs. malignant diseases need to be dealt with differently. As such, the dif-
ferent labels within the prediction set would imply completely different downstream actions for diagnosis and
treatment; even though the set contains the true label, it is not informative for decision making. By contrast,
the prediction set output by our method contains diagnoses within a common family of malignant epidermal
diseases (i.e., the same parent node), while satisfying the same coverage guarantees. This hierarchical homo-
geneity of the prediction set aids clinicians in making follow-up decisions (e.g., prioritizing follow-up tests,
prescribing treatment, etc.). We accomplish this by specifying a decision loss (detailed in Section 3.2) based
on coherence of the prediction set with respect to an expert-defined hierarchy for dermatological diagnosis.
Such hierarchical abstractions are a common feature of medical diagnosis, and expert decision making more
broadly, and one use case for our methods is to align prediction sets with the abstractions that human experts
use to make decisions based on predictions.

To summarize, our contributions are as follows:

• We develop three methods for constructing conformal predictors which generate sets with low average
decision loss based on a pre-defined utility function, thereby producing more desirable sets from the
perspective of downstream use. We start by considering decision losses which are separable, meaning
that they decompose into the sum of a penalty for each label included in the prediction set. We
then generalize these ideas to the non-separable case, where the decision loss may contain nonlinear
interactions between elements of the set. In each case, we prove that our algorithms produce sets with
the desired level of statistical coverage.

• We conduct experimental analysis across several datasets, including both standard image classification
datasets and a real world use case in dermatological medical diagnosis. Our proposed algorithms result
in prediction sets with improved decision loss across all settings, often by a substantial amount, e.g.,
reductions of 60-75% in loss. Our method successfully captures patterns of homogeneity informed
by external domain knowledge. In particular, for the real world case study, our methods produce
prediction sets that have diagnostic meaning, demonstrating how our method leverages uncertainty
quantification to ground high stakes decision-making (in this case in the healthcare domain). Our
implementation is publicly available at [hidden].
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Figure 1: Illustration of how proposed methods compare to the standard formulation of conformal prediction.
The real-world example is taken from the Fitzpatrick dataset where the true disease is squamous cell carcinoma.
The standard conformal prediction method results in a set of nine elements that span benign, malignant, and
non-neoplastic diagnoses. Our method’s prediction is a set of five elements within the malignant melanoma
category.

1.1 RELATED WORK

Decision-Focused Learning There has been a growing body of literature focused on aligning machine learning
model predictions with downstream optimization objectives, either under the predict-then-optimize framework
(Mandi et al., 2020; Elmachtoub & Grigas, 2022; Wang et al., 2021), or using end-to-end approaches like
decision-focused learning (Wilder et al., 2019; Shah et al., 2022; Ren et al., 2024). Of particular relevance to
our work is Horvitz & Klein (1993), which introduces a utility-theoretic formulation of inference and decision
making at progressively higher-levels of abstraction about outcomes (i.e., abstraction is defined in terms of
moving from single hypotheses to sets of mutually exclusive outcomes). This work is particularly interesting
to us, as it is proposed as a solution to a similar real world case study as ours but using ideas related to Bayesian
inference framed in the context of an utility-theoretic bounding formulation.

Uncertainty Quantification and Conformal Prediction The literature on uncertainty quantification is vast,
from Bayesian methods, such as Bayesian neural networks (MacKay, 1992; 1995; Neal, 1996; Wilson & Iz-
mailov, 2020) and ensemble methods (Wasserman, 2000; Lakshminarayanan et al., 2017) to frequentist ap-
proaches, such as quantile regression (Koenker & Bassett Jr, 1978; Koenker & Hallock, 2001; Yu et al., 2003;
Tagasovska & Lopez-Paz, 2019; Pouplin et al., 2024) and conformal prediction (Vovk et al., 2005; Romano
et al., 2020; Angelopoulos et al., 2020b). Quantile regression is particularly noteworthy, as it can be adapted to
produce conformal predictors for continuous variables. However, the study of the continuous case lies outside
the scope of this work. Of utmost relevance to our work is the literature on conformal prediction.

Conformal prediction has gained popularity in recent years as a model-agnostic, computationally low-cost
post-processing method for principled uncertainty quantification Vovk et al. (2005). In particular, Romano
et al. (2020) and Angelopoulos et al. (2020b) explore how to create prediction sets whose size adapts to the
confidence levels output by the model. When the model is more certain about a given prediction, the predic-
tion set becomes smaller. Specifically, Angelopoulos et al. (2020b) generates adaptive sets that are smaller on
average, a task that represents a particular case of the type of problems we aim to solve. Conformal prediction
has been used in the context of decision making in the medical setting, for example Lu et al. (2022) propose a a
conformal predictor that provides group conditional guarantees. They are interested in provide prediction sets
that are usable across groups in order to ensure fair decisions, thus increasing clinical usability and trustworthi-
ness in medical AI. In other words, this work is focused on guarantee fairness rather than a general formulation
of utility-focused prediction sets.
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At the intersection of machine learning for decision-making and conformal prediction, and thus most closely
related to our work, is conformal risk control Angelopoulos et al. (2022). The approach is a generalization
of conformal prediction that allows for controlling the expected value of a desired loss at a preset level. The
method can achieve true statistical coverage in multi-label classification or, more generally, for any loss function
that decreases as the size of the prediction set increases. Although this method offers flexibility, it does not
directly optimize the expected value of the chosen function, and depending on such function, controlling for
the expected value of the chosen loss can be at expense of statistical coverage. Notably, our method imposes no
restrictions on the type of losses that can be chosen, allowing it to handle decision losses that do not decrease
monotonically with respect to set size and for which it is impossible to guarantee an absolute upper bound.

