
Query-Efficient Locally Private Hypothesis Selection
via the Scheffe Graph∗

Gautam Kamath
University of Waterloo and Vector Institute

g@csail.mit.edu

Alireza F. Pour
University of Waterloo

alireza.fathollahpour@uwaterloo.ca

Matthew Regehr
University of Waterloo

matt.regehr@uwaterloo.ca

David P. Woodruff
Carnegie Mellon University
dwoodruf@cs.cmu.edu

Abstract

We propose an algorithm with improved query-complexity for the problem of
hypothesis selection under local differential privacy constraints. Given a set of k
probability distributions Q, we describe an algorithm that satisfies local differential
privacy, performs Õ(k3/2) non-adaptive queries to individuals who each have
samples from a probability distribution p, and outputs a probability distribution
from the set Q which is nearly the closest to p. Previous algorithms required either
Ω(k2) queries or many rounds of interactive queries. Technically, we introduce a
new object we dub the Scheffé graph, which captures structure of the differences
between distributions in Q, and may be of more broad interest for hypothesis
selection tasks.

1 Introduction

Hypothesis selection refers to the following statistical question: given n samples from a distribution
p, and descriptions of k distributions Q, output a distribution q̂ which is as close to p as possible.
More precisely, for an α > 0, the goal is to output a distribution q̂ such that

∥q̂ − p∥1 ≤ O(1) ·min
q∈Q

∥q − p∥1 + α.

In other words, the ℓ1-distance between p and the output distribution q̂ is at most a constant factor
larger than that of the closest distribution q∗ ∈ Q, up to some additional additive error α. How many
samples are needed for this task, and what algorithms do we use to do it? This fundamental primitive
serves as an important building block for many other statistical estimation tasks. Furthermore, it
generalizes one of the most classic problems in statistics, simple hypothesis testing, wherein the
distribution p is promised to be exactly equal to one of the distributions q ∈ Q.

Many classical works (e.g., [Yat85, DL96, DL97, DL01]) address and resolve these questions,
showing that n = O(log k) samples suffice. That is, we require only logarithmically-many samples
in order to identify the (near-)best distribution. Subsequently, many other works have studied
hypothesis selection subject to other constraints and desiderata, including computational efficiency,
robustness, weaker access to hypotheses, and more (see, e.g., [MS08, DDS12, DK14, SOAJ14,
AJOS14, DKK+16, AFJ+18, BKM19, BKSW19, GKK+20]).

We focus on the constraint of differential privacy (DP) [DMNS06], a rigorous notion of data privacy
that guarantees that a procedure will not leak too much information about individual points in the
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dataset. DP has been adopted in practice by numerous organizations, including Google [XZA+23],
Apple [Dif17], and the US Census Bureau [AACM+22]. Under the central notion of DP, wherein
there exists a trusted curator who may observe the sensitive dataset directly, Bun, Kamath, Steinke, and
Wu showed that O(log k) samples still suffice to perform hypothesis selection [BKSW19, BKSW21].

However, central DP requires a trusted curator, a strong assumption when operating on sensitive
data. Instead, one can consider local DP (LDP) [War65, EGS03, KLN+11]: in this setting, every
dataholder makes their own outputs DP before sharing them with anyone else. This offers much
stronger privacy semantics than central DP, but also requires more data for most tasks.

Work by Gopi, Kamath, Kulkarni, Nikolov, Wu, and Zhang [GKK+20] initiated the study of hy-
pothesis section under local DP [GKK+20]. In this case, each user holds an independent sample
from the unknown distribution p. Unfortunately, lower bounds of Duchi and Rogers for sparse mean
estimation imply that Ω(k) samples are necessary for this problem [DR19], exponentially more than
the O(log k) samples which suffice for the central DP setting.

With this barrier in mind, [GKK+20] proved two main results. First, they provided an Õ(k)-sample
algorithm for locally private hypothesis selection. This matches the lower bound of Duchi and Rogers
up to logarithmic factors, and subsequent work by Pour, Ashtiani, and Asoodeh improves the upper
bound to O(k) [PAA24], matching the lower bound up to constant factors. The major caveat of
both these algorithms is that they require interactivity. This is because the specific queries asked to
each dataholder depend on the outputs provided by earlier dataholders (i.e., the queries are selected
adaptively). This style of interactivity can be a non-starter for real-world deployments of local DP.
If one desires a non-interactive algorithm, a straightforward privatization of the celebrated Scheffé
tournament requires O(k2) samples. [GKK+20] improve upon this with their second main result,
a non-interactive Õ(k)-sample algorithm, but for the simpler problem of k-wise simple hypothesis
testing, where the distribution p is promised to be equal to one of the distributions q ∈ Q.2

To summarize, we highlight three existing results under LDP:

• An interactive O(k)-sample algorithm for hypothesis selection;

• A non-interactive O(k2)-sample algorithm for hypothesis selection; and

• A non-interactive Õ(k)-sample algorithm for simple hypothesis testing.