2 PROBLEM FORMULATION

Let Y a finite set of labels. Define the decision loss of a prediction set as a function L : 2Y → R. In our
framework, L evaluates the utility of a given prediction set, where a suitable prediction set for decision-making
is one that has a low value of L. Let P be a joint distribution over X × Y . Our methods will act as post-
processing steps to a pre-specified classification model f that estimates p(y|x). Throughout this paper, we
will use p̂(y|x) and f(x) interchangeably. We do not assume anything about how the model f is trained. In
particular, it need not be aware of the decision loss L.

The ultimate goal is to leverage x to inform decisions via a set Sf(x) of suggested labels, accounting for both
utility and uncertainty. Thus, for every x, we would like to produce a set of labels Sf(x) that fulfills the
following two properties:

1. For a random sample (x, y) drawn from P , it must be true that y ∈ Sf(x) with probability at least 1−α
1. This condition must be fulfilled without any assumptions on the correctness of f or the distribution
P .

2. E(x,y)∼P [L(Sf(x))] is minimized. This quantifies that, on average, the set Sf(x) is optimal from an
utility-theoretical perspective.

Standard conformal methods guarantee the first property and our goal in this paper is to target the second
(decision loss minimization) as well while still maintaining such coverage guarantees.

Figure 2: Empirical statistical coverage on the iNaturalist dataset across various loss functions. The observed
coverage is close to the expected preset value of α for all 10 trials per loss function. We see a similar behavior
for all the other datasets.

3 METHODS

We start by considering a simplified setting in which the decision loss has a particular separable structure,
which we can leverage to precisely characterize to our problem. We then consider nonseparable loss functions
and extend such ideas to the general setting.

3.1 SEPARABLE LOSS

As a motivating example, consider a decision loss in the medical domain where a healthcare worker must
diagnose a condition based on a set of tests. Each test has an associated penalty related to costs, patient

1This is not a conditional statement, instead is a high probability event over the joint distribution of tuples (Y,X)
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discomfort, and procedure complexity. Notably, the penalty of each test does not depend on the presence
of other tests in the set. Formally, we say that the decision loss L, is separable if it can be decomposed as
L(Sx) =

∑
y∈S ℓ(y), where ℓ(y) is a cost function defined on individual labels rather than on the set of labels

as a whole.

One starting point for algorithm development in this setting, is the standard conformal prediction toolbox, in
particular, the split conformal algorithm. Split conformal uses a held-out calibration set to provide a model-
agnostic post-processing step which generates prediction sets with statistical coverage at a predefined level.
While this method naturally addresses the first (1) of the two conditions we seek from our prediction sets, it
raises an important question: can we leverage split conformal to also ensure a low loss L?.

At the core of the split conformal algorithm is the definition of a non-conformity score s(x, y). Larger scores
encode worse agreement between x and y (Angelopoulos & Bates, 2021). Naturally, the selection of a non-
conformity score is key because the prediction sets will be a function of it. There has been recent work
(Angelopoulos & Bates, 2021) exploring the choice of a particular score as an engineering question; in gen-
eral, the non-conformity scores are a function of the estimates p̂(y|x) thus leveraging the notion of similar-
ity between the pair (x, y) captured by the model. The split conformal algorithm works by outputting sets
Sx = {y : s(x, y) ⩽ τ̂1−α} where τ̂1−α is the empirical

⌈
(n+1)(1−α)

n

⌉
quantile of a independent draw of size

n of nonconformity scores, such draw is known in the literature as the calibration set.

Returning to our goal of producing prediction sets with low decision loss L, one option is to incorporate
the loss of the prediction set L(Sf(x)) into the score s(x, y). This can be done explicitly if the loss L is
separable as L(Sf(x)) can be decomposed into a penalty ℓ(y) for each individual y. Formally, let π(X) =
{σ1(x), ..., σk(x)} the permutation that orders the estimates p̂(yi|x) from greatest to lowest, define ρ(x, y) =∑r

i=1 p̂(yσi(x)|x) where yσr(x) = y and define L(y) as
∑r

i=1 ℓ(yσi(x)). Particularly, ρ is the nonconformity
score used in the popular “adaptive prediction sets” algorithm Romano et al. (2020); as labels are added from
most to least likely until the true label y is reached, ρ computes a running total of the amount of -estimated-
probability mass contained in the set. Notably, L keeps a running total of the decision loss incurred when
adding elements to the prediction set in that same order. Our proposed nonconformity score is simply

sλ(x, y) := ρ(x, y) + λL(y)

where λ > 0 is a hyperparameter. After applying the split conformal algorithm on a held-out calibration set,
the resulting prediction sets for a given λ are given by Sλ

f(x) := {y : sλ(x, y) ⩽ τ̂λ1−α} where τ̂λ1−α is the

empirical
⌈
(n+1)(1−α)

n

⌉
quantile of an exchangeable draw of size n the scores sλ(x, y) . Note how a higher

value of λ skews the distribution of the scores; for any pair (x, y) the relevance of the similarity captured by the
estimate p̂(y|x) is going to have less weight than the total loss of the proxy prediction set {yσ1(x), ..., yσk(x)}
captured by L(y).

The question of how to select the appropriate λ remains. One possible approach is to perform a grid search for
the optimal value using a separate validation/test split distinct from the calibration dataset. Since maximizing
utility is the primary objective, this hyperparameter tuning strategy indeed will converge to the true sought
parameter as summarized by the following proposition.