1.1 Results and Techniques

Our main result improves upon all of these, providing a non-interactive Õ(k3/2)-sample algorithm
for LDP hypothesis selection, where Õ(f) = f · polylog(f). Definitions are given in Section 2.

Theorem 1. Given a set of k distributions Q and Õ(k5/2) expected preprocessing time3, there exists
a non-interactive ε-locally differentially private algorithm with the following guarantees. For any
α, β > 0, there is

n0 ≤ O

(
k3/2

√
log k log(k/β)

α2ε2

)
such that given n ≥ n0 samples from a distribution p, then with probability at least 1 − β the
algorithm outputs a distribution q̂ ∈ Q satisfying

∥q̂ − p∥1 ≤ 13 ·min
q∈Q

∥q − p∥1 + α.

To prove this result, we first introduce in Section 3 a generalization of the classical minimum distance
estimator that accepts any collection of queries that is rich enough to facilitate comparisons between
any pair of distributions. Next, we show in Section 4 how standard tools from differential privacy can

2We simplify for the sake of presentation: they actually show a slightly stronger result. Let OPT =
minq∈Q ∥q − p∥. Roughly speaking, their Lemma 4.1 provides a non-interactive ε-LDP algorithm such that,
given n = Õ(k/α4ε2) samples, it outputs a distribution q̂ such that ∥q̂ − p∥ ≤ O(

√
log k) ·

√
OPT +O(α).

Note that, compared to our desired O(1) ·OPT guarantees, their result degrades quadratically in the value of
OPT, and weakens as the number of hypotheses k becomes large.

3Preprocessing involves computing many probabilities q(E) for q ∈ Q, which we treat as constant-time.
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be used to non-interactively estimate the queries under local privacy. Our final and most crucial step
is to introduce in Section 5 a new combinatorial object, the Scheffé graph. This is a directed graph
whose vertices correspond to possible queries that a locally private hypothesis selection algorithm
may ask and whose directed edges indicate when one query gives sufficient information to answer
another query. It is natural to ask for a minimal set of queries that yield sufficient information to
answer all queries and we show that there indeed exists such a small such set of queries. Theorem 1
then follows immediately by combining Theorem 11 in Section 4 with Theorem 13 in Section 5
below.

The natural question is whether our bound can be strengthened to achieve an Õ(k) sample complexity
for non-interactive locally private hypothesis selection. A core part of our analysis involves showing
an Õ(k3/2) bound on the domination number of any Scheffé graph – if this could be improved to
Õ(k), then it would produce the desired result. However, in Section 6.1, we provide a nearly-matching
lower bound on the domination number, showing that additional structure must be employed to go
beyond this barrier.

Another approach to designing an Õ(k) sample algorithm is based on a suggestion of [GKK+20].
A key technical component of their work is a so-called flattening lemma – they point out that a
specific strengthening would lead to an Õ(k) sample algorithm. In Section 6.2, we provide a concrete
counterexample to such a strengthening, showing that it is not achievable.

1.2 Related Work

Hypothesis selection is a classical statistical task. This style of approach was introduced by Yatra-
cos [Yat85], and further developed in subsequent work by Devroye and Lugosi [DL96, DL97, DL01].
The most relevant line of work to ours studies hypothesis selection under differential privacy
constraints [BKSW19, AAK21, GLW21, GKK+23, PAA24]. However, all of these works ei-
ther study a weaker notion of privacy, require interactivity, require more data, or apply to a
weaker problem than our work. Another line of work focuses on algorithms for (non-private)
hypothesis selection that minimize the number of comparisons or the amount of computa-
tion [MS08, DDS12, DK14, SOAJ14, AJOS14, AFJ+18, ABS24]. While many of these algorithm
require only a near-linear number of comparisons between hypotheses, they are unsuitable for our
purposes as they perform adaptive queries, which would result in an interactive protocol in our setting.
There are a number of other works on hypothesis selection, focusing on desiderata including robust-
ness [DKK+16, BBKL23], approximation factor [BKM19, BBK+22], memory constraints [ABS23],
and more [QCR20, AAC+23, AAC+24]. There has also been significant work into hypothesis test-
ing under local DP [DJW13, DJW17, GR18, She18, ACFT19, ACT19, JMNR19, AZ24, PAJL24,
PJL24], though this often focuses on the non-agnostic case (i.e., when the distribution is exactly equal
to one of the given distributions) and k = 2. For more coverage of private statistics, see [KU20].