Proposition 1. Let λ ∈ H where H is a finite set, assume as well that for every λ and every x, L(Sλ
f(x)(x)) ⩽

B. Let λ̂ be the λ that minimizes 1
n

∑n
i=1 L(Sλ

f(Xi)
), for an iid draw of size n from P . Let λ∗ be the λ that

minimizes the population level quantity E[L(Sλ∗

f(X))]. Fix any δ ∈ (0, 1) then with probability at least 1 - δ

∣∣∣E[L(Sλ̂
f(X))]− E[L(Sλ∗

f(X))]
∣∣∣ ⩽ 2B

√
log

(
2|H|
δ

)
1

2n

A consequence of the previous preposition is that λ∗ can be learnt via empirical risk minimization. That being
said, doing so makes the estimated λ̂ dependent on the data. Thereby breaking the exchangeability assumption
between a new test point (X,Y ) and the original sample. This assumption is crucial for applying the split
conformal algorithm to ensure valid statistical coverage. Consequently, after learning λ̂, the quantile τ̂ λ̂1−α
must be recalculated using an independent sample.
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Taken all together, we then proposed the following algorithm. Firstly, split the data in three folds: a validation
set, a test set, and a calibration set. For each value of λ in H estimate the quantile τ̂ λ̂1−α on the val set. Then,
we estimate the decision loss on the test set and then select the λ with the best test loss (λ̂). Finally, re-estimate
the quantile τ̂ λ̂1−α on the fresh calibration set to guarantee valid statistical coverage.

Although our proposed sample splitting impacts the learning rate stated in Proposition 1, the final rate of
convergence remains O( 1√

n
) relative to the total sample size.

3.1.1 HYPERPARAMETER-FREE SOLUTION

The prior solution depends on a hyperparameter λ that must be tuned. We also have no formal guarantee that
the optimal prediction sets for our problem can be expressed via the penalized family of nonconformity scores.
However, it is possible to develop a score derived from a more principled approach that does not require the
selection of any hyper-parameters. As a starting point to derive this score, suppose that there is oracle access
to the true estimand p(y | x). Then, conditions 1 and 2 can be explicitly stated as the following program:

min
S⊆X×Y

EX [L(SX)] s.t P (Y ∈ SX) ⩾ 1− α (1)

Where Sx are the fibers of S over x, formally, Sx = {y : (x, y) ∈ S}. This program, under the assumption of a
separable loss, has a closed-form solution via the Neyman-Pearson lemma. Define H = {(x, y) : p(y|x)

ℓ(y) ⩾ tα}
where tα is the α quantile for p(y|x)

ℓ(y) . That is, H(x) is the prediction set given by all labels where the ratio of
probability to loss exceeds a threshold chosen to ensure coverage.

Proposition 2. The set H minimizes Ex[L(SX)] while fulfilling P (Y ∈ H(X)) ⩾ 1− α

We note that Sadinle et al. (2019) characterized solutions for the special case where the loss function is the size
of the set (i.e., all labels have equal cost) ; here we provide a general solution for arbitrary separable losses.

Since we do not have access to the ground truth p(y|x), we instead use f as a plug-in approximation for p(y|x)
in the set H defined above. Since f may not be correct, we may no longer have the correct coverage level,
which we correct with the following conformalization step. Define s(x, y) = p̂(y|x)

ℓ(y) , let τ̂α be the empirical

1 − α quantile of an observed iid draw of scores s(x, y). Define Sf(x) := {y : p̂(y|x)
ℓ(y) ⩾ τ̂α}. We refer to this

hyperparameter-free method as the Separable Penalized Ratio throughout this work. We can guarantee using
standard arguments that the separable penalized ratio algorithm satisfies statistical coverage, as demonstrated
in Figure 2 and formalized in the following proposition.

Proposition 3. Let s(x, y) and Sf(x) be defined as above. Then

1− α ⩽ P (Y ∈ Sf(X)) ⩽ 1− α+
1

n+ 1

3.2 NON-SEPARABLE LOSSES

Unfortunately, not all relevant set losses L are separable. In real-world scenarios, we often want to define losses
that depend on interactions of the elements in the set. For example, consider our running example of medical
diagnosis, where we may prefer prediction sets in which the labels come from a small number of categories
within a domain-specific hierarchy, representing more clinically similar diagnoses. This can be formalized as
L(Sf(x)) =

∑
C∈C I(Sf(x)∩C) where C is a set of (possibly overlapping) categories. In this context, we prefer

prediction sets which intersect with as few categories as possible. This loss is not separable because there are
diminishing penalties to including a new label in the set once a given category is already covered (as discussed
formally in the appendix).

While loss separability was instrumental to the family of non-conformity scores proposed as a solution for the
separable case, we now present a conformal-based approach for the non-separable case. Drawing inspiration
from the separable scenario, we introduce a non-conformity score that generalizes the one outlined in Propo-
sition 1. The key idea is to linearize the non-separable decision loss by summing the marginal increase in loss
when adding each additional element to the prediction set.
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Let π(x) = (σ1(x), . . . , σd(x)) be the permutation that orders p̂(yi|x) from greatest to smallest. Define
ρ(x, y) =

∑k
i=1 p̂(yσi(x)|x), where yσk(x) = y (this coincides with the homonymous quantity defined in

the previous section). Now, let Si = {yσj(x) : j ∈ [i]} be the set containing the first i labels in the permutation
and define L(y) = L(Sσk(x)) =

∑k
i=1(L(Si) − L(Si−1)) as the sum of the marginal gains obtained from

adding elements using the order given by the permutation σ. The proposed non-conformity score is then given
by s(x, y) = ρ(x, y) + λL(y).

As in the separable case, this heuristic generates sets that ensure coverage while maintaining a low loss. The
motivation for selecting λ remains consistent with that of the separable case. We can also employ grid search
hyperparameter tuning on a validation dataset, as the approach outlined in Proposition 1 does not rely on the
separability of the loss.

The definition of the previously presented score, circumvents the non-separability of the loss by fixing the
order in which to add labels to the prediction set (based on the confidence score outputted by the model f ),
after which the loss can be decomposed into a series of marginal increments.

3.2.1 HYPERPARAMETER-FREE SOLUTION

Just as in the separable loss case, we would prefer an approach that does not rely on hyperparameter tuning and
which can benefit from structural information about the optimization problem at hand. The main draw back
from the penalized conformal predictor proposed for the non-separable case is that the fixed order (which does
not depend on the loss) upon of which it is based may be suboptimal if it does not adapt to the combinatorial
structure of the decision loss. To address this issue, let us revisit the program in Equation 1 and suppose that
we have access to the true estimate p(y | x). As in the separable case, it would be ideal to solve this program.
However, since the separability assumption no longer holds, it is unclear whether a closed-form solution exists.
Suppose instead that we have access to an algorithm which can optimize over the decision loss L. Then, we
could solve the following optimization problem separately for each value of x to produce the prediction set Sx:

min
Sx⊆Y

L(Sx) s.t.
∑
y∈Sx

p(y|x) ⩾ 1− α

The prediction set Sx defined by solving this problem for each x would correspond to a feasible solution to the
problem in Equation 1. Moreoever, it would minimize the decision loss on each instance. However, it actually
attempts to offer a stronger coverage guarantee: a conditional coverage guarantee where Sx contains the true
label for every x, instead of the marginal guarantee in condition 2. Unfortunately, guaranteeing conditional
coverage is in general impossible without access to the ground truth p(y|x) (Foygel Barber et al., 2021; Vovk,
2012), so we will be unable to implement this solution exactly.

Our proposal is to use the optimization oracle to solve the above optimization problem at each test instance
with the plugin estimates p̂(y|x) and then conformalize the resulting sets to provide at least marginal coverage
guarantees. While there are many ways to implement this meta-algorithm (depending on the optimization
approach which is appropriate to any given decision loss L), we focus here on a particular implementation via
an efficient greedy algorithm which we find works well for many losses in practice.

Suppose that L(S) ⩽ M . Consider the order in which labels are chosen by the following greedy algorithm for
(Leskovec et al., 2007) solving the plug-in optimization problem:

Si+1
f(x) = Si

f(x) ∪

 argmax
y∈Y/Si

f(x)
:p̂(y|x)⩽α−p(Si

f(x)
)

M − L(Si ∪ {y})
1− p̂(y|x)

 (2)

where p(Si) :=
∑

y∈Si
p̂(y|x). We then define a non-conformity score as s(x, y) =

∑k
i=1 p̂(yσ(i) | x), where

σ is the permutation that orders the labels according to the greedy construction of the set Sk
f(x) outlined in

equation 2 where k is such that y = yσ(k). Our final algorithm will simply run split conformal on this noncon-
formity score. The crucial difference from the previous approach is the order in which elements are added to
the prediction set, which is calculated by simulating the above greedy algorithm on each instance (instead of
simply sorting the predicted probabilities). This procedure has standard marginal coverage guarantees:
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Proposition 4. Let τα,n be the empirical
⌈
(n+1)(1−α)

n

⌉
quantile from an iid draw of size n of the scores s(x, y).

Define Sf(x) = {y : s(x, y) ⩽ τα,n}. Then for any (x, y) ∈ P ,

1− α ⩽ P (y ∈ Sf(x)) ⩽ 1− α+
1

n+ 1

4 EXPERIMENTS

4.1 SETUP

We conduct a series of experiments to evaluate our proposed methods for both separable and non-separable
loss cases, with the following setup.

Datasets and models. We evaluate our algorithms for both separable and non-separable settings using the
following four datasets: CIFAR-100 (Krizhevsky & Hinton, 2009), iNaturalist (Van Horn et al., 2018), Ima-
geNet (Deng et al., 2009), and the Fitzpatrick dataset (Groh et al., 2021). The iNaturalist dataset consists of
a large collection of images of living organisms, with labels organized according to a subtree of the natural
taxonomic hierarchy. Our classifier is trained to predict the lowest level of abstraction in this hierarchy, which
is the class of the organism (here, ’class’ refers to the taxonomic rank). These classes are further grouped into
phyla, which in turn belong to broader taxonomic categories known as kingdoms. The Fitzpatrick dataset con-
tains 16,577 clinical images, annotated with both skin condition and skin type labels based on the Fitzpatrick
scoring system, along with two additional aggregated levels of skin condition classification derived from the
skin lesion taxonomy developed by Esteva et al. (2017). Training a classifier on the Fitzpatrick dataset is par-
ticularly challenging (Groh et al., 2021), with good models having top-1 accuracy hovering around 30%. In
order to study how the performance of our methods varies with the quality of the underlying classifier, we
also include a cleaned version of the dataset where we excluded classes with a validation accuracy below 0.30,
retaining 64% of the dataset (reducing the number of classes from 114 to 49) and increasing model accuracy to
0.5. In all experiments, we use EfficientNet-B0 (Tan, 2019), with α fixed at 0.1, as our underlying classifier to
estimate the conditional probability p(y|x). We report the median of the means for the loss function of interest
across different validation and calibration data samples for each dataset. Additionally, we present the statistical
coverage conditioned on set size(Angelopoulos et al., 2020a), in order to investigate that the marginal coverage
guarantee does not mask unwanted behavior, such as providing perfect coverage for a specific subgroup of the
population at the expense of others. Finally, we report the average value of p̂(y|x) for the true label y as a
function of the set size Sf(x), which is a proxy for adaptability of our methods (Angelopoulos & Bates, 2021).