2 Preliminaries

We recall the classic definitions of differential privacy (DP) and local differential privacy (LDP):
Definition 2 ([DMNS06]). An algorithm M : Xn → Y is ε-differentially private if, for all
X,X ′ ∈ Xn that differ in exactly one entry and S ⊆ Y , we have that

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S].

Definition 3 ([War65, EGS03, KLN+11]). Suppose there are n individuals, where the i-th individual
has datapoint Xi. A protocol is non-interactive and ε-local differentially private if, for every i ∈ [n],
individual i computes and outputs a (randomized) message mi(Xi) (where each mi : X → Y is
independently randomized), and mi is ε-differentially private. That is, for all i ∈ [n], any Xi, X

′
i ∈ X ,

and any event E ⊆ Y , we have that
Pr[mi(Xi) ∈ E] ≤ eε Pr[mi(X

′
i) ∈ E].

We also recall the notion of a dominating set in a directed graph.
Definition 4. Let G = (V,E) be a digraph. A dominating set for G is a subset D ⊆ V of vertices
such that that, for every vertex w ∈ V , either w ∈ D, or there is v ∈ D such that (v, w) ∈ E, i.e.
there is an edge v → w. We call the size of a minimal dominating set the domination number of G,
which we write as dom(G).
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We will sometimes say a vertex v dominates a set of vertices W , which means that for each w ∈ W ,
either w = v or there is an edge v → w. In the same vein, we say that a set of vertices U dominates a
set W if each w ∈ W is dominated by some v ∈ U .

Finally, we recall the classical Scheffé test. Note that we frequently conflate a distribution q with its
mass function (density in the continuous setting) to make expressions such as q(x) and ⟨q, T ⟩ legible.

Definition 5. For a pair of distributions q, q′ ∈ ∆(X ) over a domain X , we denote by δ(x) :=
q(x)− q′(x) the difference functional from q to q′ and we denote by

S(x) := sgn(δ(x)) =
{
+1 if q(x) ≥ q′(x)

−1 if q(x) < q′(x)

the signed Scheffé set from q to q′.

In some sense, “querying” the signed Scheffé set S is the best possible measure of the ℓ1 distance
between q and q′, formalized in the following lemma.

Lemma 6. For any distributions q and q′ with signed Scheffé set S,

∥q − q′∥1 = ⟨δ, S⟩ = sup
T∈{−1,1}X

|⟨q − q′, T ⟩|.

The classical Scheffé test between q and q′ involves sampling data from some unknown distribution
p, calculating an estimate p̂S of ⟨p, S⟩, then returning q if ⟨q, S⟩ is closer to p̂S than ⟨q′, S⟩ and
returning q′ otherwise. This estimator can be shown [DL01] to obtain ℓ1-error at most

3min{∥q − p∥1, ∥q′ − p∥1}+ 2|⟨p, S⟩ − p̂S |.

3 The Relaxed Minimum Distance Estimator

In this section, we develop an estimator for k distributions with a similar guarantee to that of the
classical Scheffé test. We assume that we are given access to some estimates p̂T of ⟨p, T ⟩ where p is
an unknown distribution and where T belongs to a family of queries T . Moreover, under the LDP
constraints, each query p̂T requires fresh data, so we would like some estimator that only makes a
small number of distinct queries to p.

Definition 7 (Relaxed Minimum Distance Estimator (RMDE)). Let Q ⊆ ∆(X ) be a finite set of
distributions and suppose we have collection T of functionals T ∈ {−1, 1}X as well as a sequence
of query results p̂T = (p̂T )T∈T . The relaxed minimum distance estimate given the query results is

q̂(p̂T ) := argmin
q∈Q

sup
T∈T

|⟨q, T ⟩ − p̂T |.

The following theorem provides theoretical guarantees for the RMDE – similar to the Scheffé test, it
can be decomposed into the error from the optimal hypothesis plus approximation error over the set
of functionals T .

Theorem 8. Let Q be a finite set of distributions over X and let T ⊆ {−1, 1}X be a set of functionals
with the property that, for each q, q′ ∈ Q, there is some T ∈ T satisfying

|⟨q − q′, T ⟩| ≥ ϕ∥q − q′∥1. (⋆)

Then, for any distribution p and query results p̂T = (p̂T )T∈T ,

∥q̂(p̂T )− p∥1 ≤ (1 + 2ϕ−1)∥q∗ − p∥1 + 2ϕ−1 sup
T∈T

|⟨p, T ⟩ − p̂T |

where q∗ := argminq∈Q∥q − p∥1 denotes the closest distribution to p.