Decision losses. In the separable case, the total loss was defined as the sum of penalties assigned to the con-
stituent elements of a given set. We applied a uniform random assignment from the set i

4 : i ∈ [4] to each label
across all datasets. In the non-separable case, we evaluate two different loss functions over the label spaces:
maximum distance and coverage loss. Each of these losses is defined in terms of a pre-specified hierarchy. For
the iNaturalist and Fitzpatrick datasets, we use the expert-defined hierarchies that accompany each dataset. For
CIFAR-100 and ImageNet, we synthetically generate the hierarchy using hierarchical clustering on the repre-
sentations obtained from the classifier’s final layer. The maximum distance is defined as the largest pairwise
graph distance along the hierarchy between any two elements within a predicted set. The coverage loss is de-
fined as the number of categories that are intersected by a predicted set, where each category corresponds to a
group of labels at the second-to-last level of the hierarchy. Both losses capture notions of homogeneity within
the predicted sets with respect to the hierarchies.

Comparison against other forms of uncertainty quantification Our methods, being conformal-based, do
not rely on a precise estimation of p(y|x). However, to benchmark against other approaches to uncertainty
quantification (many of which rely on properly estimating p(y|x)) we conducted experiments to compare our
method against predictions sets obtained from Bayesian estimates of p(y|x). We chose Bayesian due to its
widespread adoption within the uncertainty quantification community. The results can be found on the appendix
in Figure 6.

4.2 RESULTS

In Figure 3 (and 7 on the appendix) together with Tables 4, 5, 6, we observe that our methods have significantly
lower decision loss than the base conformal method in all considered datasets. This validates our hypothesis that
engineering a non conformity score that aligns with a downstream loss results in an utility aligned conformal
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Figure 3: Comparisons between different methods for the 1) separable loss case using the sum of penalties in
each set as the loss metric (left), 2) non-separable loss case using maximum penalty in the set as the metric
(middle), and 3) hierarchy coverage function loss case using the intersection of the set with each branch of the
hierarchy as the metric (right). Numbers are the median-of-means across 10 different runs. See Appendix D
for all datasets.

Figure 4: Measured impact of base model accuracy on downstream optimization values on all losses considered
for the cleaned Fitzpatrick dataset. Shows median-of-means across 10 different runs for each configuration.
Results demonstrate that all methods improve with a higher quality model—i.e., a model with higher accuracy.

predictor. In the separable case, we observe that our method outperforms the baseline conformal prediction
sets, both when using the Separable Penalized Ratio and Penalized Conformal algorithms (Table 4 and Figure
3). For the non-separable case, we also observe that our method outperforms base conformal prediction for both
considered loss functions (Table 5 and Figure 3). Additionally, in table 1 (and tables 12, 11 on the appendix),
we demonstrate how our methods successfully provide valid coverage across all set sizes, ensuring robust
coverage that is relatively uniform across all predictions. Similarly, Figure 5 (as well as in Figure 8 on the
appendix) illustrates how our methods achieve adaptability, yielding larger sets for instances where the model
is less confident in its predictions. These results demonstrate that our framework indeed provides a principled
approach to take advantage of latent hierarchical abstractions, enhancing an agent’s ability to navigate complex
problems, as illustrated in Figure 1.

We further note that, penalized conformal methods, when appropriately tuned, tend to outperform the other
methods we tested on CIFAR100, ImageNet, and iNaturalist, likely due to the large dataset sizes. This can be
attributed to the fact that both the separable penalized ratio and the greedy optimizer approach assume the Bayes
classifier is known, whereas penalized conformal methods do not. However, we posit that for the FitzPatrick
dataset, there was not enough data to reliably estimate the optimal λ, making our principled methods perform
better and a suitable off-the-shelf solution for an initial iteration on this dataset.

We additionally investigate whether our method can be utilized even in situations where the underlying clas-
sifier is noisy. This can be useful for application settings where practitioners only have access to imperfect,
noisy models due to practical concerns (e.g., small amounts of labeled, domain-specific data, etc). In Figure 4,
we conduct ablation studies on the Fitzpatrick dataset with a classifier whose training was stopped at different
levels of performance to understand the impact of the base model accuracy on downstream optimization values.
As expected, we observe that the expected loss of our method decreases with improved classifiers (i.e., having

9
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Figure 5: Mean and standard deviation from the predicted softmax score for the true class as a function of
predicted set size. The downward trend indicates that the predicted set size increases with the difficulty of the
classification task for the model, highlighting the relationship between model uncertainty and set size.

Size Base Conformal Penalized Conformal Greedy Coverage Greedy Max
count coverage count coverage count coverage count coverage

1 46 0.87 55 0.87 29 1.0 22 0.82
2 to 4 77 0.95 196 0.91 50 0.96 37 0.89
5 to 9 102 0.88 219 0.89 48 0.98 36 0.92
10 to 49 588 0.95 383 0.90 677 0.98 713 0.96

Table 1: Conditional statistical coverage by set size for the cleaned version of the Fitzpatrick dataset and a
target coverage of 1 - α = 0.9. Penalized conformal method results are reported for the optimal λ value. We
also included the number of samples that belong in each bucket.

a better base classifier is better). But more importantly, we observe that our method benefits from decision-
focused conformalization even when the underlying classifier is very noisy, demonstrating that our method
outperforms base conformal methods at any level of accuracy of the underlying classifier. This demonstrates
that even with noisy classifiers, our methods will still produce prediction sets with higher utility and desired
coverage.

5 CONCLUSION

We introduce methods that extend traditional conformal prediction to take into consideration utility functions
that represent consequences of real-world actions and outcomes. The approach can be harnessed to provide
decision-makers with guidance in the form of high-confidence prediction sets that contain homogeneous ele-
ments with respect to an external utility metric, ensuring that the actions taken based on these sets are effective
or, at the very least, not significantly different in their outcomes according with the utility metric.

We illustrate the functioning of our methods through a real-world use case in dermatology diagnosis. In this
context, the utility metric reflects homogeneity concerning the hierarchy of dermatological pathologies; that is,
good sets are those that ideally form subsets within this established hierarchy. Our method produces prediction
sets with valid statistical coverage and a coherent clinical interpretation. The sets generated correspond to
subsets of these hierarchical abstractions; aligning with, and potentially supporting, diagnostic and therapeutic
reasoning. Our method outperforms existing approaches, and appear robust to challenges such as scarce and
noisy data, as demonstrated by the performance on the Fitzpatrick dataset. We hope that our work will provide
a valuable stepping stone for future research that leverages uncertainty quantification to support people with
high-stakes decisions.

Reproducibility Statement We are truly committed to making our research reproducible, allowing future
work to build upon our findings. Therefore, all code and instructions necessary to reproduce all experiments
and results is available at [hidden]. Further, all artifacts (i.e., data, model scores, metadata) and hyperparameter
configurations required for running the experiments is also publicly released at [hidden].
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A APPENDIX

A.1 PROOF PROPOSITION ONE

Proof. Formally, Let P be absolutely continuous to ν := µ × µ′, where µ is the Lebesgue measure and µ′ is
the counting measure. Let H = {(x, y) : y ∈ H(x)} and H(x) = {y : y ∈ H(x)}.

E[L(H(x))] =

∫
X
L(H(x))p(x)dx

=

∫
X

∑
y∈H(x)

ℓ(y)p(x)dx

=

∫
H

ℓ(y)p(x)dx

=

∫
H

ℓ(y)p(x)dx

=

∫
H

ℓ(y)dν

Therefore, as a consequence of the Neyman-Pearson Lemma, we can guarantee that the set H that minimizes∫
H
ℓ(y)dν while fulfilling

∫
H
dP ⩾ 1− α is

H = {(y, x) : p(y|x)
ℓ(y)

⩾ tα}

Where tα is the α quantile for p(y|x)
ℓ(y) . ■

A.2 PROOF PROPOSITION TWO

Proof. It is worth notice that for both the maximum and coverage cases L(Sλ(x)) < B for every λ and every x
(different constant in each case though). Then, If the set of parameters H is finite, then combining Hoeffding’s
and the union bound:

P (sup
λ

|L̂(λ)− E[L(λ)]|) ⩽ 2|H|exp(−2nϵ2/B2)

Thus, if en =
√

B2log(2|H|/δ)
2n , then P (supλ|L̂(λ) − E[L(λ)]| ⩾ ϵn) ⩽ δ and thus with probability at least

1− δ:

E[L(λ̂)] ⩽ L̂(λ̂) + ϵn ⩽ L̂(λ∗) + ϵn ⩽ E[L(λ̂∗)] + 2ϵn

■

A.3 PROOF PROPOSITION THREE

Proof. It follows as a consequence of the independence of the calibration data points and the application of the
split conformal algorithm Angelopoulos & Bates (2021); Vovk et al. (2005) ■

A.4 PROOF PROPOSITION FOUR

Proof. It follows as a consequence of the independence of the calibration data points and the application of the
split conformal algorithm Angelopoulos & Bates (2021); Vovk et al. (2005) ■
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A.5 PROOF COVERAGE FUNCTION IS NOT SEPARABLE

Proof. Suppose is separable, i.e, L(S) =
∑

y inS ℓ(y) for some ℓ. In particular this would imply that L({y}) =
ℓ(y). Let C be one of the categories used to define L, then:

L(C) =
∑
Ci∈C

I(C ∩ Ci)

= 1

However, L({y}) = ℓ(y), thus L(C) = |C|, a contradiction if C has more than one element.

■

B EXPERIMENTAL DETAILS

The training details for the neural network classifier by dataset are:
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Dataset Epochs Batch Size Learning Rate Validation Fraction Vision Backbone
Fitzpatrick 120 256 0.001 0.1 EfficientNet B0
Fitzpatrick Clean 120 256 0.001 0.1 EfficientNet B0
iNaturalist 15 256 0.001 0.1 EfficientNet B0
CIFAR100 32 256 0.001 0.1 EfficientNet B0
ImageNet 1 256 0.001 0.1 EfficientNet B0

Table 2: Hyperparameters used to train the classifiers for each dataset. The configurations are identical except
for the number of training epochs.

Dataset # of Classes Dataset Size Base Model Accuracy
Fitzpatrick 114 8289 0.37
Fitzpatrick Clean 49 4709 0.54
CIFAR100 100 50000 0.71
iNaturalist 51 100000 0.90
ImageNet 1000 50000 0.72

Table 3: Details about the datasets we use to calibrate and evaluate the sets. For the iNaturalist dataset, we use
the labels up to the class level. We divide each dataset into calibration, validation, and test sets with a split of
50-25-25% of the dataset respectively.

For both separable and non-separable conformal-based methods, the grid used for tuning λ was
{0.001, 0.01, 0.1, 1, 10} .

C BAYESIAN COMPARISON

Using variational inference, we trained an EffcientNet Tan (2019) where the last linear layer of the net had a
Gaussian prior N(0, 1) on its weights. The differentiable objective used to train this Bayesian neural network,
was the negative evidence lower bound and at each training step the weights and the posterior distribution
(being more precise the variational approximation) were updated accordingly. Finally for the prediction phase,
for each instance x we draw 100 samples from the posterior distribution to produce estimates of p̂(y|x, θ),
subsequently we then produce a Monte Carlo approximation of p̂(y|x). The neural network was trained for 25
epochs using a learning rate of 0.001 and a batch size of 64 on the FitzPatrick dataset Groh et al. (2021).