One could take the query set T to be all
(
k
2

)
signed Scheffé sets between pairs q, q′ ∈ Q. This

recovers the classical minimum distance estimator [DL01], and would satisfy the theorem condition
with ϕ = 1. Our goal will be to obtain a smaller query set T (which will translate into fewer queries
and samples), at the cost of a smaller value of ϕ.
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Proof. Write q̂ := q̂(p̂T ) for short. Clearly, ∥q̂− p∥1 ≤ ∥q∗− p∥1+ ∥q̂− q∗∥1, so we will just focus
on bounding ∥q̂ − q∗∥1.

Now, by (⋆), there must be some T̂ ∈ T for which

∥q̂ − q∗∥1 ≤ ϕ−1|⟨q̂ − q∗, T̂ ⟩|
≤ ϕ−1 sup

T∈T
|⟨q̂ − q∗, T ⟩|

≤ ϕ−1

(
sup
T∈T

|⟨q̂, T ⟩ − p̂T |+ sup
T∈T

|⟨q∗, T ⟩ − p̂T |
)

≤ 2ϕ−1 sup
T∈T

|⟨q∗, T ⟩ − p̂T |

≤ 2ϕ−1

(
sup
T∈T

|⟨q∗ − p, T ⟩|+ sup
T∈T

|⟨p, T ⟩ − p̂T |
)

≤ 2ϕ−1∥q∗ − p∥1 + 2ϕ−1 sup
T∈T

|⟨p, T ⟩ − p̂T |

where the last inequality follows from Lemma 6.

4 Non-Interactive Locally Differentially Private RMDE

In this section, we explain how to get accurate estimates of p̂T of ⟨p, T ⟩ under ε-LDP. Consequently,
we will achieve non-interactive LDP hypothesis selection by calculating all of these estimates in
parallel and then supplying them to the relaxed minimum distance estimator.

We first recall randomized response, which is a classical mechanism that ensures local privacy by
flipping the response bit with small probability. This introduces a (correctable) bias.
Lemma 9 ([War65, EGS03, KLN+11]). Randomized response is the randomized function RRε that
receives x ∈ {−1, 1} and outputs x with probability eε

eε+1 and −x with probability 1
eε+1 . Randomized

response satisfies ε-LDP.

Assuming each user holds an independent datapoint x ∼ p, we can estimate our workload of queries
⟨p, T ⟩ under LDP by applying randomized response to T (x) for each user, averaging, and correcting
the bias introduced by RRε.
Proposition 10. Let T be a collection of functionals T ∈ {−1, 1}X . Then there is an ε-LDP

mechanism which requires m = O
(

|T | log (|T |/β)
α2ε2

)
samples and computes estimates p̂T = (p̂T )T∈T

such that with probability at least 1− β, we have |⟨p, T ⟩ − p̂T | ≤ α for all T ∈ T .

Proof. Assume we have a sample S from p distributed locally among users. The curator divides the
sample into |T | disjoint subsets S1, . . . , S|T | each of size ℓ = |S|/|T | = O

(
log (|T |/β)

α2ε2

)
. Fix an

enumeration π on the functionals in T . For each T ∈ T , every user in Sπ(T ) with sample x sends

m(x) := RRε(T (x)) to the curator, who computes p̂T = 1
ℓ ·

eε+1
eε−1

(∑
x∈Sπ(T )

m(x)
)

. This protocol

satisfies ε-LDP by Lemma 9. Now, we claim that eε+1
eε−1m(x) is an unbiased estimate of ⟨p, T ⟩. Indeed,

ERRε,x

[
eε+1
eε−1m(x)

]
= eε+1

eε−1

(
eε

eε+1Ex[T (x)]− 1
eε+1Ex[T (x)]

)
= Ex[T (x)] = ⟨p, T ⟩. Moreover,

eε+1
eε−1m(x) for x ∈ Sπ(T ) are ℓ i.i.d. random variables with values in

[
− eε+1

eε−1 ,
eε+1
eε−1

]
. We can

therefore apply Hoeffding’s inequality to conclude that

P [|p̂T − ⟨p, T ⟩| ≥ α] = P

∣∣∣∣∣∣1ℓ · e
ε + 1

eε − 1

 ∑
x∈Sπ(T )

m(x)

− ⟨p, T ⟩

∣∣∣∣∣∣ ≥ α


≤ exp

− ℓα2

2
(

eε+1
eε−1

)2

 ≤ β/|T |,
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where the last line follows from the fact that for ε ∈ (0, 1), we have ( e
ε+1

eε−1 )
2 = Θ(1/ε2). The union

bound yields |p̂T − ⟨p, T ⟩| ≤ α for all T ∈ T with probability at least 1− β, as desired.

Combining Theorem 8 and Proposition 10, we have the following.

Theorem 11. Let Q be a set of k distributions over X and let T be a set of functionals T ∈ {−1, 1}X
with the property that, for each q, q′ ∈ Q, there is some T ∈ T satisfying

|⟨q − q′, T ⟩| ≥ ϕ∥q − q′∥1. (⋆)

Then, RMDE is an ε-LDP algorithm that requires m = O
(

|T | log (|T |/β)
ϕ2α2ε2

)
samples with the following

property. For any distribution p, it outputs a distribution q̂ such that with probability at least 1− β

∥q̂ − p∥1 ≤ (1 + 2ϕ−1)∥q∗ − p∥1 + α,

where q∗ := argminq∈Q∥q − p∥1 denotes the closest distribution to p.

Our remaining task to prove Theorem 1 is to find a small set T of queries that satisfies the property
(⋆) with ϕ ≥ Ω(1).

5 The Scheffé Graph

In order to outfit RMDE with an appropriate test set T , we will begin with the Scheffé sets and pare
them down by exploiting their shared information structure.

Definition 12. Given distributions q1, . . . , qk ∈ ∆(X ), the induced ϕ-Scheffé graph is the digraph
with vertices4

(
[k]
2

)
= {{j, j′} : 1 ≤ j < j′ ≤ k} and an edge {i, i′} → {j, j′} whenever

|⟨δjj′ , Sii′⟩| ≥ ϕ∥δjj′∥1
where δjj′ := qj − qj′ and Sii′ is the signed Scheffé set from qi to qi′ .

Now recall that a dominating set in a digraph is a subset D of its vertices V such that every vertex
v ∈ V either belongs to D or v ∈ Nout(D), namely v is an out-neighbour of some vertex in D.

Since |⟨δjj′ , Sjj′⟩| = ∥δjj′∥1 by Lemma 6, then clearly for any dominating set D in the ϕ-Scheffé
graph, T := {Sjj′ : {j, j′} ∈ D} will satisfy condition (⋆) of Theorem 8, so our main goal in this
section is to demonstrate the existence of a small dominating set. In particular, we show that the
1/6-Scheffé graph for any set of k distributions has domination number Õ(k3/2).

Theorem 13. For ϕ = 1/6 and any distributions q1, . . . , qk, the induced ϕ-Scheffé graph has domi-
nation number at most 4k3/2

√
log k. Moreover, there exists a randomized preprocessing algorithm

that finds a dominating set of this size in O(k5/2
√
log k) expected time.

Note that this bound may be loose. We ran simulations for randomly selected Q and observed weak
empirical evidence that the domination number behaves as Õ(k). This is because, for small values of
k (namely < 20), the Scheffé graph appears to be much denser than the following analysis suggests.

In any case, the first step to proving the bound is to examine the structure of a fixed triangle
{{j, j′}, {j′, j′′}, {j, j′′}}. We will argue that, if there are no vertices whose corresponding δ has
small ℓ1-length (relative to the other vertices), then each vertex sends an edge to at least one other
vertex in the triangle. On the other hand, if a vertex has very small ℓ1-length, then we can show that
the remaining two vertices must share a bidirectional edge.

Proposition 14 (Triangular Substructure). For ϕ = 1/6, the induced ϕ-Scheffé graph on any
distributions q1, . . . , qk has the following triangular structure. For every {j, j′, j′′} ∈

(
[k]
3

)
, the

graph has at least one of the following edge structures:

(i) {j, j′′} ↔ {j′, j′′}

(ii) {j, j′} → {j, j′′}
4More generally, we write

(
X
t

)
:= {A ⊆ X : |A| = t} for shorthand.
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(iii) {j, j′} → {j′, j′′}

The argument relies on the following geometric property of a triangle in a metric space.
Lemma 15. For any three points x, y, z in a metric space with metric d, let a := d(x, y), b := d(x, z),
and c := d(y, z) denote the lengths of each leg of the triangle xyz. Then either

a ≤ 1

2
b and a ≤ 1

2
c or a >

1

3
b and a >

1

3
c.