We now proceed to define the sets Sf(x). Let π(x) = (σ1(x), . . . , σd(x)) denote the permutation that orders
p̂(yi | x) from greatest to smallest. The prediction set Sx is defined as Sx = {yσ1(x), . . . , yσk(x)}, where k is
the smallest integer such that

∑k
i=1 p̂(yσi(x) | x) ⩾ 1−α. However, this procedure does not inherently provide

statistical coverage. To address this limitation, we conformalized the scores
∑k

i=1 p̂(yσi(x) | x) by applying
our penalized conformal prediction method with λ = 0 and using the Bayesian estimates p̂(y|x). The results
of this procedure are summarized in Figure 6.
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Figure 6: Comparison of our methods when we use a Bayesian model as the source of p̂(y|x). The plots show
our methods work well for Bayesian and non-Bayesian approaches because they outperform the base methods
in both cases.

Dataset Base Conformal Penalized Conformal (optimal λ) Separable Penalized Ratio
CIFAR100 29.146 (2.339) 6.915 (0.477) 4.442 (0.374)
ImageNet 150.162 (12.889) 25.553 (2.551) 5.277 (0.549)
iNaturalist 32.949 (4.982) 3.855 (0.582) 2.043 (0.474)
Fitzpatrick 86.373 (8.680) 72.986 (7.315) 60.805 (11.300)
FitzpatrickClean 34.356 (3.790) 22.257 (2.589) 17.481 (2.236)

Table 4: Comparison of our proposals for the separable loss case against base conformal predictions for dif-
ferent datasets using the sum of the penalties in each set as the metric. The numbers are the median-of-means
across 10 different runs.

Results It can be observed that the Bayesian approach not only fails to provide true statistical coverage but also
produces prediction sets with a higher average loss. Furthermore, our conformal-based techniques demonstrate
remarkable robustness and flexibility by effectively correcting these deficiencies when applied on top of the
biased Bayesian estimates of p(y | x). This highlights the advantages of our method, as it addresses both the
lack of coverage and suboptimal set quality, showcasing its effectiveness once again.

D EXPERIMENTAL RESULTS

E COMPARISON WITH AND END TO END APPROACH

Although the methods we proposed are not end to end, this is by design in order to make them model agnostic
and efficient to compute. However, end to end approaches are usually desirable to create ML systems with
less moving parts and that scale with data and computing power. Hence a relevant benchmark for our methods
is against a true decision-focus approach where the final decision, in this case the set loss, is trained end to
end. Let π(x) = (σ1(x), . . . , σd(x)) denote the permutation that orders p̂(yi | x) from greatest to smallest.
Define the prediction sets Sf(x) as Sf(x) = {yσ1(x), . . . , yσk(x)}, where k is the smallest integer such that
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Figure 7: Comparisons between different methods for the 1) separable loss case using the sum of penalties in
each set as the loss metric (top), 2) non-separable loss case using maximum penalty in the set as the metric
(middle), and 3) hierarchy coverage function loss case using the intersection of the set with each branch of the
hierarchy as the metric (bottom). Numbers are the median-of-means across 10 different runs.

Dataset Base Conformal Penalized Conformal (optimal λ) Greedy Optimizer
CIFAR100 0.475 (0.003) 0.229 (0.003) 0.419 (0.003)
ImageNet 0.432 (0.003) 0.150 (0.002) 0.313 (0.003)
iNaturalist 0.591 (0.002) 0.076 (0.001) 0.570 (0.003)
Fitzpatrick 0.692 (0.005) 0.678 (0.005) 0.502 (0.007)
Fitzpatrick Clean 0.657 (0.004) 0.597 (0.004) 0.515 (0.007)

Table 5: Comparison between different methods for the non-separable loss case across different datasets using
the maximum penalty in the set as the metric. The numbers are the median-of-means across 10 different runs.
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Dataset Base Conformal Penalized Conformal (optimal λ) Greedy Optimizer
CIFAR100 3.134 (0.030) 1.054 (0.017) 2.270 (0.023)
ImageNet 3.365 (0.032) 0.960 (0.002) 1.675 (0.013)
iNaturalist 6.072 (0.033) 1.071 (0.003) 4.981 (0.046)
Fitzpatrick 6.134 (0.080) 5.562 (0.057) 2.940 (0.033)
Fitzpatrick Clean 4.634 (0.054) 3.338 (0.092) 3.144 (0.034)

Table 6: Comparison between different methods for the coverage function loss case across different datasets
using the intersection of the set with the hierarchy as the metric. The numbers are the median-of-means across
10 different runs.

Dataset 0.01 0.01 0.1 1.0 10.0
CIFAR100 15.039 (1.121) 6.915 (0.477) 5.644 (0.812) 5.846 (0.570) 6.354 (0.476)
ImageNet 25.553 (2.551) 8.671 (0.477) 7.093 (0.963) 8.389 (1.223) 8.231 (1.035)
iNaturalist 3.855 (0.582) 2.818 (0.310) 2.514 (0.317) 2.092 (0.362) 2.371 (0.256)
Fitzpatrick 71.937 (9.291) 72.986 (7.315) 83.053 (8.408) 77.088 (8.263) 75.293 (9.907)
Fitzpatrick Clean 20.517 (3.350) 22.257 (2.589) 24.088 (2.636) 23.515 (2.816) 23.780 (2.213)

Table 7: Comparison between different values of the hyperparameter λ for the proposed Penalized Conformal
method on separable loss case across different datasets. The numbers are the median-of-means across 10
different runs.