To prove the lemma, assume the first condition fails, namely a > 1
2b or a > 1

2c. If a > 1
2b, then

certainly a > 1
3b and, by the triangle inequality,

a >
1

2
b ≥ 1

2
(c− a) =⇒ 3

2
a >

1

2
c =⇒ a >

1

3
c.

The case a > 1
2c is analogous.

Proof of Proposition 14. For simplicity, let j = 1, j′ = 2, and j′′ = 3. With an eye toward the
geometric lemma, assume first that δ12 is “short”, i.e.

∥δ12∥1 ≤ 1

2
∥δ13∥1,

1

2
∥δ23∥1.

In this case, since δ23 = δ13 − δ12, the triangle inequality yields

∥δ23∥1 = |⟨δ23, S23⟩| ≤ |⟨δ13, S23⟩|+ |⟨δ12, S23⟩| ≤ |⟨δ13, S23⟩|+ ∥δ12∥,
so

|⟨δ13, S23⟩| ≥ ∥δ23∥1 − ∥δ12∥1 ≥ 1

2
∥δ23∥1 ≥ 1

2
(∥δ13∥1 − ∥δ12∥1) ≥

1

4
∥δ13∥1

and thus we have an edge {2, 3} → {1, 3}. By symmetry we also have an edge {1, 3} → {2, 3}.

On the other hand, by Lemma 15, the remaining case to consider is that

∥δ12∥1 >
1

3
∥δ13∥1,

1

3
∥δ23∥1.

Then, since δ12 = δ13 − δ23, we have

∥δ12∥1 = |⟨δ12, S12⟩| ≤ |⟨δ13, S12⟩|+ |⟨δ23, S12⟩|.

By averaging, either |⟨δ13, T12⟩| ≥ 1
2∥δ12∥1 > 1

6∥δ13∥1, so we have an edge {1, 2} → {1, 3}, or
|⟨δ23, S12⟩| ≥ 1

2∥δ12∥1 > 1
6∥δ23∥1, in which case we get an edge {1, 2} → {2, 3}.

The consequence of this triangular substructure is that the graph must have relatively dense edges and
thus only relatively few vertices can be supported by a small number of other signed Scheffé sets.
Proposition 16. For any r ≥ 1, the 1/6-Scheffé graph on any k distributions has at most 3kr vertices
with in-degree less than r.

Proof. Suppose not. By averaging over the following covering of the vertex set

V = V1 ∪ · · · ∪ Vk

where Vj := {v ∈ V : j ∈ v}, there must be some j for which Vj contains at least 3r vertices with
in-degree less than r. Call these vertices Bj . Now, for any pair of vertices {j, j′} ̸= {j, j′′} in Bj ,
either {j, j′} ↔ {j, j′′}, {j′, j′′} → {j, j′}, or {j′, j′′} → {j, j′′} by Proposition 14. That is, for
each pair of vertices v ̸= v′ in Bj , there is at least one corresponding edge that lands in Bj , so∑

v∈Bj

din(v) ≥
(
|Bj |
2

)
=

1

2
|Bj |(|Bj | − 1).

By averaging again, there must be some v ∈ Bj for which

din(v) ≥
1

2
(|Bj | − 1) ≥ 1

2
(3r − 1) ≥ r,

which is a contradiction.
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Proof of Theorem 13. We proceed by dominating vertices with small in-degree separately from
vertices with large in-degree.

To that end, set r :=
√
k log k and let B be those vertices with in-degree less than r. By the previous

proposition, |B| ≤ 3k3/2
√
log k.

Now, draw uniformly at random a subset R of size ℓ := k3/2
√
log k from the whole vertex set V .

For a fixed v ∈ V \B,

P(v /∈ Nout(R)) =

(|V |−din(v)
ℓ

)(|V |
ℓ

) =

(
|V | − din(v)

|V |

)(
|V | − din(v)− 1

|V | − 1

)
. . .

(
|V | − din(v)− ℓ+ 1

|V | − ℓ+ 1

)

≤
(
|V | − din(v)

|V |

)ℓ

≤ 2−din(v)ℓ/|V | ≤ 2−2 log k =
1

k2
.

By the union bound, P(V \ B ⊈ Nout(R)) ≤
∑

v∈V \B P(v /∈ Nout(R))) ≤ |V |/k2 ≤ 1/2, so,
by the probabilistic method, there must be some R ∈

(
V
ℓ

)
that dominates V \ B, in which case

D = B ∪R is a dominating set of size at most |B|+ ℓ ≤ 4k3/2
√
log k.

As for finding such a dominating set algorithmically, pick R ∈
(

V
k3/2

√
log k

)
uniformly at random.

Iterate over v = {a, b} ∈ R, add v and its triangular out-neighbours to a hashtable in O(k) time5

by checking {a, i} and {b, i} for each i ∈ [k] \ v. By the preceding calculation, R together with all
uncovered vertices in the hashtable is a dominating set of size at most 4k3/2

√
log k with probability

greater than 1/2, so repeating until this is the case achieves the desired expected runtime.

6 Barriers to a Near-Linear Algorithm

The ideal algorithm for non-interactive locally private hypothesis selection would require only Õ(k)
samples, matching known lower bounds for the problem [DR19, GKK+20]. In this section, we rule
out two different approaches one could employ to design such an algorithm.

6.1 An Ω̃(k3/2) Lower Bound under Triangular Substructure Assumption

One could conceive of a strengthening of Theorem 13, which argues that the domination number
of any Scheffé graph is Õ(k). Unfortunately, we argue that the triangular substructure described
in Proposition 14 is insufficient to yield a better bound than Õ(k3/2). Therefore, to go beyond this
bound, one must employ additional structure of the Scheffé graph.

Theorem 17. For all sufficiently large k, there is a digraph Gk on vertices
(
[k]
2

)
satisfying the

triangular substructure condition of Proposition 14 for which

dom(Gk) ≥
k3/2

8
√
log k

= Ω̃(k3/2).

Proof. Draw uniformly at random a set R of size ℓ := 1
4k

3/2
√
log k from the vertex set V =

(
[k]
2

)
.

For a fixed vertex v = {a, b} ∈ V , consider the set of indices

IRv := {i ∈ [k] \ v : {a, i}, {b, i} ∈ R}

5We treat the time to check whether |⟨qj − qj′ , Sii′⟩| ≥ ϕ∥qj − qj′∥1 as a single unit of computation. In
practice, this requires computing a sum or integral and depends on how the distributions are stored in memory.
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that form a triangle with v in which both vertices other than v land in R. We aim to show that this set
is small with high probability. Indeed, setting t := 2 log k, the union bound yields

P(|IRv | ≥ t) ≤
∑

J∈([k]\v
t )

P({{a, i} : i ∈ J} ∪ {{b, i} : i ∈ J} ⊆ R) =

(
k − 2

t

)
·
(|V |−2t

ℓ−2t

)(|V |
ℓ

)

≤
(
e(k − 2)

t

)t (
ℓ

|V |

)2t

=

(
e(k − 2)

2 log k
·

1
16k

3 log k
1
4k

2(k − 1)2

)t

=

 e

8︸︷︷︸
≤1/2

· k(k − 2)

(k − 1)2︸ ︷︷ ︸
≤1


t

≤ 2−2 log k = 1/k2.

By another union bound, we can show that all such sets are likely to be small simultaneously, i.e.
P(∃v ∈ V, |IRv | ≥ t) ≤ |V |/k2 ≤ 1/2, so there must be some R ⊆ V of size ℓ = 1

4k
3/2

√
log k for

which all IRv have size less than t = 2 log k.

We can now form the bad digraph Gk on the vertex set V by adding edges as follows. For every
v = {a, b} ∈ V and every i ∈ [k] \ v,

{a, i} ∈ R, {b, i} /∈ R =⇒ {a, b} → {b, i}
{a, i} /∈ R, {b, i} ∈ R =⇒ {a, b} → {a, i}

otherwise =⇒ {a, b} → {a, i} or {a, b} → {b, i} arbitrarily.

Clearly, every triangle of Gk satisfies either condition (ii) or (iii) of Proposition 14. Moreover, for
a vertex v = {a, b}, it can only dominate an element {a, i} or {b, i} of R if both {a, i} and {b, i}
belong to R, namely i ∈ IRv . Therefore, including itself, v dominates at most |IRv | + 1 ≤ 2 log k

elements of R, so any dominating set must have size at least |R|
2 log k = k3/2

8
√
log k

.

6.2 A Counterexample to Flattening

Another possible technique for non-interactive LDP hypothesis selection is that of flattening, which
is discussed in [GKK+20]. The following conjecture (Question 4.4 in that work), states that any
collection of distributions over a finite domain can be mapped to distributions close to uniform while
still preserving their pairwise ℓ1-distances. Note that the original conjecture contained minor mistakes
as it was written—including a missing factor of two—which we have corrected.
Conjecture 18 (Flattening). Let q1, . . . , qk ∈ ∆([n]) be distributions that are separated in ℓ1-
distance by at most 2α. Then there exists a randomized map ϕ : [n] → [m] satisfying

1. For all 1 ≤ j ≤ k and y ∈ [m], 1−α
m ≤ ϕqj(y) ≤ 1+α

m and

2. For all 1 ≤ j < j′ ≤ k, ∥ϕqj − ϕqj′∥1 ∈ Θ(∥qj − qj′∥1)

where ϕq means the distribution of ϕ(x), x ∼ q.