Dataset 0.001 0.01 0.1 1.0 10.0
CIFAR100 0.471 (0.003) 0.443 (0.002) 0.314 (0.001) 0.261 (0.003) 0.229 (0.003)
ImageNet 0.426 (0.003) 0.374 (0.003) 0.237 (0.002) 0.160 (0.001) 0.150 (0.002)
iNaturalist 0.328 (0.003) 0.173 (0.001) 0.076 (0.001) 0.012 (0.000) 0.000 (0.002)
Fitzpatrick 0.688 (0.004) 0.678 (0.005) 0.687 (0.003) 0.686 (0.003) 0.685 (0.004)
Fitzpatrick Clean 0.606 (0.012) 0.597 (0.004) 0.603 (0.005) 0.596 (0.009) 0.600 (0.010)

Table 8: Comparison between different values of the hyperparameter λ for the Penalized Conformal method on
the non-separable loss case across different datasets. The numbers are the median-of-means of the maximum
penalty per set across 10 different runs.

Dataset 0.001 0.01 0.1 1.0 10.0
CIFAR100 3.079 (0.028) 2.756 (0.026) 1.704 (0.009) 1.096 (0.012) 1.054 (0.017)
ImageNet 3.279 (0.034) 2.640 (0.031) 1.435 (0.012) 1.053 (0.004) 0.960 (0.002)
iNaturalist 2.401 (0.022) 1.432 (0.009) 1.071 (0.003) 0.940 (0.001) 0.902 (0.008)
Fitzpatrick 6.017 (0.070) 5.562 (0.057) 5.629 (0.082) 5.621 (0.062) 5.613 (0.050)
Fitzpatrick Clean 4.446 (0.104) 3.587 (0.041) 3.456 (0.046) 3.338 (0.092) 3.419 (0.105)

Table 9: Comparison between different values of the hyperparameter λ for the Penalized Conformal method
on the non-separable loss case across different datasets. The numbers are the median-of-means of the coverage
penalty per set across 10 different runs.

Size Base Conformal Penalized Conformal Greedy Coverage Greedy Max
count coverage count coverage count coverage count coverage

1 1041 0.94 3285 0.94 1059 0.90 1025 0.94
2 to 4 2665 0.97 4225 0.93 2168 0.97 2145 0.97
5 to 9 2152 0.99 2542 0.96 1224 0.99 1198 0.99
10 to 49 4948 0.99 1873 0.94 5051 0.99 4563 0.99
50 to 99 698 0.99 15 1.00 1929 0.99 2517 0.98

Table 10: Conditional statistical coverage by set size for the iNaturalist dataset and a target coverage of 1 - α =
0.9. The results for the penalized conformal method are reported for the optimal λ value. We also include the
number of samples that belong to each size bucket. We also include the number of samples that belong to each
size bucket.
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Size Base Conformal Penalized Conformal Greedy Coverage Greedy Max
count coverage count coverage count coverage count coverage

1 1446 0.99 20553 0.95 1089 0.99 1122 0.99
2 to 4 3776 1.0 2740 0.89 784 1.0 736 1.0
5 to 9 3600 1.0 427 0.89 3458 1.0 1440 1.0
10 to 49 13516 1.0 74 0.96 16353 1.0 18967 1.0
50 to 99 206 1.0 0 0.0 908 1.0 226 1.0

Table 11: Conditional statistical coverage by set size for the iNaturalist dataset and a target coverage of 1 - α =
0.9. The results for the penalized conformal method are reported for the optimal λ value. We also include the
number of samples that belong to each size bucket.

Size Base Conformal Penalized Conformal Greedy Coverage Greedy Max
count coverage count coverage count coverage count coverage

1 19 0.95 8 0.75 24 0.79 22 0.86
2 to 4 42 0.90 33 0.97 41 0.71 31 0.84
5 to 9 54 0.89 84 0.92 57 0.82 55 0.91
10 to 49 538 0.89 725 0.87 131 0.85 227 0.90
50 to 99 459 0.92 295 0.94 711 0.94 298 0.91
100+ 5 1.00 0 0.00 103 0.97 447 0.96

Table 12: Conditional statistical coverage by set size for the Fitzpatrick dataset and a target coverage of 1 - α =
0.9. The results for the penalized conformal method are reported for the optimal λ value. We also include the
number of samples that belong to each size bucket.

Figure 8: Trend of how the predicted softmax score of the true class decreases as the set size increases. The
downward trend indicates the size of the sets grows as the model has more trouble classifying an image.
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Figure 9: Comparison of the average loss obtained by an end-to-end approach versus our conformal-based
solution. The plot presents a clear trade of, the end to end solution produces more useful set on average albeit
at the expense of empirical coverage.

Figure 10: Comparison of the average loss obtained by an end-to-end approach versus our conformal-based
solution calibrated to attain the same level of empirical coverage. In this scenario conformal-based methods
outperforms end-to end solutions.

∑k
i=1 p̂(yσi(x) | x) ⩾ 1−α. We trained an efficenNet Tan (2019) on the FitzPatrick dataset Groh et al. (2021)

using the loss l(x, y) = p̂(y|x) + L(Sf(x)), in other words the cross entropy loss plus our loss of interest.
Additionally, we trained an efficenNet Tan (2019) as before and use its softmax output as the input for our
conformal based approaches. We set α = 0.1.

Results, In Figure 9 we can observe how indeed the average loss obtained from an end-to-end approach de-
creases when compared to that of our methods; such improvement is at a expense of empirical coverage.
Nonetheless, in order to make a more fair comparison, lets forget the end to end method was trained to attain
0.9 empirical coverage and instead we compared it to our method set to reach 0.5 empirical coverage. The
results of this experiment are summarized in Figure 10. It is clear how, when both methods are calibrated to at-
tain the same level of coverage, the conformal based methods comfortably outperform the end-to-end solution.
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