If the conjecture is true, then one can in effect compare any two distributions qj and qj′ by applying
the mapping ϕ to each and then comparing them separately to the uniform distribution U([m]). In this
case, only k comparisons to the intermediary uniform distribution are required to gain information
about all

(
k
2

)
pairwise comparisons. These comparisons can be carried out in parallel with a small

number of samples each, leading to non-interactive LDP hypothesis selection. For more details see
the proof of Lemma 4.1 in [GKK+20]. Unfortunately, we show that this conjecture is false.

Counterexample to Flattening Conjecture. For simplicity, we identify a distribution with its mass
function as a column vector in Rn or Rm and a sequence of distributions (q1, . . . , qk) with the matrix
Q whose columns are q1, . . . , qk. Similarly, we identify a stochastic map ϕ with a left stochastic
matrix (LSM) in Rm×n so that (ϕq1, . . . , ϕqk) is just a matrix multiplication ϕ(q1, . . . , qk)

Consider the n × n identity matrix E := In. We construct n additional distributions that, for the
purposes of flattening, will conflict with the columns of E. To that end, let H denote the n × n

9



Hadamard matrix, i.e., Hij := (−1)⟨i,j⟩ mod 2 where i and j are viewed as binary strings of length
log n. Key properties of this matrix are that H/

√
n is orthonormal, every pair of columns differs

in exactly n/2 entries, and every column sums to 0, except for the first column which is all ones.
Now, let F be an n × n matrix whose first column f1 is the uniform distribution 1/n and whose
jth column fj is the jth column of H with −1 replaced by 0 and +1 replaced by 2/n. In this case,
Q = (E,F ) ∈ Rn×k (k := 2n) consists of distributions separated in ℓ1-distance by at most 2.

Now, assume we have an LSM ϕ ∈ Rm×n satisfying the first condition ϕQ ∈ [0, 2/m]m×k. In
particular, all entries of ϕ = ϕE must fall in [0, 2/m]. On the other hand, by construction we have
H = n(f1, f2 − f1, . . . , fn − f1), so, since 1√

n
H is orthonormal, we have

∥ϕ(f1, f2 − f1, . . . , fn − f1)∥2F= ∥ϕH/
√
n∥2F /n = ∥ϕ∥2F /n ≤ mn(2/m)2/n = 4/m.

By averaging, there must be some v ∈ {f1, f2 − f1, . . . , fn − f1} for which

∥ϕv∥21 ≤ m∥ϕv∥22 ≤ m∥ϕ(f1, f2 − f1, . . . , fn − f1)∥2F /n ≤ 4/n.

Provided that n > 4, this is impossible for v = f1 because ∥ϕf1∥1 = 1, so there must be 1 < i ≤ n
such that ∥ϕfi − ϕf1∥1 ≤ 2/

√
n = o(1) = o(∥fi − f1∥1).

7 Conclusion

In this work we introduce two new techniques for hypothesis selection.

The first is a relaxation of the classical minimum distance estimator in which the Scheffé sets are
replaced by any collection of queries that is diverse enough for ℓ1-comparisons between any pair of
candidate distributions.

The second is a new object called the Scheffé graph that contains structural information about the
relationship between queries a hypothesis selection algorithm might ask. Our analysis of the Scheffé
graph reveals a dense triangular substructure that can be exploited to yield a non-trivial reduction
in query complexity. We show that our analysis of query complexity arising from the triangular
substructure is nearly tight, so any further reduction in query complexity via the Scheffé graph will
require the discovery of additional graph substructure.

Combining these two techniques yields an algorithm for non-interactive hypothesis selection under
LDP constraints with state-of-the-art sample complexity, though we stress that our techniques are
relevant to hypothesis selection problems more broadly.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The title and abstract skip our negative results but include our more important
positive results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our improved query complexity bound is

√
k larger than the known lower

bound for the problem. We give a hard construction that shows our bound to be tight for our
technique and suggests how the bound could be improved by taking our technique further.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Only one lemma (Lemma 6) has no proof but it is a standard easy result for
the area.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is a theoretical work with indirect societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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